git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@14724 f3b2605a-c512-4ea7-a41b-209d697bcdaa

This commit is contained in:
sjplimp
2016-03-07 17:29:34 +00:00
parent d6a67c2849
commit 0e5c36676f
26 changed files with 3428 additions and 2298 deletions

View File

@ -80,7 +80,11 @@
<li class="toctree-l1"><a class="reference internal" href="Section_packages.html">4. Packages</a></li>
<li class="toctree-l1"><a class="reference internal" href="Section_accelerate.html">5. Accelerating LAMMPS performance</a></li>
<li class="toctree-l1"><a class="reference internal" href="Section_howto.html">6. How-to discussions</a></li>
<li class="toctree-l1 current"><a class="current reference internal" href="">7. Example problems</a></li>
<li class="toctree-l1 current"><a class="current reference internal" href="">7. Example problems</a><ul>
<li class="toctree-l2"><a class="reference internal" href="#lowercase-directories">7.1. Lowercase directories</a></li>
<li class="toctree-l2"><a class="reference internal" href="#uppercase-directories">7.2. Uppercase directories</a></li>
</ul>
</li>
<li class="toctree-l1"><a class="reference internal" href="Section_perf.html">8. Performance &amp; scalability</a></li>
<li class="toctree-l1"><a class="reference internal" href="Section_tools.html">9. Additional tools</a></li>
<li class="toctree-l1"><a class="reference internal" href="Section_modify.html">10. Modifying &amp; extending LAMMPS</a></li>
@ -137,20 +141,19 @@
<div class="section" id="example-problems">
<h1>7. Example problems<a class="headerlink" href="#example-problems" title="Permalink to this headline"></a></h1>
<p>The LAMMPS distribution includes an examples sub-directory with
several sample problems. Each problem is in a sub-directory of its
own. Most are 2d models so that they run quickly, requiring at most a
couple of minutes to run on a desktop machine. Each problem has an
input script (in.*) and produces a log file (log.*) and dump file
(dump.*) when it runs. Some use a data file (data.*) of initial
coordinates as additional input. A few sample log file outputs on
different machines and different numbers of processors are included in
the directories to compare your answers to. E.g. a log file like
log.crack.foo.P means it ran on P processors of machine &#8220;foo&#8221;.</p>
<p>For examples that use input data files, many of them were produced by
<a class="reference external" href="http://pizza.sandia.gov">Pizza.py</a> or setup tools described in the
<a class="reference internal" href="Section_tools.html"><em>Additional Tools</em></a> section of the LAMMPS
documentation and provided with the LAMMPS distribution.</p>
<p>The LAMMPS distribution includes an examples sub-directory with many
sample problems. Many are 2d models that run quickly are are
straightforward to visualize, requiring at most a couple of minutes to
run on a desktop machine. Each problem has an input script (in.*) and
produces a log file (log.*) when it runs. Some use a data file
(data.*) of initial coordinates as additional input. A few sample log
file run on different machines and different numbers of processors are
included in the directories to compare your answers to. E.g. a log
file like log.date.crack.foo.P means the &#8220;crack&#8221; example was run on P
processors of machine &#8220;foo&#8221; on that date (i.e. with that version of
LAMMPS).</p>
<p>Many of the input files have commented-out lines for creating dump
files and image files.</p>
<p>If you uncomment the <a class="reference internal" href="dump.html"><em>dump</em></a> command in the input script, a
text dump file will be produced, which can be animated by various
<a class="reference external" href="http://lammps.sandia.gov/viz.html">visualization programs</a>. It can
@ -160,69 +163,77 @@ script, and assuming you have built LAMMPS with a JPG library, JPG
snapshot images will be produced when the simulation runs. They can
be quickly post-processed into a movie using commands described on the
<a class="reference internal" href="dump_image.html"><em>dump image</em></a> doc page.</p>
<p>Animations of many of these examples can be viewed on the Movies
section of the <a class="reference external" href="http://lammps.sandia.gov">LAMMPS WWW Site</a>.</p>
<p>These are the sample problems in the examples sub-directories:</p>
<p>Animations of many of the examples can be viewed on the Movies section
of the <a class="reference external" href="http://lammps.sandia.gov">LAMMPS web site</a>.</p>
<p>There are two kinds of sub-directories in the examples dir. Lowercase
dirs contain one or a few simple, quick-to-run problems. Uppercase
dirs contain up to several complex scripts that illustrate a
particular kind of simulation method or model. Some of these run for
longer times, e.g. to measure a particular quantity.</p>
<p>Lists of both kinds of directories are given below.</p>
<hr class="docutils" />
<div class="section" id="lowercase-directories">
<h2>7.1. Lowercase directories<a class="headerlink" href="#lowercase-directories" title="Permalink to this headline"></a></h2>
<table border="1" class="docutils">
<colgroup>
<col width="15%" />
<col width="85%" />
<col width="16%" />
<col width="84%" />
</colgroup>
<tbody valign="top">
<tr class="row-odd"><td>balance</td>
<tr class="row-odd"><td>accelerate</td>
<td>run with various acceleration options (OpenMP, GPU, Phi)</td>
</tr>
<tr class="row-even"><td>balance</td>
<td>dynamic load balancing, 2d system</td>
</tr>
<tr class="row-even"><td>body</td>
<tr class="row-odd"><td>body</td>
<td>body particles, 2d system</td>
</tr>
<tr class="row-odd"><td>colloid</td>
<tr class="row-even"><td>colloid</td>
<td>big colloid particles in a small particle solvent, 2d system</td>
</tr>
<tr class="row-even"><td>comb</td>
<tr class="row-odd"><td>comb</td>
<td>models using the COMB potential</td>
</tr>
<tr class="row-even"><td>coreshell</td>
<td>core/shell model using CORESHELL package</td>
</tr>
<tr class="row-odd"><td>crack</td>
<td>crack propagation in a 2d solid</td>
</tr>
<tr class="row-even"><td>cuda</td>
<td>use of the USER-CUDA package for GPU acceleration</td>
</tr>
<tr class="row-odd"><td>dipole</td>
<tr class="row-odd"><td>deposit</td>
<td>deposit atoms and molecules on a surface</td>
</tr>
<tr class="row-even"><td>dipole</td>
<td>point dipolar particles, 2d system</td>
</tr>
<tr class="row-even"><td>dreiding</td>
<tr class="row-odd"><td>dreiding</td>
<td>methanol via Dreiding FF</td>
</tr>
<tr class="row-odd"><td>eim</td>
<tr class="row-even"><td>eim</td>
<td>NaCl using the EIM potential</td>
</tr>
<tr class="row-even"><td>ellipse</td>
<tr class="row-odd"><td>ellipse</td>
<td>ellipsoidal particles in spherical solvent, 2d system</td>
</tr>
<tr class="row-odd"><td>flow</td>
<tr class="row-even"><td>flow</td>
<td>Couette and Poiseuille flow in a 2d channel</td>
</tr>
<tr class="row-even"><td>friction</td>
<tr class="row-odd"><td>friction</td>
<td>frictional contact of spherical asperities between 2d surfaces</td>
</tr>
<tr class="row-odd"><td>gpu</td>
<td>use of the GPU package for GPU acceleration</td>
</tr>
<tr class="row-even"><td>hugoniostat</td>
<td>Hugoniostat shock dynamics</td>
</tr>
<tr class="row-odd"><td>indent</td>
<td>spherical indenter into a 2d solid</td>
</tr>
<tr class="row-even"><td>intel</td>
<td>use of the USER-INTEL package for CPU or Intel(R) Xeon Phi(TM) coprocessor</td>
</tr>
<tr class="row-odd"><td>kim</td>
<tr class="row-even"><td>kim</td>
<td>use of potentials in Knowledge Base for Interatomic Models (KIM)</td>
</tr>
<tr class="row-even"><td>line</td>
<td>line segment particles in 2d rigid bodies</td>
</tr>
<tr class="row-odd"><td>meam</td>
<td>MEAM test for SiC and shear (same as shear examples)</td>
</tr>
@ -262,69 +273,108 @@ section of the <a class="reference external" href="http://lammps.sandia.gov">LAM
<tr class="row-odd"><td>prd</td>
<td>parallel replica dynamics of vacancy diffusion in bulk Si</td>
</tr>
<tr class="row-even"><td>qeq</td>
<tr class="row-even"><td>python</td>
<td>using embedded Python in a LAMMPS input script</td>
</tr>
<tr class="row-odd"><td>qeq</td>
<td>use of the QEQ package for charge equilibration</td>
</tr>
<tr class="row-odd"><td>reax</td>
<tr class="row-even"><td>reax</td>
<td>RDX and TATB models using the ReaxFF</td>
</tr>
<tr class="row-even"><td>rigid</td>
<tr class="row-odd"><td>rigid</td>
<td>rigid bodies modeled as independent or coupled</td>
</tr>
<tr class="row-odd"><td>shear</td>
<tr class="row-even"><td>shear</td>
<td>sideways shear applied to 2d solid, with and without a void</td>
</tr>
<tr class="row-even"><td>snap</td>
<tr class="row-odd"><td>snap</td>
<td>NVE dynamics for BCC tantalum crystal using SNAP potential</td>
</tr>
<tr class="row-odd"><td>srd</td>
<tr class="row-even"><td>srd</td>
<td>stochastic rotation dynamics (SRD) particles as solvent</td>
</tr>
<tr class="row-odd"><td>streitz</td>
<td>use of Streitz/Mintmire potential with charge equilibration</td>
</tr>
<tr class="row-even"><td>tad</td>
<td>temperature-accelerated dynamics of vacancy diffusion in bulk Si</td>
</tr>
<tr class="row-odd"><td>tri</td>
<td>triangular particles in rigid bodies</td>
<tr class="row-odd"><td>vashishta</td>
<td>use of the Vashishta potential</td>
</tr>
</tbody>
</table>
<p>vashishta: models using the Vashishta potential</p>
<p>Here is how you might run and visualize one of the sample problems:</p>
<p>Here is how you can run and visualize one of the sample problems:</p>
<div class="highlight-python"><div class="highlight"><pre>cd indent
cp ../../src/lmp_linux . # copy LAMMPS executable to this dir
lmp_linux -in in.indent # run the problem
</pre></div>
</div>
<p>Running the simulation produces the files <em>dump.indent</em> and
<em>log.lammps</em>. You can visualize the dump file as follows:</p>
<div class="highlight-python"><div class="highlight"><pre>../../tools/xmovie/xmovie -scale dump.indent
</pre></div>
</div>
<em>log.lammps</em>. You can visualize the dump file of snapshots with a
variety of 3rd-party tools highlighted on the
<a class="reference external" href="http://lammps.sandia.gov/viz.html">Visualization</a> page of the LAMMPS
web site.</p>
<p>If you uncomment the <a class="reference internal" href="dump_image.html"><em>dump image</em></a> line(s) in the input
script a series of JPG images will be produced by the run. These can
be viewed individually or turned into a movie or animated by tools
like ImageMagick or QuickTime or various Windows-based tools. See the
script a series of JPG images will be produced by the run (assuming
you built LAMMPS with JPG support; see <a class="reference internal" href="Section_start.html"><em>Section start 2.2</em></a> for details). These can be viewed
individually or turned into a movie or animated by tools like
ImageMagick or QuickTime or various Windows-based tools. See the
<a class="reference internal" href="dump_image.html"><em>dump image</em></a> doc page for more details. E.g. this
Imagemagick command would create a GIF file suitable for viewing in a
browser.</p>
<div class="highlight-python"><div class="highlight"><pre>% convert -loop 1 *.jpg foo.gif
</pre></div>
</div>
</div>
<hr class="docutils" />
<p>There is also a COUPLE directory with examples of how to use LAMMPS as
a library, either by itself or in tandem with another code or library.
See the COUPLE/README file to get started.</p>
<p>There is also an ELASTIC directory with an example script for
computing elastic constants at zero temperature, using an Si example. See
the ELASTIC/in.elastic file for more info.</p>
<p>There is also an ELASTIC_T directory with an example script for
computing elastic constants at finite temperature, using an Si example. See
the ELASTIC_T/in.elastic file for more info.</p>
<p>There is also a USER directory which contains subdirectories of
user-provided examples for user packages. See the README files in
those directories for more info. See the
<a class="reference internal" href="Section_start.html"><em>Section_start.html</em></a> file for more info about user
packages.</p>
<div class="section" id="uppercase-directories">
<h2>7.2. Uppercase directories<a class="headerlink" href="#uppercase-directories" title="Permalink to this headline"></a></h2>
<table border="1" class="docutils">
<colgroup>
<col width="10%" />
<col width="90%" />
</colgroup>
<tbody valign="top">
<tr class="row-odd"><td>ASPHERE</td>
<td>various aspherical particle models, using ellipsoids, rigid bodies, line/triangle particles, etc</td>
</tr>
<tr class="row-even"><td>COUPLE</td>
<td>examples of how to use LAMMPS as a library</td>
</tr>
<tr class="row-odd"><td>DIFFUSE</td>
<td>compute diffusion coefficients via several methods</td>
</tr>
<tr class="row-even"><td>ELASTIC</td>
<td>compute elastic constants at zero temperature</td>
</tr>
<tr class="row-odd"><td>ELASTIC_T</td>
<td>compute elastic constants at finite temperature</td>
</tr>
<tr class="row-even"><td>KAPPA</td>
<td>compute thermal conductivity via several methods</td>
</tr>
<tr class="row-odd"><td>MC</td>
<td>using LAMMPS in a Monte Carlo mode to relax the energy of a system</td>
</tr>
<tr class="row-even"><td>USER</td>
<td>examples for USER packages and USER-contributed commands</td>
</tr>
<tr class="row-odd"><td>VISCOSITY</td>
<td>compute viscosity via several methods</td>
</tr>
</tbody>
</table>
<p>Nearly all of these directories have README files which give more
details on how to understand and use their contents.</p>
<p>The USER directory has a large number of sub-directories which
correspond by name to a USER package. They contain scripts that
illustrate how to use the command(s) provided in that package. Many
of the sub-directories have their own README files which give further
instructions. See the <a class="reference internal" href="Section_packages.html"><em>Section packages</em></a> doc
page for more info on specific USER packages.</p>
</div>
</div>