Update Colvars to version 2022-05-09

This update includes one new feature (neural-network based collective
variables), several small enhancements (including an automatic definition of
grid boundaries for angle-based CVs, and a normalization option for
eigenvector-based CVs), bugfixes and documentation improvements.

Usage information for specific features included in the Colvars library
(i.e. not just the library as a whole) is now also reported to the screen or
LAMMPS logfile (as is done already in other LAMMPS classes).

Notable to LAMMPS code development are the removals of duplicated code and of
ambiguously-named preprocessor defines in the Colvars headers.  Since the
last PR, the existing regression tests have also been running automatically
via GitHub Actions.

The following pull requests in the Colvars repository are relevant to LAMMPS:

- 475 Remove fatal error condition
  https://github.com/Colvars/colvars/pull/475 (@jhenin, @giacomofiorin)

- 474 Allow normalizing eigenvector vector components to deal with unit change
  https://github.com/Colvars/colvars/pull/474 (@giacomofiorin, @jhenin)

- 470 Better error handling in the initialization of NeuralNetwork CV
  https://github.com/Colvars/colvars/pull/470 (@HanatoK)

- 468 Add examples of histogram configuration, with and without explicit grid parameters
  https://github.com/Colvars/colvars/pull/468 (@giacomofiorin)

- 464 Fix #463 using more fine-grained features
  https://github.com/Colvars/colvars/pull/464 (@jhenin, @giacomofiorin)

- 447 [RFC] New option "scaledBiasingForce" for colvarbias
  https://github.com/Colvars/colvars/pull/447 (@HanatoK, @jhenin)

- 444 [RFC] Implementation of dense neural network as CV
  https://github.com/Colvars/colvars/pull/444 (@HanatoK, @giacomofiorin, @jhenin)

- 443 Fix explicit gradient dependency of sub-CVs
  https://github.com/Colvars/colvars/pull/443 (@HanatoK, @jhenin)

- 442 Persistent bias count
  https://github.com/Colvars/colvars/pull/442 (@jhenin, @giacomofiorin)

- 437 Return type of bias from scripting interface
  https://github.com/Colvars/colvars/pull/437 (@giacomofiorin)

- 434 More flexible use of boundaries from colvars by grids
  https://github.com/Colvars/colvars/pull/434 (@jhenin)

- 433 Prevent double-free in linearCombination
  https://github.com/Colvars/colvars/pull/433 (@HanatoK)

- 428 More complete documentation for index file format (NDX)
  https://github.com/Colvars/colvars/pull/428 (@giacomofiorin)

- 426 Integrate functional version of backup_file() into base proxy class
  https://github.com/Colvars/colvars/pull/426 (@giacomofiorin)

- 424 Track CVC inheritance when documenting feature usage
  https://github.com/Colvars/colvars/pull/424 (@giacomofiorin)

- 419 Generate citation report while running computations
  https://github.com/Colvars/colvars/pull/419 (@giacomofiorin, @jhenin)

- 415 Rebin metadynamics bias from explicit hills when available
  https://github.com/Colvars/colvars/pull/415 (@giacomofiorin)

- 312 Ignore a keyword if it has content to the left of it (regardless of braces)
  https://github.com/Colvars/colvars/pull/312 (@giacomofiorin)

Authors: @giacomofiorin, @HanatoK, @jhenin
This commit is contained in:
Giacomo Fiorin
2022-05-10 11:24:54 -04:00
parent 4737b9efb7
commit 1220bea011
66 changed files with 4040 additions and 1221 deletions

View File

@ -39,6 +39,7 @@ colvarbias_abf::colvarbias_abf(char const *key)
int colvarbias_abf::init(std::string const &conf)
{
colvarbias::init(conf);
cvm::main()->cite_feature("ABF colvar bias implementation");
colvarproxy *proxy = cvm::main()->proxy;
@ -81,11 +82,11 @@ int colvarbias_abf::init(std::string const &conf)
if (history_freq != 0) {
if (output_freq == 0) {
cvm::error("Error: historyFreq must be a multiple of outputFreq.\n",
INPUT_ERROR);
COLVARS_INPUT_ERROR);
} else {
if ((history_freq % output_freq) != 0) {
cvm::error("Error: historyFreq must be a multiple of outputFreq.\n",
INPUT_ERROR);
COLVARS_INPUT_ERROR);
}
}
}
@ -94,10 +95,11 @@ int colvarbias_abf::init(std::string const &conf)
// shared ABF
get_keyval(conf, "shared", shared_on, false);
if (shared_on) {
cvm::main()->cite_feature("Multiple-walker ABF implementation");
if ((proxy->replica_enabled() != COLVARS_OK) ||
(proxy->num_replicas() <= 1)) {
return cvm::error("Error: shared ABF requires more than one replica.",
INPUT_ERROR);
COLVARS_INPUT_ERROR);
}
cvm::log("shared ABF will be applied among "+
cvm::to_str(proxy->num_replicas()) + " replicas.\n");
@ -156,6 +158,12 @@ int colvarbias_abf::init(std::string const &conf)
// and make it just a warning if some parameter is set?
}
if (b_extended) {
cvm::main()->cite_feature("eABF implementation");
} else {
cvm::main()->cite_feature("Internal-forces free energy estimator");
}
if (get_keyval(conf, "maxForce", max_force)) {
if (max_force.size() != num_variables()) {
cvm::error("Error: Number of parameters to maxForce does not match number of colvars.");
@ -188,6 +196,9 @@ int colvarbias_abf::init(std::string const &conf)
// Data for eAB F z-based estimator
if ( b_extended ) {
get_keyval(conf, "CZARestimator", b_CZAR_estimator, true);
if ( b_CZAR_estimator ) {
cvm::main()->cite_feature("CZAR eABF estimator");
}
// CZAR output files for stratified eABF
get_keyval(conf, "writeCZARwindowFile", b_czar_window_file, false,
colvarparse::parse_silent);
@ -214,7 +225,7 @@ int colvarbias_abf::init(std::string const &conf)
czar_pmf = new integrate_potential(colvars, czar_gradients);
}
// Parameters for integrating initial (and final) gradient data
get_keyval(conf, "integrateMaxIterations", integrate_iterations, 1e4, colvarparse::parse_silent);
get_keyval(conf, "integrateMaxIterations", integrate_iterations, 10000, colvarparse::parse_silent);
get_keyval(conf, "integrateTol", integrate_tol, 1e-6, colvarparse::parse_silent);
// Projected ABF, updating the integrated PMF on the fly
get_keyval(conf, "pABFintegrateFreq", pabf_freq, 0, colvarparse::parse_silent);
@ -243,20 +254,21 @@ int colvarbias_abf::init(std::string const &conf)
get_keyval(conf, "UIestimator", b_UI_estimator, false);
if (b_UI_estimator) {
std::vector<double> UI_lowerboundary;
std::vector<double> UI_upperboundary;
std::vector<double> UI_width;
std::vector<double> UI_krestr;
bool UI_restart = (input_prefix.size() > 0);
cvm::main()->cite_feature("Umbrella-integration eABF estimator");
std::vector<double> UI_lowerboundary;
std::vector<double> UI_upperboundary;
std::vector<double> UI_width;
std::vector<double> UI_krestr;
for (i = 0; i < num_variables(); i++)
{
UI_lowerboundary.push_back(colvars[i]->lower_boundary);
UI_upperboundary.push_back(colvars[i]->upper_boundary);
UI_width.push_back(colvars[i]->width);
UI_krestr.push_back(colvars[i]->force_constant());
}
bool UI_restart = (input_prefix.size() > 0);
for (i = 0; i < num_variables(); i++) {
UI_lowerboundary.push_back(colvars[i]->lower_boundary);
UI_upperboundary.push_back(colvars[i]->upper_boundary);
UI_width.push_back(colvars[i]->width);
UI_krestr.push_back(colvars[i]->force_constant());
}
eabf_UI = UIestimator::UIestimator(UI_lowerboundary,
UI_upperboundary,
UI_width,
@ -412,7 +424,7 @@ int colvarbias_abf::update()
// Compute and apply the new bias, if applicable
if (is_enabled(f_cvb_apply_force) && samples->index_ok(bin)) {
cvm::real count = samples->value(bin);
cvm::real count = cvm::real(samples->value(bin));
cvm::real fact = 1.0;
// Factor that ensures smooth introduction of the force
@ -442,13 +454,13 @@ int colvarbias_abf::update()
// This is enforced naturally if using integrated PMF
colvar_forces[0].real_value = fact * (grad[0] - gradients->average ());
} else {
for (size_t i = 0; i < num_variables(); i++) {
for (i = 0; i < num_variables(); i++) {
// subtracting the mean force (opposite of the FE gradient) means adding the gradient
colvar_forces[i].real_value = fact * grad[i];
}
}
if (cap_force) {
for (size_t i = 0; i < num_variables(); i++) {
for (i = 0; i < num_variables(); i++) {
if ( colvar_forces[i].real_value * colvar_forces[i].real_value > max_force[i] * max_force[i] ) {
colvar_forces[i].real_value = (colvar_forces[i].real_value > 0 ? max_force[i] : -1.0 * max_force[i]);
}
@ -484,7 +496,7 @@ int colvarbias_abf::update()
{
std::vector<double> x(num_variables(),0);
std::vector<double> y(num_variables(),0);
for (size_t i = 0; i < num_variables(); i++)
for (i = 0; i < num_variables(); i++)
{
x[i] = colvars[i]->actual_value();
y[i] = colvars[i]->value();
@ -589,7 +601,7 @@ template <class T> int colvarbias_abf::write_grid_to_file(T const *grid,
bool close) {
std::ostream *os = cvm::proxy->output_stream(filename);
if (!os) {
return cvm::error("Error opening file " + filename + " for writing.\n", COLVARS_ERROR | FILE_ERROR);
return cvm::error("Error opening file " + filename + " for writing.\n", COLVARS_ERROR | COLVARS_FILE_ERROR);
}
grid->write_multicol(*os);
if (close) {
@ -607,7 +619,7 @@ template <class T> int colvarbias_abf::write_grid_to_file(T const *grid,
std::string dx = filename + ".dx";
std::ostream *dx_os = cvm::proxy->output_stream(dx);
if (!dx_os) {
return cvm::error("Error opening file " + dx + " for writing.\n", COLVARS_ERROR | FILE_ERROR);
return cvm::error("Error opening file " + dx + " for writing.\n", COLVARS_ERROR | COLVARS_FILE_ERROR);
}
grid->write_opendx(*dx_os);
// if (close) {
@ -709,7 +721,7 @@ void colvarbias_abf::read_gradients_samples()
is.open(gradients_in_name.c_str());
if (!is.is_open()) {
cvm::error("Error opening ABF gradient file " +
gradients_in_name + " for reading", INPUT_ERROR);
gradients_in_name + " for reading", COLVARS_INPUT_ERROR);
} else {
gradients->read_multicol(is, true);
is.close();
@ -765,7 +777,7 @@ std::ostream & colvarbias_abf::write_state_data(std::ostream& os)
std::istream & colvarbias_abf::read_state_data(std::istream& is)
{
if ( input_prefix.size() > 0 ) {
cvm::error("ERROR: cannot provide both inputPrefix and a colvars state file.\n", INPUT_ERROR);
cvm::error("ERROR: cannot provide both inputPrefix and a colvars state file.\n", COLVARS_INPUT_ERROR);
}
if (! read_state_data_key(is, "samples")) {