import polymorphic pair style update from Xiaowang Zhou
This commit is contained in:
@ -1,4 +1,5 @@
|
||||
.. index:: pair_style polymorphic
|
||||
<HTML><META HTTP-EQUIV="content-type" CONTENT="text/html;charset=utf-8">
|
||||
<PRE>.. index:: pair_style polymorphic
|
||||
|
||||
pair_style polymorphic command
|
||||
==============================
|
||||
@ -18,22 +19,27 @@ Examples
|
||||
.. code-block:: LAMMPS
|
||||
|
||||
pair_style polymorphic
|
||||
pair_coeff * * TlBr_msw.polymorphic Tl Br
|
||||
pair_coeff * * AlCu_eam.polymorphic Al Cu
|
||||
pair_coeff * * GaN_tersoff.polymorphic Ga N
|
||||
pair_coeff * * GaN_sw.polymorphic GaN
|
||||
pair_coeff * * FeCH_BOPI.poly Fe C H
|
||||
pair_coeff * * TlBr_msw.poly Tl Br
|
||||
pair_coeff * * CuTa_eam.poly Cu Ta
|
||||
pair_coeff * * GaN_tersoff.poly Ga N
|
||||
pair_coeff * * GaN_sw.poly GaN
|
||||
|
||||
Description
|
||||
"""""""""""
|
||||
|
||||
The *polymorphic* pair style computes a 3-body free-form potential
|
||||
(:ref:`Zhou <Zhou3>`) for the energy E of a system of atoms as
|
||||
(:ref:`Zhou <Zhou3>`) for the energy E of a system of atoms as
|
||||
|
||||
.. math::
|
||||
|
||||
E & = \frac{1}{2}\sum_{i=1}^{i=N}\sum_{j=1}^{j=N}\left[\left(1-\delta_{ij}\right)\cdot U_{IJ}\left(r_{ij}\right)-\left(1-\eta_{ij}\right)\cdot F_{IJ}\left(r_{ij}\right)\cdot V_{IJ}\left(r_{ij}\right)\right] \\
|
||||
X_{ij} & = \sum_{k=i_1,k\neq i,j}^{i_N}W_{IK}\left(r_{ik}\right)\cdot G_{JIK}\left(\theta_{jik}\right)\cdot P_{IK}\left(\Delta r_{jik}\right) \\
|
||||
\Delta r_{jik} & = r_{ij}-\xi_{IJ}\cdot r_{ik}
|
||||
\begin{eqnarray}\nonumber
|
||||
\left\{\begin{array}{l}
|
||||
E = \frac{1}{2}\sum_{i=1}^{i=N}\sum_{j=1}^{j=N}\left[\left(1-\delta_{ij}\right)\cdot U_{IJ}\left(r_{ij}\right)-\left(1-\eta_{ij}\right)\cdot F_{IJ}\left(X_{ij}\right)\cdot V_{IJ}\left(r_{ij}\right)\right] \\
|
||||
X_{ij} = \sum_{k=i_1,k\neq j}^{i_N}W_{IK}\left(r_{ik}\right)\cdot G_{JIK}\left(\theta_{jik}\right)\cdot P_{JIK}\left(\Delta r_{jik}\right) \\
|
||||
\Delta r_{jik} = r_{ij}-\xi_{IJ}\cdot r_{ik}
|
||||
\end{array}\right.
|
||||
\end{eqnarray}
|
||||
|
||||
where I, J, K represent species of atoms i, j, and k, :math:`i_1, ...,
|
||||
i_N` represents a list of *i*\ 's neighbors, :math:`\delta_{ij}` is a
|
||||
@ -42,111 +48,157 @@ Dirac constant (i.e., :math:`\delta_{ij} = 1` when :math:`i = j`, and
|
||||
constant that can be set either to :math:`\eta_{ij} = \delta_{ij}` or
|
||||
:math:`\eta_{ij} = 1 - \delta_{ij}` depending on the potential type,
|
||||
:math:`U_{IJ}(r_{ij})`, :math:`V_{IJ}(r_{ij})`, :math:`W_{IK}(r_{ik})`
|
||||
are pair functions, :math:`G_{JIK}(\cos(\theta))` is an angular
|
||||
function, :math:`P_{IK}(\Delta r_{jik})` is a function of atomic spacing
|
||||
are pair functions, :math:`G_{JIK}(\cos\theta_{jik})` is an angular
|
||||
function, :math:`P_{JIK}(\Delta r_{jik})` is a function of atomic spacing
|
||||
differential :math:`\Delta r_{jik} = r_{ij} - \xi_{IJ} \cdot r_{ik}`
|
||||
with :math:`\xi_{IJ}` being a pair-dependent parameter, and
|
||||
:math:`F_{IJ}(X_{ij})` is a function of the local environment variable
|
||||
:math:`X_{ij}`. This generic potential is fully defined once the
|
||||
constants :math:`\eta_{ij}` and :math:`\xi_{IJ}`, and the six functions
|
||||
:math:`U_{IJ}(r_{ij})`, :math:`V_{IJ}(r_{ij})`, :math:`W_{IK}(r_{ik})`,
|
||||
:math:`G_{JIK}(\cos(\theta))`, :math:`P_{IK}(\Delta r_{jik})`, and
|
||||
:math:`F_{IJ}(X_{ij})` are given. Note that these six functions are all
|
||||
one dimensional, and hence can be provided in an analytic or tabular
|
||||
:math:`G_{JIK}(\cos\theta_{jik})`, :math:`P_{JIK}(\Delta r_{jik})`, and
|
||||
:math:`F_{IJ}(X_{ij})` are given. Here LAMMPS uses a global
|
||||
parameter :math:`\eta` to represent :math:`\eta_{ij}`. When
|
||||
:math:`\eta = 1`, :math:`\eta_{ij} = 1 - \delta_{ij}`, otherwise
|
||||
:math:`\eta_{ij} = \delta_{ij}`. Additionally, :math:`\eta = 3`
|
||||
indicates that the function :math:`P_{JIK}(\Delta r)` depends on
|
||||
species I, J and K, otherwise :math:`P_{JIK}(\Delta r) = P_{IK}(\Delta r)`
|
||||
only depends on species I and K. Note that these six functions are all
|
||||
one dimensional, and hence can be provided in a tabular
|
||||
form. This allows users to design different potentials solely based on a
|
||||
manipulation of these functions. For instance, the potential reduces to
|
||||
Stillinger-Weber potential (:ref:`SW <SW>`) if we set
|
||||
manipulation of these functions. For instance, the potential reduces a
|
||||
Stillinger-Weber potential (:ref:`SW <SW>`) if we set
|
||||
|
||||
.. math::
|
||||
|
||||
\begin{eqnarray}\nonumber
|
||||
\left\{\begin{array}{l}
|
||||
\eta_{ij} = \delta_{ij},\xi_{IJ}=0 \\
|
||||
U_{IJ}\left(r\right)=A_{IJ}\cdot\epsilon_{IJ}\cdot \left(\frac{\sigma_{IJ}}{r}\right)^q\cdot \left[B_{IJ}\cdot \left(\frac{\sigma_{IJ}}{r}\right)^{p-q}-1\right]\cdot exp\left(\frac{\sigma_{IJ}}{r-a_{IJ}\cdot \sigma_{IJ}}\right) \\
|
||||
V_{IJ}\left(r\right)=\sqrt{\lambda_{IJ}\cdot \epsilon_{IJ}}\cdot exp\left(\frac{\gamma_{IJ}\cdot \sigma_{IJ}}{r-a_{IJ}\cdot \sigma_{IJ}}\right) \\
|
||||
F_{IJ}\left(X\right)=-X \\
|
||||
P_{IJ}\left(\Delta r\right)=1 \\
|
||||
W_{IJ}\left(r\right)=\sqrt{\lambda_{IJ}\cdot \epsilon_{IJ}}\cdot exp\left(\frac{\gamma_{IJ}\cdot \sigma_{IJ}}{r-a_{IJ}\cdot \sigma_{IJ}}\right) \\
|
||||
G_{JIK}\left(\theta\right)=\left(cos\theta+\frac{1}{3}\right)^2
|
||||
\eta_{ij} = \delta_{ij} (\eta = 2~or~\eta = 0),\xi_{IJ}=0 \\
|
||||
U_{IJ}\left(r\right) = A_{IJ}\cdot\epsilon_{IJ}\cdot \left(\frac{\sigma_{IJ}}{r}\right)^q\cdot \left[B_{IJ}\cdot \left(\frac{\sigma_{IJ}}{r}\right)^{p-q}-1\right]\cdot exp\left(\frac{\sigma_{IJ}}{r-a_{IJ}\cdot \sigma_{IJ}}\right) \\
|
||||
V_{IJ}\left(r\right) = \sqrt{\lambda_{IJ}\cdot \epsilon_{IJ}}\cdot exp\left(\frac{\gamma_{IJ}\cdot \sigma_{IJ}}{r-a_{IJ}\cdot \sigma_{IJ}}\right) \\
|
||||
F_{IJ}\left(X\right) = -X \\
|
||||
P_{JIK}\left(\Delta r\right) = P_{IK}\left(\Delta r\right) = 1 \\
|
||||
W_{IJ}\left(r\right) = \sqrt{\lambda_{IJ}\cdot \epsilon_{IJ}}\cdot exp\left(\frac{\gamma_{IJ}\cdot \sigma_{IJ}}{r-a_{IJ}\cdot \sigma_{IJ}}\right) \\
|
||||
G_{JIK}\left(\theta\right) = \left(cos\theta+\frac{1}{3}\right)^2
|
||||
\end{array}\right.
|
||||
\end{eqnarray}
|
||||
|
||||
The potential reduces to Tersoff types of potential
|
||||
(:ref:`Tersoff <Tersoff>` or :ref:`Albe <poly-Albe>`) if we set
|
||||
The potential reduces to a Tersoff potential (:ref:`Tersoff <Tersoff>
|
||||
` or :ref:`Albe <poly-Albe>`) if we set
|
||||
|
||||
.. math::
|
||||
|
||||
\begin{eqnarray}\nonumber
|
||||
\left\{\begin{array}{l}
|
||||
\eta_{ij}=\delta_{ij},\xi_{IJ}=1 \\
|
||||
U_{IJ}\left(r\right)=\frac{D_{e,IJ}}{S_{IJ}-1}\cdot exp\left[-\beta_{IJ}\sqrt{2S_{IJ}\left(r-r_{e,IJ}\right)}\right]\cdot f_{c,IJ}\left(r\right) \\
|
||||
V_{IJ}\left(r\right)=\frac{S_{IJ}\cdot D_{e,IJ}}{S_{IJ}-1}\cdot exp\left[-\beta_{IJ}\sqrt{\frac{2}{S_{IJ}}\left(r-r_{e,IJ}\right)}\right]\cdot f_{c,IJ}\left(r\right) \\
|
||||
F_{IJ}\left(X\right)=\left(1+X\right)^{-\frac{1}{2}} \\
|
||||
P_{IJ}\left(\Delta r\right)=exp\left(2\mu_{IK}\cdot \Delta r\right) \\
|
||||
W_{IJ}\left(r\right)=f_{c,IK}\left(r\right) \\
|
||||
G_{JIK}\left(\theta\right)=\gamma_{IK}\left[1+\frac{c_{IK}^2}{d_{IK}^2}-\frac{c_{IK}^2}{d_{IK}^2+\left(h_{IK}+cos\theta\right)^2}\right]
|
||||
\eta_{ij} = \delta_{ij} (\eta = 2~or~\eta = 0),\xi_{IJ}=1 \\
|
||||
U_{IJ}\left(r\right) = \frac{D_{e,IJ}}{S_{IJ}-1}\cdot exp\left[-\beta_{IJ}\sqrt{2S_{IJ}}\left(r-r_{e,IJ}\right)\right]\cdot f_{c,IJ}\left(r\right) \\
|
||||
V_{IJ}\left(r\right) = \frac{S_{IJ}\cdot D_{e,IJ}}{S_{IJ}-1}\cdot exp\left[-\beta_{IJ}\sqrt{\frac{2}{S_{IJ}}}\left(r-r_{e,IJ}\right)\right]\cdot f_{c,IJ}\left(r\right) \\
|
||||
F_{IJ}\left(X\right) = \left(1+X\right)^{-\frac{1}{2}} \\
|
||||
P_{JIK}\left(\Delta r\right) = P_{IK}\left(\Delta r\right) = exp\left(2\mu_{IK}\cdot \Delta r\right) \\
|
||||
W_{IJ}\left(r\right) = f_{c,IJ}\left(r\right) \\
|
||||
G_{JIK}\left(\theta\right) = \gamma_{IK}\left[1+\frac{c_{IK}^2}{d_{IK}^2}-\frac{c_{IK}^2}{d_{IK}^2+\left(h_{IK}+cos\theta\right)^2}\right]
|
||||
\end{array}\right.
|
||||
\end{eqnarray}
|
||||
|
||||
where
|
||||
|
||||
.. math::
|
||||
|
||||
f_{c,IJ}=\left\{\begin{array}{lr}
|
||||
1, & r\leq r_{s,IJ} \\
|
||||
\frac{1}{2}+\frac{1}{2} cos \left[\frac{\pi \left(r-r_{s,IJ}\right)}{r_{c,IJ}-r_{s,IJ}}\right], & r_{s,IJ}<r<r_{c,IJ} \\
|
||||
0, & r \geq r_{c,IJ} \\
|
||||
\begin{eqnarray}\nonumber
|
||||
f_{c,IJ}\left(r\right)=\left\{\begin{array}{l}
|
||||
1, r\leq R_{IJ}-D_{IJ} \\
|
||||
\frac{1}{2}+\frac{1}{2}cos\left[\frac{\pi\left(r+D_{IJ}-R_{IJ}\right)}{2D_{IJ}}\right], R_{IJ}-D_{IJ} < r < R_{IJ}+D_{IJ} \\
|
||||
0, r \geq R_{IJ}+D_{IJ}
|
||||
\end{array}\right.
|
||||
\end{eqnarray}
|
||||
|
||||
The potential reduces to Rockett-Tersoff (:ref:`Wang <Wang3>`) type if we set
|
||||
The potential reduces to a modified Stillinger-Weber potential (:ref:`Zhou <Zhou3>`) if we set
|
||||
|
||||
.. math::
|
||||
|
||||
\begin{eqnarray}\nonumber
|
||||
\left\{\begin{array}{l}
|
||||
\eta_{ij}=\delta_{ij},\xi_{IJ}=1 \\
|
||||
U_{IJ}\left(r\right)=\left\{\begin{array}{lr}
|
||||
A_{IJ}\cdot exp\left(-\lambda_{1,IJ}\cdot r\right)\cdot f_{c,IJ}\left(r\right), & r\leq r_{s,1,IJ} \\
|
||||
A_{IJ}\cdot exp\left(-\lambda_{1,IJ}\cdot r\right)\cdot f_{c,IJ}\left(r\right)\cdot f_{c,1,IJ}\left(r\right), & r_{s,1,IJ}<r<r_{c,1,IJ} \\
|
||||
0, & r\ge r_{c,1,IJ}
|
||||
\end{array}\right. \\
|
||||
V_{IJ}\left(r\right)=\left\{\begin{array}{lr}
|
||||
B_{IJ} \cdot exp\left(-\lambda_{2,IJ}\cdot r\right)\cdot f_{c,IJ}\left(r\right), & r\le r_{s,1,IJ} \\
|
||||
B_{IJ} \cdot exp\left(-\lambda_{2,IJ}\cdot r\right)\cdot f_{c,IJ}\left(r\right)+A_{IJ}\cdot exp\left(-\lambda_{1,IJ}\cdot r\right)\cdot & \\ ~~~~~~ f_{c,IJ}\left(r\right)\cdot \left[1-f_{c,1,IJ}\left(r\right)\right], & r_{s,1,IJ}<r<r_{c,1,IJ} \\
|
||||
B_{IJ} \cdot exp\left(-\lambda_{2,IJ}\cdot r\right)\cdot f_{c,IJ}\left(r\right)+A_{IJ}\cdot exp\left(-\lambda_{1,IJ}\cdot r\right)\cdot & \\ ~~~~~~ f_{c,IJ}\left(r\right) & r \ge r_{c,1,IJ}
|
||||
\end{array}\right. \\
|
||||
F_{IJ}\left(X\right)=\left[1+\left(\beta_{IJ}\cdot X\right)^{n_{IJ}}\right]^{-\frac{1}{2n_{IJ}}} \\
|
||||
P_{IJ}\left(\Delta r\right)=exp\left(\lambda_{3,IK}\cdot \Delta r^3\right) \\
|
||||
W_{IJ}\left(r\right)=f_{c,IK}\left(r\right) \\
|
||||
G_{JIK}\left(\theta\right)=1+\frac{c_{IK}^2}{d_{IK}^2}-\frac{c_{IK}^2}{d_{IK}^2+\left(h_{IK}+cos\theta\right)^2}
|
||||
\eta_{ij} = \delta_{ij} (\eta = 2~or~\eta = 0),\xi_{IJ}=0 \\
|
||||
U_{IJ}\left(r\right) = \varphi_{R,IJ}\left(r\right)-\varphi_{A,IJ}\left(r\right) \\
|
||||
V_{IJ}\left(r\right) = u_{IJ}\left(r\right) \\
|
||||
F_{IJ}\left(X\right) = -X \\
|
||||
P_{JIK}\left(\Delta r\right) = P_{IK}\left(\Delta r\right) = 1 \\
|
||||
W_{IJ}\left(r\right) = u_{IJ}\left(r\right) \\
|
||||
G_{JIK}\left(\theta\right) = g_{JIK}\left(cos\theta\right)
|
||||
\end{array}\right.
|
||||
\end{eqnarray}
|
||||
|
||||
|
||||
The potential reduces to a Rockett-Tersoff potential (:ref:`Wang <Wang3>`) if we set
|
||||
|
||||
.. math::
|
||||
|
||||
f_{c,IJ}=\left\{\begin{array}{lr}
|
||||
1, & r\leq r_{s,IJ} \\
|
||||
\frac{1}{2}+\frac{1}{2} cos \left[\frac{\pi \left(r-r_{s,IJ}\right)}{r_{c,IJ}-r_{s,IJ}}\right], & r_{s,IJ}<r<r_{c,IJ} \\
|
||||
0, & r \geq r_{c,IJ} \\
|
||||
\begin{eqnarray}\nonumber
|
||||
\left\{ \begin{array}{l}
|
||||
\eta_{ij} = \delta_{ij} (\eta = 2~or~\eta = 0),\xi_{IJ}=1 \\
|
||||
U_{IJ}\left(r\right) = A_{IJ}exp\left(-\lambda_{1,IJ}\cdot r\right)f_{c,IJ}\left(r\right)f_{ca,IJ}\left(r\right) \\
|
||||
V_{IJ}\left(r\right) = \left\{\begin{array}{l}B_{IJ}exp\left(-\lambda_{2,IJ}\cdot r\right)f_{c,IJ}\left(r\right)+ \\ A_{IJ}exp\left(-\lambda_{1,IJ}\cdot r\right)f_{c,IJ}\left(r\right) \left[1-f_{ca,IJ}\left(r\right)\right]\end{array} \right\} \\
|
||||
F_{IJ}\left(X\right) = \left[1+\left(\beta_{IJ}X\right)^{n_{IJ}}\right]^{-\frac{1}{2n_{IJ}}} \\
|
||||
P_{JIK}\left(\Delta r\right) = P_{IK}\left(\Delta r\right) = exp\left(\lambda_{3,IK}\cdot \Delta r^3\right) \\
|
||||
W_{IJ}\left(r\right) = f_{c,IJ}\left(r\right) \\
|
||||
G_{JIK}\left(\theta\right) = 1+\frac{c_{IK}^2}{d_{IK}^2}-\frac{c_{IK}^2}{d_{IK}^2+\left(h_{IK}+cos\theta\right)^2}
|
||||
\end{array}\right.
|
||||
\end{eqnarray}
|
||||
|
||||
where :math:`f_{ca,IJ}(r)` is similar to the :math:`f_{c,IJ}(r)` defined above:
|
||||
|
||||
.. math::
|
||||
|
||||
f_{c,1,IJ}=\left\{\begin{array}{lr}
|
||||
1, & r\leq r_{s,1,IJ} \\
|
||||
\frac{1}{2}+\frac{1}{2} cos \left[\frac{\pi \left(r-r_{s,1,IJ}\right)}{r_{c,1,IJ}-r_{s,1,IJ}}\right], & r_{s,1,IJ}<r<r_{c,1,IJ} \\
|
||||
0, & r \geq r_{c,1,IJ} \\
|
||||
\begin{eqnarray}\nonumber
|
||||
f_{ca,IJ}\left(r\right)=\left\{\begin{array}{l}
|
||||
1, r\leq R_{a,IJ}-D_{a,IJ} \\
|
||||
\frac{1}{2}+\frac{1}{2}cos\left[\frac{\pi\left(r+D_{a,IJ}-R_{a,IJ}\right)}{2D_{a,IJ}}\right], R_{a,IJ}-D_{a,IJ} < r < R_{a,IJ}+D_{a,IJ} \\
|
||||
0, r \geq R_{a,IJ}+D_{a,IJ}
|
||||
\end{array}\right.
|
||||
\end{eqnarray}
|
||||
|
||||
The potential becomes embedded atom method (:ref:`Daw <poly-Daw>`) if we set
|
||||
The potential becomes embedded atom method (:ref:`Daw <poly-Daw>`) if we set
|
||||
|
||||
.. math::
|
||||
|
||||
\begin{eqnarray}\nonumber
|
||||
\left\{\begin{array}{l}
|
||||
\eta_{ij}=1-\delta_{ij},\xi_{IJ}=0 \\
|
||||
U_{IJ}\left(r\right)=\phi_{IJ}\left(r\right) \\
|
||||
V_{IJ}\left(r\right)=1 \\
|
||||
F_{II}\left(X\right)=-2F_I\left(X\right) \\
|
||||
P_{IJ}\left(\Delta r\right)=1 \\
|
||||
W_{IJ}\left(r\right)=f_{K}\left(r\right) \\
|
||||
G_{JIK}\left(\theta\right)=1
|
||||
\eta_{ij} = 1-\delta_{ij} (\eta = 1),\xi_{IJ}=0 \\
|
||||
U_{IJ}\left(r\right) = \phi_{IJ}\left(r\right) \\
|
||||
V_{IJ}\left(r\right) = 1 \\
|
||||
F_{II}\left(X\right) = -2F_I\left(X\right) \\
|
||||
P_{JIK}\left(\Delta r\right) = P_{IK}\left(\Delta r\right) = 1 \\
|
||||
W_{IJ}\left(r\right) = f_{J}\left(r\right) \\
|
||||
G_{JIK}\left(\theta\right) = 1
|
||||
\end{array}\right.
|
||||
\end{eqnarray}
|
||||
|
||||
In the embedded atom method case, :math:`\phi_{IJ}(r_{ij})` is the pair
|
||||
In the embedded atom method case, :math:`\phi_{IJ}(r)` is the pair
|
||||
energy, :math:`F_I(X)` is the embedding energy, *X* is the local
|
||||
electron density, and :math:`f_K(r)` is the atomic electron density function.
|
||||
electron density, and :math:`f_J(r)` is the atomic electron density function.
|
||||
|
||||
The potential reduces to another type of Tersoff potential
|
||||
(:ref:`Zhou <Zhou4>`) if we set
|
||||
|
||||
.. math::
|
||||
|
||||
\begin{eqnarray}\nonumber
|
||||
\left\{\begin{array}{l}
|
||||
\eta_{ij} = \delta_{ij} (\eta = 3),\xi_{IJ}=1 \\
|
||||
U_{IJ}\left(r\right) = \frac{D_{e,IJ}}{S_{IJ}-1}\cdot exp\left[-\beta_{IJ}\sqrt{2S_{IJ}}\left(r-r_{e,IJ}\right)\right]\cdot f_{c,IJ}\left(r\right) \cdot T_{IJ}\left(r\right)+V_{ZBL,IJ}\left(r\right)\left[1-T_{IJ}\left(r\right)\right] \\
|
||||
V_{IJ}\left(r\right) = \frac{S_{IJ}\cdot D_{e,IJ}}{S_{IJ}-1}\cdot exp\left[-\beta_{IJ}\sqrt{\frac{2}{S_{IJ}}}\left(r-r_{e,IJ}\right)\right]\cdot f_{c,IJ}\left(r\right) \cdot T_{IJ}\left(r\right) \\
|
||||
F_{IJ}\left(X\right) = \left(1+X\right)^{-\frac{1}{2}} \\
|
||||
P_{JIK}\left(\Delta r\right) = \omega_{JIK} \cdot exp\left(\alpha_{JIK}\cdot \Delta r\right) \\
|
||||
W_{IJ}\left(r\right) = f_{c,IJ}\left(r\right) \\
|
||||
G_{JIK}\left(\theta\right) = \gamma_{JIK}\left[1+\frac{c_{JIK}^2}{d_{JIK}^2}-\frac{c_{JIK}^2}{d_{JIK}^2+\left(h_{JIK}+cos\theta\right)^2}\right] \\
|
||||
T_{IJ}\left(r\right) = \frac{1}{1+exp\left[-b_{f,IJ}\left(r-r_{f,IJ}\right)\right]} \\
|
||||
V_{ZBL,IJ}\left(r\right) = 14.4 \cdot \frac{Z_I \cdot Z_J}{r}\sum_{k=1}^{4}\mu_k \cdot exp\left[-\nu_k \left(Z_I^{0.23}+Z_J^{0.23}\right) r\right]
|
||||
\end{array}\right.
|
||||
\end{eqnarray}
|
||||
|
||||
where :math:`f_{c,IJ}(r)` is the as defined above. This Tersoff potential
|
||||
differs from the one above because the :math:`\P_{JIK}(\Delta r)` function
|
||||
is now dependent on all three species I, J, and K.
|
||||
|
||||
If the tabulated functions are created using the parameters of sw,
|
||||
tersoff, and eam potentials, the polymorphic pair style will produce
|
||||
@ -157,37 +209,36 @@ corresponding tersoff and eam pair styles. However, due to a different
|
||||
partition of global properties to atom properties, the polymorphic
|
||||
pair style will produce different atom properties (energies and
|
||||
stresses) as the sw pair style. This does not mean that polymorphic
|
||||
pair style is different from the sw pair style in this case. It just
|
||||
means that the definitions of the atom energies and atom stresses are
|
||||
different.
|
||||
pair style is different from the sw pair style. It just means that the
|
||||
definitions of the atom energies and atom stresses are different.
|
||||
|
||||
Only a single pair_coeff command is used with the polymorphic style
|
||||
which specifies an potential file for all needed elements. These are
|
||||
mapped to LAMMPS atom types by specifying N additional arguments after
|
||||
the filename in the pair_coeff command, where N is the number of
|
||||
LAMMPS atom types:
|
||||
Only a single pair_coeff command is used with the polymorphic pair
|
||||
style which specifies an potential file for all needed elements.
|
||||
These are mapped to LAMMPS atom types by specifying N additional
|
||||
arguments after the filename in the pair_coeff command, where N
|
||||
is the number of LAMMPS atom types:
|
||||
|
||||
* filename
|
||||
* N element names = mapping of Tersoff elements to atom types
|
||||
|
||||
See the pair_coeff doc page for alternate ways to specify the path for
|
||||
the potential file. Several files for polymorphic potentials are
|
||||
included in the potentials directory of the LAMMPS distribution. They
|
||||
the potential file. Several files for polymorphic potentials are
|
||||
included in the potentials directory of the LAMMPS distribution. They
|
||||
have a "poly" suffix.
|
||||
|
||||
As an example, imagine the SiC_tersoff.poly file has tabulated
|
||||
functions for Si-C tersoff potential. If your LAMMPS simulation has 4
|
||||
atoms types and you want the 1st 3 to be Si, and the 4th to be C, you
|
||||
As an example, imagine the GaN_tersoff.poly file has tabulated
|
||||
functions for Ga-N tersoff potential. If your LAMMPS simulation has 4
|
||||
atoms types and you want the 1st 3 to be Ga, and the 4th to be N, you
|
||||
would use the following pair_coeff command:
|
||||
|
||||
.. code-block:: LAMMPS
|
||||
|
||||
pair_coeff * * SiC_tersoff.poly Si Si Si C
|
||||
pair_coeff * * GaN_tersoff.poly Ga Ga Ga N
|
||||
|
||||
The 1st 2 arguments must be \* \* so as to span all LAMMPS atom
|
||||
types. The first three Si arguments map LAMMPS atom types 1,2,3 to the
|
||||
Si element in the polymorphic file. The final C argument maps LAMMPS
|
||||
atom type 4 to the C element in the polymorphic file. If a mapping
|
||||
types. The first three Ga arguments map LAMMPS atom types 1,2,3 to the
|
||||
Ga element in the polymorphic file. The final N argument maps LAMMPS
|
||||
atom type 4 to the N element in the polymorphic file. If a mapping
|
||||
value is specified as NULL, the mapping is not performed. This can be
|
||||
used when an polymorphic potential is used as part of the hybrid pair
|
||||
style. The NULL values are placeholders for atom types that will be
|
||||
@ -203,67 +254,79 @@ and are ignored by LAMMPS. The next line lists two numbers:
|
||||
ntypes :math:`\eta`
|
||||
|
||||
Here ntypes represent total number of species defined in the potential
|
||||
file, and :math:`\eta = 0` or 1. The number ntypes must equal the total
|
||||
number of different species defined in the pair_coeff command. When
|
||||
:math:`\eta = 1`, :math:\eta_{ij}` defined in the potential functions
|
||||
above is set to :math:`1 - \delta_{ij}`, otherwise :math:`\eta_{ij}` is
|
||||
set to :math:`\delta_{ij}`. The next ntypes lines each lists two numbers
|
||||
and a character string representing atomic number, atomic mass, and name
|
||||
of the species of the ntypes elements:
|
||||
file, :math:`\eta = 1` reduces to embedded atom method, :math:`\eta = 3`
|
||||
assumes three spcies dependent :math:`P_{JIK}(\Delta r)` function, and
|
||||
all other :math:`\eta` assumes two species dependent
|
||||
:math:`P_{JK}(\Delta r)` function. The number ntypes must equal the total
|
||||
number of different species defined in the pair_coeff command. The next
|
||||
ntypes lines each lists two numbers and a character string representing
|
||||
atomic number, atomic mass, and name of the species of the ntypes elements:
|
||||
|
||||
.. parsed-literal::
|
||||
|
||||
atomic_number atomic-mass element (1)
|
||||
atomic_number atomic-mass element (2)
|
||||
atomic-number atomic-mass element-name(1)
|
||||
atomic-number atomic-mass element-name(2)
|
||||
...
|
||||
atomic_number atomic-mass element (ntypes)
|
||||
atomic-number atomic-mass element-name(ntypes)
|
||||
|
||||
The next line contains four numbers:
|
||||
|
||||
.. parsed-literal::
|
||||
|
||||
nr ntheta nx xmax
|
||||
|
||||
Here nr is total number of tabular points for radial functions U, V, W, P,
|
||||
ntheta is total number of tabular points for the angular function G, nx is
|
||||
total number of tabular points for the function F, xmax is a maximum
|
||||
value of the argument of function F. Note that the pair functions
|
||||
:math:`U_{IJ}(r)`, :math:`V_{IJ}(r)`, :math:`W_{IJ}(r)` are uniformly
|
||||
tabulated between 0 and cutoff distance of the IJ pair,
|
||||
:math:`G_{JIK}(\theta)` is uniformly tabulated between -1 and 1,
|
||||
:math:`P_{JIK}(\Delta r)` is uniformly tabulated between -rcmax
|
||||
and rcmax where rcmax is the maximum cutoff distance of all pairs, and
|
||||
:math:`F_{IJ}(X)` is uniformly tabulated between 0 and xmax. Linear
|
||||
extrapolation is assumed if actual simulations exceed these ranges.
|
||||
|
||||
The next ntypes\*(ntypes+1)/2 lines contain two numbers:
|
||||
|
||||
.. parsed-literal::
|
||||
|
||||
cut :math:`xi` (1)
|
||||
cut :math:`xi` (2)
|
||||
cut :math:`xi`(1)
|
||||
cut :math:`xi`(2)
|
||||
...
|
||||
cut :math:`xi` (ntypes\*(ntypes+1)/2)
|
||||
cut :math:`xi`(ntypes\*(ntypes+1)/2)
|
||||
|
||||
Here cut means the cutoff distance of the pair functions, :math:`\xi` is
|
||||
the same as defined in the potential functions above. The
|
||||
ntypes\*(ntypes+1)/2 lines are related to the pairs according to the
|
||||
sequence of first ii (self) pairs, i = 1, 2, ..., ntypes, and then then
|
||||
sequence of first ii (self) pairs, i = 1, 2, ..., ntypes, and then
|
||||
ij (cross) pairs, i = 1, 2, ..., ntypes-1, and j = i+1, i+2, ..., ntypes
|
||||
(i.e., the sequence of the ij pairs follows 11, 22, ..., 12, 13, 14,
|
||||
..., 23, 24, ...).
|
||||
|
||||
The final blocks of the potential file are the U, V, W, P, G, and F
|
||||
In the final blocks of the potential file, U, V, W, P, G, and F
|
||||
functions are listed sequentially. First, U functions are given for
|
||||
each of the ntypes\*(ntypes+1)/2 pairs according to the sequence
|
||||
described above. For each of the pairs, nr values are listed. Next,
|
||||
similar arrays are given for V, W, and P functions. Then G functions
|
||||
are given for all the ntypes\*ntypes\*ntypes ijk triplets in a natural
|
||||
sequence i from 1 to ntypes, j from 1 to ntypes, and k from 1 to
|
||||
ntypes (i.e., ijk = 111, 112, 113, ..., 121, 122, 123 ..., 211, 212,
|
||||
...). Each of the ijk functions contains ng values. Finally, the F
|
||||
functions are listed for all ntypes\*(ntypes+1)/2 pairs, each
|
||||
containing nx values. Either analytic or tabulated functions can be
|
||||
specified. Currently, constant, exponential, sine and cosine analytic
|
||||
functions are available which are specified with: constant c1 , where
|
||||
f(x) = c1 exponential c1 c2 , where f(x) = c1 exp(c2\*x) sine c1 c2 ,
|
||||
where f(x) = c1 sin(c2\*x) cos c1 c2 , where f(x) = c1 cos(c2\*x)
|
||||
Tabulated functions are specified by spline n x1 x2, where n=number of
|
||||
point, (x1,x2)=range and then followed by n values evaluated uniformly
|
||||
over these argument ranges. The valid argument ranges of the
|
||||
functions are between 0 <= r <= cut for the U(r), V(r), W(r)
|
||||
functions, -cutmax <= delta_r <= cutmax for the P(delta_r) functions,
|
||||
-1 <= :math:`\cos\theta` <= 1 for the G(:math:`\cos\theta`) functions,
|
||||
and 0 <= X <= maxX for the F(X) functions.
|
||||
similar arrays are given for V and W functions. If P functions
|
||||
depend only on pair species, i.e., :math:`\eta \neq 3`, then P
|
||||
functions are also listed the same way the next. If P functions
|
||||
depend on three species, i.e., :math:`\eta = 3`, then P functions
|
||||
are listed for all the ntypes*ntypes*ntypes IJK triplets in a
|
||||
natural sequence I from 1 to ntypes, J from 1 to ntypes, and K from
|
||||
1 to ntypes (i.e., IJK = 111, 112, 113, ..., 121, 122, 123 ..., 211,
|
||||
212, ...). Next, G functions are listed for all the ntypes*ntypes*ntypes
|
||||
IJK triplets similarly. For each of the G functions, ntheta values
|
||||
are listed. Finally, F functions are listed for all the
|
||||
ntypes*(ntypes+1)/2 pairs in the same sequence as described above.
|
||||
For each of the F functions, nx values are listed.
|
||||
|
||||
**Mixing, shift, table tail correction, restart**\ :
|
||||
|
||||
This pair styles does not support the :doc:`pair_modify <pair_modify>`
|
||||
This pair styles does not support the :doc:`pair_modify <pair_modify>`
|
||||
shift, table, and tail options.
|
||||
|
||||
This pair style does not write their information to :doc:`binary restart files <restart>`, since it is stored in potential files. Thus, you
|
||||
This pair style does not write their information to :doc:`binary restart files <restart>`, since it is stored in potential files. Thus, you
|
||||
need to re-specify the pair_style and pair_coeff commands in an input
|
||||
script that reads a restart file.
|
||||
|
||||
@ -277,31 +340,34 @@ input script. If using read_data, atomic masses must be defined in the
|
||||
atomic structure data file.
|
||||
|
||||
This pair style is part of the MANYBODY package. It is only enabled if
|
||||
LAMMPS was built with that package. See the :doc:`Build package <Build_package>` doc page for more info.
|
||||
LAMMPS was built with that package. See the :doc:`Build package <Build_package>` doc page for more info.
|
||||
|
||||
This pair potential requires the :doc:`newtion <newton>` setting to be
|
||||
This pair potential requires the :doc:`newtion <newton>` setting to be
|
||||
"on" for pair interactions.
|
||||
|
||||
The potential files provided with LAMMPS (see the potentials
|
||||
directory) are parameterized for metal :doc:`units <units>`. You can use
|
||||
directory) are parameterized for metal :doc:`units <units>`. You can use
|
||||
any LAMMPS units, but you would need to create your own potential
|
||||
files.
|
||||
|
||||
Related commands
|
||||
""""""""""""""""
|
||||
|
||||
:doc:`pair_coeff <pair_coeff>`
|
||||
:doc:`pair_coeff <pair_coeff>`
|
||||
|
||||
----------
|
||||
|
||||
.. _Zhou3:
|
||||
|
||||
**(Zhou)** X. W. Zhou, M. E. Foster, R. E. Jones, P. Yang, H. Fan, and
|
||||
F. P. Doty, J. Mater. Sci. Res., 4, 15 (2015).
|
||||
**(Zhou)** X. W. Zhou, M. E. Foster, R. E. Jones, P. Yang, H. Fan, and F. P. Doty, J. Mater. Sci. Res., 4, 15 (2015).
|
||||
|
||||
.. _Zhou4:
|
||||
|
||||
**(Zhou)** X. W. Zhou, M. E. Foster, J. A. Ronevich, and C. W. San Marchi, J. Comp. Chem., 41, 1299 (2020).
|
||||
|
||||
.. _SW:
|
||||
|
||||
**(SW)** F. H. Stillinger-Weber, and T. A. Weber, Phys. Rev. B, 31, 5262 (1985).
|
||||
**(SW)** F. H. Stillinger, and T. A. Weber, Phys. Rev. B, 31, 5262 (1985).
|
||||
|
||||
.. _Tersoff:
|
||||
|
||||
@ -309,8 +375,7 @@ F. P. Doty, J. Mater. Sci. Res., 4, 15 (2015).
|
||||
|
||||
.. _poly-Albe:
|
||||
|
||||
**(Albe)** K. Albe, K. Nordlund, J. Nord, and A. Kuronen, Phys. Rev. B,
|
||||
66, 035205 (2002).
|
||||
**(Albe)** K. Albe, K. Nordlund, J. Nord, and A. Kuronen, Phys. Rev. B, 66, 035205 (2002).
|
||||
|
||||
.. _Wang3:
|
||||
|
||||
@ -319,3 +384,4 @@ F. P. Doty, J. Mater. Sci. Res., 4, 15 (2015).
|
||||
.. _poly-Daw:
|
||||
|
||||
**(Daw)** M. S. Daw, and M. I. Baskes, Phys. Rev. B, 29, 6443 (1984).
|
||||
</PRE>
|
||||
|
||||
Reference in New Issue
Block a user