Update Colvars to version 2022-05-09
This update includes one new feature (neural-network based collective variables), several small enhancements (including an automatic definition of grid boundaries for angle-based CVs, and a normalization option for eigenvector-based CVs), bugfixes and documentation improvements. Usage information for specific features included in the Colvars library (i.e. not just the library as a whole) is now also reported to the screen or LAMMPS logfile (as is done already in other LAMMPS classes). Notable to LAMMPS code development are the removals of duplicated code and of ambiguously-named preprocessor defines in the Colvars headers. Since the last PR, the existing regression tests have also been running automatically via GitHub Actions. The following pull requests in the Colvars repository are relevant to LAMMPS: - 475 Remove fatal error condition https://github.com/Colvars/colvars/pull/475 (@jhenin, @giacomofiorin) - 474 Allow normalizing eigenvector vector components to deal with unit change https://github.com/Colvars/colvars/pull/474 (@giacomofiorin, @jhenin) - 470 Better error handling in the initialization of NeuralNetwork CV https://github.com/Colvars/colvars/pull/470 (@HanatoK) - 468 Add examples of histogram configuration, with and without explicit grid parameters https://github.com/Colvars/colvars/pull/468 (@giacomofiorin) - 464 Fix #463 using more fine-grained features https://github.com/Colvars/colvars/pull/464 (@jhenin, @giacomofiorin) - 447 [RFC] New option "scaledBiasingForce" for colvarbias https://github.com/Colvars/colvars/pull/447 (@HanatoK, @jhenin) - 444 [RFC] Implementation of dense neural network as CV https://github.com/Colvars/colvars/pull/444 (@HanatoK, @giacomofiorin, @jhenin) - 443 Fix explicit gradient dependency of sub-CVs https://github.com/Colvars/colvars/pull/443 (@HanatoK, @jhenin) - 442 Persistent bias count https://github.com/Colvars/colvars/pull/442 (@jhenin, @giacomofiorin) - 437 Return type of bias from scripting interface https://github.com/Colvars/colvars/pull/437 (@giacomofiorin) - 434 More flexible use of boundaries from colvars by grids https://github.com/Colvars/colvars/pull/434 (@jhenin) - 433 Prevent double-free in linearCombination https://github.com/Colvars/colvars/pull/433 (@HanatoK) - 428 More complete documentation for index file format (NDX) https://github.com/Colvars/colvars/pull/428 (@giacomofiorin) - 426 Integrate functional version of backup_file() into base proxy class https://github.com/Colvars/colvars/pull/426 (@giacomofiorin) - 424 Track CVC inheritance when documenting feature usage https://github.com/Colvars/colvars/pull/424 (@giacomofiorin) - 419 Generate citation report while running computations https://github.com/Colvars/colvars/pull/419 (@giacomofiorin, @jhenin) - 415 Rebin metadynamics bias from explicit hills when available https://github.com/Colvars/colvars/pull/415 (@giacomofiorin) - 312 Ignore a keyword if it has content to the left of it (regardless of braces) https://github.com/Colvars/colvars/pull/312 (@giacomofiorin) Authors: @giacomofiorin, @HanatoK, @jhenin
This commit is contained in:
@ -20,7 +20,7 @@
|
||||
colvar::distance::distance(std::string const &conf)
|
||||
: cvc(conf)
|
||||
{
|
||||
function_type = "distance";
|
||||
set_function_type("distance");
|
||||
init_as_distance();
|
||||
|
||||
provide(f_cvc_inv_gradient);
|
||||
@ -37,7 +37,7 @@ colvar::distance::distance(std::string const &conf)
|
||||
colvar::distance::distance()
|
||||
: cvc()
|
||||
{
|
||||
function_type = "distance";
|
||||
set_function_type("distance");
|
||||
init_as_distance();
|
||||
|
||||
provide(f_cvc_inv_gradient);
|
||||
@ -101,7 +101,7 @@ simple_scalar_dist_functions(distance)
|
||||
colvar::distance_vec::distance_vec(std::string const &conf)
|
||||
: distance(conf)
|
||||
{
|
||||
function_type = "distance_vec";
|
||||
set_function_type("distanceVec");
|
||||
enable(f_cvc_com_based);
|
||||
disable(f_cvc_explicit_gradient);
|
||||
x.type(colvarvalue::type_3vector);
|
||||
@ -111,7 +111,7 @@ colvar::distance_vec::distance_vec(std::string const &conf)
|
||||
colvar::distance_vec::distance_vec()
|
||||
: distance()
|
||||
{
|
||||
function_type = "distance_vec";
|
||||
set_function_type("distanceVec");
|
||||
enable(f_cvc_com_based);
|
||||
disable(f_cvc_explicit_gradient);
|
||||
x.type(colvarvalue::type_3vector);
|
||||
@ -171,7 +171,7 @@ colvarvalue colvar::distance_vec::dist2_rgrad(colvarvalue const &x1,
|
||||
colvar::distance_z::distance_z(std::string const &conf)
|
||||
: cvc(conf)
|
||||
{
|
||||
function_type = "distance_z";
|
||||
set_function_type("distanceZ");
|
||||
provide(f_cvc_inv_gradient);
|
||||
provide(f_cvc_Jacobian);
|
||||
enable(f_cvc_com_based);
|
||||
@ -179,10 +179,11 @@ colvar::distance_z::distance_z(std::string const &conf)
|
||||
|
||||
// TODO detect PBC from MD engine (in simple cases)
|
||||
// and then update period in real time
|
||||
if (period != 0.0)
|
||||
if (period != 0.0) {
|
||||
enable(f_cvc_periodic);
|
||||
}
|
||||
|
||||
if ((wrap_center != 0.0) && (period == 0.0)) {
|
||||
if ((wrap_center != 0.0) && !is_enabled(f_cvc_periodic)) {
|
||||
cvm::error("Error: wrapAround was defined in a distanceZ component,"
|
||||
" but its period has not been set.\n");
|
||||
return;
|
||||
@ -219,7 +220,7 @@ colvar::distance_z::distance_z(std::string const &conf)
|
||||
|
||||
colvar::distance_z::distance_z()
|
||||
{
|
||||
function_type = "distance_z";
|
||||
set_function_type("distanceZ");
|
||||
provide(f_cvc_inv_gradient);
|
||||
provide(f_cvc_Jacobian);
|
||||
enable(f_cvc_com_based);
|
||||
@ -368,7 +369,7 @@ void colvar::distance_z::wrap(colvarvalue &x_unwrapped) const
|
||||
colvar::distance_xy::distance_xy(std::string const &conf)
|
||||
: distance_z(conf)
|
||||
{
|
||||
function_type = "distance_xy";
|
||||
set_function_type("distanceXY");
|
||||
init_as_distance();
|
||||
|
||||
provide(f_cvc_inv_gradient);
|
||||
@ -380,7 +381,7 @@ colvar::distance_xy::distance_xy(std::string const &conf)
|
||||
colvar::distance_xy::distance_xy()
|
||||
: distance_z()
|
||||
{
|
||||
function_type = "distance_xy";
|
||||
set_function_type("distanceXY");
|
||||
init_as_distance();
|
||||
|
||||
provide(f_cvc_inv_gradient);
|
||||
@ -481,7 +482,7 @@ simple_scalar_dist_functions(distance_xy)
|
||||
colvar::distance_dir::distance_dir(std::string const &conf)
|
||||
: distance(conf)
|
||||
{
|
||||
function_type = "distance_dir";
|
||||
set_function_type("distanceDir");
|
||||
enable(f_cvc_com_based);
|
||||
disable(f_cvc_explicit_gradient);
|
||||
x.type(colvarvalue::type_unit3vector);
|
||||
@ -491,7 +492,7 @@ colvar::distance_dir::distance_dir(std::string const &conf)
|
||||
colvar::distance_dir::distance_dir()
|
||||
: distance()
|
||||
{
|
||||
function_type = "distance_dir";
|
||||
set_function_type("distanceDir");
|
||||
enable(f_cvc_com_based);
|
||||
disable(f_cvc_explicit_gradient);
|
||||
x.type(colvarvalue::type_unit3vector);
|
||||
@ -559,7 +560,7 @@ colvarvalue colvar::distance_dir::dist2_rgrad(colvarvalue const &x1,
|
||||
colvar::distance_inv::distance_inv(std::string const &conf)
|
||||
: cvc(conf)
|
||||
{
|
||||
function_type = "distance_inv";
|
||||
set_function_type("distanceInv");
|
||||
init_as_distance();
|
||||
|
||||
group1 = parse_group(conf, "group1");
|
||||
@ -658,7 +659,7 @@ simple_scalar_dist_functions(distance_inv)
|
||||
colvar::distance_pairs::distance_pairs(std::string const &conf)
|
||||
: cvc(conf)
|
||||
{
|
||||
function_type = "distance_pairs";
|
||||
set_function_type("distancePairs");
|
||||
|
||||
group1 = parse_group(conf, "group1");
|
||||
group2 = parse_group(conf, "group2");
|
||||
@ -671,7 +672,7 @@ colvar::distance_pairs::distance_pairs(std::string const &conf)
|
||||
|
||||
colvar::distance_pairs::distance_pairs()
|
||||
{
|
||||
function_type = "distance_pairs";
|
||||
set_function_type("distancePairs");
|
||||
disable(f_cvc_explicit_gradient);
|
||||
x.type(colvarvalue::type_vector);
|
||||
}
|
||||
@ -743,7 +744,7 @@ void colvar::distance_pairs::apply_force(colvarvalue const &force)
|
||||
colvar::dipole_magnitude::dipole_magnitude(std::string const &conf)
|
||||
: cvc(conf)
|
||||
{
|
||||
function_type = "dipole_magnitude";
|
||||
set_function_type("dipoleMagnitude");
|
||||
atoms = parse_group(conf, "atoms");
|
||||
init_total_force_params(conf);
|
||||
x.type(colvarvalue::type_scalar);
|
||||
@ -752,6 +753,7 @@ colvar::dipole_magnitude::dipole_magnitude(std::string const &conf)
|
||||
|
||||
colvar::dipole_magnitude::dipole_magnitude(cvm::atom const &a1)
|
||||
{
|
||||
set_function_type("dipoleMagnitude");
|
||||
atoms = new cvm::atom_group(std::vector<cvm::atom>(1, a1));
|
||||
register_atom_group(atoms);
|
||||
x.type(colvarvalue::type_scalar);
|
||||
@ -760,7 +762,7 @@ colvar::dipole_magnitude::dipole_magnitude(cvm::atom const &a1)
|
||||
|
||||
colvar::dipole_magnitude::dipole_magnitude()
|
||||
{
|
||||
function_type = "dipole_magnitude";
|
||||
set_function_type("dipoleMagnitude");
|
||||
x.type(colvarvalue::type_scalar);
|
||||
}
|
||||
|
||||
@ -800,7 +802,7 @@ simple_scalar_dist_functions(dipole_magnitude)
|
||||
colvar::gyration::gyration(std::string const &conf)
|
||||
: cvc(conf)
|
||||
{
|
||||
function_type = "gyration";
|
||||
set_function_type("gyration");
|
||||
init_as_distance();
|
||||
|
||||
provide(f_cvc_inv_gradient);
|
||||
@ -869,7 +871,7 @@ simple_scalar_dist_functions(gyration)
|
||||
colvar::inertia::inertia(std::string const &conf)
|
||||
: gyration(conf)
|
||||
{
|
||||
function_type = "inertia";
|
||||
set_function_type("inertia");
|
||||
init_as_distance();
|
||||
}
|
||||
|
||||
@ -905,11 +907,11 @@ simple_scalar_dist_functions(inertia_z)
|
||||
colvar::inertia_z::inertia_z(std::string const &conf)
|
||||
: inertia(conf)
|
||||
{
|
||||
function_type = "inertia_z";
|
||||
set_function_type("inertiaZ");
|
||||
init_as_distance();
|
||||
if (get_keyval(conf, "axis", axis, cvm::rvector(0.0, 0.0, 1.0))) {
|
||||
if (axis.norm2() == 0.0) {
|
||||
cvm::error("Axis vector is zero!", INPUT_ERROR);
|
||||
cvm::error("Axis vector is zero!", COLVARS_INPUT_ERROR);
|
||||
return;
|
||||
}
|
||||
if (axis.norm2() != 1.0) {
|
||||
@ -953,7 +955,7 @@ simple_scalar_dist_functions(inertia)
|
||||
colvar::rmsd::rmsd(std::string const &conf)
|
||||
: cvc(conf)
|
||||
{
|
||||
function_type = "rmsd";
|
||||
set_function_type("rmsd");
|
||||
init_as_distance();
|
||||
|
||||
provide(f_cvc_inv_gradient);
|
||||
@ -1217,9 +1219,9 @@ simple_scalar_dist_functions(rmsd)
|
||||
colvar::eigenvector::eigenvector(std::string const &conf)
|
||||
: cvc(conf)
|
||||
{
|
||||
set_function_type("eigenvector");
|
||||
provide(f_cvc_inv_gradient);
|
||||
provide(f_cvc_Jacobian);
|
||||
function_type = "eigenvector";
|
||||
x.type(colvarvalue::type_scalar);
|
||||
|
||||
atoms = parse_group(conf, "atoms");
|
||||
@ -1263,13 +1265,13 @@ colvar::eigenvector::eigenvector(std::string const &conf)
|
||||
}
|
||||
|
||||
if (ref_pos.size() == 0) {
|
||||
cvm::error("Error: reference positions were not provided.\n", INPUT_ERROR);
|
||||
cvm::error("Error: reference positions were not provided.\n", COLVARS_INPUT_ERROR);
|
||||
return;
|
||||
}
|
||||
|
||||
if (ref_pos.size() != atoms->size()) {
|
||||
cvm::error("Error: reference positions do not "
|
||||
"match the number of requested atoms.\n", INPUT_ERROR);
|
||||
"match the number of requested atoms.\n", COLVARS_INPUT_ERROR);
|
||||
return;
|
||||
}
|
||||
|
||||
@ -1368,7 +1370,7 @@ colvar::eigenvector::eigenvector(std::string const &conf)
|
||||
eigenvec[i] = atoms->rot.rotate(eigenvec[i]);
|
||||
}
|
||||
}
|
||||
cvm::log("\"differenceVector\" is on: subtracting the reference positions from the provided vector: v = v - x0.\n");
|
||||
cvm::log("\"differenceVector\" is on: subtracting the reference positions from the provided vector: v = x_vec - x_ref.\n");
|
||||
for (size_t i = 0; i < atoms->size(); i++) {
|
||||
eigenvec[i] -= ref_pos[i];
|
||||
}
|
||||
@ -1386,22 +1388,32 @@ colvar::eigenvector::eigenvector(std::string const &conf)
|
||||
}
|
||||
}
|
||||
|
||||
// cvm::log("The first three components(v1x, v1y, v1z) of the resulting vector are: "+cvm::to_str (eigenvec[0])+".\n");
|
||||
|
||||
// for inverse gradients
|
||||
// eigenvec_invnorm2 is used when computing inverse gradients
|
||||
eigenvec_invnorm2 = 0.0;
|
||||
for (size_t ein = 0; ein < atoms->size(); ein++) {
|
||||
eigenvec_invnorm2 += eigenvec[ein].norm2();
|
||||
}
|
||||
eigenvec_invnorm2 = 1.0 / eigenvec_invnorm2;
|
||||
|
||||
if (b_difference_vector) {
|
||||
cvm::log("\"differenceVector\" is on: normalizing the vector.\n");
|
||||
// Vector normalization overrides the default normalization for differenceVector
|
||||
bool normalize = false;
|
||||
get_keyval(conf, "normalizeVector", normalize, normalize);
|
||||
|
||||
if (normalize) {
|
||||
cvm::log("Normalizing the vector so that |v| = 1.\n");
|
||||
for (size_t i = 0; i < atoms->size(); i++) {
|
||||
eigenvec[i] *= cvm::sqrt(eigenvec_invnorm2);
|
||||
}
|
||||
eigenvec_invnorm2 = 1.0;
|
||||
} else if (b_difference_vector) {
|
||||
cvm::log("Normalizing the vector so that the norm of the projection |v ⋅ (x_vec - x_ref)| = 1.\n");
|
||||
for (size_t i = 0; i < atoms->size(); i++) {
|
||||
eigenvec[i] *= eigenvec_invnorm2;
|
||||
}
|
||||
eigenvec_invnorm2 = 1.0/eigenvec_invnorm2;
|
||||
} else {
|
||||
cvm::log("The norm of the vector is |v| = "+cvm::to_str(eigenvec_invnorm2)+".\n");
|
||||
cvm::log("The norm of the vector is |v| = "+
|
||||
cvm::to_str(1.0/cvm::sqrt(eigenvec_invnorm2))+".\n");
|
||||
}
|
||||
}
|
||||
|
||||
@ -1500,7 +1512,7 @@ simple_scalar_dist_functions(eigenvector)
|
||||
colvar::cartesian::cartesian(std::string const &conf)
|
||||
: cvc(conf)
|
||||
{
|
||||
function_type = "cartesian";
|
||||
set_function_type("cartesian");
|
||||
|
||||
atoms = parse_group(conf, "atoms");
|
||||
|
||||
@ -1560,4 +1572,3 @@ void colvar::cartesian::apply_force(colvarvalue const &force)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
Reference in New Issue
Block a user