Third batch of spelling fixes in manual

This commit is contained in:
Richard Berger
2017-03-07 00:51:31 -05:00
parent 32708860a9
commit 007f3c66a0
138 changed files with 254 additions and 250 deletions

View File

@ -573,7 +573,7 @@ LJ epsilon of O-O = 0.16275
LJ sigma of O-O = 3.16435
LJ epsilon, sigma of OH, HH = 0.0 :all(b),p
Note that the when using the TIP4P pair style, the neighobr list
Note that the when using the TIP4P pair style, the neighbor list
cutoff for Coulomb interactions is effectively extended by a distance
2 * (OM distance), to account for the offset distance of the
fictitious charges on O atoms in water molecules. Thus it is
@ -863,7 +863,7 @@ boundary conditions in specific dimensions. See the command doc pages
for details.
The 9 parameters (xlo,xhi,ylo,yhi,zlo,zhi,xy,xz,yz) are defined at the
time the simluation box is created. This happens in one of 3 ways.
time the simulation box is created. This happens in one of 3 ways.
If the "create_box"_create_box.html command is used with a region of
style {prism}, then a triclinic box is setup. See the
"region"_region.html command for details. If the
@ -1525,7 +1525,7 @@ Variables that generate values to output :h5,link(variable)
"Variables"_variable.html defined in an input script can store one or
more strings. But equal-style, vector-style, and atom-style or
atomfile-style variables generate a global scalar value, global vector
or values, or a per-atom vector, resepctively, when accessed. The
or values, or a per-atom vector, respectively, when accessed. The
formulas used to define these variables can contain references to the
thermodynamic keywords and to global and per-atom data generated by
computes, fixes, and other variables. The values generated by
@ -1585,7 +1585,7 @@ Temperature is computed as kinetic energy divided by some number of
degrees of freedom (and the Boltzmann constant). Since kinetic energy
is a function of particle velocity, there is often a need to
distinguish between a particle's advection velocity (due to some
aggregate motiion of particles) and its thermal velocity. The sum of
aggregate motion of particles) and its thermal velocity. The sum of
the two is the particle's total velocity, but the latter is often what
is wanted to compute a temperature.
@ -1888,7 +1888,7 @@ instances of LAMMPS to perform different calculations.
The lammps_open_no_mpi() function is similar except that no MPI
communicator is passed from the caller. Instead, MPI_COMM_WORLD is
used to instantiate LAMMPS, and MPI is initialzed if necessary.
used to instantiate LAMMPS, and MPI is initialized if necessary.
The lammps_close() function is used to shut down an instance of LAMMPS
and free all its memory.
@ -1976,7 +1976,7 @@ The lammps_get_natoms() function returns the total number of atoms in
the system and can be used by the caller to allocate space for the
lammps_gather_atoms() and lammps_scatter_atoms() functions. The
gather function collects atom info of the requested type (atom coords,
types, forces, etc) from all procsesors, orders them by atom ID, and
types, forces, etc) from all processors, orders them by atom ID, and
returns a full list to each calling processor. The scatter function
does the inverse. It distributes the same kinds of values,
passed by the caller, to each atom owned by individual processors.
@ -2268,7 +2268,7 @@ atoms with same local defect structure | chunk ID = output of "compute centro/at
Note that chunk IDs are integer values, so for atom properties or
computes that produce a floating point value, they will be truncated
to an integer. You could also use the compute in a variable that
scales the floating point value to spread it across multiple intergers.
scales the floating point value to spread it across multiple integers.
Spatial bins can be of various kinds, e.g. 1d bins = slabs, 2d bins =
pencils, 3d bins = boxes, spherical bins, cylindrical bins.
@ -2444,7 +2444,7 @@ performance. This approach provides a fast initialization of the
simulation. However, it is sensitive to errors: A combination of
parameters that will perform well for one system might result in
far-from-optimal conditions for other simulations. For example,
parametes that provide accurate and fast computations for
parameters that provide accurate and fast computations for
all-atomistic force fields can provide insufficient accuracy or
united-atomistic force fields (which is related to that the latter
typically have larger dispersion coefficients).
@ -2551,7 +2551,7 @@ this is done by "fix qeq/dynamic"_fix_qeq.html, and for the
charge-on-spring models by the methods outlined in the next two
sections. The assignment of masses to the additional degrees of
freedom can lead to unphysical trajectories if care is not exerted in
choosing the parameters of the poarizable models and the simulation
choosing the parameters of the polarizable models and the simulation
conditions.
In the core-shell model the vibration of the shells is kept faster
@ -2727,12 +2727,12 @@ If "compute temp/cs"_compute_temp_cs.html is used, the decoupled
relative motion of the core and the shell should in theory be
stable. However numerical fluctuation can introduce a small
momentum to the system, which is noticable over long trajectories.
Therefore it is recomendable to use the "fix
Therefore it is recommendable to use the "fix
momentum"_fix_momentum.html command in combination with "compute
temp/cs"_compute_temp_cs.html when equilibrating the system to
prevent any drift.
When intializing the velocities of a system with core/shell pairs, it
When initializing the velocities of a system with core/shell pairs, it
is also desirable to not introduce energy into the relative motion of
the core/shell particles, but only assign a center-of-mass velocity to
the pairs. This can be done by using the {bias} keyword of the
@ -2808,7 +2808,7 @@ CS-Info # header of additional section :pre
6.27 Drude induced dipoles :link(howto_27),h4
The thermalized Drude model, similarly to the "core-shell"_#howto_26
model, representes induced dipoles by a pair of charges (the core atom
model, represents induced dipoles by a pair of charges (the core atom
and the Drude particle) connected by a harmonic spring. The Drude
model has a number of features aimed at its use in molecular systems
("Lamoureux and Roux"_#howto-Lamoureux):