
CFDEMproject WWW Site

CFDEMcoupling Documentation

1. Contents

The CFDEMcoupling documentation is organized into the following sections. If you find errors or omissions
in this manual or have suggestions for useful information to add, please send an email to the developers so we
can improve the CFDEMcoupling documentation.

1.1 About CFDEMcoupling
1.2 Installation
1.3 Tutorials
1.4 couplingProperties dictionary
1.5 liggghtsCommands dictionary
1.6 Models and solvers

1.1 About CFDEMcoupling

CFDEM coupling provides an open source parallel coupled CFD-DEM framework combining the strengths of
LIGGGHTS DEM code and the Open Source CFD package OpenFOAM(R)(*). The CFDEMcoupling
toolbox allows to expand standard CFD solvers of OpenFOAM(R)(*) to include a coupling to the DEM code
LIGGGHTS. In this toolbox the particle representation within the CFD solver is organized by "cloud" classes.
Key functionalities are organised in sub-models (e.g. force models, data exchange models, etc.) which can
easily be selected and combined by dictionary settings.

The coupled solvers run fully parallel on distributed-memory clusters. Features are:

its modular approach allows users to easily implement new models•
its MPI parallelization enables to use it for large scale problems•
the forum on CFD-DEM gives the possibility to exchange with other users / developers•

http://www.cfdem.com
http://www.cfdem.com
http://www.openfoam.com
http://www.openfoam.com
http://www.cfdem.com
http://www.cfdem.com

the use of GIT allows to easily update to the latest version•
basic documentation is provided•

The file structure:

src directory including the source files of the coupling toolbox and models•
applications directory including the solver files for coupled CFD-DEM simulations•
doc directory including the documentation of CFDEMcoupling•
tutorials directory including basic tutorial cases showing the functionality•

Details on installation are given on the CFDEMproject WWW Site . The functionality of this CFD-DEM
framwork is described via tutorial cases showing how to use different solvers and models.

CFDEMcoupling stands for Computational Fluid Dynamics (CFD) -Discrete Element Method (DEM)
coupling.

CFDEMcoupling is an open-source code, distributed freely under the terms of the GNU Public License
(GPL).

Core development of CFDEMcoupling is done by Christoph Goniva and Christoph Kloss, both at DCS
Computing GmbH, 2012

This documentation was written by Christoph Goniva, DCS Computing GmbH, 2012

(*) This offering is not approved or endorsed by OpenCFD Limited, the producer of the OpenFOAM software
and owner of the OPENFOAMÂ® and OpenCFDÂ® trade marks. OPENFOAMÂ® is a registered trade
mark of OpenCFD Limited, a wholly owned subsidiary of the ESI Group.

1.2 Installation

Please follow the installation routine provided at www.cfdem.com. In order to get the latest code version,
please use the git repository at http://github.com (githubAccess).

1.3 Tutorials

General:

Each solver of the CFDEMcoupling is comes with at least one tutorial example, showing its functionality and
correct useage. Provided that the installation is correct, the tutorials can be run via "Allrun.sh" shell scripts.
These scripts perform all necessary steps (preprocessing, run, postprocessing, visualization).

Location:

The tutorials can be found in the directory $CFDEM_PROJECT_DIR/tutorials, which can be reached by
typing "cfdemTut"

Structure:

Each case is structured in a directory called "CFD" covering the CFD relevant settings and data, and a dirctory
called "DEM" covering the DEM relevant settings and data. This allows to easily expand a pure CFD or DEM
simulation case to a coupled case.

http://www.cfdem.com

Usage:

Provided that the installation is correct, the tutorials can be run via "Allrun.sh" shell script, executed by typing
"./Allrun.sh". The successful run of the script might need some third party software (e.g. octave, evince, etc.).

Settings:

The main settings of a simulation are done via dictionaries:

The DEM setup of each case is defined by a LIGGGHTS input file located in $caseDir/DEM (e.g.
in.liggghts_init). For details on the LIGGGHTS setup, please have a look in the LIGGGHTS manual.

Standard CFD settings are defined in $caseDir/CFD/constant (e.g. transportProperties, RASproperties, etc.)
and $caseDir/CFD/system (e.g. fvSchemes, controlDict). You can find more information on that in
OpenFOAM(R)(*) documentations (www.openFoam.com)(*).

Settings of the coupling routines are defined in $caseDir/CFD/constant/couplingProperies (e.g. force models,
data exchange model, etc.) and $caseDir/CFD/constant/liggghtsCommands (allows to execute a LIGGGHTS
command during a coupled simulation).

1.4 "couplingProperties" dictionary

General:

In the "couplingProperties" dictionary the setup of the coupling routines of the CFD-DEM simulation are
defined.

Location: $caseDir/CFD/constant

Structure:

The dictionary is divided into two parts, "sub-models & settings" and "sub-model properties".

In "sub-models & settings" the following routines must be specified:

modelType•
couplingInterval•
voidFractionModel•
locateModel•
meshMotionModel•
regionModel•
IOModel•
dataExchangeModel•
averagingModel•
forceModels•
momCoupleModels•
turbulenceModelType•

In "sub-model properties" sub-dictionaries might be defined to specify model specific parameters.

Settings:

Reasonable example settings for the "couplingProperties" dictionary are given in the tutorial cases.

http://www.cfdem.com
http://www.cfdem.com
http://www.cfdem.com
http://www.openfoam.com

modelType

"modelType" refers to the formulation of the equations to be solved. Choose "A" or "B", according to Zhou et
al. (2010): "Discrete particle simulation of particle-fluid flow: model formulations and their appliccability",
JFM. "A" requres the use of the force models gradPForce and viscForce, whereas "B" requires the force
model "Archimedes".

couplingInterval

The coupling interval determines the time passing between two CFD-DEM data exchanges.

A useful procedure would be: 1) Set the DEM TS in the in.xxx according to the needs of the pure DEM
problem. 2) Set the "couplingInterval", which refers to the DEM timesteps. Depending on the problem you
will need to have a close (small couplingInterval) or loose coupling. 3) Choose the CFD timestep in the
controlDict. it must be equal or smaller than the coupling time, otherwise you will get the error: "Error - TS
bigger than coupling interval!".

Example: DEMts=0.00001s, couplingInterval=10 exchange data (=couple) will happen every 0.0001s.

1.5 "liggghtsCommands" dictionary

General:

In the "liggghtsCommands" dictionary liggghts commands being executed during a coupled CFD-DEM
simulation are specified.

Location: $caseDir/CFD/constant

Structure:

The dictionary is divided into two parts, first a list of "liggghtsCommandModels" is defined, then the settings
for each model must be specified.

Settings:

Reasonable example settings for the "liggghtsCommands" dictionary are given in the tutorial cases.

1.6 Models/Solvers

This section lists all CFDEMcoupling sub-models and solvers alphabetically, with a separate listing below of
styles within certain commands.

IOModel IOModel_basicIO
IOModel_noIO IOModel_sophIO
IOModel_trackIO averagingModel

averagingModel_dense averagingModel_dilute
cfdemSolverIB cfdemSolverPiso

cfdemSolverPisoScalar clockModel
clockModel_noClock clockModel_standardClock
dataExchangeModel dataExchangeModel_noDataExchange

dataExchangeModel_oneWayVTK dataExchangeModel_twoWayFiles
dataExchangeModel_twoWayMPI forceModel

forceModel_Archimedes forceModel_ArchimedesIB
forceModel_DiFeliceDrag forceModel_GidaspowDrag
forceModel_KochHillDrag forceModel_LaEuScalarTemp

forceModel_MeiLift forceModel_SchillerNaumannDrag
forceModel_ShirgaonkarIB forceModel_gradPForce

forceModel_noDrag forceModel_particleCellVolume
forceModel_virtualMassForce forceModel_viscForce
liggghtsCommandModel liggghtsCommandModel_execute

liggghtsCommandModel_readLiggghtsData liggghtsCommandModel_runLiggghts
liggghtsCommandModel_writeLiggghts locateModel

locateModel_engineSearch locateModel_engineSearchIB
locateModel_standardSearch meshMotionModel

meshMotionModel_noMeshMotion momCoupleModel
momCoupleModel_explicitCouple momCoupleModel_implicitCouple
momCoupleModel_noCouple probeModel

probeModel_noProbe regionModel
regionModel_allRegion smoothingModel

smoothingModel_constDiffSmoothing smoothingModel_noSmoothing
voidfractionModel voidfractionModel_GaussVoidFraction

voidfractionModel_IBVoidFraction voidfractionModel_bigParticleVoidFraction
voidfractionModel_centreVoidFraction voidfractionModel_dividedVoidFraction

CFDEMproject WWW Site - CFDEM Commands

averagingModel_dense command

Syntax:

Defined in couplingProperties dictionary.

averagingModel dense;

Examples:

averagingModel dense;

Description:

The averaging model performs the Lagrangian->Eulerian mapping of data (e.g. particle velocities). In the
"cfdemParticle cloud" this averaging model is used to calculate the average particle velocity inside a CFD
cell. The "dense" model is supposed to be applied to cases where the granular regime is rather dense.

Restrictions:

No known restrictions.

Related commands:

averagingModel, dilute

averagingModel_dense command 1

http://www.cfdem.com

CFDEMproject WWW Site - CFDEM Commands

averagingModel_dilute command

Syntax:

Defined in couplingProperties dictionary.

averagingModel dilute;

Examples:

averagingModel dilute;

Description:

The averaging model performs the Lagrangian->Eulerian mapping of data (e.g. particle velocities). In the
"cfdemParticle cloud" this averaging model is used to calculate the average particle velocity inside a CFD
cell. The "dilute" model is supposed to be applied to cases where the granular regime is rather dilute. The
particle velocity inside a CFD cell is evaluated from a single particle in a cell (no averaging).

Restrictions:

This model is computationally efficient, but should only be used when only one particle is inside one CFD
cell.

Related commands:

averagingModel, dense

averagingModel_dilute command 2

http://www.cfdem.com

CFDEMproject WWW Site - CFDEM Commands

averagingModel command

Syntax:

Defined in couplingProperties dictionary.

averagingModel model;

model = name of averaging model to be applied•

Examples:

averagingModel dense;
averagingModel dilute;

Note: This examples list might not be complete - please look for other averagin models
(averagingModel_XY) in this documentation.

Description:

The averaging model performs the Lagrangian->Eulerian mapping of data (e.g. particle velocities).

Restrictions:

None.

Related commands:

dense, dilute

Default: none

averagingModel command 3

http://www.cfdem.com

CFDEMproject WWW Site - CFDEM Commands

cfdemSolverIB command

Description:

"cfdemSolverIB" is a coupled CFD-DEM solver using CFDEMcoupling, an open source parallel coupled
CFD-DEM framework, for calculating the dynamics between immersed bodies and the surrounding fluid.
Being an implementation of an immersed boundary method it allows tackling problems where the body
diameter exceeds the maximal size of a fluid cell. Using the toolbox of OpenFOAM(R)(*) the governing
equations of the fluid are computed and the corrections of velocity and pressure field with respect to the
body-movement information, gained from LIGGGHTS, are incorporated.

Code of this solver contributions by Alice Hager, JKU.

Algorithm:

For each time step ...

the motion of the spheres is calculated (position, velocity, angular velocity, force...) with LIGGGHTS
using the velocity and pressure-field from the previous time step (initial condition for t=0).

•

the Navier-Stokes equations are solved on the whole computational domain, disregarding the solid
phase.

•

the spheres are located within the mesh: each sphere is represented by a cluster of cells, which are
either totally or partially covered by the body, depending on its exact position.

•

the correction of the velocity and pressure field of the fluid phase takes place, using the information
about the location of the spheres and their (angular) velocity.

•

Use:

The solver is realized within the Open Source framework CFDEMcoupling. Just as for the unresolved
CFD-DEM solver cfdemSolverPiso the file CFD/constant/couplingProperties contains information about the
settings for the different models. While IOmodel, DataExchangeModel etc. are applicable for all
CFDEMcoupling-solvers, special locate-, force- and void fraction models were designed for the present case:

engineSearchIB, ArchimedesIB, ShirgaonkarIB, IBVoidfraction

References:

GONIVA, C., KLOSS, C., HAGER,A., WIERINK, G. and PIRKER, S. (2011): "A MULTI-PURPOSE
OPEN SOURCE CFD-DEM APPROACH", Proc. of the 8th Int. Conf. on CFD in Oil and Gas, Metallurgical
and Process Industries, Trondheim, Norway

and

HAGER, A., KLOSS, C. and GONIVA, C. (2011): "TOWARDS AN EFFICIENT IMMERSED
BOUNDARY METHOD WITHIN AN OPEN SOURCE FRAMEWORK", Proc. of the 8th Int. Conf. on CFD
in Oil and Gas, Metallurgical and Process Industries, Trondheim, Norway

cfdemSolverIB command 4

http://www.cfdem.com

(*) OpenFOAM(R) is a registered trade mark of Silicon Graphics International Corp. This offering is not
affiliated, approved or endorsed by Silicon Graphics International Corp., the producer of the OpenFOAM(R)
software and owner of the OpenFOAM(R) trademark.

cfdemSolverIB command 5

CFDEMproject WWW Site - CFDEM Commands

cfdemSolverPiso command

Description:

"cfdemSolverPiso" is a coupled CFD-DEM solver using CFDEMcoupling, an open source parallel coupled
CFD-DEM framework. Based on pisoFoam(R)(*), a finite volume based solver for turbulent Navier-Stokes
equations applying PISO algorithm, "cfdemSolverPiso" has additional functionality for a coupling to the
DEM code "LIGGGHTS". The volume averaged Navier-Stokes Equations are solved accounting for
momentum exchange and volume displacement of discrete particles whose trajectories are calculated in the
DEM code LIGGGHTS.

see:

GONIVA, C., KLOSS, C., HAGER,A. and PIRKER, S. (2010): "An Open Source CFD-DEM Perspective",
Proc. of OpenFOAM Workshop, GÃ¶teborg, June 22.-24.

(*) This offering is not approved or endorsed by OpenCFD Limited, the producer of the OpenFOAM software
and owner of the OPENFOAMÂ® and OpenCFDÂ® trade marks. OPENFOAMÂ® is a registered trade
mark of OpenCFD Limited, a wholly owned subsidiary of the ESI Group.

cfdemSolverPiso command 6

http://www.cfdem.com

CFDEMproject WWW Site - CFDEM Commands

cfdemSolverPisoScalar command

Description:

"cfdemSolverPisoScalar" is a coupled CFD-DEM solver using CFDEMcoupling, an open source parallel
coupled CFD-DEM framework. Based on pisoFoam(R)(*), a finite volume based solver for turbulent
Navier-Stokes equations applying PISO algorithm, "cfdemSolverPisoScalar" has additional functionality for a
coupling to the DEM code "LIGGGHTS" as well as a scalar transport equation. The volume averaged
Navier-Stokes Equations are solved accounting for momentum exchange and volume displacement of discrete
particles whose trajectories are calculated in the DEM code LIGGGHTS. The scalar transport equation is
coupled to scalar properties of the particle phase, thus convective heat transfer in a fluid granular system can
be modeled with "cfdemSolverPisoScalar".

see:

GONIVA, C., KLOSS, C., HAGER,A. and PIRKER, S. (2010): "An Open Source CFD-DEM Perspective",
Proc. of OpenFOAM Workshop, GÃ¶teborg, June 22.-24.

(*) This offering is not approved or endorsed by OpenCFD Limited, the producer of the OpenFOAM software
and owner of the OPENFOAMÂ® and OpenCFDÂ® trade marks. OPENFOAMÂ® is a registered trade
mark of OpenCFD Limited, a wholly owned subsidiary of the ESI Group.

cfdemSolverPisoScalar command 7

http://www.cfdem.com

CFDEMproject WWW Site - CFDEM Commands

clockModel command

Syntax:

Defined in couplingProperties dictionary.

clockModel model;

model = name of the clockModel to be applied•

Examples:

clockModel standardClock;

Note: This examples list might not be complete - please look for other models (clockModel_XY) in this
documentation.

Description:

The clockModel is the base class for models to examine the code/algorithm with respect to run time.

Main parts of the clockModel classes are written by Josef Kerbl, JKU.

Restrictions: none.

Default: none.

clockModel command 8

http://www.cfdem.com

CFDEMproject WWW Site - CFDEM Commands

clockModel_noClock command

Syntax:

Defined in couplingProperties dictionary.

clockModel off;

Examples:

clockModel off;

Description:

The "noClock" model is a dummy clockModel model which does not measure/evaluate the run time.

Restrictions: none.

Related commands:

clockModel

clockModel_noClock command 9

http://www.cfdem.com

CFDEMproject WWW Site - CFDEM Commands

clockModel_standardClock command

Syntax:

Defined in couplingProperties dictionary.

clockModel standardClock;

Examples:

clockModel standardClock;

Description:

The "standardClock" model is a basic clockModel model which measures the run time between every
".start(int arrayPos,string name)" and ".stop(string name)" statement placed in the code. If a ".start(name)" is
called more than once (e.g. in a loop) the accumulated times are calculated. After the simulation has finished,
the data is stored in $caseDir/CFD/clockData/$startTime/*.txt . Since the measurements are stored in an array,
it is necessary to put a variable arrayPos (type integer) at the start command. Those do not need to be in
ascending order and positions may be omitted. The standard size of this array is 30 and can be changed at the
initialization of the standardClock class. If arrayPos is out of bounds, the array size will be doubled. The stop
command does not need arrayPos, since the class remembers the positions. The string name is for easier
evaluation afterwards an may be omitted like ".start(int arrayPos)" and ".stop()". The command ".stop(string
name)" is a safety feature, because if the name is not equal to the started name, output will be produced for
information. After the case ran you may use the matPlot.py script located in $CFDEM_UT_DIR/vizClock/ to
produce a graphical output of your measurements. The usage is like 'python < matPlot.py' and you have to be
in the directory of the desired time step, where there is a file called "timeEvalFull.txt", which contains
averaged and maximum data with respect to the number of processes.

Restrictions: none.

Related commands:

clockModel

clockModel_standardClock command 10

http://www.cfdem.com

CFDEMproject WWW Site - CFDEM Commands

dataExchangeModel command

Syntax:

Defined in couplingProperties dictionary.

dataExchangeModel model;

model = name of data exchange model to be applied•

Examples:

dataExchangeModel twoWayFiles;
dataExchangeModel twoWayMPI;

Note: This examples list might not be complete - please look for other models (dataExchangeModel_XY) in
this documentation.

Description:

The data exchange model performs the data exchange between the DEM code and the CFD code.

Restrictions:

None.

Related commands:

noDataExchange, oneWayVTK, twoWayFiles, twoWayMPI

Default: none

dataExchangeModel command 11

http://www.cfdem.com

CFDEMproject WWW Site - CFDEM Commands

dataExchangeModel_noDataExchange command

Syntax:

Defined in couplingProperties dictionary.

dataExchangeModel noDataExchange;

Examples:

dataExchangeModel noDataExchange;

Description:

The data exchange model performs the data exchange between the DEM code and the CFD code. The
noDataExchange model is a dummy model where no data is exchanged.

Restrictions:

None.

Related commands:

dataExchangeModel

dataExchangeModel_noDataExchange command 12

http://www.cfdem.com

CFDEMproject WWW Site - CFDEM Commands

dataExchangeModel_oneWayVTK command

Syntax:

Defined in couplingProperties dictionary.

dataExchangeModel oneWayVTK;
oneWayVTKProps
{
 DEMts timeStep;
 relativePath "path";
 couplingFilename "filename";
 maxNumberOfParticles number;
};

timeStep = time step size of stored DEM data•
path = path to the VTK data files relative do simulation directory•
filename = filename of the VTK file series•
number = maximum nuber of particles in DEM simulation•

Examples:

dataExchangeModel oneWayVTK;
oneWayVTKProps
{
 DEMts 0.0001;
 relativePath "../DEM/post";
 couplingFilename "vtk_out%4.4d.vtk";
 maxNumberOfParticles 30000;
}

Description:

The data exchange model performs the data exchange between the DEM code and the CFD code. The
oneWayVTK model is a model that can exchange particle properties from DEM to CFD based on previously
stored VTK data.

Restrictions:

None.

Related commands:

dataExchangeModel

dataExchangeModel_oneWayVTK command 13

http://www.cfdem.com

CFDEMproject WWW Site - CFDEM Commands

dataExchangeModel_twoWayFiles command

Syntax:

Defined in couplingProperties dictionary.

dataExchangeModel twoWayFiles;
twoWayFilesProps
{
 couplingFilename "filename";
 maxNumberOfParticles number;
};

filename = filename of the VTK file series•
number = maximum nuber of particles in DEM simulation•

Examples:

dataExchangeModel twoWayFiles;
twoWayFilesProps
{
 couplingFilename "vtk_out%4.4d.vtk";
 maxNumberOfParticles 30000;
}

Description:

The data exchange model performs the data exchange between the DEM code and the CFD code. The
twoWayFiles model is a model that can exchange particle properties from DEM to CFD and from CFD to
DEM. Data is exchanged via files that are sequentially written/read by the codes.

Restrictions:

Developed only for two processors, one for DEM and on for CFD run.

Related commands:

dataExchangeModel

dataExchangeModel_twoWayFiles command 14

http://www.cfdem.com

CFDEMproject WWW Site - CFDEM Commands

dataExchangeModel_twoWayMPI command

Syntax:

Defined in couplingProperties dictionary.

dataExchangeModel twoWayMPI;
twoWayMPIProps
{
 liggghtsPath "path";
};

path = path to the DEM simulation input file•

Examples:

dataExchangeModel twoWayMPI;
twoWayMPIProps
{
 liggghtsPath "../DEM/in.liggghts_init";
}

Description:

The data exchange model performs the data exchange between the DEM code and the CFD code. The
twoWayMPI model is a model that can exchange particle properties from DEM to CFD and from CFD to
DEM. Data is exchanged via MPI technique. The DEM run is executed by the coupling model, via a
liggghtsCommandModel object.

Restrictions:

none.

Related commands:

dataExchangeModel

dataExchangeModel_twoWayMPI command 15

http://www.cfdem.com

CFDEMproject WWW Site - CFDEM Commands

forceModel_Archimedes command

Syntax:

Defined in couplingProperties dictionary.

forceModels
(
 Archimedes
);
ArchimedesProps
{
 densityFieldName "density";
 gravityFieldName "gravity";
};

density = name of the finite volume density field•
gravity = name of the finite volume gravity field•

Examples:

forceModels
(
 Archimedes
);
ArchimedesProps
{
 densityFieldName "rho";
 gravityFieldName "g";
}

Description:

The force model performs the calculation of forces (e.g. fluid-particle interaction forces) acting on each DEM
particle. The Archimedes model is a model that calculates the Archimedes' volumetric lift force stemming
from density difference of fluid and particle.

Restrictions:

none.

Related commands:

forceModel

forceModel_Archimedes command 16

http://www.cfdem.com

CFDEMproject WWW Site - CFDEM Commands

forceModel_ArchimedesIB command

Syntax:

Defined in couplingProperties dictionary.

forceModels
(
 ArchimedesIB
);
ArchimedesIBProps
{
 densityFieldName "density";
 gravityFieldName "gravity";
 voidfractionFieldName "voidfraction";
};

density = name of the finite volume density field•
gravity = name of the finite volume gravity field•
voidfraction = name of the finite volume voidfraction field•

Examples:

forceModels
(
 ArchimedesIB
);
ArchimedesIBProps
{
 densityFieldName "rho";
 gravityFieldName "g";
 voidfractionFieldName "voidfractionNext";
}

Description:

The force model performs the calculation of forces (e.g. fluid-particle interaction forces) acting on each DEM
particle. The ArchimedesIB model is a model that calculates the ArchimedesIB' volumetric lift force
stemming from density difference of fluid and particle. This model is especially suited for resolved
CFD-DEM simulations where the particle is represented by immersed boundrary method.

Restrictions:

Only for immersed boundary solvers.

Related commands:

forceModel

forceModel_ArchimedesIB command 17

http://www.cfdem.com

CFDEMproject WWW Site - CFDEM Commands

forceModel_DiFeliceDrag command

Syntax:

Defined in couplingProperties dictionary.

forceModels
(
 DiFeliceDrag
);
DiFeliceDragProps
{
 velFieldName "U";
 densityFieldName "density";
 interpolation;
};

U = name of the finite volume fluid velocity field•
density = name of the finite volume gravity field•
interpolation = flag to use interolate interpolated voidfraction and velocity values (normally off)•

Examples:

forceModels
(
 DiFeliceDrag
);
DiFeliceDragProps
{
 velFieldName "U";
 densityFieldName "rho";
 interpolation;
}

Description:

The force model performs the calculation of forces (e.g. fluid-particle interaction forces) acting on each DEM
particle. The DiFeliceDrag model is a model that calculates the particle based drag force following the
correlation of Di Felice (see Zhou et al. (2010), JFM).

Restrictions:

none.

Related commands:

forceModel

forceModel_DiFeliceDrag command 18

http://www.cfdem.com

CFDEMproject WWW Site - CFDEM Commands

forceModel_GidaspowDrag command

Syntax:

Defined in couplingProperties dictionary.

forceModels
(
 GidaspowDrag
);
GidaspowDragProps
{
 velFieldName "U";
 densityFieldName "density";
 phi "scalar";
};

U = name of the finite volume fluid velocity field•
density = name of the finite volume gravity field•
phi = drag correction factor (in doubt 1)•

Examples:

forceModels
(
 GidaspowDrag
);
GidaspowDragProps
{
 velFieldName "U";
 densityFieldName "rho";
}

Description:

The force model performs the calculation of forces (e.g. fluid-particle interaction forces) acting on each DEM
particle. The GidaspowDrag model is a model that calculates the particle based drag force following the
correlation of Gidaspow which is a combination of Egrun (1952) and Wen & Yu (1966) (see Zhu et al.
(2007): "Discrete particle simulation of particulate systems: Theoretical developments" ,ChemEngScience).

Restrictions:

none.

Related commands:

forceModel

forceModel_GidaspowDrag command 19

http://www.cfdem.com

CFDEMproject WWW Site - CFDEM Commands

forceModel_gradPForce command

Syntax:

Defined in couplingProperties dictionary.

forceModels
(
 gradPForce;
);
gradPForceProps
{
 pFieldName "pressure";
 densityFieldName "density";
 velocityFieldName "U";
 interpolation;
};

pressure = name of the finite volume fluid pressure field•
density = name of the finite volume gravity field•
U = name of the finite volume fluid velocity field•
interpolation = flag to use interolate interpolated pressure values (normally off)•

Examples:

forceModels
(
 gradPForce;
);
gradPForceProps
{
 pFieldName "p";
 densityFieldName "rho";
 velocityFieldName "U";
 interpolation;
}

Description:

The force model performs the calculation of forces (e.g. fluid-particle interaction forces) acting on each DEM
particle. The gradPForce model is a model that calculates the particle based pressure gradient force -(grad(p))
* Vparticle (see Zhou et al. (2010): "Discrete particle simulation of particle-fluid flow: model formulations
and their applicability" ,JFM).

Restrictions:

none.

Related commands:

forceModel

forceModel_gradPForce command 20

http://www.cfdem.com

CFDEMproject WWW Site - CFDEM Commands

forceModel command

Syntax:

Defined in couplingProperties dictionary.

forceModels
(
 model_x
 model_y
);

model = name of force model to be applied•

Examples:

forceModels
(
 Archimedes
 DiFeliceDrag
);

Note: This examples list might not be complete - please look for other models (forceModel_XY) in this
documentation.

Description:

The force model performs the calculation of forces (e.g. fluid-particle interaction forces) acting on each DEM
particle. All force models selected are executed sequentially and the forces on the particles are superposed.

Restrictions:

None.

Related commands:

Archimedes, DiFeliceDrag, gradPForce, viscForce

Note: This examples list may be incomplete - please look for other models (forceModel_XY) in this
documentation.

Default: none.

forceModel command 21

http://www.cfdem.com

CFDEMproject WWW Site - CFDEM Commands

forceModel_KochHillDrag command

Syntax:

Defined in couplingProperties dictionary.

forceModels
(
 KochHillDrag
);
KochHillDragProps
{
 velFieldName "U";
 densityFieldName "density";
 voidfractionFieldName "voidfraction";
 interpolation;
};

U = name of the finite volume fluid velocity field•
density = name of the finite volume gravity field•
voidfraction = name of the finite volume voidfraction field•
interpolation = flag to use interpolated voidfraction and fluid velocity values (normally off)•
implDEM = flag to use implicit formulation of drag on DEM side (normally off)•

Examples:

forceModels
(
 KochHillDrag
);
KochHillDragProps
{
 velFieldName "U";
 densityFieldName "rho";
 voidfractionFieldName "voidfraction";
}

Description:

The force model performs the calculation of forces (e.g. fluid-particle interaction forces) acting on each DEM
particle. The KochHillDrag model is a model that calculates the particle based drag force following the
correlation of Koch & Hill (2001) (see van Buijtenen et al. (2011): "Numerical and experimental study on
multiple-spout fluidized beds" ,ChemEngScience).

Restrictions:

none.

Related commands:

forceModel

forceModel_KochHillDrag command 22

http://www.cfdem.com

CFDEMproject WWW Site - CFDEM Commands

forceModel_LaEuScalarTemp command

Syntax:

Defined in couplingProperties dictionary.

forceModels
(
 LaEuScalarTemp
);
LaEuScalarTempProps
{
 velFieldName "U";
 tempFieldName "T";
 tempSourceFieldName "Tsource";
 voidfractionFieldName "voidfraction";
 partTempName "Temp";
 partHeatFluxName "convectiveHeatFlux";
 lambda value;
 Cp value1;
 densityFieldName "density";
};

U = name of the finite volume fluid velocity field•
T = name of the finite volume scalar temperature field•
Tsource = name of the finite volume scalar temperature source field•
voidfraction = name of the finite volume voidfraction field•
Temp = name of the DEM data representing the particles temperature•
convectiveHeatFlux = name of the DEM data representing the particle-fluid convective heat flux•
value = fluid thermal conductivity [W/(m*K)]•
value1 = fluid specific heat capacity [W*s/(kg*K)]•
density = name of the finite volume fluid density field•

Examples:

forceModels
(
 LaEuScalarTemp
);
LaEuScalarTempProps
{
 velFieldName "U";
 tempFieldName "T";
 tempSourceFieldName "Tsource";
 voidfractionFieldName "voidfraction";
 partTempName "Temp";
 partHeatFluxName "convectiveHeatFlux";
 lambda 0.0256;
 Cp 1007;
 densityFieldName "rho";
}

Description:

forceModel_LaEuScalarTemp command 23

http://www.cfdem.com

This "forceModel" does not influence the particles or the fluid flow! Using the particles' temperature a scalar
field representing "particle-fluid heatflux" is calculated. The solver then uses this source field in the scalar
transport equation for the temperature. The model for convective heat transfer is based on Li and Mason
(2000), A computational investigation of transient heat transfer in pneumatic transport of granular particles,
Pow.Tech 112

Restrictions:

Goes only with cfdemSolverScalar.

Related commands:

forceModel

forceModel_LaEuScalarTemp command 24

CFDEMproject WWW Site - CFDEM Commands

forceModel_MeiLift command

Syntax:

Defined in couplingProperties dictionary.

forceModels
(
 MeiLift
);
MeiLiftProps
{
 velFieldName "U";
 densityFieldName "density";
 useSecondOrderTerms;
 interpolation;
 verbose;
};

U = name of the finite volume fluid velocity field•
density = name of the finite volume fluid density field•
useSecondOrderTerms = switch to activate second order terms in the lift force model•
interpolation = switch to activate tri-linear interpolation of the flow quantities at the particle position•
verbose = switch to activate the report of per-particle quantities to the screen•

Examples:

forceModels
(
 MeiLift
);
MeiLiftProps
{
 velFieldName "U";
 densityFieldName "rho";
 useSecondOrderTerms;
 interpolation;
 verbose;
}

Description:

The force model performs the calculation of forces (e.g. fluid-particle interaction forces) acting on each DEM
particle. The MeiLift model calculates the lift force for each particle based on Loth and Dorgan (2009). In
case the keyword "useSecondOrderTerms" is not specified, this lift force model uses the expression of
McLaughlin (1991, Journal of Fluid Mechanics 224:261-274).

Restrictions:

None.

Related commands:

forceModel_MeiLift command 25

http://www.cfdem.com

forceModel

forceModel_MeiLift command 26

CFDEMproject WWW Site - CFDEM Commands

forceModel_noDrag command

Syntax:

Defined in couplingProperties dictionary.

forceModels
(
 noDrag
);

Examples:

forceModels
(
 noDrag
);

noDragProps (optional)
{
 noDEMForce; (optional)
};

Description:

The force model performs the calculation of forces (e.g. fluid-particle interaction forces) acting on each DEM
particle. The noDrag model sets the forces acting on the particle to zero. If several force models are selected
and noDrag is the last model being executed, the fluid particle force will be set to zero. If the variable
noDEMForce is set, then the forces communicated to the DEM solver are also set to zero.

Restrictions:

None.

Related commands:

forceModel

forceModel_noDrag command 27

http://www.cfdem.com

CFDEMproject WWW Site - CFDEM Commands

forceModel_particleCellVolume command

Syntax:

Defined in couplingProperties dictionary.

forceModels
(
 particleCellVolume
);
particleCellVolumeProps
{
 upperThreshold value;
 lowerThreshold value2;
 verbous;
};

value = only cells with a field value (magnitude) lower than this upper threshold are considered•
value2 = only cells with a field value (magnitude) greater than this lower threshold are considered

Examples:

forceModels
(
 particleCellVolume
);
particleCellVolumeProps
{
 upperThreshold 0.999;
 lowerThreshold 0;
 verbous;
}

Description:

This "forceModel" does not influence the particles or the simulation - it is a postprocessing tool! The total
volume of the particles as they are represented on the CFD mesh is calculated. Further the total volume of
the cells particles are in is calculated. At "writeTime" a field named particleCellVolume , where scalarField
is the name of the original field, is written. This can be can the be probed using standard function object
probes. Analogously a field named cellVolume is written. Using the verbose option a screen output is
given.

Restrictions:

None.

Related commands:

forceModel

•

forceModel_particleCellVolume command 28

http://www.cfdem.com

CFDEMproject WWW Site - CFDEM Commands

forceModel_SchillerNaumannDrag command

Syntax:

Defined in couplingProperties dictionary.

forceModels
(
 SchillerNaumannDrag
);
SchillerNaumannDragProps
{
 velFieldName "U";
 densityFieldName "density";
};

U = name of the finite volume fluid velocity field•
density = name of the finite volume gravity field•

Examples:

forceModels
(
 SchillerNaumannDrag
);
SchillerNaumannDragProps
{
 velFieldName "U";
 densityFieldName "rho";
}

Description:

The force model performs the calculation of forces (e.g. fluid-particle interaction forces) acting on each DEM
particle. The SchillerNaumannDrag model is a model that calculates the particle based drag force following
the correlation of Schiller and Naumann.

Restrictions:

none.

Related commands:

forceModel

forceModel_SchillerNaumannDrag command 29

http://www.cfdem.com

CFDEMproject WWW Site - CFDEM Commands

forceModel_ShirgaonkarIB command

Syntax:

Defined in couplingProperties dictionary.

forceModels
(
 ShirgaonkarIB
);
ShirgaonkarIBProps
{
 velFieldName "U";
 densityFieldName "density";
 pressureFieldName "pressure";
};

U = name of the finite volume fluid velocity field•
density = name of the finite volume density field•
pressure = name of the finite volume pressure field•

Examples:

forceModels
(
 ShirgaonkarIB
);
ShirgaonkarIBProps
{
 velFieldName "U";
 densityFieldName "rho";
 pressureFieldName "p";
}

Description:

The force model performs the calculation of forces (e.g. fluid-particle interaction forces) acting on each DEM
particle. The ShirgaonkarIB model calculates the drag force (viscous and pressure force) acting on each
particle in a resolved manner (see Shirgaonkar et al. (2009): "A new mathematical formulation and fast
algorithm for fully resolved simulation of self-propulsion", Journal of Comp. Physics). This model is only
suited for resolved CFD-DEM simulations where the particle is represented by immersed boundrary method.

References:

SHIRGAONKAR, A.A., MACIVER, M.A. and PATANKAR, N.A., (2009), â��A new mathematical
formulation and fast algorithm for fully resolved simulation of self-propulsionâ��, J. Comput. Phys., 228,
2366-2390.

Restrictions:

Only for immersed boundary solvers.

forceModel_ShirgaonkarIB command 30

http://www.cfdem.com

Related commands:

forceModel

forceModel_ShirgaonkarIB command 31

CFDEMproject WWW Site - CFDEM Commands

forceModel_virtualMassForce command

Syntax:

Defined in couplingProperties dictionary.

forceModels
(
 virtualMassForce
);
virtualMassForceProps
{
 velFieldName "U";
 densityFieldName "density";
};

U = name of the finite volume fluid velocity field•
density = name of the finite volume fluid density field•

Examples:

forceModels
(
 virtualMassForce
);
virtualMassForceProps
{
 velFieldName "U";
 densityFieldName "rho";
}

Description:

The force model performs the calculation of forces (e.g. fluid-particle interaction forces) acting on each DEM
particle. The virtualMassForce model calculates the virtual mass force for each particle.

Restrictions:

Model not validated!

Related commands:

forceModel

forceModel_virtualMassForce command 32

http://www.cfdem.com

CFDEMproject WWW Site - CFDEM Commands

forceModel_viscForce command

Syntax:

Defined in couplingProperties dictionary.

forceModels
(
 viscForce;
);
viscForceProps
{
 velocityFieldName "U";
 densityFieldName "density";
 interpolation;
};

U = name of the finite volume fluid velocity field•
density = name of the finite volume gravity field•
interpolation = flag to use interolate interpolated stress values (normally off)•

Examples:

forceModels
(
 viscForce;
);
viscForceProps
{
 velocityFieldName "U";
 densityFieldName "density";
}

Description:

The force model performs the calculation of forces (e.g. fluid-particle interaction forces) acting on each DEM
particle. The viscForce model calculates the particle based viscous force, -(grad(tau)) * Vparticle (see Zhou et
al. (2010): "Discrete particle simulation of particle-fluid flow: model formulations and their applicability"
,JFM).

Restrictions:

none.

Related commands:

forceModel

forceModel_viscForce command 33

http://www.cfdem.com

CFDEMproject WWW Site - CFDEM Commands

githubAccess_public

Description:

This routine describes how to setup a github account and pull repositories of the CFDEMproject. After setting
some environment variables LIGGGHTS and CFDEMcoupling can be compiled

Procedure:

Basically the following steps have to be performed:

git clone the desired repository•
update your repositories by git pull•
set environment variables•
compile LIGGGHTS and CFDEMcoupling•
run your own cases•

git clone the desired repository:

If not already done, open a terminal and create a directory for LIGGGHTS in $HOME:

cd

mkdir LIGGGHTS

cd LIGGGHTS

To clone the public LIGGGHTS repository, open a terminal and execute:

git clone git://github.com/CFDEMproject/LIGGGHTS-PUBLIC.git LIGGGHTS-PUBLIC

If not already done, open a terminal and create a directory for CFDEMcoupling in $HOME:

cd

mkdir CFDEM

cd CFDEM

Make sure that OpenFOAM(R)-2.1.x is already set up correctly!

To clone the public CFDEMcoupling repository, open a terminal and execute:

git clone git://github.com/CFDEMproject/CFDEMcoupling-PUBLIC.git CFDEMcoupling-PUBLIC-$WM_PROJECT_VERSION

Troubles? See Troubleshooting section below.

Update your repositories by git pull:

githubAccess_public 34

http://www.cfdem.com

To get the latest version, open a terminal, go to the location of your local installation and type: Warning: git
stash will remove your changes in $HOME/CFDEM/CFDEMcoupling-PUBLIC-$WM_PROJECT_VERSION
!

cd $HOME/CFDEM/CFDEMcoupling-PUBLIC-$WM_PROJECT_VERSION
git stash
git pull

Set Environment Variables:

Now you need to set some environment variables in ~/.bashrc (if you use c-shell, manipulate ~/.cshrc
accordingly). Open ~/.bashrc

gedit ~/.bashrc &

add the lines (you find them also in .../cfdemParticle/etc/bashrc and cshrc respectively):

#==#
#- source cfdem env vars
export CFDEM_VERSION=PUBLIC
export CFDEM_PROJECT_DIR=$HOME/CFDEM/CFDEMcoupling-$CFDEM_VERSION-$WM_PROJECT_VERSION
export CFDEM_SRC_DIR=$CFDEM_PROJECT_DIR/src/lagrangian/cfdemParticle
export CFDEM_SOLVER_DIR=$CFDEM_PROJECT_DIR/applications/solvers
export CFDEM_DOC_DIR=$CFDEM_PROJECT_DIR/doc
export CFDEM_UT_DIR=$CFDEM_PROJECT_DIR/applications/utilities
export CFDEM_TUT_DIR=$CFDEM_PROJECT_DIR/tutorials
export CFDEM_PROJECT_USER_DIR=$HOME/CFDEM/$LOGNAME-$CFDEM_VERSION-$WM_PROJECT_VERSION
export CFDEM_bashrc=$CFDEM_SRC_DIR/etc/bashrc
export CFDEM_LIGGGHTS_SRC_DIR=$HOME/LIGGGHTS/LIGGGHTS-PUBLIC/src
export CFDEM_LIGGGHTS_MAKEFILE_NAME=fedora_fpic
export CFDEM_LPP_DIR=$HOME/LIGGGHTS/mylpp/src
export CFDEM_PIZZA_DIR=$HOME/LIGGGHTS/PIZZA/gran_pizza_17Aug10/src
. $CFDEM_bashrc
#==#

Save the ~/.bashrc, open a new terminal and test the settings. The commands:

$CFDEM_PROJECT_DIR
$CFDEM_SRC_DIR
$CFDEM_LIGGGHTS_SRC_DIR

should give "...: is a directory" otherwise something went wrong and the environment variables in ~/bashrc are
not set correctly.

To specify the paths of pizza, please check the settings in $CFDEM_SRC_DIR/etc/bashrc.

If $CFDEM_SRC_DIR is set correctly, you can type

cfdemSysTest

to get some information if the paths are set correctly.

Compile LIGGGHTS and CFDEMcoupling:

If above settings were done correctly, you can compile LIGGGHTS by typing:

git clone git://github.com/CFDEMproject/CFDEMcoupling-PUBLIC.git CFDEMcoupling-PUBLIC-$WM_PROJECT_VERSION35

cfdemCompLIG

and you can then compile CFDEMcoupling by typing:

cfdemCompCFDEM

You can run the tutorial cases by executing .../etc/testTutorial.sh through the alias cfdemTestTUT.
Alternatively you can run each tutorial using the Allrun.sh scripts in the tutorial directories.

In case questions concerning the installation arise, please feel free to contact our forum at www.cfdem.com.

Run Your Own Cases:

If you want to run your own cases, please do so in $CFDEM_PROJECT_USER_DIR/run which is
automatically being generated. E.g. copy one of the tutorial cases there, adapt it to your needs. Changes in
$CFDEM_TUT_DIR will be lost after every git stash!

Additional Installations:

Optionally you can install lpp which will help you convert the DEM (dump) data to VTK format. For standard
CFD-DEM runs this will not be necessary. To get the DEM postporcessing tool "lpp" you need python-numpy
package installed:

sudo apt-get install python-numpy

You can pull the latest version of lpp with:

cd $HOME/LIGGGHTS

git clone git://cfdem.git.sourceforge.net/gitroot/cfdem/lpp mylpp

Troubleshooting:

toubles with git clone?•

a) The git protocol will not work if your computer is behind a firewall which blocks the relevant TCP port,
you can use alternatively (write command in one line):

git clone https://user@github.com/CFDEMproject/CFDEMcoupling-PUBLIC.git
CFDEMcoupling-PUBLIC-$WM_PROJECT_VERSION

b) If you face the error: "error: SSL certificate problem, verify that the CA cert is OK. Details:
error:14090086:SSL routines:SSL3_GET_SERVER_CERTIFICATE:certificate verify failed while accessing
https://github.com/...",

please use: env GIT_SSL_NO_VERIFY=true git clone https://github...

(see http://stackoverflow.com/questions/3777075/https-github-access)

c) If you face the error: "Agent admitted failure to sign using the key. Permission denied (publickey).", after
ssh -T git@github.com

git clone git://github.com/CFDEMproject/CFDEMcoupling-PUBLIC.git CFDEMcoupling-PUBLIC-$WM_PROJECT_VERSION36

please type: "ssh-add"

(see: https://help.github.com/articles/error-agent-admitted-failure-to-sign)

git clone git://github.com/CFDEMproject/CFDEMcoupling-PUBLIC.git CFDEMcoupling-PUBLIC-$WM_PROJECT_VERSION37

CFDEMproject WWW Site - CFDEM Commands

IOModel_basicIO command

Syntax:

Defined in couplingProperties dictionary.

IOModel "basicIO";

Examples:

IOModel "basicIO";

Description:

The basic IO-model writes particle positions velocities and radii to files. The default output directory
($casePath/CFD/proc*/time/lagrangian). Using the ceyword "serialOutput;" in couplingProperties the IO is
serial to the directory ($casePath/CFD/lagrangian). In the latter case only the data on processor 0 is written!
Data is written every write time of the CFD simulation.

Restrictions: None.

Related commands:

IOModel

IOModel_basicIO command 38

http://www.cfdem.com

CFDEMproject WWW Site - CFDEM Commands

IOModel command

Syntax:

Defined in couplingProperties dictionary.

IOModel "model";

model = name of IO-model to be applied•

Examples:

IOModel "off";

Note: This examples list might not be complete - please look for other models (IOModel_XY) in this
documentation.

Description:

The IO-model is the base class to write data (e.g. particle properties) to files.

Restrictions:

none.

Related commands:

Note: This examples list may be incomplete - please look for other models (IOModel_XY) in this
documentation.

Default: none.

IOModel command 39

http://www.cfdem.com

CFDEMproject WWW Site - CFDEM Commands

IOModel_noIO command

Syntax:

Defined in couplingProperties dictionary.

IOModel "off";

Examples:

IOModel "off";

Description:

The noIO-model is a dummy IO model.

Restrictions: None.

Related commands:

IOModel

IOModel_noIO command 40

http://www.cfdem.com

CFDEMproject WWW Site - CFDEM Commands

IOModel_sophIO command

Syntax:

Defined in couplingProperties dictionary.

IOModel "sophIO";

Examples:

IOModel "sophIO";

Description:

The sophIO-model is based on basicIO model and additionally writes voidfraction, implicit forces, explicit
forces. Data is written every write time of the CFD simulation.

Restrictions: None.

Related commands:

IOModel

IOModel_sophIO command 41

http://www.cfdem.com

CFDEMproject WWW Site - CFDEM Commands

IOModel_trackIO command

Syntax:

Defined in couplingProperties dictionary.

IOModel "trackIO";

Examples:

IOModel "trackIO";

Description:

The trackIO-model is based on sophIO model and additionally writes fields necessary to use the
particleTracks utility (which needs a particleTrackProperties file in the constant dir). The particleTracks
generats tracks of the particles and writes them to a vtk file.

Restrictions: None.

Related commands:

IOModel

IOModel_trackIO command 42

http://www.cfdem.com

CFDEMproject WWW Site - CFDEM Commands

liggghtsCommandModel_execute command

Syntax:

Defined in liggghtsCommmands dictionary.

liggghtsCommandModels
(
 execute
);
executeProps0
{
 command
 (
 run
 $couplingInterval
);
 runFirst switch1;
 runLast switch2;
 runEveryCouplingStep switch3;
 runEveryWriteStep switch4;
}

command = LIGGGHTS command to be executed. Each word in a new line, numbers and symbols
need special treatment (e.g. $couplingInterval will be replaced by correct coupling interval in the
simulation)

•

switch1 = switch (choose on/off) if the command is executed only at first time step•
switch2 = switch (choose on/off) if the command is executed only at last time step•
switch3 = switch (choose on/off) if the command is executed at every coupling step•
switch4 = switch (choose on/off) if the command is executed at every writing step•

Examples:

liggghtsCommandModels
(
 execute
 execute
);
executeProps0
{
 command
 (
 run
 $couplingInterval
);
 runFirst off;
 runLast off;
 runEveryCouplingStep on;
}
executeProps1
{
 command
 (
 write_restart
 noBlanks
 dotdot

liggghtsCommandModel_execute command 43

http://www.cfdem.com

 slash
 DEM
 slash
 liggghts.restart_
 timeStamp
);
 runFirst off;
 runLast off;
 runEveryCouplingStep off;
 runEveryWriteStep on;
}

Description:

The execute liggghtsCommand Model can be used to execute a LIGGGHTS command during a CFD run. In
above example execute_0 for instance executes "run $couplingInterval" every coupling step.
$couplingInterval is automatically replaced by the correct number of DEM steps. Additionally execute_1
executes "write_restart ../DEM/liggghts.restart_$timeStamp" every writing step, where $timeStamp is
automatically set.

These rather complex execute commands can be replaced by the "readLiggghts" and
"writeLiggghts" commands!

Restrictions: None.

Related commands:

liggghtsCommandModel

These rather complex execute commands can be replaced by the "readLiggghts" and "writeLiggghts" commands!44

CFDEMproject WWW Site - CFDEM Commands

liggghtsCommandModel command

Syntax:

Defined in liggghtsCommmands dictionary.

liggghtsCommandModels
(
 model_x
 model_y
);

model = name of the liggghtsCommandModel to be applied•

Examples:

liggghtsCommandModels
(
 runLiggghts
 writeLiggghts
);

Note: This examples list might not be complete - please look for other models (liggghtsCommandModel_XY)
in this documentation.

Description:

The liggghtsCommandModel is the base class to execute DEM commands within a CFD run.

Restrictions:

Works only with MPI coupling.

Default: none.

liggghtsCommandModel command 45

http://www.cfdem.com

CFDEMproject WWW Site - CFDEM Commands

liggghtsCommandModel_readLiggghtsData command

Syntax:

Defined in liggghtsCommmands dictionary.

liggghtsCommandModels
(
 readLiggghtsData
);
readLiggghtsDataProps0
{
 ???
}

Examples:

liggghtsCommandModels
(
 readLiggghtsData
 readLiggghtsData
);
readLiggghtsDataProps0
{
 ???
}

Description:

The readLiggghtsData liggghtsCommand Model can be used to ???

Restrictions:

Note: Model is not up to date.

Related commands:

liggghtsCommandModel

liggghtsCommandModel_readLiggghtsData command 46

http://www.cfdem.com

CFDEMproject WWW Site - CFDEM Commands

liggghtsCommandModel_runLiggghts command

Syntax:

Defined in liggghtsCommmands dictionary.

liggghtsCommandModels
(
 runLiggghts
);
//- optional
runLiggghtsProps
{
 preNo true;
}

Examples:

liggghtsCommandModels
(
 runLiggghts
);

Description:

The liggghtsCommand models can be used to execute a LIGGGHTS command during a CFD run. The
"runLiggghts" command executes the command "run $nrDEMsteps", where $nrDEMsteps is automaically set
according to the coupling intervals, every coupling step. Optionally a dictionary called runLiggghtsProps can
be specified where the "preNo" switch can be set, which uses the command "run $nrDEMsteps pre no" for
every time step except the first.

Restrictions: Warning: the "pre no" option can cause troubles (dump data of particles changin the domain
might be erroneous)!

Related commands:

liggghtsCommandModel

liggghtsCommandModel_runLiggghts command 47

http://www.cfdem.com

CFDEMproject WWW Site - CFDEM Commands

liggghtsCommandModel_writeLiggghts command

Syntax:

Defined in liggghtsCommmands dictionary.

liggghtsCommandModels
(
 writeLiggghts
);
//- optional
writeLiggghtsProps
{
 writeLast switch1;
 writeName "name";
 overwrite switch2;
}

switch1 = switch (choose on/off) to select if only last step is stored or every write step.•
name = name of the restart file to be written in /$caseDir/DEM/ default default
"liggghts.restartCFDEM"

•

switch2 = switch (choose on/off) to select if only one restart file $name or many files
$name_$timeStamp are written

•

Examples:

liggghtsCommandModels
(
 runLiggghts
 writeLiggghts
);

Description:

The liggghtsCommand models can be used to execute a LIGGGHTS command during a CFD write. The
"writeLiggghts" command executes the command "write_restart $name", where $name is the name of the
restart file, every write step.

Restrictions: None.

Related commands:

liggghtsCommandModel

liggghtsCommandModel_writeLiggghts command 48

http://www.cfdem.com

CFDEMproject WWW Site - CFDEM Commands

locateModel_engineSearch command

Syntax:

Defined in couplingProperties dictionary.

locateModel engine;
engineProps
{
 treeSearch switch1;
}

switch1 = switch to use tree search algorithm•

Examples:

locateModel engine;
engineProps
{
 treeSearch true;
}

Description:

The locateModel "engine" locates the CFD cell and cellID corresponding to a given position. The
engineSearch locate Model can be used with different settings to use different algorithms:

treeSearch false; will execute some geometric (linear) search using the last known cellID•
treeSearch true; will use a recursive tree structure to find the cell (recommended).•

Restrictions: none.

Related commands:

locateModel

locateModel_engineSearch command 49

http://www.cfdem.com

CFDEMproject WWW Site - CFDEM Commands

locateModel_engineSearchIB command

Syntax:

Defined in couplingProperties dictionary.

locateModel engineIB;
engineIBProps
{
 engineProps
 {
 treeSearch switch1;
 }
 zSplit value1;
 xySplit value2;
}

switch1 = names of the finite volume scalar fields to be temporally averaged•
value1 = number of z-normal layers for satellite points•
value2 = number of satellite points in each layer•

Examples:

locateModel engineIB;
engineIBProps
{
 engineProps
 {
 treeSearch false;
 }
 zSplit 8;
 xySplit 16;
}

Description:

The locateModel "engine" locates the CFD cell and cellID corresponding to a given position. This locate
model is especially designed for parallel immersed boundary method. Each particle is represented by "satellite
points" if it is distributed over several processors.

The engineSearchIB locate Model can be used with different settings to use different algorithms:

treeSearch false; will execute some geometric (linear) search using the last known cellID
(recommended)

•

treeSearch true; will use a recursive tree structure to find the cell.•

This model is a modification of the engine search model. Instead of using the centre-cell as starting point for
the engine search, further satellite points located on the surface of the sphere are checked. This makes sure
that (parts of) spheres can be located even when their centre is on another processor. This is especially
important for parallel computations, when a sphere is about to move from one processor to another.

Restrictions:

locateModel_engineSearchIB command 50

http://www.cfdem.com

Only for immersed boundary solvers!

Related commands:

locateModel

locateModel_engineSearchIB command 51

CFDEMproject WWW Site - CFDEM Commands

locateModel command

Syntax:

Defined in couplingProperties dictionary.

locateModel model;

model = name of the locateModel to be applied•

Examples:

locateModel engine;

Note: This examples list might not be complete - please look for other models (locateModel_XY) in this
documentation.

Description:

The locateModel is the base class for models which search for the CFD cell and cellID corresponding to a
position. In general it is used to find the cell a particle is located in.

Restrictions: none.

Default: none.

locateModel command 52

http://www.cfdem.com

CFDEMproject WWW Site - CFDEM Commands

locateModel_standardSearch command

Syntax:

Defined in couplingProperties dictionary.

locateModel standard;

Examples:

locateModel standard;

Description:

The locateModel "standard" locates the CFD cell and cellID corresponding to a given position. A very
straight-forward (robust!) locate algorithm is used.

Restrictions: none.

Related commands:

locateModel

locateModel_standardSearch command 53

http://www.cfdem.com

CFDEMproject WWW Site - CFDEM Commands

meshMotionModel command

Syntax:

Defined in couplingProperties dictionary.

meshMotionModel model;

model = name of the meshMotionModel to be applied•

Examples:

meshMotionModel noMeshMotion;

Note: This examples list might not be complete - please look for other models (meshMotionModel_XY) in
this documentation.

Description:

The meshMotionModel is the base class for models which manipulate the CFD mesh according to the DEM
mesh motion.

Restrictions: none.

Default: none.

meshMotionModel command 54

http://www.cfdem.com

CFDEMproject WWW Site - CFDEM Commands

meshMotionModel_noMeshMotion command

Syntax:

Defined in couplingProperties dictionary.

meshMotionModel noMeshMotion;

Examples:

meshMotionModel noMeshMotion;

Description:

The noMeshMotion-model is a dummy meshMotion model.

Restrictions: None.

Related commands:

meshMotionModel

meshMotionModel_noMeshMotion command 55

http://www.cfdem.com

CFDEMproject WWW Site - CFDEM Commands

momCoupleModel_explicitCouple command

Syntax:

Defined in couplingProperties dictionary.

momCoupleModels
(
 explicitCouple
);
explicitCoupleProps
{
 fLimit vector;
}

vector = limiter vector for explicit force term (default (1e10,1e10,1e10))•

Examples:

momCoupleModels
(
 explicitCouple
);
explicitCoupleProps
{
 fLimit (1e3 1e2 1e4);
}

Description:

The explicitCouple-model is a momCoupleModel model providing an explicit momentum source term for the
CFD solver.

Restrictions:

Only for solvers that include explicit momentum exchange.

Related commands:

momCoupleModel

momCoupleModel_explicitCouple command 56

http://www.cfdem.com

CFDEMproject WWW Site - CFDEM Commands

momCoupleModel command

Syntax:

Defined in couplingProperties dictionary.

momCoupleModels
(
 model
);

model = name of the momCoupleModel to be applied•

Examples:

momCoupleModels
(
 implicitCouple
);

Note: This examples list might not be complete - please look for other models (momCoupleModel_XY) in
this documentation.

Description:

The momCoupleModel is the base class for momentum exchange between DEM and CFD simulation.

Restrictions: none.

Default: none.

momCoupleModel command 57

http://www.cfdem.com

CFDEMproject WWW Site - CFDEM Commands

momCoupleModel_implicitCouple command

Syntax:

Defined in couplingProperties dictionary.

momCoupleModels
(
 implicitCouple
);
implicitCoupleProps
{
 velFieldName "U";
 granVelFieldName "Us";
 voidfractionFieldName "voidfraction";
 minAlphaP number;
}

U = name of the finite volume fluid velocity field•
Us = name of the finite volume granular velocity field•
voidfraction = name of the finite volume voidfraction field number = min value for local particle
volume fraction to calculate the exchange filed (default SMALL):l

•

Examples:

momCoupleModels
(
 implicitCouple
);
implicitCoupleProps
{
 velFieldName "U";
 granVelFieldName "Us";
 voidfractionFieldName "voidfraction";
}

Description:

The implicitCouple-model is a momCoupleModel model providing an implicit momentum source term for the
CFD solver.

Restrictions:

Only for solvers that include implicit momentum exchange.

Related commands:

momCoupleModel

momCoupleModel_implicitCouple command 58

http://www.cfdem.com

CFDEMproject WWW Site - CFDEM Commands

momCoupleModel_noCouple command

Syntax:

Defined in couplingProperties dictionary.

momCoupleModels
(
 off
);

Examples:

momCoupleModels
(
 off
);

Description:

The noCouple-model is a dummy momCoupleModel model providing an no momentum source term for the
CFD solver.

Restrictions:

Only for solvers that include no momentum exchange, e.g. immersed boundary.

Related commands:

momCoupleModel

momCoupleModel_noCouple command 59

http://www.cfdem.com

CFDEMproject WWW Site - CFDEM Commands

probeModel command

Syntax:

To be activated via couplingProperties dictionary.

probeModel myProbeModel;

Use probe model "off" to disable this feature.

myProbeModelProps

{

};

Examples:

See particleProbe

Note: This examples list might not be complete - please check below for the list of force models that can
perform particle probing.

Description:

The probeModel feature allows one to implement various probing features in CFDEM. Currently, only the
particleProbe model is implemented, that performs probing of particle forces.

Restrictions:

None.

Default: none.

probeModel command 60

http://www.cfdem.com

CFDEMproject WWW Site - CFDEM Commands

probeModel_noProbe command

Syntax:

To be activated via couplingProperties dictionary.

forceModels
{
 myForceModel1
 myForceModel2
 myForceModel3
};

Examples:

probeModel off;

Note: This examples list might not be complete - please check below for the list of force models that can
perform particle probing.

Description:

Does not perform any probing.

Restrictions:

None.

Related commands which are currently enabled for particle probing:

particleProbe

Default: none.

probeModel_noProbe command 61

http://www.cfdem.com

CFDEMproject WWW Site - CFDEM Commands

regionModel_allRegion command

Syntax:

Note: In the current CFDEMcoupling version, this model is no longer used. Defined in couplingProperties
dictionary.

regionModel allRegion;

Examples:

regionModel allRegion;

Description:

The allRegion-model is a region model including the whole CFD region for the coupling.

Restrictions: None.

Related commands:

regionModel

regionModel_allRegion command 62

http://www.cfdem.com

CFDEMproject WWW Site - CFDEM Commands

regionModel command

Syntax:

Note: In the current CFDEMcoupling version, this model is no longer used. Defined in couplingProperties
dictionary.

regionModel model;

model = name of the regionModel to be applied•

Examples:

regionModel allRegion;

Note: This examples list might not be complete - please look for other models (regionModel_XY) in this
documentation.

Description:

The regionModel is the base class for region models to select a certain region for coupled simulation.

Restrictions: none.

Default: none.

regionModel command 63

http://www.cfdem.com

CFDEMproject WWW Site - CFDEM Commands

smoothingModel_constDiffSmoothing command

Syntax:

Defined in couplingProperties dictionary.

smoothingModel constDiffSmoothing;
constDiffSmoothingProps
{
 lowerLimit number1;
 upperLimit number2;
 smoothingLength lengthScale;
 smoothingLengthReferenceField lengthScaleRefField;
}

number1 = scalar fields will be bound to this lower value•
number2 = scalar fields will be bound to this upper value•
lengthScale = length scale over which the exchange fields will be smoothed out•
lengthScaleRefField = length scale over which reference fields (e.g., the average particle velocity)
will be smoothed out. Should be always larger than lengthScale. If not specified, will be equal to
lengthScale.

•

Examples:

constDiffSmoothingProps
{
 lowerLimit 0.1;
 upperLimit 1e10;
 smoothingLength 1500e-6;
 smoothingLengthReferenceField 9000e-6;
}

Description:

The "constDiffSmoothing" model is a basic smoothingModel model which reads a smoothing length scale
being used for smoothening the exchange fields (voidfraction, Ksl, f if present). This model can be used for
smoothing explicit force coupling fields, as well as implicit fource coupling algorithms. Smoothing for
reference fields is performed to "fill in" values in cells in which these reference fields are not specified.
Values calculated in the cells (via Lagrangian-To-Euler mapping) are NOT changed! These reference fields
are, e.g., the average particle velocity, which are not specified in all cells in case the flow is rather dilute.

Restrictions: This model is tested in a limited number of flow situations.

ATTENTION: In case a smoothing model is used in conjunction with "PimpleImEx" solvers, the fields "f"
and "fSmooth" must be placed in the initial time directory! This is because zeroGradient boundary conditions
for the fields "f" and "fSmooth" must be specified, otherwise the smoothing operation will give an Error.

Related commands:

smoothingModel

smoothingModel_constDiffSmoothing command 64

http://www.cfdem.com

CFDEMproject WWW Site - CFDEM Commands

smoothingModel command

Syntax:

Defined in couplingProperties dictionary.

smoothingModel model;

model = name of the smoothingModel to be applied•

Examples:

smoothingModel off;

smoothingModel constDiffSmoothing;

smoothingModel localPSizeDiffSmoothing;

Note: This examples list might not be complete - please look for other models (smoothingModel_XY) in this
documentation.

ATTENTION: In case a smoothing model is used in conjunction with "PimpleImEx" solvers, the fields "f"
and "fSmooth" must be placed in the initial time directory! This is because zeroGradient boundary conditions
for the fields "f" and "fSmooth" must be specified, otherwise the smoothing operation will give an Error.

Description:

The smoothingModel is the base class for models that smoothen the exchange fields (i.e., voidfraction and the
Ksl field in case of implicit force coupling). This is relevant in case one uses a small grid resolution compared
to the local particle diameter (or parcel diameter in case one uses a parcel approach).

Restrictions: These models are in beta testing.

Default: none.

smoothingModel command 65

http://www.cfdem.com

CFDEMproject WWW Site - CFDEM Commands

smoothingModel_noSmoothing command

Syntax:

Defined in couplingProperties dictionary.

smoothingModel off;

Examples:

smoothingModel off;

Description:

The "noSmoothing" model is a dummy smoothingModel model which does no smoothing.

Restrictions: none.

Related commands:

smoothingModel

smoothingModel_noSmoothing command 66

http://www.cfdem.com

CFDEMproject WWW Site - CFDEM Commands

voidfractionModel_bigParticleVoidFraction command

Syntax:

Defined in couplingProperties dictionary.

voidfractionModel bigParticle;
bigParticleProps
{
 maxCellsPerParticle number1;
 alphaMin number2;
 scaleUpVol number3;
 weight number4;
}

number1 = max number of cells covered by a partilce (search will fail when more than number1 cells
are covered by the particle)

•

number2 = mininmum limit for voidfraction•
number3 = diameter of the particle's representation is artificially increased according to number3 *
Vparticle, volume remains unaltered!

•

number4 = scaling of the particle volume to account for porosity or agglomerations.•

Examples:

voidfractionModel bigParticle;
bigParticleProps
{
 maxCellsPerParticle 1000;
 alphaMin 0.10;
 scaleUpVol 5.0;
 weight 1.;
}

Description:

The bigParticle voidFraction model is supposed to be used when a particle (or it's representation) is bigger
than a CFD cell. The voidfraction field is set in those cell whose centres are inside the particle which results in
a stairstep representation of the bodies within the mesh (i.e. voidfraction is either 1 (fluid) of zero (solid)). For
archiving accurate results, approx. 8 cells per particle diameter are necessary.

The region of influence of a particle can be increased artificially by "scaleUpVol", which blows up the
particles, but keeps their volume (for voidfraction calculation) constant.

The particle volume occupied in the CFD domain can be adjusted by the parameter "weight", using
Vparticle=dsphere^3*pi/6*weight.

Parts of this sub-model contributed by Alice Hager, JKU.

Restrictions: none.

Related commands:

voidfractionModel_bigParticleVoidFraction command 67

http://www.cfdem.com

voidfractionModel

voidfractionModel_bigParticleVoidFraction command 68

CFDEMproject WWW Site - CFDEM Commands

voidfractionModel_centreVoidFraction command

Syntax:

Defined in couplingProperties dictionary.

voidfractionModel centre;
centreProps
{
 alphaMin number1;
 weight number2;
}

number1 = mininmum limit for voidfraction•
number2 = scaling of the particle volume to account for porosity or agglomerations.•

Examples:

voidfractionModel centre;
centreProps
{
 alphaMin 0.1;
 weight 1.;
}

Description:

The centre voidFraction model calculates the voidfraction in a CFD cell accounting for the volume of the
particles whose centres are inside the cell.

The particle volume occupied in the CFD domain can be adjusted by the parameter "weight", using
Vparticle=dsphere^3*pi/6*weight.

Restrictions: none.

Related commands:

voidfractionModel

voidfractionModel_centreVoidFraction command 69

http://www.cfdem.com

CFDEMproject WWW Site - CFDEM Commands

voidfractionModel_dividedVoidFraction command

Syntax:

Defined in couplingProperties dictionary.

voidfractionModel divided;
dividedProps
{
 alphaMin number1;
 scaleUpVol number2;
 interpolation;
 weight number3;
}

number1 = mininmum limit for voidfraction•
number2 = diameter of the particle's representation is artificially increased according to number2 *
Vparticle, volume remains unaltered!

•

interpolation = flag to interpolate voidfraction to particle positions (normally off)•
number3 = scaling of the particle volume to account for porosity or agglomerations.•

Examples:

voidfractionModel divided;
dividedProps
{
 alphaMin 0.2;
 scaleUpVol 1.0;
 weight 1.;
}

Description:

The divided voidFraction model is supposed to be used when a particle (or it's representation) is in the size
range of a CFD cell. Satellite points are used to divide the particle's volume to the touched cells.

The region of influence of a particle can be increased artificially by "scaleUpVol", which blows up the
particles, but keeps their volume (for voidfraction calculation) constant.

The particle volume occupied in the CFD domain can be adjusted by the parameter "weight", using
Vparticle=dsphere^3*pi/6*weight.

In the basic implementation of solvers, the void fraction is calculated based on all particles. Depending on the
solver used, the void fraction calculation is also performed for a certain type of particles. The void fraction
calculation is based on a three-step approach (reset, set and interpolate), i.e., the void fraction is time
interpolated from a previous and a next void fraction field. Appropriate names for these fields have to be
specified in the sub-dictionaries voidFracFieldNamesPrev and voidFracFieldNamesNext in the
couplingProperties dictionary.

Restrictions: none.

voidfractionModel_dividedVoidFraction command 70

http://www.cfdem.com

Related commands:

voidfractionModel

voidfractionModel_dividedVoidFraction command 71

CFDEMproject WWW Site - CFDEM Commands

voidfractionModel_GaussVoidFraction command

Syntax:

Defined in couplingProperties dictionary.

voidfractionModel Gauss;
GaussProps
{
 maxCellsPerParticle number1;
 alphaMin number2;
 scaleUpVol number3;
 weight number4;
}

number1 = max number of cells covered by a partilce (search will fail when more than number1 cells
are covered by the particle)

•

number2 = mininmum limit for voidfraction•
number3 = diameter of the particle's representation is artificially increased according to number3 *
Vparticle, volume remains unaltered!

•

number4 = scaling of the particle volume to account for porosity or agglomerations.•

Examples:

voidfractionModel Gauss;
GaussProps
{
 maxCellsPerParticle 1000;
 alphaMin 0.10;
 scaleUpVol 5.0;
 weight 1.;
}

Description:

The Gauss voidFraction model is supposed to be used when a particle (or it's representation) is bigger than a
CFD cell. The voidfraction field is set in those cell whose centres are inside the particle. The volume is here
distributed according to a Gaussian dirstibution.

The region of influence of a particle can be increased artificially by "scaleUpVol", which blows up the
particles, but keeps their volume (for voidfraction calculation) constant.

The particle volume occupied in the CFD domain can be adjusted by the parameter "weight", using
Vparticle=dsphere^3*pi/6*weight.

Restrictions: none.

Related commands:

voidfractionModel , bigParticle

voidfractionModel_GaussVoidFraction command 72

http://www.cfdem.com

CFDEMproject WWW Site - CFDEM Commands

voidfractionModel command

Syntax:

Defined in couplingProperties dictionary.

voidfractionModel model;

model = name of the voidfractionModel to be applied•

Examples:

voidfractionModel centre;

Note: This examples list might not be complete - please look for other models (voidfractionModel_XY) in
this documentation.

Description:

The voidfractionModel is the base class for models to represent the DEM particle's volume in the CFD
domain via a voidfraction field.

Restrictions: none.

Default: none.

voidfractionModel command 73

http://www.cfdem.com

CFDEMproject WWW Site - CFDEM Commands

voidfractionModel_IBVoidFraction command

Syntax:

Defined in couplingProperties dictionary.

voidfractionModel IB;
IBProps
{
 maxCellsPerParticle number1;
 alphaMin number2;
 scaleUpVol number3;
}

number1 = max number of cells covered by a partilce (search will fail when more than number1 cells
are covered by the particle)

•

number2 = mininmum limit for voidfraction•
number3 = diameter of the particle's representation is artificially increased according to number3 *
Vparticle, volume remains unaltered!

•

Examples:

voidfractionModel IB;
IBProps
{
 maxCellsPerParticle 1000;
 alphaMin 0.10;
 scaleUpVol 5.0;
}

Description:

The IB voidFraction model is supposed to be used when a particle (or it's representation) is bigger than a CFD
cell. The voidfraction field is set in those cell whose centres are inside the particle. The model is specially
designed for cfdemSolverIB and creates a smooth transition of the voidfraction at the particle surface. Cells
which are only partially covered by solid are marked by void fracion values between 0 and 1 respectively.

The region of influence of a particle can be increased artificially by "scaleUpVol", which blows up the
particles, but keeps their volume (for voidfraction calculation) constant.

Code of this sub-model contributed by Alice Hager, JKU.

Restrictions: none.

Related commands:

voidfractionModel

voidfractionModel_IBVoidFraction command 74

http://www.cfdem.com

	averagingModel_dense.html
	averagingModel_dilute.html
	averagingModel.html
	cfdemSolverIB.html
	cfdemSolverPiso.html
	cfdemSolverPisoScalar.html
	clockModel.html
	clockModel_noClock.html
	clockModel_standardClock.html
	dataExchangeModel.html
	dataExchangeModel_noDataExchange.html
	dataExchangeModel_oneWayVTK.html
	dataExchangeModel_twoWayFiles.html
	dataExchangeModel_twoWayMPI.html
	forceModel_Archimedes.html
	forceModel_ArchimedesIB.html
	forceModel_DiFeliceDrag.html
	forceModel_GidaspowDrag.html
	forceModel_gradPForce.html
	forceModel.html
	forceModel_KochHillDrag.html
	forceModel_LaEuScalarTemp.html
	forceModel_MeiLift.html
	forceModel_noDrag.html
	forceModel_particleCellVolume.html
	forceModel_SchillerNaumannDrag.html
	forceModel_ShirgaonkarIB.html
	forceModel_virtualMassForce.html
	forceModel_viscForce.html
	githubAccess_public.html
	IOModel_basicIO.html
	IOModel.html
	IOModel_noIO.html
	IOModel_sophIO.html
	IOModel_trackIO.html
	liggghtsCommandModel_execute.html
	liggghtsCommandModel.html
	liggghtsCommandModel_readLiggghtsData.html
	liggghtsCommandModel_runLiggghts.html
	liggghtsCommandModel_writeLiggghts.html
	locateModel_engineSearch.html
	locateModel_engineSearchIB.html
	locateModel.html
	locateModel_standardSearch.html
	meshMotionModel.html
	meshMotionModel_noMeshMotion.html
	momCoupleModel_explicitCouple.html
	momCoupleModel.html
	momCoupleModel_implicitCouple.html
	momCoupleModel_noCouple.html
	probeModel.html
	probeModel_noProbe.html
	regionModel_allRegion.html
	regionModel.html
	smoothingModel_constDiffSmoothing.html
	smoothingModel.html
	smoothingModel_noSmoothing.html
	voidFractionModel_bigParticleVoidFraction.html
	voidFractionModel_centreVoidFraction.html
	voidFractionModel_dividedVoidFraction.html
	voidFractionModel_GaussVoidFraction.html
	voidFractionModel.html
	voidFractionModel_IBVoidFraction.html

