Merge pull request #1314 from charlessievers/OptimizedDynamicalMatrix

add command to compute the Dynamical Matrix
This commit is contained in:
Axel Kohlmeyer
2019-02-28 17:08:36 -05:00
committed by GitHub
22 changed files with 2518 additions and 9 deletions

View File

@ -55,6 +55,7 @@ An alphabetic list of all general LAMMPS commands.
"dump netcdf"_dump_netcdf.html, "dump netcdf"_dump_netcdf.html,
"dump netcdf/mpiio"_dump_netcdf.html, "dump netcdf/mpiio"_dump_netcdf.html,
"dump vtk"_dump_vtk.html, "dump vtk"_dump_vtk.html,
"dynamical_matrix"_dynamical_matrix.html,
"echo"_echo.html, "echo"_echo.html,
"fix"_fix.html, "fix"_fix.html,
"fix_modify"_fix_modify.html, "fix_modify"_fix_modify.html,

View File

@ -1725,14 +1725,19 @@ USER-PHONON package :link(PKG-USER-PHONON),h4
A "fix phonon"_fix_phonon.html command that calculates dynamical A "fix phonon"_fix_phonon.html command that calculates dynamical
matrices, which can then be used to compute phonon dispersion matrices, which can then be used to compute phonon dispersion
relations, directly from molecular dynamics simulations. relations, directly from molecular dynamics simulations.
And a "dynamical_matrix" command to compute the dynamical matrix
from finite differences.
[Authors:] Ling-Ti Kong (Shanghai Jiao Tong University) for "fix phonon"
and Charlie Sievers (UC Davis) for "dynamical_matrix"
[Author:] Ling-Ti Kong (Shanghai Jiao Tong University).
[Supporting info:] [Supporting info:]
src/USER-PHONON: filenames -> commands src/USER-PHONON: filenames -> commands
src/USER-PHONON/README src/USER-PHONON/README
"fix phonon"_fix_phonon.html "fix phonon"_fix_phonon.html
"dynamical_matrix"_dynamical_matrix.html
examples/USER/phonon :ul examples/USER/phonon :ul
:line :line

View File

@ -40,6 +40,7 @@ Commands :h1
dump_molfile dump_molfile
dump_netcdf dump_netcdf
dump_vtk dump_vtk
dynamical_matrix
echo echo
fix fix
fix_modify fix_modify

View File

@ -0,0 +1,52 @@
"LAMMPS WWW Site"_lws - "LAMMPS Documentation"_ld - "LAMMPS Commands"_lc :c
:link(lws,http://lammps.sandia.gov)
:link(ld,Manual.html)
:link(lc,Commands_all.html)
:line
dynamical_matrix command :h3
[Syntax:]
dynamical_matrix group-ID style gamma args keyword value ... :pre
group-ID = ID of group of atoms to displace :ulb,l
style = {regular} or {eskm} :l
gamma = finite different displacement length (distance units) :l
one or more keyword/arg pairs may be appended :l
keyword = {file} or {binary}
{file} name = name of output file for the dynamical matrix
{binary} arg = {yes} or {no} or {gzip} :pre
:ule
[Examples:]
dynamical_matrix 1 regular 0.000001
dynamical_matrix 1 eskm 0.000001
dynamical_matrix 3 regular 0.00004 file dynmat.dat
dynamical_matrix 5 eskm 0.00000001 file dynamical.dat binary yes :pre
[Description:]
Calculate the dynamical matrix of the selected group.
[Restrictions:]
The command collects the entire dynamical matrix a single MPI rank,
so the memory requirements can be very significant for large systems.
This command assumes a periodic system.
This command is part of the USER-PHONON package. It is only enabled if
LAMMPS was built with that package. See the "Build
package"_Build_package.html doc page for more info.
[Related commands:]
"fix phonon"_fix_phonon.html
[Default:]
The default settings are file = "dynmat.dyn", binary = no

View File

@ -179,7 +179,8 @@ settings"_Build_settings.html doc page for details.
[Related commands:] [Related commands:]
"compute msd"_compute_msd.html "compute msd"_compute_msd.html,
"dynamical_matrix"_dynamical_matrix.html
[Default:] [Default:]

View File

@ -158,6 +158,7 @@ dump_molfile.html
dump_netcdf.html dump_netcdf.html
dump_vtk.html dump_vtk.html
dump_cfg_uef.html dump_cfg_uef.html
dynamical_matrix.html
echo.html echo.html
group.html group.html
group2ndx.html group2ndx.html

View File

@ -627,8 +627,10 @@ dVx
dW dW
dx dx
dy dy
dyn
dyne dyne
dynes dynes
dynmat
Dyre Dyre
Dzyaloshinskii Dzyaloshinskii
Eaa Eaa
@ -2439,6 +2441,7 @@ shockvel
si si
SiC SiC
Siepmann Siepmann
Sievers
Sij Sij
Sikandar Sikandar
Silbert Silbert

View File

@ -0,0 +1,21 @@
# LAMMPS LATTICE DYNAMICS COMMANDS
## DYNAMICAL MATRIX CALCULATOR
This directory contains the ingredients to calculate a dynamical matrix.
Example:
```
NP=4 #number of processors
mpirun -np $NP lmp_mpi -in in.silicon -out out.silicon
```
To test out a different silicon example:
```
LMP_FILE=amorphous_silicon.lmp
cp lmp_bank/$LMP_FILE ./silicon_input_file.lmp
NP=4 #number of processors
mpirun -np $NP lmp_mpi -in in.silicon -out out.silicon
```
## Requires: MANYBODY and MOLECULE packages

View File

@ -0,0 +1,66 @@
# Tersoff parameters for various elements and mixtures
# multiple entries can be added to this file, LAMMPS reads the ones it needs
# these entries are in LAMMPS "metal" units:
# A,B = eV; lambda1,lambda2,lambda3 = 1/Angstroms; R,D = Angstroms
# other quantities are unitless
# Aidan Thompson (athomps at sandia.gov) takes full blame for this
# file. It specifies various potentials published by J. Tersoff for
# silicon, carbon and germanium. Since Tersoff published several
# different silicon potentials, I refer to them using atom types
# Si(B), Si(C) and Si(D). The last two are almost almost identical but
# refer to two different publications. These names should be used in
# the LAMMPS command when the file is invoked. For example:
# pair_coeff * * SiCGe.tersoff Si(B). The Si(D), C and Ge potentials
# can be used pure silicon, pure carbon, pure germanium, binary SiC,
# and binary SiGe, but not binary GeC or ternary SiGeC. LAMMPS will
# generate an error if this file is used with any combination
# involving C and Ge, since there are no entries for the GeC
# interactions (Tersoff did not publish parameters for this
# cross-interaction.)
# format of a single entry (one or more lines):
# element 1, element 2, element 3,
# m, gamma, lambda3, c, d, costheta0, n, beta, lambda2, B, R, D, lambda1, A
# The original Tersoff potential for Silicon, Si(B)
# J. Tersoff, PRB, 37, 6991 (1988)
Si(B) Si(B) Si(B) 3.0 1.0 1.3258 4.8381 2.0417 0.0000 22.956
0.33675 1.3258 95.373 3.0 0.2 3.2394 3264.7
# The later Tersoff potential for Silicon, Si(C)
# J. Tersoff, PRB, 38, 9902 (1988)
Si(C) Si(C) Si(C) 3.0 1.0 1.7322 1.0039e5 16.218 -0.59826 0.78734
1.0999e-6 1.7322 471.18 2.85 0.15 2.4799 1830.8
# The later Tersoff potential for Carbon, Silicon, and Germanium
# J. Tersoff, PRB, 39, 5566 (1989) + errata (PRB 41, 3248)
# The Si and C parameters are very close to those in SiC.tersoff
C C C 3.0 1.0 0.0 3.8049e4 4.3484 -0.57058 0.72751 1.5724e-7 2.2119 346.74 1.95 0.15 3.4879 1393.6
Si(D) Si(D) Si(D) 3.0 1.0 0.0 1.0039e5 16.217 -0.59825 0.78734 1.1000e-6 1.7322 471.18 2.85 0.15 2.4799 1830.8
Ge Ge Ge 3.0 1.0 0.0 1.0643e5 15.652 -0.43884 0.75627 9.0166e-7 1.7047 419.23 2.95 0.15 2.4451 1769.0
C Si(D) Si(D) 3.0 1.0 0.0 3.8049e4 4.3484 -0.57058 0.72751 1.5724e-7 1.97205 395.1451 2.3573 0.1527 2.9839 1597.3111
C Si(D) C 3.0 1.0 0.0 3.8049e4 4.3484 -0.57058 0.72751 0.0 0.0 0.0 1.95 0.15 0.0 0.0
C C Si(D) 3.0 1.0 0.0 3.8049e4 4.3484 -0.57058 0.72751 0.0 0.0 0.0 2.3573 0.1527 0.0 0.0
Si(D) C C 3.0 1.0 0.0 1.0039e5 16.217 -0.59825 0.78734 1.1000e-6 1.97205 395.1451 2.3573 0.1527 2.9839 1597.3111
Si(D) Si(D) C 3.0 1.0 0.0 1.0039e5 16.217 -0.59825 0.78734 0.0 0.0 0.0 2.3573 0.1527 0.0 0.0
Si(D) C Si(D) 3.0 1.0 0.0 1.0039e5 16.217 -0.59825 0.78734 0.0 0.0 0.0 2.85 0.15 0.0 0.0
Si(D) Ge Ge 3.0 1.0 0.0 1.0039e5 16.217 -0.59825 0.78734 1.1000e-6 1.71845 444.7177 2.8996 0.1500 2.4625 1799.6347
Si(D) Si(D) Ge 3.0 1.0 0.0 1.0039e5 16.217 -0.59825 0.78734 0.0 0.0 0.0 2.8996 0.1500 0.0 0.0
Si(D) Ge Si(D) 3.0 1.0 0.0 1.0039e5 16.217 -0.59825 0.78734 0.0 0.0 0.0 2.85 0.15 0.0 0.0
Ge Si(D) Si(D) 3.0 1.0 0.0 1.0643e5 15.652 -0.43884 0.75627 9.0166e-7 1.71845 444.7177 2.8996 0.1500 2.4625 1799.6347
Ge Si(D) Ge 3.0 1.0 0.0 1.0643e5 15.652 -0.43884 0.75627 0.0 0.0 0.0 2.95 0.15 0.0 0.0
Ge Ge Si(D) 3.0 1.0 0.0 1.0643e5 15.652 -0.43884 0.75627 0.0 0.0 0.0 2.8996 0.1500 0.0 0.0
# Optimized Tersoff for Carbon: Lindsay and Broido PRB 81, 205441 (2010)
# element 1, element 2, element 3,
# m, gamma, lambda3, c, d, costheta0, n, beta, lambda2, B, R, D, lambda1, A
C(O) C(O) C(O) 3.0 1.0 0.0 3.8049e4 4.3484 -0.930 0.72751 1.5724e-7 2.2119 430.0 1.95 0.15 3.4879 1393.6

View File

@ -0,0 +1,19 @@
#############################
#Atoms types - mass - charge#
#############################
#@ 1 atom types #!THIS LINE IS NECESSARY DON'T SPEND HOURS FINDING THAT OUT!#
variable Si equal 1
#############
#Atom Masses#
#############
mass ${Si} 28.08550
###########################
#Pair Potentials - Tersoff#
###########################
pair_style tersoff
pair_coeff * * Si.opt.tersoff Si(D)

View File

@ -0,0 +1,89 @@
###############################mm
# Atom style - charge/vdw/bonded#
#################################
atom_style full
##############################################
#Units Metal : eV - ps - angstrom - bar#
# Real : kcal/mol - fs - angstrom - atm#
##############################################
units metal
############
#Run number#
############
variable run_no equal 0 # is it a restart?
variable res_no equal ${run_no}-1 # restart file number
#######################################
#Random Seeds and Domain Decomposition#
#######################################
variable iseed0 equal 2357
variable iseed1 equal 26488
variable iseed2 equal 10669
processors * * *
###########
#Data File#
###########
variable inpfile string silicon_input_file.lmp
variable resfile string final_restart.${res_no}
variable ff_file string ff-silicon.lmp
##########
#Run Type#
##########
variable minimise equal 0 #Energy Minimization
###############################
#Molecular Dynamics Parameters#
###############################
neighbor 1 bin
################################
#Energy Minimization Parameters#
################################
variable mtraj equal 1 # trajectory output frequency - all system
variable etol equal 1e-5 # % change in energy
variable ftol equal 1e-5 # max force threshold (force units)
variable maxiter equal 10000 # max # of iterations
########################
#3D Periodic Simulation#
########################
boundary p p p
#############################
#Reading the input structure#
#############################
if "${run_no} == 0" then "read_data ${inpfile}" else "read_restart ${resfile}"
#############
#Force Field#
#############
include ${ff_file}
######################
#Thermodynamic Output#
######################
variable str_basic string 'step time pe temp press'
#####################
#Energy Minimization#
#####################
if "${minimise} <= 0 || ${run_no} > 0" then "jump SELF end_minimise"
print "Doing CG minimisation"
dump mdcd all dcd ${mtraj} min.dcd
dump_modify mdcd unwrap yes
min_style cg
min_modify line quadratic
minimize ${etol} ${ftol} ${maxiter} ${maxiter}
reset_timestep 0
undump mdcd
label end_minimise
##################
#Dynamical Matrix#
##################
dynamical_matrix all eskm 0.000001 file dynmat.dat binary no

View File

@ -0,0 +1,534 @@
LAMMPS description
512 atoms
0 bonds
0 angles
0 dihedrals
0 impropers
1 atom types
0 bond types
0 angle types
0 dihedral types
0 improper types
0.0000000 21.848000 xlo xhi
0.0000000 21.848000 ylo yhi
0.0000000 21.848000 zlo zhi
Atoms
1 1 1 0.0000000 6.2030000 5.5980000 12.9980000
2 2 1 0.0000000 21.3100000 5.6310000 21.1380000
3 3 1 0.0000000 19.5320000 6.1170000 3.6940000
4 4 1 0.0000000 4.3700000 14.0260000 0.0900000
5 5 1 0.0000000 10.1930000 7.4590000 2.3530000
6 6 1 0.0000000 17.5070000 14.1860000 3.6790000
7 7 1 0.0000000 11.2050000 15.9160000 15.0480000
8 8 1 0.0000000 8.6050000 19.8970000 21.0040000
9 9 1 0.0000000 15.0360000 17.5650000 1.3640000
10 10 1 0.0000000 12.0450000 3.3600000 7.2720000
11 11 1 0.0000000 7.1330000 17.4130000 18.0480000
12 12 1 0.0000000 8.7340000 6.3830000 3.8480000
13 13 1 0.0000000 13.0940000 3.2490000 3.5840000
14 14 1 0.0000000 11.3200000 7.2770000 20.4120000
15 15 1 0.0000000 19.7770000 8.9110000 0.3000000
16 16 1 0.0000000 11.9710000 20.8500000 1.5140000
17 17 1 0.0000000 10.4480000 10.3650000 15.4040000
18 18 1 0.0000000 9.2060000 9.4670000 10.2240000
19 19 1 0.0000000 8.4360000 13.6240000 17.6570000
20 20 1 0.0000000 18.2020000 21.1230000 0.1380000
21 21 1 0.0000000 3.2970000 19.5740000 14.7410000
22 22 1 0.0000000 12.5330000 17.3580000 7.5960000
23 23 1 0.0000000 1.4040000 18.1060000 3.1510000
24 24 1 0.0000000 17.7440000 13.1530000 16.7940000
25 25 1 0.0000000 12.1070000 12.6630000 18.0340000
26 26 1 0.0000000 8.7270000 17.1140000 10.4200000
27 27 1 0.0000000 13.2330000 16.0380000 13.9210000
28 28 1 0.0000000 15.2360000 14.8650000 7.0150000
29 29 1 0.0000000 5.5190000 20.8660000 19.9260000
30 30 1 0.0000000 16.5810000 9.7460000 15.1710000
31 31 1 0.0000000 2.0500000 13.8550000 21.8010000
32 32 1 0.0000000 21.2670000 20.8970000 13.6740000
33 33 1 0.0000000 9.6900000 6.7650000 0.1950000
34 34 1 0.0000000 11.2570000 13.2440000 2.8190000
35 35 1 0.0000000 10.7810000 12.7310000 12.1920000
36 36 1 0.0000000 16.2630000 7.4100000 1.5360000
37 37 1 0.0000000 19.6100000 18.1440000 19.6830000
38 38 1 0.0000000 8.1790000 0.1200000 10.1620000
39 39 1 0.0000000 17.0520000 20.4210000 15.0450000
40 40 1 0.0000000 12.3690000 12.6710000 4.8320000
41 41 1 0.0000000 7.8300000 16.6790000 14.2470000
42 42 1 0.0000000 1.6790000 9.9500000 1.2660000
43 43 1 0.0000000 16.6160000 14.6580000 13.2790000
44 44 1 0.0000000 13.7430000 11.9730000 21.5360000
45 45 1 0.0000000 5.2590000 15.1850000 9.5720000
46 46 1 0.0000000 20.5980000 14.7930000 20.4140000
47 47 1 0.0000000 1.5640000 16.8080000 13.0450000
48 48 1 0.0000000 21.3670000 11.4610000 20.6420000
49 49 1 0.0000000 14.5890000 5.9510000 7.1950000
50 50 1 0.0000000 1.0870000 13.5410000 11.3300000
51 51 1 0.0000000 6.2040000 4.8970000 16.9420000
52 52 1 0.0000000 0.4800000 4.1450000 0.8710000
53 53 1 0.0000000 2.0120000 5.7530000 1.8950000
54 54 1 0.0000000 9.8460000 19.1320000 7.3060000
55 55 1 0.0000000 18.3760000 21.3430000 4.0940000
56 56 1 0.0000000 5.2900000 6.5400000 5.3620000
57 57 1 0.0000000 1.4110000 6.5750000 4.0580000
58 58 1 0.0000000 16.1600000 15.1390000 11.0380000
59 59 1 0.0000000 21.0670000 18.3830000 8.6900000
60 60 1 0.0000000 18.0250000 17.7750000 1.4340000
61 61 1 0.0000000 19.0570000 16.2190000 6.6410000
62 62 1 0.0000000 5.1170000 16.5510000 11.5540000
63 63 1 0.0000000 14.4810000 7.8720000 12.6320000
64 64 1 0.0000000 11.7990000 10.9690000 13.5430000
65 65 1 0.0000000 11.2980000 18.5410000 1.5740000
66 66 1 0.0000000 16.1280000 19.0390000 19.6440000
67 67 1 0.0000000 6.0950000 7.0580000 9.6530000
68 68 1 0.0000000 5.3890000 20.2540000 10.7060000
69 69 1 0.0000000 17.9160000 18.9070000 21.1540000
70 70 1 0.0000000 13.0780000 2.1790000 17.4030000
71 71 1 0.0000000 8.0450000 14.3440000 14.0640000
72 72 1 0.0000000 14.4380000 6.8780000 14.6950000
73 73 1 0.0000000 0.4570000 21.6180000 8.3670000
74 74 1 0.0000000 6.4350000 16.9720000 21.7330000
75 75 1 0.0000000 8.0530000 4.0310000 20.1860000
76 76 1 0.0000000 6.8130000 19.7870000 12.5790000
77 77 1 0.0000000 19.0490000 10.8480000 6.0760000
78 78 1 0.0000000 2.2540000 7.7370000 0.5320000
79 79 1 0.0000000 16.3920000 9.0880000 3.1430000
80 80 1 0.0000000 2.3620000 2.5500000 7.5690000
81 81 1 0.0000000 16.4560000 18.5670000 3.1120000
82 82 1 0.0000000 8.9560000 21.0830000 12.3020000
83 83 1 0.0000000 20.5540000 8.9280000 5.9480000
84 84 1 0.0000000 13.5930000 8.4890000 16.2370000
85 85 1 0.0000000 9.5270000 18.0720000 3.0190000
86 86 1 0.0000000 11.3690000 15.3870000 7.1310000
87 87 1 0.0000000 8.3670000 13.3960000 11.8610000
88 88 1 0.0000000 14.6370000 11.4110000 11.4870000
89 89 1 0.0000000 8.4720000 16.0650000 2.4300000
90 90 1 0.0000000 8.2360000 5.2200000 18.1710000
91 91 1 0.0000000 11.0620000 2.8760000 0.4170000
92 92 1 0.0000000 14.0830000 1.3550000 14.0190000
93 93 1 0.0000000 20.5600000 4.1900000 19.4660000
94 94 1 0.0000000 4.6340000 13.0980000 10.3670000
95 95 1 0.0000000 19.9860000 15.5670000 11.7860000
96 96 1 0.0000000 21.5070000 4.1860000 14.8350000
97 97 1 0.0000000 3.3000000 11.2060000 2.5350000
98 98 1 0.0000000 19.2680000 21.0240000 10.9110000
99 99 1 0.0000000 12.2370000 19.4650000 19.9000000
100 100 1 0.0000000 8.3790000 9.6670000 14.5440000
101 101 1 0.0000000 5.4520000 19.1660000 5.6940000
102 102 1 0.0000000 15.8720000 15.4140000 0.3070000
103 103 1 0.0000000 6.9830000 19.1480000 0.5830000
104 104 1 0.0000000 7.9760000 18.3420000 8.5250000
105 105 1 0.0000000 13.9710000 6.7570000 1.1860000
106 106 1 0.0000000 18.7050000 7.2110000 9.2350000
107 107 1 0.0000000 3.2430000 13.6330000 12.1990000
108 108 1 0.0000000 1.9830000 10.8340000 5.4640000
109 109 1 0.0000000 16.5770000 5.0400000 11.4490000
110 110 1 0.0000000 9.5130000 6.2390000 14.3030000
111 111 1 0.0000000 14.1990000 4.0910000 16.7750000
112 112 1 0.0000000 8.0160000 3.5600000 2.0280000
113 113 1 0.0000000 7.9650000 12.1700000 7.8050000
114 114 1 0.0000000 0.3770000 0.0320000 15.5780000
115 115 1 0.0000000 19.0860000 17.5690000 12.6230000
116 116 1 0.0000000 17.2970000 16.8030000 13.9660000
117 117 1 0.0000000 6.7180000 10.5880000 19.5790000
118 118 1 0.0000000 21.3930000 21.2940000 6.2410000
119 119 1 0.0000000 16.0260000 18.7640000 13.6100000
120 120 1 0.0000000 3.1880000 2.1990000 18.5690000
121 121 1 0.0000000 20.7860000 13.7840000 4.4870000
122 122 1 0.0000000 18.3540000 11.7960000 11.0710000
123 123 1 0.0000000 19.3210000 0.4960000 5.9630000
124 124 1 0.0000000 3.7260000 13.4120000 18.4840000
125 125 1 0.0000000 4.4280000 4.9270000 18.4730000
126 126 1 0.0000000 2.7040000 21.7660000 15.2940000
127 127 1 0.0000000 9.3640000 14.3230000 3.7130000
128 128 1 0.0000000 20.5800000 3.3360000 7.9310000
129 129 1 0.0000000 2.4060000 4.1320000 17.3120000
130 130 1 0.0000000 0.9210000 2.6080000 11.0930000
131 131 1 0.0000000 13.7900000 9.5610000 8.2490000
132 132 1 0.0000000 5.5210000 8.6760000 2.5590000
133 133 1 0.0000000 11.1320000 11.1160000 6.1310000
134 134 1 0.0000000 1.6180000 6.5650000 10.7690000
135 135 1 0.0000000 21.0480000 17.3880000 3.1250000
136 136 1 0.0000000 2.5950000 13.3430000 3.3870000
137 137 1 0.0000000 1.8600000 4.7830000 14.1190000
138 138 1 0.0000000 1.2420000 12.9340000 9.0760000
139 139 1 0.0000000 2.2650000 8.2300000 7.4350000
140 140 1 0.0000000 10.9360000 17.8140000 10.9520000
141 141 1 0.0000000 10.3160000 13.8030000 14.5060000
142 142 1 0.0000000 11.0500000 2.5760000 12.8090000
143 143 1 0.0000000 18.3430000 15.3950000 10.0190000
144 144 1 0.0000000 8.2990000 0.3320000 5.4980000
145 145 1 0.0000000 17.9730000 3.4330000 17.4260000
146 146 1 0.0000000 0.8080000 7.5530000 20.4740000
147 147 1 0.0000000 20.6320000 14.4730000 6.7080000
148 148 1 0.0000000 19.3400000 2.8450000 5.9340000
149 149 1 0.0000000 5.2100000 0.9290000 6.2580000
150 150 1 0.0000000 8.6370000 4.0920000 9.2870000
151 151 1 0.0000000 16.5730000 2.0050000 1.7720000
152 152 1 0.0000000 14.6570000 14.1440000 14.4910000
153 153 1 0.0000000 11.1610000 6.0610000 15.8870000
154 154 1 0.0000000 3.8100000 4.2040000 2.1350000
155 155 1 0.0000000 18.6920000 11.8180000 18.5170000
156 156 1 0.0000000 20.4240000 10.6340000 10.7960000
157 157 1 0.0000000 8.9050000 9.9220000 20.2310000
158 158 1 0.0000000 7.7940000 19.5410000 2.7410000
159 159 1 0.0000000 2.7600000 18.2100000 9.0140000
160 160 1 0.0000000 11.7480000 5.0280000 4.3170000
161 161 1 0.0000000 20.6470000 3.0010000 2.1470000
162 162 1 0.0000000 6.5680000 11.9510000 11.1410000
163 163 1 0.0000000 18.0300000 5.6700000 13.1650000
164 164 1 0.0000000 15.8950000 17.4810000 17.7940000
165 165 1 0.0000000 0.6840000 12.2180000 4.0930000
166 166 1 0.0000000 0.9170000 0.0080000 0.9710000
167 167 1 0.0000000 1.5850000 18.4470000 16.1470000
168 168 1 0.0000000 13.1970000 2.0830000 5.6040000
169 169 1 0.0000000 13.4220000 1.6690000 19.6280000
170 170 1 0.0000000 7.2980000 15.5410000 6.4330000
171 171 1 0.0000000 11.8930000 0.1240000 5.2450000
172 172 1 0.0000000 21.5410000 5.4260000 7.3690000
173 173 1 0.0000000 6.2310000 17.4900000 7.1340000
174 174 1 0.0000000 20.3880000 18.7320000 14.2000000
175 175 1 0.0000000 15.0410000 20.5060000 3.2370000
176 176 1 0.0000000 19.8180000 7.0070000 7.1800000
177 177 1 0.0000000 8.4660000 2.7180000 5.7470000
178 178 1 0.0000000 5.4480000 10.4180000 6.1220000
179 179 1 0.0000000 10.8570000 0.2910000 3.1650000
180 180 1 0.0000000 7.1820000 12.9370000 19.5560000
181 181 1 0.0000000 21.6620000 11.8360000 12.5450000
182 182 1 0.0000000 10.9080000 11.2050000 1.6360000
183 183 1 0.0000000 11.2840000 8.4420000 16.6070000
184 184 1 0.0000000 8.0040000 7.5690000 15.4890000
185 185 1 0.0000000 8.0790000 6.2840000 8.6400000
186 186 1 0.0000000 18.9520000 12.1530000 4.0530000
187 187 1 0.0000000 10.3010000 12.0820000 8.1320000
188 188 1 0.0000000 14.4560000 11.6780000 4.7170000
189 189 1 0.0000000 7.1020000 21.2750000 15.8180000
190 190 1 0.0000000 13.1170000 20.7170000 9.0870000
191 191 1 0.0000000 5.3560000 2.2610000 12.5060000
192 192 1 0.0000000 17.3690000 11.1000000 2.4870000
193 193 1 0.0000000 15.9510000 5.0030000 20.2280000
194 194 1 0.0000000 3.3320000 11.8950000 8.8170000
195 195 1 0.0000000 8.2450000 1.7100000 19.8310000
196 196 1 0.0000000 9.0600000 15.9380000 18.2990000
197 197 1 0.0000000 10.3120000 12.4780000 16.5400000
198 198 1 0.0000000 21.2690000 2.1440000 16.1630000
199 199 1 0.0000000 20.7920000 11.3890000 2.6870000
200 200 1 0.0000000 5.5190000 10.8650000 12.9180000
201 201 1 0.0000000 13.1600000 14.6530000 5.7980000
202 202 1 0.0000000 9.4110000 4.0280000 3.9640000
203 203 1 0.0000000 10.1160000 21.3800000 6.7070000
204 204 1 0.0000000 18.8050000 17.5440000 8.7540000
205 205 1 0.0000000 0.2690000 20.1700000 17.2400000
206 206 1 0.0000000 14.6190000 13.4340000 10.3480000
207 207 1 0.0000000 14.9800000 3.6520000 2.2770000
208 208 1 0.0000000 10.4210000 1.4390000 14.8540000
209 209 1 0.0000000 2.8950000 8.5990000 11.0640000
210 210 1 0.0000000 8.3350000 0.6070000 14.2020000
211 211 1 0.0000000 5.6790000 2.9730000 15.7800000
212 212 1 0.0000000 7.9000000 8.2920000 21.6460000
213 213 1 0.0000000 1.7820000 17.8720000 5.4810000
214 214 1 0.0000000 7.1130000 2.5790000 13.9770000
215 215 1 0.0000000 14.4580000 4.6660000 0.2210000
216 216 1 0.0000000 2.6400000 9.9660000 17.7570000
217 217 1 0.0000000 12.9280000 10.2110000 10.3600000
218 218 1 0.0000000 0.5090000 2.0800000 8.8230000
219 219 1 0.0000000 0.9650000 20.6540000 11.9240000
220 220 1 0.0000000 19.5740000 21.0310000 2.1230000
221 221 1 0.0000000 18.6770000 7.8820000 12.9890000
222 222 1 0.0000000 17.1700000 3.9160000 5.7110000
223 223 1 0.0000000 7.0920000 12.0700000 1.6960000
224 224 1 0.0000000 2.6840000 17.0880000 1.3490000
225 225 1 0.0000000 5.4860000 16.7240000 19.5970000
226 226 1 0.0000000 16.3220000 3.8420000 15.8790000
227 227 1 0.0000000 3.8940000 2.4920000 0.4900000
228 228 1 0.0000000 13.2430000 3.5150000 13.0570000
229 229 1 0.0000000 13.3010000 21.5940000 12.5150000
230 230 1 0.0000000 4.9010000 11.9630000 0.9870000
231 231 1 0.0000000 12.6700000 14.8980000 18.4670000
232 232 1 0.0000000 6.4220000 6.6170000 3.2980000
233 233 1 0.0000000 16.6360000 5.9910000 15.0630000
234 234 1 0.0000000 17.9000000 15.3980000 1.6090000
235 235 1 0.0000000 18.1580000 0.8480000 9.7210000
236 236 1 0.0000000 20.2850000 4.8230000 12.9090000
237 237 1 0.0000000 1.6610000 2.7360000 5.3350000
238 238 1 0.0000000 5.8340000 0.9980000 16.9740000
239 239 1 0.0000000 9.0090000 7.7870000 5.7310000
240 240 1 0.0000000 16.1890000 4.3150000 7.8490000
241 241 1 0.0000000 16.5840000 8.9600000 12.9530000
242 242 1 0.0000000 4.8520000 10.4780000 21.0310000
243 243 1 0.0000000 2.7810000 16.7740000 17.2520000
244 244 1 0.0000000 19.7990000 10.0200000 15.9170000
245 245 1 0.0000000 3.1690000 7.6710000 5.2800000
246 246 1 0.0000000 15.1980000 2.3520000 8.6870000
247 247 1 0.0000000 16.3130000 2.2040000 14.2110000
248 248 1 0.0000000 6.3140000 2.9350000 6.7010000
249 249 1 0.0000000 8.2590000 4.5060000 13.2730000
250 250 1 0.0000000 13.9300000 18.2210000 14.4470000
251 251 1 0.0000000 20.2210000 7.9620000 14.8160000
252 252 1 0.0000000 1.6700000 11.5910000 21.3490000
253 253 1 0.0000000 11.2380000 16.3450000 17.3670000
254 254 1 0.0000000 2.0800000 20.2850000 2.3410000
255 255 1 0.0000000 13.5570000 16.5190000 4.3840000
256 256 1 0.0000000 7.4220000 19.6120000 18.9900000
257 257 1 0.0000000 12.9300000 16.8740000 2.1540000
258 258 1 0.0000000 14.8300000 17.0150000 10.5830000
259 259 1 0.0000000 9.9680000 16.3050000 20.5360000
260 260 1 0.0000000 20.9510000 14.9180000 15.5360000
261 261 1 0.0000000 21.2710000 0.7830000 2.5700000
262 262 1 0.0000000 7.5010000 11.4110000 5.6070000
263 263 1 0.0000000 15.1820000 11.1410000 6.9920000
264 264 1 0.0000000 12.3430000 6.8350000 2.9520000
265 265 1 0.0000000 15.6910000 17.3040000 4.9430000
266 266 1 0.0000000 6.2450000 1.4930000 10.4630000
267 267 1 0.0000000 15.3140000 20.7570000 16.6390000
268 268 1 0.0000000 18.2310000 18.8700000 10.8220000
269 269 1 0.0000000 19.9080000 8.2790000 11.0020000
270 270 1 0.0000000 16.2580000 5.0600000 3.6820000
271 271 1 0.0000000 3.6660000 15.6980000 13.3000000
272 272 1 0.0000000 21.3440000 9.2620000 2.0490000
273 273 1 0.0000000 21.6340000 20.9700000 20.9670000
274 274 1 0.0000000 20.4570000 2.7200000 11.7840000
275 275 1 0.0000000 4.3450000 15.9260000 15.6130000
276 276 1 0.0000000 18.5090000 3.3140000 1.1410000
277 277 1 0.0000000 0.4070000 15.7920000 11.2970000
278 278 1 0.0000000 13.3440000 8.1980000 4.5520000
279 279 1 0.0000000 8.5380000 21.6840000 3.2560000
280 280 1 0.0000000 2.2890000 0.7680000 11.6890000
281 281 1 0.0000000 21.5990000 18.8900000 6.4050000
282 282 1 0.0000000 14.9140000 7.5570000 8.8670000
283 283 1 0.0000000 21.3690000 18.6450000 21.2590000
284 284 1 0.0000000 10.9470000 5.8950000 10.8840000
285 285 1 0.0000000 2.6280000 15.7990000 6.4350000
286 286 1 0.0000000 11.9940000 15.1200000 20.8540000
287 287 1 0.0000000 16.6450000 10.2270000 10.9850000
288 288 1 0.0000000 13.0310000 2.8900000 9.3200000
289 289 1 0.0000000 12.4260000 19.8280000 13.6940000
290 290 1 0.0000000 19.8890000 19.6500000 17.8410000
291 291 1 0.0000000 4.0230000 9.6810000 4.2830000
292 292 1 0.0000000 2.6590000 21.3600000 4.2810000
293 293 1 0.0000000 6.4930000 3.2770000 9.0110000
294 294 1 0.0000000 21.3560000 20.3330000 10.0560000
295 295 1 0.0000000 14.3030000 20.6610000 0.9740000
296 296 1 0.0000000 4.4890000 8.4620000 0.4180000
297 297 1 0.0000000 6.5630000 7.5730000 11.8490000
298 298 1 0.0000000 3.4090000 1.4420000 13.6640000
299 299 1 0.0000000 15.6340000 1.9640000 5.3770000
300 300 1 0.0000000 11.9210000 0.8170000 9.6710000
301 301 1 0.0000000 20.9660000 9.2330000 20.1270000
302 302 1 0.0000000 1.6280000 6.2090000 8.4340000
303 303 1 0.0000000 0.5530000 9.8060000 7.0560000
304 304 1 0.0000000 11.5710000 18.9280000 8.9830000
305 305 1 0.0000000 4.2490000 7.9910000 14.8160000
306 306 1 0.0000000 19.7300000 12.4900000 7.6500000
307 307 1 0.0000000 10.8450000 14.1880000 9.0020000
308 308 1 0.0000000 10.8070000 11.1620000 10.2560000
309 309 1 0.0000000 4.7040000 8.6980000 12.6030000
310 310 1 0.0000000 3.7570000 12.0590000 6.5220000
311 311 1 0.0000000 9.7910000 2.9010000 7.6620000
312 312 1 0.0000000 3.7810000 14.0810000 5.2770000
313 313 1 0.0000000 4.0640000 19.1000000 1.8260000
314 314 1 0.0000000 21.7520000 10.6160000 14.7710000
315 315 1 0.0000000 1.3090000 11.5200000 16.3780000
316 316 1 0.0000000 5.1840000 20.6560000 0.4260000
317 317 1 0.0000000 10.7630000 2.3920000 17.0100000
318 318 1 0.0000000 4.7970000 15.9920000 1.2450000
319 319 1 0.0000000 11.1370000 0.4590000 11.8330000
320 320 1 0.0000000 14.5870000 13.6170000 1.1610000
321 321 1 0.0000000 9.8660000 0.7940000 8.6450000
322 322 1 0.0000000 17.7650000 19.2430000 7.2990000
323 323 1 0.0000000 6.0610000 1.2430000 19.3000000
324 324 1 0.0000000 18.2200000 12.8760000 13.2170000
325 325 1 0.0000000 18.0460000 13.1700000 9.1450000
326 326 1 0.0000000 3.3530000 3.3130000 15.2040000
327 327 1 0.0000000 10.4090000 19.4890000 16.3660000
328 328 1 0.0000000 15.6710000 1.1260000 19.9260000
329 329 1 0.0000000 10.8900000 7.3650000 7.1060000
330 330 1 0.0000000 13.4480000 20.2870000 5.0130000
331 331 1 0.0000000 16.0530000 0.3050000 0.2340000
332 332 1 0.0000000 9.8430000 17.8410000 14.6670000
333 333 1 0.0000000 13.0150000 10.2370000 1.1400000
334 334 1 0.0000000 4.2090000 16.6330000 8.0040000
335 335 1 0.0000000 4.5530000 4.3630000 11.8090000
336 336 1 0.0000000 12.4370000 18.2310000 5.4180000
337 337 1 0.0000000 4.6660000 4.4220000 5.9770000
338 338 1 0.0000000 9.5670000 9.6790000 2.7600000
339 339 1 0.0000000 17.6640000 17.0250000 16.2770000
340 340 1 0.0000000 20.3640000 13.8280000 13.4210000
341 341 1 0.0000000 10.0140000 7.4130000 9.2700000
342 342 1 0.0000000 2.1350000 7.0370000 14.8450000
343 343 1 0.0000000 10.1280000 17.9060000 5.2690000
344 344 1 0.0000000 9.9640000 11.7180000 21.3790000
345 345 1 0.0000000 3.9300000 18.4910000 10.9740000
346 346 1 0.0000000 4.4370000 0.9780000 3.9700000
347 347 1 0.0000000 3.3540000 11.6180000 13.2880000
348 348 1 0.0000000 10.1490000 8.5100000 18.7440000
349 349 1 0.0000000 20.0030000 12.0850000 0.6000000
350 350 1 0.0000000 8.1370000 7.5880000 17.8300000
351 351 1 0.0000000 4.9940000 4.9580000 9.5900000
352 352 1 0.0000000 5.3170000 14.3610000 19.8350000
353 353 1 0.0000000 9.3030000 10.0320000 5.0540000
354 354 1 0.0000000 15.9060000 19.0210000 11.2850000
355 355 1 0.0000000 4.7750000 3.1100000 20.1740000
356 356 1 0.0000000 12.3120000 9.1080000 6.4970000
357 357 1 0.0000000 10.4810000 4.6620000 17.6350000
358 358 1 0.0000000 4.7080000 13.6970000 16.3300000
359 359 1 0.0000000 12.2970000 5.5490000 6.5760000
360 360 1 0.0000000 17.9900000 5.6590000 1.9370000
361 361 1 0.0000000 15.7760000 13.0220000 8.3090000
362 362 1 0.0000000 17.0960000 9.8020000 6.8980000
363 363 1 0.0000000 14.4040000 20.5780000 7.1330000
364 364 1 0.0000000 10.5700000 7.4740000 12.5610000
365 365 1 0.0000000 7.1880000 17.4800000 12.1560000
366 366 1 0.0000000 19.2640000 6.6050000 0.0900000
367 367 1 0.0000000 2.4860000 20.3860000 7.9620000
368 368 1 0.0000000 1.6540000 17.4650000 21.0330000
369 369 1 0.0000000 0.8570000 14.9180000 7.7750000
370 370 1 0.0000000 15.6360000 3.0200000 12.0780000
371 371 1 0.0000000 20.9520000 6.0750000 16.1620000
372 372 1 0.0000000 6.5150000 10.9720000 15.0530000
373 373 1 0.0000000 1.6150000 2.1220000 0.1040000
374 374 1 0.0000000 12.4880000 14.7040000 1.3780000
375 375 1 0.0000000 1.8720000 14.8200000 18.2130000
376 376 1 0.0000000 1.3840000 6.3060000 16.9560000
377 377 1 0.0000000 13.1420000 8.3550000 21.5020000
378 378 1 0.0000000 10.3950000 19.1540000 12.7720000
379 379 1 0.0000000 18.9350000 15.8660000 19.2180000
380 380 1 0.0000000 19.6110000 0.3890000 20.4600000
381 381 1 0.0000000 1.6460000 14.9430000 1.9780000
382 382 1 0.0000000 16.9420000 8.7780000 9.0500000
383 383 1 0.0000000 15.0770000 11.3050000 19.7190000
384 384 1 0.0000000 6.2370000 17.3890000 15.8170000
385 385 1 0.0000000 14.6890000 16.8390000 8.2540000
386 386 1 0.0000000 5.9660000 6.4540000 15.1720000
387 387 1 0.0000000 6.1100000 4.8320000 21.2820000
388 388 1 0.0000000 5.9710000 14.6570000 4.7110000
389 389 1 0.0000000 3.1780000 19.7080000 5.8410000
390 390 1 0.0000000 5.7600000 19.5340000 14.8080000
391 391 1 0.0000000 18.1190000 11.5110000 15.1550000
392 392 1 0.0000000 17.0450000 3.0230000 19.5700000
393 393 1 0.0000000 11.7520000 21.8180000 19.7610000
394 394 1 0.0000000 15.5870000 18.5610000 6.9700000
395 395 1 0.0000000 6.0680000 8.8370000 18.0920000
396 396 1 0.0000000 14.2730000 18.8060000 21.1250000
397 397 1 0.0000000 14.8640000 7.7480000 18.0510000
398 398 1 0.0000000 7.1970000 14.3360000 8.4160000
399 399 1 0.0000000 12.4080000 8.9750000 12.3640000
400 400 1 0.0000000 15.7690000 0.5910000 7.2330000
401 401 1 0.0000000 14.1880000 18.6730000 16.7170000
402 402 1 0.0000000 0.1070000 17.0650000 14.8780000
403 403 1 0.0000000 1.2690000 21.0730000 19.1580000
404 404 1 0.0000000 8.3320000 15.5390000 0.1550000
405 405 1 0.0000000 3.4890000 20.2250000 18.9410000
406 406 1 0.0000000 16.7760000 7.8120000 16.6050000
407 407 1 0.0000000 0.5070000 4.7570000 5.2510000
408 408 1 0.0000000 19.1810000 3.0200000 9.7780000
409 409 1 0.0000000 4.7160000 9.7900000 16.3110000
410 410 1 0.0000000 2.4040000 18.9600000 12.6390000
411 411 1 0.0000000 3.3380000 4.6500000 7.9680000
412 412 1 0.0000000 17.7990000 4.9620000 9.4940000
413 413 1 0.0000000 12.7390000 16.3390000 11.5840000
414 414 1 0.0000000 17.5550000 6.7730000 20.3200000
415 415 1 0.0000000 14.1770000 9.8840000 3.2060000
416 416 1 0.0000000 14.4790000 10.5810000 15.6890000
417 417 1 0.0000000 14.7570000 21.0200000 10.8010000
418 418 1 0.0000000 19.6820000 0.5930000 12.8140000
419 419 1 0.0000000 8.6600000 0.3420000 21.6710000
420 420 1 0.0000000 9.6300000 4.0130000 11.4620000
421 421 1 0.0000000 21.1990000 7.8220000 3.8780000
422 422 1 0.0000000 1.0220000 15.3220000 20.3160000
423 423 1 0.0000000 19.5230000 9.5210000 18.2400000
424 424 1 0.0000000 6.0420000 4.8470000 1.8140000
425 425 1 0.0000000 19.0970000 2.7310000 20.7130000
426 426 1 0.0000000 20.7220000 12.9310000 18.9570000
427 427 1 0.0000000 12.0420000 5.2830000 19.3670000
428 428 1 0.0000000 12.3510000 14.1340000 10.8070000
429 429 1 0.0000000 0.6760000 0.6980000 4.6080000
430 430 1 0.0000000 17.9010000 21.6070000 7.6530000
431 431 1 0.0000000 12.9910000 4.6940000 10.9090000
432 432 1 0.0000000 4.1650000 0.3790000 10.2450000
433 433 1 0.0000000 11.0350000 2.5880000 2.7230000
434 434 1 0.0000000 0.8260000 16.8030000 9.2410000
435 435 1 0.0000000 1.2930000 1.5320000 19.6910000
436 436 1 0.0000000 3.6360000 0.6300000 7.9720000
437 437 1 0.0000000 18.7690000 21.6650000 18.3160000
438 438 1 0.0000000 15.9900000 1.2130000 10.5660000
439 439 1 0.0000000 3.6880000 0.2170000 17.3680000
440 440 1 0.0000000 15.4550000 13.7970000 16.7760000
441 441 1 0.0000000 13.6260000 0.3920000 16.0690000
442 442 1 0.0000000 2.2090000 7.7760000 18.5900000
443 443 1 0.0000000 7.5390000 1.2670000 1.6990000
444 444 1 0.0000000 5.8870000 7.1350000 20.9610000
445 445 1 0.0000000 3.5460000 9.4970000 8.9750000
446 446 1 0.0000000 1.7030000 10.1450000 12.4300000
447 447 1 0.0000000 4.5220000 7.2320000 19.0140000
448 448 1 0.0000000 12.0790000 18.5320000 17.7390000
449 449 1 0.0000000 11.8150000 12.7440000 20.4040000
450 450 1 0.0000000 14.1450000 16.3300000 20.6400000
451 451 1 0.0000000 13.9790000 11.9100000 13.7820000
452 452 1 0.0000000 5.7860000 9.0870000 8.2180000
453 453 1 0.0000000 5.7610000 18.5920000 3.4730000
454 454 1 0.0000000 17.1860000 12.2100000 20.2580000
455 455 1 0.0000000 19.9590000 17.8190000 5.1360000
456 456 1 0.0000000 17.0590000 15.4900000 5.5810000
457 457 1 0.0000000 3.6710000 3.1920000 4.2290000
458 458 1 0.0000000 9.3110000 4.4320000 0.2320000
459 459 1 0.0000000 7.2900000 10.5480000 9.3640000
460 460 1 0.0000000 3.1990000 11.3340000 19.5640000
461 461 1 0.0000000 18.7960000 19.0310000 15.8960000
462 462 1 0.0000000 16.4530000 21.1730000 18.6370000
463 463 1 0.0000000 19.0360000 1.4790000 16.6070000
464 464 1 0.0000000 15.1190000 6.7220000 5.0610000
465 465 1 0.0000000 14.6980000 6.3460000 10.8900000
466 466 1 0.0000000 9.5270000 15.6660000 5.6890000
467 467 1 0.0000000 9.8670000 0.7250000 18.4290000
468 468 1 0.0000000 3.5070000 11.8220000 15.5670000
469 469 1 0.0000000 5.2170000 0.8530000 1.6550000
470 470 1 0.0000000 14.2830000 11.9310000 17.5860000
471 471 1 0.0000000 21.4650000 11.2840000 8.7140000
472 472 1 0.0000000 0.2700000 13.5140000 17.1240000
473 473 1 0.0000000 8.7330000 20.7300000 17.4130000
474 474 1 0.0000000 7.4140000 12.9760000 3.8660000
475 475 1 0.0000000 8.5520000 8.7210000 12.3480000
476 476 1 0.0000000 7.4770000 9.7280000 1.7090000
477 477 1 0.0000000 16.9200000 14.6800000 20.0740000
478 478 1 0.0000000 6.5920000 20.9910000 6.6400000
479 479 1 0.0000000 18.3870000 7.4290000 18.2380000
480 480 1 0.0000000 21.2320000 15.1360000 2.5810000
481 481 1 0.0000000 16.7390000 8.6780000 21.4380000
482 482 1 0.0000000 18.2260000 6.2380000 5.6140000
483 483 1 0.0000000 12.7550000 3.5820000 20.8720000
484 484 1 0.0000000 14.8870000 9.0010000 20.0300000
485 485 1 0.0000000 6.1970000 16.3000000 3.0880000
486 486 1 0.0000000 6.9450000 13.1810000 15.8140000
487 487 1 0.0000000 20.1770000 18.7700000 1.5020000
488 488 1 0.0000000 19.8750000 14.4220000 0.7710000
489 489 1 0.0000000 13.0770000 5.0280000 14.9330000
490 490 1 0.0000000 10.9540000 0.5380000 0.0170000
491 491 1 0.0000000 0.3310000 3.0520000 18.1720000
492 492 1 0.0000000 8.8200000 14.8310000 10.0110000
493 493 1 0.0000000 6.9570000 20.3870000 8.9230000
494 494 1 0.0000000 21.4900000 6.8560000 12.0490000
495 495 1 0.0000000 8.1550000 13.1990000 21.7210000
496 496 1 0.0000000 2.1970000 4.5290000 11.8290000
497 497 1 0.0000000 14.2880000 5.5560000 18.5960000
498 498 1 0.0000000 15.0910000 15.4110000 18.5470000
499 499 1 0.0000000 18.9760000 15.1930000 16.8970000
500 500 1 0.0000000 19.4100000 5.3490000 17.7540000
501 501 1 0.0000000 0.5430000 8.3990000 13.7700000
502 502 1 0.0000000 18.0770000 19.1690000 4.8770000
503 503 1 0.0000000 3.3760000 17.8650000 19.2940000
504 504 1 0.0000000 16.3760000 0.5870000 3.6340000
505 505 1 0.0000000 10.4990000 18.5190000 21.1770000
506 506 1 0.0000000 15.7320000 12.7570000 3.0200000
507 507 1 0.0000000 16.9190000 8.1780000 5.2430000
508 508 1 0.0000000 6.9450000 7.4210000 6.8040000
509 509 1 0.0000000 11.6120000 21.2610000 15.3620000
510 510 1 0.0000000 18.0500000 0.6840000 14.5470000
511 511 1 0.0000000 20.4340000 4.0240000 4.2040000
512 512 1 0.0000000 18.0190000 10.7210000 0.2160000

View File

@ -0,0 +1,238 @@
LAMMPS description
216 atoms
0 bonds
0 angles
0 dihedrals
0 impropers
1 atom types
0 bond types
0 angle types
0 dihedral types
0 improper types
0.0000000 16.293000 xlo xhi
0.0000000 16.293000 ylo yhi
0.0000000 16.293000 zlo zhi
Atoms
1 1 1 0.0000000 0.0000000 0.0000000 0.0000000
2 2 1 0.0000000 0.0000000 2.7160000 2.7160000
3 3 1 0.0000000 2.7160000 2.7160000 0.0000000
4 4 1 0.0000000 2.7160000 0.0000000 2.7160000
5 5 1 0.0000000 4.0730000 1.3580000 4.0730000
6 6 1 0.0000000 1.3580000 1.3580000 1.3580000
7 7 1 0.0000000 1.3580000 4.0730000 4.0730000
8 8 1 0.0000000 4.0730000 4.0730000 1.3580000
9 9 1 0.0000000 0.0000000 0.0000000 5.4310000
10 10 1 0.0000000 0.0000000 2.7160000 8.1460000
11 11 1 0.0000000 2.7160000 2.7160000 5.4310000
12 12 1 0.0000000 2.7160000 0.0000000 8.1460000
13 13 1 0.0000000 4.0730000 1.3580000 9.5040000
14 14 1 0.0000000 1.3580000 1.3580000 6.7890000
15 15 1 0.0000000 1.3580000 4.0730000 9.5040000
16 16 1 0.0000000 4.0730000 4.0730000 6.7890000
17 17 1 0.0000000 0.0000000 0.0000000 10.8620000
18 18 1 0.0000000 0.0000000 2.7160000 13.5780000
19 19 1 0.0000000 2.7160000 2.7160000 10.8620000
20 20 1 0.0000000 2.7160000 0.0000000 13.5780000
21 21 1 0.0000000 4.0730000 1.3580000 14.9350000
22 22 1 0.0000000 1.3580000 1.3580000 12.2200000
23 23 1 0.0000000 1.3580000 4.0730000 14.9350000
24 24 1 0.0000000 4.0730000 4.0730000 12.2200000
25 25 1 0.0000000 0.0000000 5.4310000 0.0000000
26 26 1 0.0000000 0.0000000 8.1460000 2.7160000
27 27 1 0.0000000 2.7160000 8.1460000 0.0000000
28 28 1 0.0000000 2.7160000 5.4310000 2.7160000
29 29 1 0.0000000 4.0730000 6.7890000 4.0730000
30 30 1 0.0000000 1.3580000 6.7890000 1.3580000
31 31 1 0.0000000 1.3580000 9.5040000 4.0730000
32 32 1 0.0000000 4.0730000 9.5040000 1.3580000
33 33 1 0.0000000 0.0000000 5.4310000 5.4310000
34 34 1 0.0000000 0.0000000 8.1460000 8.1460000
35 35 1 0.0000000 2.7160000 8.1460000 5.4310000
36 36 1 0.0000000 2.7160000 5.4310000 8.1460000
37 37 1 0.0000000 4.0730000 6.7890000 9.5040000
38 38 1 0.0000000 1.3580000 6.7890000 6.7890000
39 39 1 0.0000000 1.3580000 9.5040000 9.5040000
40 40 1 0.0000000 4.0730000 9.5040000 6.7890000
41 41 1 0.0000000 0.0000000 5.4310000 10.8620000
42 42 1 0.0000000 0.0000000 8.1460000 13.5780000
43 43 1 0.0000000 2.7160000 8.1460000 10.8620000
44 44 1 0.0000000 2.7160000 5.4310000 13.5780000
45 45 1 0.0000000 4.0730000 6.7890000 14.9350000
46 46 1 0.0000000 1.3580000 6.7890000 12.2200000
47 47 1 0.0000000 1.3580000 9.5040000 14.9350000
48 48 1 0.0000000 4.0730000 9.5040000 12.2200000
49 49 1 0.0000000 0.0000000 10.8620000 0.0000000
50 50 1 0.0000000 0.0000000 13.5780000 2.7160000
51 51 1 0.0000000 2.7160000 13.5780000 0.0000000
52 52 1 0.0000000 2.7160000 10.8620000 2.7160000
53 53 1 0.0000000 4.0730000 12.2200000 4.0730000
54 54 1 0.0000000 1.3580000 12.2200000 1.3580000
55 55 1 0.0000000 1.3580000 14.9350000 4.0730000
56 56 1 0.0000000 4.0730000 14.9350000 1.3580000
57 57 1 0.0000000 0.0000000 10.8620000 5.4310000
58 58 1 0.0000000 0.0000000 13.5780000 8.1460000
59 59 1 0.0000000 2.7160000 13.5780000 5.4310000
60 60 1 0.0000000 2.7160000 10.8620000 8.1460000
61 61 1 0.0000000 4.0730000 12.2200000 9.5040000
62 62 1 0.0000000 1.3580000 12.2200000 6.7890000
63 63 1 0.0000000 1.3580000 14.9350000 9.5040000
64 64 1 0.0000000 4.0730000 14.9350000 6.7890000
65 65 1 0.0000000 0.0000000 10.8620000 10.8620000
66 66 1 0.0000000 0.0000000 13.5780000 13.5780000
67 67 1 0.0000000 2.7160000 13.5780000 10.8620000
68 68 1 0.0000000 2.7160000 10.8620000 13.5780000
69 69 1 0.0000000 4.0730000 12.2200000 14.9350000
70 70 1 0.0000000 1.3580000 12.2200000 12.2200000
71 71 1 0.0000000 1.3580000 14.9350000 14.9350000
72 72 1 0.0000000 4.0730000 14.9350000 12.2200000
73 73 1 0.0000000 5.4310000 0.0000000 0.0000000
74 74 1 0.0000000 5.4310000 2.7160000 2.7160000
75 75 1 0.0000000 8.1460000 2.7160000 0.0000000
76 76 1 0.0000000 8.1460000 0.0000000 2.7160000
77 77 1 0.0000000 9.5040000 1.3580000 4.0730000
78 78 1 0.0000000 6.7890000 1.3580000 1.3580000
79 79 1 0.0000000 6.7890000 4.0730000 4.0730000
80 80 1 0.0000000 9.5040000 4.0730000 1.3580000
81 81 1 0.0000000 5.4310000 0.0000000 5.4310000
82 82 1 0.0000000 5.4310000 2.7160000 8.1460000
83 83 1 0.0000000 8.1460000 2.7160000 5.4310000
84 84 1 0.0000000 8.1460000 0.0000000 8.1460000
85 85 1 0.0000000 9.5040000 1.3580000 9.5040000
86 86 1 0.0000000 6.7890000 1.3580000 6.7890000
87 87 1 0.0000000 6.7890000 4.0730000 9.5040000
88 88 1 0.0000000 9.5040000 4.0730000 6.7890000
89 89 1 0.0000000 5.4310000 0.0000000 10.8620000
90 90 1 0.0000000 5.4310000 2.7160000 13.5780000
91 91 1 0.0000000 8.1460000 2.7160000 10.8620000
92 92 1 0.0000000 8.1460000 0.0000000 13.5780000
93 93 1 0.0000000 9.5040000 1.3580000 14.9350000
94 94 1 0.0000000 6.7890000 1.3580000 12.2200000
95 95 1 0.0000000 6.7890000 4.0730000 14.9350000
96 96 1 0.0000000 9.5040000 4.0730000 12.2200000
97 97 1 0.0000000 5.4310000 5.4310000 0.0000000
98 98 1 0.0000000 5.4310000 8.1460000 2.7160000
99 99 1 0.0000000 8.1460000 8.1460000 0.0000000
100 100 1 0.0000000 8.1460000 5.4310000 2.7160000
101 101 1 0.0000000 9.5040000 6.7890000 4.0730000
102 102 1 0.0000000 6.7890000 6.7890000 1.3580000
103 103 1 0.0000000 6.7890000 9.5040000 4.0730000
104 104 1 0.0000000 9.5040000 9.5040000 1.3580000
105 105 1 0.0000000 5.4310000 5.4310000 5.4310000
106 106 1 0.0000000 5.4310000 8.1460000 8.1460000
107 107 1 0.0000000 8.1460000 8.1460000 5.4310000
108 108 1 0.0000000 8.1460000 5.4310000 8.1460000
109 109 1 0.0000000 9.5040000 6.7890000 9.5040000
110 110 1 0.0000000 6.7890000 6.7890000 6.7890000
111 111 1 0.0000000 6.7890000 9.5040000 9.5040000
112 112 1 0.0000000 9.5040000 9.5040000 6.7890000
113 113 1 0.0000000 5.4310000 5.4310000 10.8620000
114 114 1 0.0000000 5.4310000 8.1460000 13.5780000
115 115 1 0.0000000 8.1460000 8.1460000 10.8620000
116 116 1 0.0000000 8.1460000 5.4310000 13.5780000
117 117 1 0.0000000 9.5040000 6.7890000 14.9350000
118 118 1 0.0000000 6.7890000 6.7890000 12.2200000
119 119 1 0.0000000 6.7890000 9.5040000 14.9350000
120 120 1 0.0000000 9.5040000 9.5040000 12.2200000
121 121 1 0.0000000 5.4310000 10.8620000 0.0000000
122 122 1 0.0000000 5.4310000 13.5780000 2.7160000
123 123 1 0.0000000 8.1460000 13.5780000 0.0000000
124 124 1 0.0000000 8.1460000 10.8620000 2.7160000
125 125 1 0.0000000 9.5040000 12.2200000 4.0730000
126 126 1 0.0000000 6.7890000 12.2200000 1.3580000
127 127 1 0.0000000 6.7890000 14.9350000 4.0730000
128 128 1 0.0000000 9.5040000 14.9350000 1.3580000
129 129 1 0.0000000 5.4310000 10.8620000 5.4310000
130 130 1 0.0000000 5.4310000 13.5780000 8.1460000
131 131 1 0.0000000 8.1460000 13.5780000 5.4310000
132 132 1 0.0000000 8.1460000 10.8620000 8.1460000
133 133 1 0.0000000 9.5040000 12.2200000 9.5040000
134 134 1 0.0000000 6.7890000 12.2200000 6.7890000
135 135 1 0.0000000 6.7890000 14.9350000 9.5040000
136 136 1 0.0000000 9.5040000 14.9350000 6.7890000
137 137 1 0.0000000 5.4310000 10.8620000 10.8620000
138 138 1 0.0000000 5.4310000 13.5780000 13.5780000
139 139 1 0.0000000 8.1460000 13.5780000 10.8620000
140 140 1 0.0000000 8.1460000 10.8620000 13.5780000
141 141 1 0.0000000 9.5040000 12.2200000 14.9350000
142 142 1 0.0000000 6.7890000 12.2200000 12.2200000
143 143 1 0.0000000 6.7890000 14.9350000 14.9350000
144 144 1 0.0000000 9.5040000 14.9350000 12.2200000
145 145 1 0.0000000 10.8620000 0.0000000 0.0000000
146 146 1 0.0000000 10.8620000 2.7160000 2.7160000
147 147 1 0.0000000 13.5780000 2.7160000 0.0000000
148 148 1 0.0000000 13.5780000 0.0000000 2.7160000
149 149 1 0.0000000 14.9350000 1.3580000 4.0730000
150 150 1 0.0000000 12.2200000 1.3580000 1.3580000
151 151 1 0.0000000 12.2200000 4.0730000 4.0730000
152 152 1 0.0000000 14.9350000 4.0730000 1.3580000
153 153 1 0.0000000 10.8620000 0.0000000 5.4310000
154 154 1 0.0000000 10.8620000 2.7160000 8.1460000
155 155 1 0.0000000 13.5780000 2.7160000 5.4310000
156 156 1 0.0000000 13.5780000 0.0000000 8.1460000
157 157 1 0.0000000 14.9350000 1.3580000 9.5040000
158 158 1 0.0000000 12.2200000 1.3580000 6.7890000
159 159 1 0.0000000 12.2200000 4.0730000 9.5040000
160 160 1 0.0000000 14.9350000 4.0730000 6.7890000
161 161 1 0.0000000 10.8620000 0.0000000 10.8620000
162 162 1 0.0000000 10.8620000 2.7160000 13.5780000
163 163 1 0.0000000 13.5780000 2.7160000 10.8620000
164 164 1 0.0000000 13.5780000 0.0000000 13.5780000
165 165 1 0.0000000 14.9350000 1.3580000 14.9350000
166 166 1 0.0000000 12.2200000 1.3580000 12.2200000
167 167 1 0.0000000 12.2200000 4.0730000 14.9350000
168 168 1 0.0000000 14.9350000 4.0730000 12.2200000
169 169 1 0.0000000 10.8620000 5.4310000 0.0000000
170 170 1 0.0000000 10.8620000 8.1460000 2.7160000
171 171 1 0.0000000 13.5780000 8.1460000 0.0000000
172 172 1 0.0000000 13.5780000 5.4310000 2.7160000
173 173 1 0.0000000 14.9350000 6.7890000 4.0730000
174 174 1 0.0000000 12.2200000 6.7890000 1.3580000
175 175 1 0.0000000 12.2200000 9.5040000 4.0730000
176 176 1 0.0000000 14.9350000 9.5040000 1.3580000
177 177 1 0.0000000 10.8620000 5.4310000 5.4310000
178 178 1 0.0000000 10.8620000 8.1460000 8.1460000
179 179 1 0.0000000 13.5780000 8.1460000 5.4310000
180 180 1 0.0000000 13.5780000 5.4310000 8.1460000
181 181 1 0.0000000 14.9350000 6.7890000 9.5040000
182 182 1 0.0000000 12.2200000 6.7890000 6.7890000
183 183 1 0.0000000 12.2200000 9.5040000 9.5040000
184 184 1 0.0000000 14.9350000 9.5040000 6.7890000
185 185 1 0.0000000 10.8620000 5.4310000 10.8620000
186 186 1 0.0000000 10.8620000 8.1460000 13.5780000
187 187 1 0.0000000 13.5780000 8.1460000 10.8620000
188 188 1 0.0000000 13.5780000 5.4310000 13.5780000
189 189 1 0.0000000 14.9350000 6.7890000 14.9350000
190 190 1 0.0000000 12.2200000 6.7890000 12.2200000
191 191 1 0.0000000 12.2200000 9.5040000 14.9350000
192 192 1 0.0000000 14.9350000 9.5040000 12.2200000
193 193 1 0.0000000 10.8620000 10.8620000 0.0000000
194 194 1 0.0000000 10.8620000 13.5780000 2.7160000
195 195 1 0.0000000 13.5780000 13.5780000 0.0000000
196 196 1 0.0000000 13.5780000 10.8620000 2.7160000
197 197 1 0.0000000 14.9350000 12.2200000 4.0730000
198 198 1 0.0000000 12.2200000 12.2200000 1.3580000
199 199 1 0.0000000 12.2200000 14.9350000 4.0730000
200 200 1 0.0000000 14.9350000 14.9350000 1.3580000
201 201 1 0.0000000 10.8620000 10.8620000 5.4310000
202 202 1 0.0000000 10.8620000 13.5780000 8.1460000
203 203 1 0.0000000 13.5780000 13.5780000 5.4310000
204 204 1 0.0000000 13.5780000 10.8620000 8.1460000
205 205 1 0.0000000 14.9350000 12.2200000 9.5040000
206 206 1 0.0000000 12.2200000 12.2200000 6.7890000
207 207 1 0.0000000 12.2200000 14.9350000 9.5040000
208 208 1 0.0000000 14.9350000 14.9350000 6.7890000
209 209 1 0.0000000 10.8620000 10.8620000 10.8620000
210 210 1 0.0000000 10.8620000 13.5780000 13.5780000
211 211 1 0.0000000 13.5780000 13.5780000 10.8620000
212 212 1 0.0000000 13.5780000 10.8620000 13.5780000
213 213 1 0.0000000 14.9350000 12.2200000 14.9350000
214 214 1 0.0000000 12.2200000 12.2200000 12.2200000
215 215 1 0.0000000 12.2200000 14.9350000 14.9350000
216 216 1 0.0000000 14.9350000 14.9350000 12.2200000

View File

@ -0,0 +1,534 @@
LAMMPS description
512 atoms
0 bonds
0 angles
0 dihedrals
0 impropers
1 atom types
0 bond types
0 angle types
0 dihedral types
0 improper types
0.0000000 21.724000 xlo xhi
0.0000000 21.724000 ylo yhi
0.0000000 21.724000 zlo zhi
Atoms
1 1 1 0.0000000 0.0000000 0.0000000 0.0000000
2 2 1 0.0000000 0.0000000 2.7150000 2.7150000
3 3 1 0.0000000 2.7150000 2.7150000 0.0000000
4 4 1 0.0000000 2.7150000 0.0000000 2.7150000
5 5 1 0.0000000 4.0730000 1.3580000 4.0730000
6 6 1 0.0000000 1.3580000 1.3580000 1.3580000
7 7 1 0.0000000 1.3580000 4.0730000 4.0730000
8 8 1 0.0000000 4.0730000 4.0730000 1.3580000
9 9 1 0.0000000 0.0000000 0.0000000 5.4310000
10 10 1 0.0000000 0.0000000 2.7150000 8.1460000
11 11 1 0.0000000 2.7150000 2.7150000 5.4310000
12 12 1 0.0000000 2.7150000 0.0000000 8.1460000
13 13 1 0.0000000 4.0730000 1.3580000 9.5040000
14 14 1 0.0000000 1.3580000 1.3580000 6.7890000
15 15 1 0.0000000 1.3580000 4.0730000 9.5040000
16 16 1 0.0000000 4.0730000 4.0730000 6.7890000
17 17 1 0.0000000 0.0000000 0.0000000 10.8620000
18 18 1 0.0000000 0.0000000 2.7150000 13.5770000
19 19 1 0.0000000 2.7150000 2.7150000 10.8620000
20 20 1 0.0000000 2.7150000 0.0000000 13.5770000
21 21 1 0.0000000 4.0730000 1.3580000 14.9350000
22 22 1 0.0000000 1.3580000 1.3580000 12.2200000
23 23 1 0.0000000 1.3580000 4.0730000 14.9350000
24 24 1 0.0000000 4.0730000 4.0730000 12.2200000
25 25 1 0.0000000 0.0000000 0.0000000 16.2930000
26 26 1 0.0000000 0.0000000 2.7150000 19.0080000
27 27 1 0.0000000 2.7150000 2.7150000 16.2930000
28 28 1 0.0000000 2.7150000 0.0000000 19.0080000
29 29 1 0.0000000 4.0730000 1.3580000 20.3660000
30 30 1 0.0000000 1.3580000 1.3580000 17.6510000
31 31 1 0.0000000 1.3580000 4.0730000 20.3660000
32 32 1 0.0000000 4.0730000 4.0730000 17.6510000
33 33 1 0.0000000 0.0000000 5.4310000 0.0000000
34 34 1 0.0000000 0.0000000 8.1460000 2.7150000
35 35 1 0.0000000 2.7150000 8.1460000 0.0000000
36 36 1 0.0000000 2.7150000 5.4310000 2.7150000
37 37 1 0.0000000 4.0730000 6.7890000 4.0730000
38 38 1 0.0000000 1.3580000 6.7890000 1.3580000
39 39 1 0.0000000 1.3580000 9.5040000 4.0730000
40 40 1 0.0000000 4.0730000 9.5040000 1.3580000
41 41 1 0.0000000 0.0000000 5.4310000 5.4310000
42 42 1 0.0000000 0.0000000 8.1460000 8.1460000
43 43 1 0.0000000 2.7150000 8.1460000 5.4310000
44 44 1 0.0000000 2.7150000 5.4310000 8.1460000
45 45 1 0.0000000 4.0730000 6.7890000 9.5040000
46 46 1 0.0000000 1.3580000 6.7890000 6.7890000
47 47 1 0.0000000 1.3580000 9.5040000 9.5040000
48 48 1 0.0000000 4.0730000 9.5040000 6.7890000
49 49 1 0.0000000 0.0000000 5.4310000 10.8620000
50 50 1 0.0000000 0.0000000 8.1460000 13.5770000
51 51 1 0.0000000 2.7150000 8.1460000 10.8620000
52 52 1 0.0000000 2.7150000 5.4310000 13.5770000
53 53 1 0.0000000 4.0730000 6.7890000 14.9350000
54 54 1 0.0000000 1.3580000 6.7890000 12.2200000
55 55 1 0.0000000 1.3580000 9.5040000 14.9350000
56 56 1 0.0000000 4.0730000 9.5040000 12.2200000
57 57 1 0.0000000 0.0000000 5.4310000 16.2930000
58 58 1 0.0000000 0.0000000 8.1460000 19.0080000
59 59 1 0.0000000 2.7150000 8.1460000 16.2930000
60 60 1 0.0000000 2.7150000 5.4310000 19.0080000
61 61 1 0.0000000 4.0730000 6.7890000 20.3660000
62 62 1 0.0000000 1.3580000 6.7890000 17.6510000
63 63 1 0.0000000 1.3580000 9.5040000 20.3660000
64 64 1 0.0000000 4.0730000 9.5040000 17.6510000
65 65 1 0.0000000 0.0000000 10.8620000 0.0000000
66 66 1 0.0000000 0.0000000 13.5770000 2.7150000
67 67 1 0.0000000 2.7150000 13.5770000 0.0000000
68 68 1 0.0000000 2.7150000 10.8620000 2.7150000
69 69 1 0.0000000 4.0730000 12.2200000 4.0730000
70 70 1 0.0000000 1.3580000 12.2200000 1.3580000
71 71 1 0.0000000 1.3580000 14.9350000 4.0730000
72 72 1 0.0000000 4.0730000 14.9350000 1.3580000
73 73 1 0.0000000 0.0000000 10.8620000 5.4310000
74 74 1 0.0000000 0.0000000 13.5770000 8.1460000
75 75 1 0.0000000 2.7150000 13.5770000 5.4310000
76 76 1 0.0000000 2.7150000 10.8620000 8.1460000
77 77 1 0.0000000 4.0730000 12.2200000 9.5040000
78 78 1 0.0000000 1.3580000 12.2200000 6.7890000
79 79 1 0.0000000 1.3580000 14.9350000 9.5040000
80 80 1 0.0000000 4.0730000 14.9350000 6.7890000
81 81 1 0.0000000 0.0000000 10.8620000 10.8620000
82 82 1 0.0000000 0.0000000 13.5770000 13.5770000
83 83 1 0.0000000 2.7150000 13.5770000 10.8620000
84 84 1 0.0000000 2.7150000 10.8620000 13.5770000
85 85 1 0.0000000 4.0730000 12.2200000 14.9350000
86 86 1 0.0000000 1.3580000 12.2200000 12.2200000
87 87 1 0.0000000 1.3580000 14.9350000 14.9350000
88 88 1 0.0000000 4.0730000 14.9350000 12.2200000
89 89 1 0.0000000 0.0000000 10.8620000 16.2930000
90 90 1 0.0000000 0.0000000 13.5770000 19.0080000
91 91 1 0.0000000 2.7150000 13.5770000 16.2930000
92 92 1 0.0000000 2.7150000 10.8620000 19.0080000
93 93 1 0.0000000 4.0730000 12.2200000 20.3660000
94 94 1 0.0000000 1.3580000 12.2200000 17.6510000
95 95 1 0.0000000 1.3580000 14.9350000 20.3660000
96 96 1 0.0000000 4.0730000 14.9350000 17.6510000
97 97 1 0.0000000 0.0000000 16.2930000 0.0000000
98 98 1 0.0000000 0.0000000 19.0080000 2.7150000
99 99 1 0.0000000 2.7150000 19.0080000 0.0000000
100 100 1 0.0000000 2.7150000 16.2930000 2.7150000
101 101 1 0.0000000 4.0730000 17.6510000 4.0730000
102 102 1 0.0000000 1.3580000 17.6510000 1.3580000
103 103 1 0.0000000 1.3580000 20.3660000 4.0730000
104 104 1 0.0000000 4.0730000 20.3660000 1.3580000
105 105 1 0.0000000 0.0000000 16.2930000 5.4310000
106 106 1 0.0000000 0.0000000 19.0080000 8.1460000
107 107 1 0.0000000 2.7150000 19.0080000 5.4310000
108 108 1 0.0000000 2.7150000 16.2930000 8.1460000
109 109 1 0.0000000 4.0730000 17.6510000 9.5040000
110 110 1 0.0000000 1.3580000 17.6510000 6.7890000
111 111 1 0.0000000 1.3580000 20.3660000 9.5040000
112 112 1 0.0000000 4.0730000 20.3660000 6.7890000
113 113 1 0.0000000 0.0000000 16.2930000 10.8620000
114 114 1 0.0000000 0.0000000 19.0080000 13.5770000
115 115 1 0.0000000 2.7150000 19.0080000 10.8620000
116 116 1 0.0000000 2.7150000 16.2930000 13.5770000
117 117 1 0.0000000 4.0730000 17.6510000 14.9350000
118 118 1 0.0000000 1.3580000 17.6510000 12.2200000
119 119 1 0.0000000 1.3580000 20.3660000 14.9350000
120 120 1 0.0000000 4.0730000 20.3660000 12.2200000
121 121 1 0.0000000 0.0000000 16.2930000 16.2930000
122 122 1 0.0000000 0.0000000 19.0080000 19.0080000
123 123 1 0.0000000 2.7150000 19.0080000 16.2930000
124 124 1 0.0000000 2.7150000 16.2930000 19.0080000
125 125 1 0.0000000 4.0730000 17.6510000 20.3660000
126 126 1 0.0000000 1.3580000 17.6510000 17.6510000
127 127 1 0.0000000 1.3580000 20.3660000 20.3660000
128 128 1 0.0000000 4.0730000 20.3660000 17.6510000
129 129 1 0.0000000 5.4310000 0.0000000 0.0000000
130 130 1 0.0000000 5.4310000 2.7150000 2.7150000
131 131 1 0.0000000 8.1460000 2.7150000 0.0000000
132 132 1 0.0000000 8.1460000 0.0000000 2.7150000
133 133 1 0.0000000 9.5040000 1.3580000 4.0730000
134 134 1 0.0000000 6.7890000 1.3580000 1.3580000
135 135 1 0.0000000 6.7890000 4.0730000 4.0730000
136 136 1 0.0000000 9.5040000 4.0730000 1.3580000
137 137 1 0.0000000 5.4310000 0.0000000 5.4310000
138 138 1 0.0000000 5.4310000 2.7150000 8.1460000
139 139 1 0.0000000 8.1460000 2.7150000 5.4310000
140 140 1 0.0000000 8.1460000 0.0000000 8.1460000
141 141 1 0.0000000 9.5040000 1.3580000 9.5040000
142 142 1 0.0000000 6.7890000 1.3580000 6.7890000
143 143 1 0.0000000 6.7890000 4.0730000 9.5040000
144 144 1 0.0000000 9.5040000 4.0730000 6.7890000
145 145 1 0.0000000 5.4310000 0.0000000 10.8620000
146 146 1 0.0000000 5.4310000 2.7150000 13.5770000
147 147 1 0.0000000 8.1460000 2.7150000 10.8620000
148 148 1 0.0000000 8.1460000 0.0000000 13.5770000
149 149 1 0.0000000 9.5040000 1.3580000 14.9350000
150 150 1 0.0000000 6.7890000 1.3580000 12.2200000
151 151 1 0.0000000 6.7890000 4.0730000 14.9350000
152 152 1 0.0000000 9.5040000 4.0730000 12.2200000
153 153 1 0.0000000 5.4310000 0.0000000 16.2930000
154 154 1 0.0000000 5.4310000 2.7150000 19.0080000
155 155 1 0.0000000 8.1460000 2.7150000 16.2930000
156 156 1 0.0000000 8.1460000 0.0000000 19.0080000
157 157 1 0.0000000 9.5040000 1.3580000 20.3660000
158 158 1 0.0000000 6.7890000 1.3580000 17.6510000
159 159 1 0.0000000 6.7890000 4.0730000 20.3660000
160 160 1 0.0000000 9.5040000 4.0730000 17.6510000
161 161 1 0.0000000 5.4310000 5.4310000 0.0000000
162 162 1 0.0000000 5.4310000 8.1460000 2.7150000
163 163 1 0.0000000 8.1460000 8.1460000 0.0000000
164 164 1 0.0000000 8.1460000 5.4310000 2.7150000
165 165 1 0.0000000 9.5040000 6.7890000 4.0730000
166 166 1 0.0000000 6.7890000 6.7890000 1.3580000
167 167 1 0.0000000 6.7890000 9.5040000 4.0730000
168 168 1 0.0000000 9.5040000 9.5040000 1.3580000
169 169 1 0.0000000 5.4310000 5.4310000 5.4310000
170 170 1 0.0000000 5.4310000 8.1460000 8.1460000
171 171 1 0.0000000 8.1460000 8.1460000 5.4310000
172 172 1 0.0000000 8.1460000 5.4310000 8.1460000
173 173 1 0.0000000 9.5040000 6.7890000 9.5040000
174 174 1 0.0000000 6.7890000 6.7890000 6.7890000
175 175 1 0.0000000 6.7890000 9.5040000 9.5040000
176 176 1 0.0000000 9.5040000 9.5040000 6.7890000
177 177 1 0.0000000 5.4310000 5.4310000 10.8620000
178 178 1 0.0000000 5.4310000 8.1460000 13.5770000
179 179 1 0.0000000 8.1460000 8.1460000 10.8620000
180 180 1 0.0000000 8.1460000 5.4310000 13.5770000
181 181 1 0.0000000 9.5040000 6.7890000 14.9350000
182 182 1 0.0000000 6.7890000 6.7890000 12.2200000
183 183 1 0.0000000 6.7890000 9.5040000 14.9350000
184 184 1 0.0000000 9.5040000 9.5040000 12.2200000
185 185 1 0.0000000 5.4310000 5.4310000 16.2930000
186 186 1 0.0000000 5.4310000 8.1460000 19.0080000
187 187 1 0.0000000 8.1460000 8.1460000 16.2930000
188 188 1 0.0000000 8.1460000 5.4310000 19.0080000
189 189 1 0.0000000 9.5040000 6.7890000 20.3660000
190 190 1 0.0000000 6.7890000 6.7890000 17.6510000
191 191 1 0.0000000 6.7890000 9.5040000 20.3660000
192 192 1 0.0000000 9.5040000 9.5040000 17.6510000
193 193 1 0.0000000 5.4310000 10.8620000 0.0000000
194 194 1 0.0000000 5.4310000 13.5770000 2.7150000
195 195 1 0.0000000 8.1460000 13.5770000 0.0000000
196 196 1 0.0000000 8.1460000 10.8620000 2.7150000
197 197 1 0.0000000 9.5040000 12.2200000 4.0730000
198 198 1 0.0000000 6.7890000 12.2200000 1.3580000
199 199 1 0.0000000 6.7890000 14.9350000 4.0730000
200 200 1 0.0000000 9.5040000 14.9350000 1.3580000
201 201 1 0.0000000 5.4310000 10.8620000 5.4310000
202 202 1 0.0000000 5.4310000 13.5770000 8.1460000
203 203 1 0.0000000 8.1460000 13.5770000 5.4310000
204 204 1 0.0000000 8.1460000 10.8620000 8.1460000
205 205 1 0.0000000 9.5040000 12.2200000 9.5040000
206 206 1 0.0000000 6.7890000 12.2200000 6.7890000
207 207 1 0.0000000 6.7890000 14.9350000 9.5040000
208 208 1 0.0000000 9.5040000 14.9350000 6.7890000
209 209 1 0.0000000 5.4310000 10.8620000 10.8620000
210 210 1 0.0000000 5.4310000 13.5770000 13.5770000
211 211 1 0.0000000 8.1460000 13.5770000 10.8620000
212 212 1 0.0000000 8.1460000 10.8620000 13.5770000
213 213 1 0.0000000 9.5040000 12.2200000 14.9350000
214 214 1 0.0000000 6.7890000 12.2200000 12.2200000
215 215 1 0.0000000 6.7890000 14.9350000 14.9350000
216 216 1 0.0000000 9.5040000 14.9350000 12.2200000
217 217 1 0.0000000 5.4310000 10.8620000 16.2930000
218 218 1 0.0000000 5.4310000 13.5770000 19.0080000
219 219 1 0.0000000 8.1460000 13.5770000 16.2930000
220 220 1 0.0000000 8.1460000 10.8620000 19.0080000
221 221 1 0.0000000 9.5040000 12.2200000 20.3660000
222 222 1 0.0000000 6.7890000 12.2200000 17.6510000
223 223 1 0.0000000 6.7890000 14.9350000 20.3660000
224 224 1 0.0000000 9.5040000 14.9350000 17.6510000
225 225 1 0.0000000 5.4310000 16.2930000 0.0000000
226 226 1 0.0000000 5.4310000 19.0080000 2.7150000
227 227 1 0.0000000 8.1460000 19.0080000 0.0000000
228 228 1 0.0000000 8.1460000 16.2930000 2.7150000
229 229 1 0.0000000 9.5040000 17.6510000 4.0730000
230 230 1 0.0000000 6.7890000 17.6510000 1.3580000
231 231 1 0.0000000 6.7890000 20.3660000 4.0730000
232 232 1 0.0000000 9.5040000 20.3660000 1.3580000
233 233 1 0.0000000 5.4310000 16.2930000 5.4310000
234 234 1 0.0000000 5.4310000 19.0080000 8.1460000
235 235 1 0.0000000 8.1460000 19.0080000 5.4310000
236 236 1 0.0000000 8.1460000 16.2930000 8.1460000
237 237 1 0.0000000 9.5040000 17.6510000 9.5040000
238 238 1 0.0000000 6.7890000 17.6510000 6.7890000
239 239 1 0.0000000 6.7890000 20.3660000 9.5040000
240 240 1 0.0000000 9.5040000 20.3660000 6.7890000
241 241 1 0.0000000 5.4310000 16.2930000 10.8620000
242 242 1 0.0000000 5.4310000 19.0080000 13.5770000
243 243 1 0.0000000 8.1460000 19.0080000 10.8620000
244 244 1 0.0000000 8.1460000 16.2930000 13.5770000
245 245 1 0.0000000 9.5040000 17.6510000 14.9350000
246 246 1 0.0000000 6.7890000 17.6510000 12.2200000
247 247 1 0.0000000 6.7890000 20.3660000 14.9350000
248 248 1 0.0000000 9.5040000 20.3660000 12.2200000
249 249 1 0.0000000 5.4310000 16.2930000 16.2930000
250 250 1 0.0000000 5.4310000 19.0080000 19.0080000
251 251 1 0.0000000 8.1460000 19.0080000 16.2930000
252 252 1 0.0000000 8.1460000 16.2930000 19.0080000
253 253 1 0.0000000 9.5040000 17.6510000 20.3660000
254 254 1 0.0000000 6.7890000 17.6510000 17.6510000
255 255 1 0.0000000 6.7890000 20.3660000 20.3660000
256 256 1 0.0000000 9.5040000 20.3660000 17.6510000
257 257 1 0.0000000 10.8620000 0.0000000 0.0000000
258 258 1 0.0000000 10.8620000 2.7150000 2.7150000
259 259 1 0.0000000 13.5770000 2.7150000 0.0000000
260 260 1 0.0000000 13.5770000 0.0000000 2.7150000
261 261 1 0.0000000 14.9350000 1.3580000 4.0730000
262 262 1 0.0000000 12.2200000 1.3580000 1.3580000
263 263 1 0.0000000 12.2200000 4.0730000 4.0730000
264 264 1 0.0000000 14.9350000 4.0730000 1.3580000
265 265 1 0.0000000 10.8620000 0.0000000 5.4310000
266 266 1 0.0000000 10.8620000 2.7150000 8.1460000
267 267 1 0.0000000 13.5770000 2.7150000 5.4310000
268 268 1 0.0000000 13.5770000 0.0000000 8.1460000
269 269 1 0.0000000 14.9350000 1.3580000 9.5040000
270 270 1 0.0000000 12.2200000 1.3580000 6.7890000
271 271 1 0.0000000 12.2200000 4.0730000 9.5040000
272 272 1 0.0000000 14.9350000 4.0730000 6.7890000
273 273 1 0.0000000 10.8620000 0.0000000 10.8620000
274 274 1 0.0000000 10.8620000 2.7150000 13.5770000
275 275 1 0.0000000 13.5770000 2.7150000 10.8620000
276 276 1 0.0000000 13.5770000 0.0000000 13.5770000
277 277 1 0.0000000 14.9350000 1.3580000 14.9350000
278 278 1 0.0000000 12.2200000 1.3580000 12.2200000
279 279 1 0.0000000 12.2200000 4.0730000 14.9350000
280 280 1 0.0000000 14.9350000 4.0730000 12.2200000
281 281 1 0.0000000 10.8620000 0.0000000 16.2930000
282 282 1 0.0000000 10.8620000 2.7150000 19.0080000
283 283 1 0.0000000 13.5770000 2.7150000 16.2930000
284 284 1 0.0000000 13.5770000 0.0000000 19.0080000
285 285 1 0.0000000 14.9350000 1.3580000 20.3660000
286 286 1 0.0000000 12.2200000 1.3580000 17.6510000
287 287 1 0.0000000 12.2200000 4.0730000 20.3660000
288 288 1 0.0000000 14.9350000 4.0730000 17.6510000
289 289 1 0.0000000 10.8620000 5.4310000 0.0000000
290 290 1 0.0000000 10.8620000 8.1460000 2.7150000
291 291 1 0.0000000 13.5770000 8.1460000 0.0000000
292 292 1 0.0000000 13.5770000 5.4310000 2.7150000
293 293 1 0.0000000 14.9350000 6.7890000 4.0730000
294 294 1 0.0000000 12.2200000 6.7890000 1.3580000
295 295 1 0.0000000 12.2200000 9.5040000 4.0730000
296 296 1 0.0000000 14.9350000 9.5040000 1.3580000
297 297 1 0.0000000 10.8620000 5.4310000 5.4310000
298 298 1 0.0000000 10.8620000 8.1460000 8.1460000
299 299 1 0.0000000 13.5770000 8.1460000 5.4310000
300 300 1 0.0000000 13.5770000 5.4310000 8.1460000
301 301 1 0.0000000 14.9350000 6.7890000 9.5040000
302 302 1 0.0000000 12.2200000 6.7890000 6.7890000
303 303 1 0.0000000 12.2200000 9.5040000 9.5040000
304 304 1 0.0000000 14.9350000 9.5040000 6.7890000
305 305 1 0.0000000 10.8620000 5.4310000 10.8620000
306 306 1 0.0000000 10.8620000 8.1460000 13.5770000
307 307 1 0.0000000 13.5770000 8.1460000 10.8620000
308 308 1 0.0000000 13.5770000 5.4310000 13.5770000
309 309 1 0.0000000 14.9350000 6.7890000 14.9350000
310 310 1 0.0000000 12.2200000 6.7890000 12.2200000
311 311 1 0.0000000 12.2200000 9.5040000 14.9350000
312 312 1 0.0000000 14.9350000 9.5040000 12.2200000
313 313 1 0.0000000 10.8620000 5.4310000 16.2930000
314 314 1 0.0000000 10.8620000 8.1460000 19.0080000
315 315 1 0.0000000 13.5770000 8.1460000 16.2930000
316 316 1 0.0000000 13.5770000 5.4310000 19.0080000
317 317 1 0.0000000 14.9350000 6.7890000 20.3660000
318 318 1 0.0000000 12.2200000 6.7890000 17.6510000
319 319 1 0.0000000 12.2200000 9.5040000 20.3660000
320 320 1 0.0000000 14.9350000 9.5040000 17.6510000
321 321 1 0.0000000 10.8620000 10.8620000 0.0000000
322 322 1 0.0000000 10.8620000 13.5770000 2.7150000
323 323 1 0.0000000 13.5770000 13.5770000 0.0000000
324 324 1 0.0000000 13.5770000 10.8620000 2.7150000
325 325 1 0.0000000 14.9350000 12.2200000 4.0730000
326 326 1 0.0000000 12.2200000 12.2200000 1.3580000
327 327 1 0.0000000 12.2200000 14.9350000 4.0730000
328 328 1 0.0000000 14.9350000 14.9350000 1.3580000
329 329 1 0.0000000 10.8620000 10.8620000 5.4310000
330 330 1 0.0000000 10.8620000 13.5770000 8.1460000
331 331 1 0.0000000 13.5770000 13.5770000 5.4310000
332 332 1 0.0000000 13.5770000 10.8620000 8.1460000
333 333 1 0.0000000 14.9350000 12.2200000 9.5040000
334 334 1 0.0000000 12.2200000 12.2200000 6.7890000
335 335 1 0.0000000 12.2200000 14.9350000 9.5040000
336 336 1 0.0000000 14.9350000 14.9350000 6.7890000
337 337 1 0.0000000 10.8620000 10.8620000 10.8620000
338 338 1 0.0000000 10.8620000 13.5770000 13.5770000
339 339 1 0.0000000 13.5770000 13.5770000 10.8620000
340 340 1 0.0000000 13.5770000 10.8620000 13.5770000
341 341 1 0.0000000 14.9350000 12.2200000 14.9350000
342 342 1 0.0000000 12.2200000 12.2200000 12.2200000
343 343 1 0.0000000 12.2200000 14.9350000 14.9350000
344 344 1 0.0000000 14.9350000 14.9350000 12.2200000
345 345 1 0.0000000 10.8620000 10.8620000 16.2930000
346 346 1 0.0000000 10.8620000 13.5770000 19.0080000
347 347 1 0.0000000 13.5770000 13.5770000 16.2930000
348 348 1 0.0000000 13.5770000 10.8620000 19.0080000
349 349 1 0.0000000 14.9350000 12.2200000 20.3660000
350 350 1 0.0000000 12.2200000 12.2200000 17.6510000
351 351 1 0.0000000 12.2200000 14.9350000 20.3660000
352 352 1 0.0000000 14.9350000 14.9350000 17.6510000
353 353 1 0.0000000 10.8620000 16.2930000 0.0000000
354 354 1 0.0000000 10.8620000 19.0080000 2.7150000
355 355 1 0.0000000 13.5770000 19.0080000 0.0000000
356 356 1 0.0000000 13.5770000 16.2930000 2.7150000
357 357 1 0.0000000 14.9350000 17.6510000 4.0730000
358 358 1 0.0000000 12.2200000 17.6510000 1.3580000
359 359 1 0.0000000 12.2200000 20.3660000 4.0730000
360 360 1 0.0000000 14.9350000 20.3660000 1.3580000
361 361 1 0.0000000 10.8620000 16.2930000 5.4310000
362 362 1 0.0000000 10.8620000 19.0080000 8.1460000
363 363 1 0.0000000 13.5770000 19.0080000 5.4310000
364 364 1 0.0000000 13.5770000 16.2930000 8.1460000
365 365 1 0.0000000 14.9350000 17.6510000 9.5040000
366 366 1 0.0000000 12.2200000 17.6510000 6.7890000
367 367 1 0.0000000 12.2200000 20.3660000 9.5040000
368 368 1 0.0000000 14.9350000 20.3660000 6.7890000
369 369 1 0.0000000 10.8620000 16.2930000 10.8620000
370 370 1 0.0000000 10.8620000 19.0080000 13.5770000
371 371 1 0.0000000 13.5770000 19.0080000 10.8620000
372 372 1 0.0000000 13.5770000 16.2930000 13.5770000
373 373 1 0.0000000 14.9350000 17.6510000 14.9350000
374 374 1 0.0000000 12.2200000 17.6510000 12.2200000
375 375 1 0.0000000 12.2200000 20.3660000 14.9350000
376 376 1 0.0000000 14.9350000 20.3660000 12.2200000
377 377 1 0.0000000 10.8620000 16.2930000 16.2930000
378 378 1 0.0000000 10.8620000 19.0080000 19.0080000
379 379 1 0.0000000 13.5770000 19.0080000 16.2930000
380 380 1 0.0000000 13.5770000 16.2930000 19.0080000
381 381 1 0.0000000 14.9350000 17.6510000 20.3660000
382 382 1 0.0000000 12.2200000 17.6510000 17.6510000
383 383 1 0.0000000 12.2200000 20.3660000 20.3660000
384 384 1 0.0000000 14.9350000 20.3660000 17.6510000
385 385 1 0.0000000 16.2930000 0.0000000 0.0000000
386 386 1 0.0000000 16.2930000 2.7150000 2.7150000
387 387 1 0.0000000 19.0080000 2.7150000 0.0000000
388 388 1 0.0000000 19.0080000 0.0000000 2.7150000
389 389 1 0.0000000 20.3660000 1.3580000 4.0730000
390 390 1 0.0000000 17.6510000 1.3580000 1.3580000
391 391 1 0.0000000 17.6510000 4.0730000 4.0730000
392 392 1 0.0000000 20.3660000 4.0730000 1.3580000
393 393 1 0.0000000 16.2930000 0.0000000 5.4310000
394 394 1 0.0000000 16.2930000 2.7150000 8.1460000
395 395 1 0.0000000 19.0080000 2.7150000 5.4310000
396 396 1 0.0000000 19.0080000 0.0000000 8.1460000
397 397 1 0.0000000 20.3660000 1.3580000 9.5040000
398 398 1 0.0000000 17.6510000 1.3580000 6.7890000
399 399 1 0.0000000 17.6510000 4.0730000 9.5040000
400 400 1 0.0000000 20.3660000 4.0730000 6.7890000
401 401 1 0.0000000 16.2930000 0.0000000 10.8620000
402 402 1 0.0000000 16.2930000 2.7150000 13.5770000
403 403 1 0.0000000 19.0080000 2.7150000 10.8620000
404 404 1 0.0000000 19.0080000 0.0000000 13.5770000
405 405 1 0.0000000 20.3660000 1.3580000 14.9350000
406 406 1 0.0000000 17.6510000 1.3580000 12.2200000
407 407 1 0.0000000 17.6510000 4.0730000 14.9350000
408 408 1 0.0000000 20.3660000 4.0730000 12.2200000
409 409 1 0.0000000 16.2930000 0.0000000 16.2930000
410 410 1 0.0000000 16.2930000 2.7150000 19.0080000
411 411 1 0.0000000 19.0080000 2.7150000 16.2930000
412 412 1 0.0000000 19.0080000 0.0000000 19.0080000
413 413 1 0.0000000 20.3660000 1.3580000 20.3660000
414 414 1 0.0000000 17.6510000 1.3580000 17.6510000
415 415 1 0.0000000 17.6510000 4.0730000 20.3660000
416 416 1 0.0000000 20.3660000 4.0730000 17.6510000
417 417 1 0.0000000 16.2930000 5.4310000 0.0000000
418 418 1 0.0000000 16.2930000 8.1460000 2.7150000
419 419 1 0.0000000 19.0080000 8.1460000 0.0000000
420 420 1 0.0000000 19.0080000 5.4310000 2.7150000
421 421 1 0.0000000 20.3660000 6.7890000 4.0730000
422 422 1 0.0000000 17.6510000 6.7890000 1.3580000
423 423 1 0.0000000 17.6510000 9.5040000 4.0730000
424 424 1 0.0000000 20.3660000 9.5040000 1.3580000
425 425 1 0.0000000 16.2930000 5.4310000 5.4310000
426 426 1 0.0000000 16.2930000 8.1460000 8.1460000
427 427 1 0.0000000 19.0080000 8.1460000 5.4310000
428 428 1 0.0000000 19.0080000 5.4310000 8.1460000
429 429 1 0.0000000 20.3660000 6.7890000 9.5040000
430 430 1 0.0000000 17.6510000 6.7890000 6.7890000
431 431 1 0.0000000 17.6510000 9.5040000 9.5040000
432 432 1 0.0000000 20.3660000 9.5040000 6.7890000
433 433 1 0.0000000 16.2930000 5.4310000 10.8620000
434 434 1 0.0000000 16.2930000 8.1460000 13.5770000
435 435 1 0.0000000 19.0080000 8.1460000 10.8620000
436 436 1 0.0000000 19.0080000 5.4310000 13.5770000
437 437 1 0.0000000 20.3660000 6.7890000 14.9350000
438 438 1 0.0000000 17.6510000 6.7890000 12.2200000
439 439 1 0.0000000 17.6510000 9.5040000 14.9350000
440 440 1 0.0000000 20.3660000 9.5040000 12.2200000
441 441 1 0.0000000 16.2930000 5.4310000 16.2930000
442 442 1 0.0000000 16.2930000 8.1460000 19.0080000
443 443 1 0.0000000 19.0080000 8.1460000 16.2930000
444 444 1 0.0000000 19.0080000 5.4310000 19.0080000
445 445 1 0.0000000 20.3660000 6.7890000 20.3660000
446 446 1 0.0000000 17.6510000 6.7890000 17.6510000
447 447 1 0.0000000 17.6510000 9.5040000 20.3660000
448 448 1 0.0000000 20.3660000 9.5040000 17.6510000
449 449 1 0.0000000 16.2930000 10.8620000 0.0000000
450 450 1 0.0000000 16.2930000 13.5770000 2.7150000
451 451 1 0.0000000 19.0080000 13.5770000 0.0000000
452 452 1 0.0000000 19.0080000 10.8620000 2.7150000
453 453 1 0.0000000 20.3660000 12.2200000 4.0730000
454 454 1 0.0000000 17.6510000 12.2200000 1.3580000
455 455 1 0.0000000 17.6510000 14.9350000 4.0730000
456 456 1 0.0000000 20.3660000 14.9350000 1.3580000
457 457 1 0.0000000 16.2930000 10.8620000 5.4310000
458 458 1 0.0000000 16.2930000 13.5770000 8.1460000
459 459 1 0.0000000 19.0080000 13.5770000 5.4310000
460 460 1 0.0000000 19.0080000 10.8620000 8.1460000
461 461 1 0.0000000 20.3660000 12.2200000 9.5040000
462 462 1 0.0000000 17.6510000 12.2200000 6.7890000
463 463 1 0.0000000 17.6510000 14.9350000 9.5040000
464 464 1 0.0000000 20.3660000 14.9350000 6.7890000
465 465 1 0.0000000 16.2930000 10.8620000 10.8620000
466 466 1 0.0000000 16.2930000 13.5770000 13.5770000
467 467 1 0.0000000 19.0080000 13.5770000 10.8620000
468 468 1 0.0000000 19.0080000 10.8620000 13.5770000
469 469 1 0.0000000 20.3660000 12.2200000 14.9350000
470 470 1 0.0000000 17.6510000 12.2200000 12.2200000
471 471 1 0.0000000 17.6510000 14.9350000 14.9350000
472 472 1 0.0000000 20.3660000 14.9350000 12.2200000
473 473 1 0.0000000 16.2930000 10.8620000 16.2930000
474 474 1 0.0000000 16.2930000 13.5770000 19.0080000
475 475 1 0.0000000 19.0080000 13.5770000 16.2930000
476 476 1 0.0000000 19.0080000 10.8620000 19.0080000
477 477 1 0.0000000 20.3660000 12.2200000 20.3660000
478 478 1 0.0000000 17.6510000 12.2200000 17.6510000
479 479 1 0.0000000 17.6510000 14.9350000 20.3660000
480 480 1 0.0000000 20.3660000 14.9350000 17.6510000
481 481 1 0.0000000 16.2930000 16.2930000 0.0000000
482 482 1 0.0000000 16.2930000 19.0080000 2.7150000
483 483 1 0.0000000 19.0080000 19.0080000 0.0000000
484 484 1 0.0000000 19.0080000 16.2930000 2.7150000
485 485 1 0.0000000 20.3660000 17.6510000 4.0730000
486 486 1 0.0000000 17.6510000 17.6510000 1.3580000
487 487 1 0.0000000 17.6510000 20.3660000 4.0730000
488 488 1 0.0000000 20.3660000 20.3660000 1.3580000
489 489 1 0.0000000 16.2930000 16.2930000 5.4310000
490 490 1 0.0000000 16.2930000 19.0080000 8.1460000
491 491 1 0.0000000 19.0080000 19.0080000 5.4310000
492 492 1 0.0000000 19.0080000 16.2930000 8.1460000
493 493 1 0.0000000 20.3660000 17.6510000 9.5040000
494 494 1 0.0000000 17.6510000 17.6510000 6.7890000
495 495 1 0.0000000 17.6510000 20.3660000 9.5040000
496 496 1 0.0000000 20.3660000 20.3660000 6.7890000
497 497 1 0.0000000 16.2930000 16.2930000 10.8620000
498 498 1 0.0000000 16.2930000 19.0080000 13.5770000
499 499 1 0.0000000 19.0080000 19.0080000 10.8620000
500 500 1 0.0000000 19.0080000 16.2930000 13.5770000
501 501 1 0.0000000 20.3660000 17.6510000 14.9350000
502 502 1 0.0000000 17.6510000 17.6510000 12.2200000
503 503 1 0.0000000 17.6510000 20.3660000 14.9350000
504 504 1 0.0000000 20.3660000 20.3660000 12.2200000
505 505 1 0.0000000 16.2930000 16.2930000 16.2930000
506 506 1 0.0000000 16.2930000 19.0080000 19.0080000
507 507 1 0.0000000 19.0080000 19.0080000 16.2930000
508 508 1 0.0000000 19.0080000 16.2930000 19.0080000
509 509 1 0.0000000 20.3660000 17.6510000 20.3660000
510 510 1 0.0000000 17.6510000 17.6510000 17.6510000
511 511 1 0.0000000 17.6510000 20.3660000 20.3660000
512 512 1 0.0000000 20.3660000 20.3660000 17.6510000

View File

@ -0,0 +1,29 @@
LAMMPS description
8 atoms
0 bonds
0 angles
0 dihedrals
0 impropers
1 atom types
0 bond types
0 angle types
0 dihedral types
0 improper types
0.0000000 5.4310000 xlo xhi
0.0000000 5.4310000 ylo yhi
0.0000000 5.4310000 zlo zhi
Atoms
1 1 1 0.0000000 0.0000000 0.0000000 0.0000000
2 2 1 0.0000000 1.3577500 1.3577500 1.3572000
3 3 1 0.0000000 2.7155000 2.7155000 0.0000000
4 4 1 0.0000000 4.0732500 4.0732500 1.3572000
5 5 1 0.0000000 2.7155000 0.0000000 2.7144000
6 6 1 0.0000000 4.0732500 1.3577500 4.0732500
7 7 1 0.0000000 0.0000000 2.7155000 2.7155000
8 8 1 0.0000000 1.3577500 4.0732500 4.0732500

View File

@ -0,0 +1,192 @@
5409.83472486 3.05075234 0.00000214
-1277.48270695 -863.24917964 -862.95613831
-193.14095266 0.11071645 0.00000015
-1277.48270619 -863.24917934 862.95613793
-193.17613831 0.34066975 -0.00000031
-1276.01088244 861.54715125 -861.62537402
83.46959051 -0.09801326 0.00000000
-1276.01088167 861.54715064 861.62537387
3.05073556 5409.83419867 0.00000137
-863.13224993 -1277.34160622 -862.92133430
0.12865796 -193.14095472 -0.00000023
-863.13224825 -1277.34160485 862.92133392
-0.23661028 83.46934214 -0.00000046
861.66402909 -1276.15172701 861.66024333
-0.00634065 -193.17585981 -0.00000015
861.66402909 -1276.15172686 -861.66024394
0.00000031 0.00000031 5410.11037330
-862.89766079 -862.97973912 -1277.71823542
0.00000000 -0.00000008 83.84059083
862.89766018 862.97973851 -1277.71823557
0.00000015 0.00000015 -193.17558390
-861.60900269 861.52691291 -1276.08157137
-0.00000015 -0.00000031 -193.17573821
861.60900330 -861.52691284 -1276.08157236
-1277.48271824 -863.13225435 -862.89768596
5409.83567916 3.04882502 2.82007861
-1277.34161080 -863.24919475 862.97975804
-193.14089260 0.11950100 0.11994134
-1277.52243157 863.24943259 -863.11331046
-193.17597070 0.16713301 -0.02106496
-1274.64156872 859.96385388 860.17328202
83.46945758 -0.16730525 -0.06100253
-863.24919444 -1277.34161103 -862.97975804
3.04882666 5409.83567944 -2.82007731
-863.13225496 -1277.48271916 862.89768688
0.11950094 -193.14089255 -0.11994043
863.24943320 -1277.52243118 863.11331076
-0.16730522 83.46945778 0.06100314
859.96385365 -1274.64156819 -860.17328225
0.16713979 -193.17596607 0.02106008
-862.95611199 -862.92132598 -1277.71824411
2.82004085 -2.82004013 5410.11000835
862.92132743 862.95611344 -1277.71824587
-0.11994722 0.11994786 83.84083834
-862.88110757 862.88110699 -1277.34764097
0.02099713 0.06108924 -193.17561785
860.25587487 -860.25587502 -1274.81548840
-0.06108897 -0.02099687 -193.17561808
-193.14095465 0.12865765 0.00000015
-1277.34160508 -863.13224794 862.92133361
5409.83419867 3.05073968 0.00000092
-1277.34160584 -863.13224924 -862.92133483
83.46934214 -0.23660998 -0.00000076
-1276.15172724 861.66402917 861.66024325
-193.17585988 -0.00634042 -0.00000031
-1276.15172694 861.66402940 -861.66024325
0.11071645 -193.14095243 0.00000046
-863.24917949 -1277.48270718 862.95613831
3.05075524 5409.83472478 -0.00000046
-863.24918117 -1277.48270825 -862.95613923
0.34066922 -193.17613823 0.00000046
861.54715094 -1276.01088228 -861.62537295
-0.09801303 83.46959035 0.00000015
861.54713538 -1276.01088145 861.62537387
-0.00000046 -0.00000023 83.84059068
862.97973867 862.89766010 -1277.71823633
-0.00000214 -0.00000053 5410.11037574
-862.97973943 -862.89766079 -1277.71823633
0.00000015 0.00000008 -193.17558374
861.52691291 -861.60900269 -1276.08157198
-0.00000015 -0.00000015 -193.17573814
-861.52691368 861.60900261 -1276.08157243
-1277.48271786 -863.13225450 862.89768520
-193.14089232 0.11950085 -0.11994115
-1277.34161255 -863.24919673 -862.97975957
5409.83568051 3.04882517 -2.82007644
-1277.52243110 863.24943259 863.11330990
83.46945732 -0.16730494 0.06100319
-1274.64156796 859.96385342 -860.17328103
-193.17597041 0.16713331 0.02106477
-863.24919482 -1277.34161057 862.97975774
0.11950077 -193.14089270 0.11994160
-863.13225473 -1277.48271839 -862.89768673
3.04882502 5409.83568081 2.82007903
863.24943084 -1277.52242966 -863.11330868
0.16713324 -193.17597064 -0.02106522
859.96385510 -1274.64156926 860.17328255
-0.16730411 83.46945641 -0.06100350
862.95611161 862.92132537 -1277.71824365
0.11994725 -0.11994740 83.84083859
-862.92132606 -862.95611207 -1277.71824548
-2.82003936 2.82004013 5410.11000806
862.88110509 -862.88110547 -1277.34764015
0.06108893 0.02099703 -193.17561792
-860.25587388 860.25587441 -1274.81548916
-0.02099726 -0.06108878 -193.17561777
-193.17613465 -0.23660693 0.00000015
-1277.52241409 863.24943328 -862.88111478
83.46934549 0.34066334 -0.00000015
-1277.52241425 863.24943335 862.88111508
5404.58897235 -9.71806749 0.00000015
-1273.31333522 -858.38273960 -858.96245956
-193.21062369 -0.11938368 0.00000000
-1273.31333598 -858.38273967 858.96245926
0.34066342 83.46934572 0.00000015
863.24943335 -1277.52241402 862.88111478
-0.23660723 -193.17613480 -0.00000046
863.24943320 -1277.52241425 -862.88111432
-9.71806582 5404.58897135 -0.00000183
-858.38273891 -1273.31333552 -858.96245926
-0.11938338 -193.21062369 0.00000000
-858.38273937 -1273.31333598 858.96245987
-0.00000031 -0.00000008 -193.17559595
-863.11328229 863.11328297 -1277.34763999
0.00000000 -0.00000015 -193.17559595
863.11328305 -863.11328282 -1277.34763984
0.00000122 -0.00000259 5404.30470550
-858.80486827 -858.80486866 -1273.17865241
-0.00000031 0.00000000 83.09905870
858.80486827 858.80486812 -1273.17865272
-1276.01089136 861.66402482 -861.60900483
-193.17596134 -0.16730494 0.02099535
-1276.15175745 861.54714988 861.52691337
83.46947097 0.16714109 0.06108436
-1273.31334651 -858.38273311 -858.80488185
5404.58493608 -3.04507687 -2.81778617
-1276.19187193 -861.66399965 861.74280750
-193.21058304 -0.11920641 -0.12012575
861.54714972 -1276.15175730 861.52691337
0.16714140 83.46947120 0.06108451
861.66402345 -1276.01089022 -861.60900330
-0.16730487 -193.17596164 0.02099489
-858.38273281 -1273.31334681 -858.80488063
-3.04507603 5404.58493554 -2.81778617
-861.66400079 -1276.19187270 861.74280887
-0.11920511 -193.21058281 -0.12012498
-861.62536929 861.66025668 -1276.08157121
-0.02106026 0.06099877 -193.17561197
861.66025752 -861.62537051 -1276.08157274
0.06099923 -0.02106049 -193.17561227
-858.96244980 -858.96244965 -1273.17866523
-2.81780608 -2.81780615 5404.30474272
861.58531232 861.58531248 -1275.71087663
0.12013467 0.12013460 83.09915619
83.46958166 -0.00634218 -0.00000023
-1274.64157002 859.96383191 860.25587098
-193.17585332 -0.09802844 0.00000023
-1274.64157155 859.96383290 -860.25587243
-193.21062064 -0.11939070 -0.00000008
-1276.19189573 -861.66398638 861.58531118
5404.58377546 3.62403097 0.00000015
-1276.19189558 -861.66398615 -861.58531103
-0.09802859 -193.17585355 -0.00000015
859.96383206 -1274.64156979 -860.25587113
-0.00634187 83.46958204 -0.00000008
859.96383282 -1274.64157132 860.25587212
-0.11939055 -193.21062041 0.00000000
-861.66398576 -1276.19189528 861.58531087
3.62402982 5404.58377698 -0.00000076
-861.66398927 -1276.19189772 -861.58531331
0.00000000 0.00000000 -193.17573654
860.17327676 -860.17327637 -1274.81551212
0.00000031 0.00000023 -193.17573676
-860.17327615 860.17327645 -1274.81551258
0.00000000 0.00000015 83.09907327
861.74281299 861.74281299 -1275.71086763
-0.00000046 -0.00000015 5404.30514861
-861.74281406 -861.74281421 -1275.71086938
-1276.01088968 861.66402284 861.60900330
83.46947136 0.16714109 -0.06108436
-1276.15175722 861.54714957 -861.52691391
-193.17596141 -0.16730510 -0.02099527
-1273.31334666 -858.38273281 858.80488124
-193.21058304 -0.11920641 0.12012636
-1276.19187285 -861.66400087 -861.74280773
5404.58493638 -3.04507565 2.81778602
861.54715133 -1276.15175913 -861.52691490
-0.16730502 -193.17596118 -0.02099497
861.66402314 -1276.01088976 861.60900383
0.16714125 83.46947151 -0.06108497
-858.38273296 -1273.31334681 858.80488139
-0.11920686 -193.21058311 0.12012605
-861.66400079 -1276.19187255 -861.74280811
-3.04506703 5404.58493432 2.81779319
861.62536952 -861.66025637 -1276.08157175
-0.06099938 0.02106080 -193.17561235
-861.66025645 861.62536929 -1276.08157213
0.02106049 -0.06099862 -193.17561189
858.96245049 858.96245041 -1273.17866553
-0.12013444 -0.12013475 83.09915550
-861.58531232 -861.58531217 -1275.71087655
2.81780737 2.81780753 5404.30474547

View File

@ -0,0 +1,58 @@
LAMMPS (16 Jul 2018)
Reading data file ...
orthogonal box = (0 0 0) to (5.431 5.431 5.431)
1 by 2 by 2 MPI processor grid
reading atoms ...
8 atoms
Finding 1-2 1-3 1-4 neighbors ...
special bond factors lj: 0 0 0
special bond factors coul: 0 0 0
0 = max # of 1-2 neighbors
0 = max # of 1-3 neighbors
0 = max # of 1-4 neighbors
1 = max # of special neighbors
Neighbor list info ...
update every 1 steps, delay 10 steps, check yes
max neighbors/atom: 2000, page size: 100000
master list distance cutoff = 4
ghost atom cutoff = 4
binsize = 2, bins = 3 3 3
1 neighbor lists, perpetual/occasional/extra = 1 0 0
(1) pair tersoff, perpetual
attributes: full, newton on
pair build: full/bin
stencil: full/bin/3d
bin: standard
Calculating Dynamical Matrix...
Dynamical Matrix calculation took 0.001183 seconds
Finished Calculating Dynamical Matrix
Loop time of 1.22396e+06 on 4 procs for 0 steps with 8 atoms
0.0% CPU use with 4 MPI tasks x no OpenMP threads
MPI task timing breakdown:
Section | min time | avg time | max time |%varavg| %total
---------------------------------------------------------------
Pair | 0.00016781 | 0.00041345 | 0.00051464 | 0.0 | 0.00
Bond | 1.9255e-06 | 2.1775e-06 | 2.4787e-06 | 0.0 | 0.00
Neigh | 0 | 0 | 0 | 0.0 | 0.00
Comm | 0.00056143 | 0.00066602 | 0.00090865 | 0.0 | 0.00
Output | 0 | 0 | 0 | 0.0 | 0.00
Modify | 0 | 0 | 0 | 0.0 | 0.00
Other | | 1.224e+06 | | |100.00
Nlocal: 2 ave 3 max 1 min
Histogram: 1 0 0 0 0 2 0 0 0 1
Nghost: 56 ave 57 max 55 min
Histogram: 1 0 0 0 0 2 0 0 0 1
Neighs: 0 ave 0 max 0 min
Histogram: 4 0 0 0 0 0 0 0 0 0
FullNghs: 32 ave 48 max 16 min
Histogram: 1 0 0 0 0 2 0 0 0 1
Total # of neighbors = 128
Ave neighs/atom = 16
Ave special neighs/atom = 0
Neighbor list builds = 0
Dangerous builds = 0
Total wall time: 0:00:00

View File

@ -0,0 +1,29 @@
LAMMPS description
8 atoms
0 bonds
0 angles
0 dihedrals
0 impropers
1 atom types
0 bond types
0 angle types
0 dihedral types
0 improper types
0.0000000 5.4310000 xlo xhi
0.0000000 5.4310000 ylo yhi
0.0000000 5.4310000 zlo zhi
Atoms
1 1 1 0.0000000 0.0000000 0.0000000 0.0000000
2 2 1 0.0000000 1.3577500 1.3577500 1.3572000
3 3 1 0.0000000 2.7155000 2.7155000 0.0000000
4 4 1 0.0000000 4.0732500 4.0732500 1.3572000
5 5 1 0.0000000 2.7155000 0.0000000 2.7144000
6 6 1 0.0000000 4.0732500 1.3577500 4.0732500
7 7 1 0.0000000 0.0000000 2.7155000 2.7155000
8 8 1 0.0000000 1.3577500 4.0732500 4.0732500

View File

@ -40,3 +40,7 @@ fi
action fix_phonon.cpp fft3d_wrap.h action fix_phonon.cpp fft3d_wrap.h
action fix_phonon.h fft3d_wrap.h action fix_phonon.h fft3d_wrap.h
action dynamical_matrix.cpp
action dynamical_matrix.h
action third_order.cpp
action third_order.h

View File

@ -1,19 +1,23 @@
This package contains a fix phonon command that calculates dynamical This package contains a fix phonon command that calculates dynamical
matrices, which can then be used to compute phonon dispersion matrices from finite temperature MD simulations, which can then be
relations, directly from molecular dynamics simulations. used to compute phonon dispersion relations, directly from molecular
dynamics simulations.
See the doc page for the fix phonon command for detailed usage It also contains a command to compute the dynamical matrix at
instructions. pre-optimized positions through finite differences.
See the doc page for the fix phonon command or the dynamical_matrix
command for detailed usage instructions.
Use of this package requires building LAMMPS with FFT suppport, as Use of this package requires building LAMMPS with FFT suppport, as
described in doc/Section_start.html. described in doc/Section_start.html.
There are example scripts for using this package in There are example scripts for using commands in this package in
examples/USER/phonon. examples/USER/phonon.
There is an auxiliary post-processing tool in tools/phonon that will There is an auxiliary post-processing tool in tools/phonon that will
compute phonon frequencies and dispersion relations from the dynamical compute phonon frequencies and dispersion relations from the dynamical
matrices output by this command. matrices output by the fix phonon command.
There is also an alternative code, dump2phonon, available which enables There is also an alternative code, dump2phonon, available which enables
one to use the functions of fix-phonon by reading in atom-style dump one to use the functions of fix-phonon by reading in atom-style dump
@ -21,6 +25,10 @@ files of lammps (which can be converted from the trajectories of any
other MD code): other MD code):
https://github.com/lingtikong/dump2phonon https://github.com/lingtikong/dump2phonon
The person who created this package is Ling-Ti Kong (konglt at The person who created fix phonon is Ling-Ti Kong (konglt at
sjtu.edu.cn) at Shanghai Jiao Tong University. Contact him directly sjtu.edu.cn) at Shanghai Jiao Tong University. Contact him directly
if you have questions. if you have questions.
The person who created the dynamical_matrix command is Charlie Sievers
(charliesievers at cox.net) at UC Davis. Contact him directly if you
have questions about his code.

View File

@ -0,0 +1,550 @@
//
// Created by charlie sievers on 6/21/18.
//
#include <mpi.h>
#include <cstdlib>
#include "dynamical_matrix.h"
#include "atom.h"
#include "modify.h"
#include "domain.h"
#include "comm.h"
#include "group.h"
#include "force.h"
#include "math_extra.h"
#include "memory.h"
#include "bond.h"
#include "angle.h"
#include "dihedral.h"
#include "improper.h"
#include "kspace.h"
#include "update.h"
#include "neighbor.h"
#include "pair.h"
#include "timer.h"
#include "finish.h"
#include <algorithm>
using namespace LAMMPS_NS;
enum{REGULAR,ESKM};
/* ---------------------------------------------------------------------- */
DynamicalMatrix::DynamicalMatrix(LAMMPS *lmp) : Pointers(lmp), fp(NULL)
{
external_force_clear = 1;
}
/* ---------------------------------------------------------------------- */
DynamicalMatrix::~DynamicalMatrix()
{
if (fp && me == 0) fclose(fp);
memory->destroy(groupmap);
fp = NULL;
}
/* ----------------------------------------------------------------------
setup without output or one-time post-init setup
flag = 0 = just force calculation
flag = 1 = reneighbor and force calculation
------------------------------------------------------------------------- */
void DynamicalMatrix::setup()
{
// setup domain, communication and neighboring
// acquire ghosts
// build neighbor lists
if (triclinic) domain->x2lamda(atom->nlocal);
domain->pbc();
domain->reset_box();
comm->setup();
if (neighbor->style) neighbor->setup_bins();
comm->exchange();
comm->borders();
if (triclinic) domain->lamda2x(atom->nlocal+atom->nghost);
domain->image_check();
domain->box_too_small_check();
neighbor->build(1);
neighbor->ncalls = 0;
neighbor->every = 2; // build every this many steps
neighbor->delay = 1;
neighbor->ago = 0;
neighbor->ndanger = 0;
// compute all forces
external_force_clear = 0;
eflag=0;
vflag=0;
update_force();
//if all then skip communication groupmap population
if (gcount == atom->natoms)
for (bigint i=0; i<atom->natoms; i++)
groupmap[i] = i;
else
create_groupmap();
}
/* ---------------------------------------------------------------------- */
void DynamicalMatrix::command(int narg, char **arg)
{
MPI_Comm_rank(world,&me);
if (domain->box_exist == 0)
error->all(FLERR,"Dynamical_matrix command before simulation box is defined");
if (narg < 2) error->all(FLERR,"Illegal dynamical_matrix command");
lmp->init();
// orthogonal vs triclinic simulation box
triclinic = domain->triclinic;
if (force->pair && force->pair->compute_flag) pair_compute_flag = 1;
else pair_compute_flag = 0;
if (force->kspace && force->kspace->compute_flag) kspace_compute_flag = 1;
else kspace_compute_flag = 0;
// group and style
igroup = group->find(arg[0]);
if (igroup == -1) error->all(FLERR,"Could not find dynamical matrix group ID");
groupbit = group->bitmask[igroup];
gcount = group->count(igroup);
dynlen = (gcount)*3;
memory->create(groupmap,atom->natoms,"total_group_map:totalgm");
update->setupflag = 1;
int style = -1;
if (strcmp(arg[1],"regular") == 0) style = REGULAR;
else if (strcmp(arg[1],"eskm") == 0) style = ESKM;
else error->all(FLERR,"Illegal Dynamical Matrix command");
del = force->numeric(FLERR, arg[2]);
// set option defaults
binaryflag = 0;
scaleflag = 0;
compressed = 0;
file_flag = 0;
file_opened = 0;
conversion = 1;
// read options from end of input line
if (style == REGULAR) options(narg-3,&arg[3]); //COME BACK
else if (style == ESKM) options(narg-3,&arg[3]); //COME BACK
else if (comm->me == 0 && screen) fprintf(screen,"Illegal Dynamical Matrix command\n");
// move atoms by 3-vector or specified variable(s)
if (style == REGULAR) {
setup();
timer->init();
timer->barrier_start();
calculateMatrix();
timer->barrier_stop();
}
if (style == ESKM) {
setup();
convert_units(update->unit_style);
conversion = conv_energy/conv_distance/conv_mass;
timer->init();
timer->barrier_start();
calculateMatrix();
timer->barrier_stop();
}
Finish finish(lmp);
finish.end(1);
}
/* ----------------------------------------------------------------------
parse optional parameters
------------------------------------------------------------------------- */
void DynamicalMatrix::options(int narg, char **arg)
{
if (narg < 0) error->all(FLERR,"Illegal dynamical_matrix command");
int iarg = 0;
const char* filename = "dynmat.dyn";
while (iarg < narg) {
if (strcmp(arg[iarg],"binary") == 0) {
if (iarg + 2 > narg) error->all(FLERR, "Illegal dynamical_matrix command");
if (strcmp(arg[iarg+1],"gzip") == 0) {
compressed = 1;
}
else if (strcmp(arg[iarg+1],"yes") == 0) {
binaryflag = 1;
}
iarg += 2;
}
else if (strcmp(arg[iarg],"file") == 0) {
if (iarg+2 > narg) error->all(FLERR, "Illegal dynamical_matrix command");
filename = arg[iarg + 1];
file_flag = 1;
iarg += 2;
} else error->all(FLERR,"Illegal dynamical_matrix command");
}
if (file_flag == 1) {
openfile(filename);
}
}
/* ----------------------------------------------------------------------
generic opening of a file
ASCII or binary or gzipped
some derived classes override this function
------------------------------------------------------------------------- */
void DynamicalMatrix::openfile(const char* filename)
{
// if file already opened, return
//if (me!=0) return;
if (file_opened) return;
if (compressed) {
#ifdef LAMMPS_GZIP
char gzip[128];
sprintf(gzip,"gzip -6 > %s",filename);
#ifdef _WIN32
fp = _popen(gzip,"wb");
#else
fp = popen(gzip,"w");
#endif
#else
error->one(FLERR,"Cannot open gzipped file");
#endif
} else if (binaryflag) {
fp = fopen(filename,"wb");
} else {
fp = fopen(filename,"w");
}
if (fp == NULL) error->one(FLERR,"Cannot open dump file");
file_opened = 1;
}
/* ----------------------------------------------------------------------
create dynamical matrix
------------------------------------------------------------------------- */
void DynamicalMatrix::calculateMatrix()
{
int local_idx; // local index
int local_jdx; // second local index
int nlocal = atom->nlocal;
bigint natoms = atom->natoms;
int *type = atom->type;
int *gm = groupmap;
double imass; // dynamical matrix element
double *m = atom->mass;
double **f = atom->f;
double **dynmat = new double*[3];
for (int i=0; i<3; i++)
dynmat[i] = new double[dynlen];
double **fdynmat = new double*[3];
for (int i=0; i<3; i++)
fdynmat[i] = new double[dynlen];
//initialize dynmat to all zeros
dynmat_clear(dynmat);
if (comm->me == 0 && screen) fprintf(screen,"Calculating Dynamical Matrix...\n");
update->nsteps = 0;
for (bigint i=1; i<=natoms; i++){
local_idx = atom->map(i);
for (bigint alpha=0; alpha<3; alpha++){
displace_atom(local_idx, alpha, 1);
update_force();
for (bigint j=1; j<=natoms; j++){
local_jdx = atom->map(j);
if (local_idx >= 0 && local_jdx >= 0 && local_jdx < nlocal
&& gm[i-1] >= 0 && gm[j-1] >= 0){
for (int beta=0; beta<3; beta++){
dynmat[alpha][(gm[j-1])*3+beta] -= f[local_jdx][beta];
}
}
}
displace_atom(local_idx,alpha,-2);
update_force();
for (bigint j=1; j<=natoms; j++){
local_jdx = atom->map(j);
if (local_idx >= 0 && local_jdx >= 0 && local_jdx < nlocal
&& gm[i-1] >= 0 && gm[j-1] >= 0){
for (bigint beta=0; beta<3; beta++){
if (atom->rmass_flag == 1)
imass = sqrt(m[local_idx] * m[local_jdx]);
else
imass = sqrt(m[type[local_idx]] * m[type[local_jdx]]);
dynmat[alpha][(gm[j-1])*3+beta] -= -f[local_jdx][beta];
dynmat[alpha][(gm[j-1])*3+beta] /= (2 * del * imass);
dynmat[alpha][(gm[j-1])*3+beta] *= conversion;
}
}
}
displace_atom(local_idx,alpha,1);
}
for (int k=0; k<3; k++)
MPI_Reduce(dynmat[k],fdynmat[k],dynlen,MPI_DOUBLE,MPI_SUM,0,world);
if (me == 0)
writeMatrix(fdynmat);
dynmat_clear(dynmat);
}
for (int i=0; i < 3; i++)
delete [] dynmat[i];
delete [] dynmat;
for (int i=0; i < 3; i++)
delete [] fdynmat[i];
delete [] fdynmat;
if (screen && me ==0 ) fprintf(screen,"Finished Calculating Dynamical Matrix\n");
}
/* ----------------------------------------------------------------------
write dynamical matrix
------------------------------------------------------------------------- */
void DynamicalMatrix::writeMatrix(double **dynmat)
{
if (me != 0)
return;
// print file comment lines
if (!binaryflag && fp) {
clearerr(fp);
for (int i = 0; i < 3; i++) {
for (bigint j = 0; j < dynlen; j++) {
if ((j+1)%3==0) fprintf(fp, "%4.8f\n", dynmat[i][j]);
else fprintf(fp, "%4.8f ",dynmat[i][j]);
}
}
}
if (ferror(fp))
error->one(FLERR,"Error writing to file");
if (binaryflag && fp) {
clearerr(fp);
fwrite(&dynmat[0], sizeof(double), 3 * dynlen, fp);
if (ferror(fp))
error->one(FLERR, "Error writing to binary file");
}
}
/* ----------------------------------------------------------------------
Displace atoms
---------------------------------------------------------------------- */
void DynamicalMatrix::displace_atom(int local_idx, int direction, int magnitude)
{
if (local_idx < 0) return;
double **x = atom->x;
int *sametag = atom->sametag;
int j = local_idx;
x[local_idx][direction] += del*magnitude;
while (sametag[j] >= 0){
j = sametag[j];
x[j][direction] += del*magnitude;
}
}
/* ----------------------------------------------------------------------
evaluate potential energy and forces
may migrate atoms due to reneighboring
return new energy, which should include nextra_global dof
return negative gradient stored in atom->f
return negative gradient for nextra_global dof in fextra
------------------------------------------------------------------------- */
void DynamicalMatrix::update_force()
{
force_clear();
if (pair_compute_flag) {
force->pair->compute(eflag,vflag);
timer->stamp(Timer::PAIR);
}
if (atom->molecular) {
if (force->bond) force->bond->compute(eflag,vflag);
if (force->angle) force->angle->compute(eflag,vflag);
if (force->dihedral) force->dihedral->compute(eflag,vflag);
if (force->improper) force->improper->compute(eflag,vflag);
timer->stamp(Timer::BOND);
}
if (kspace_compute_flag) {
force->kspace->compute(eflag,vflag);
timer->stamp(Timer::KSPACE);
}
if (force->newton) {
comm->reverse_comm();
timer->stamp(Timer::COMM);
}
++ update->nsteps;
}
/* ----------------------------------------------------------------------
clear force on own & ghost atoms
clear other arrays as needed
------------------------------------------------------------------------- */
void DynamicalMatrix::force_clear()
{
if (external_force_clear) return;
// clear global force array
// if either newton flag is set, also include ghosts
size_t nbytes = sizeof(double) * atom->nlocal;
if (force->newton) nbytes += sizeof(double) * atom->nghost;
if (nbytes) {
memset(&atom->f[0][0],0,3*nbytes);
}
}
/* ----------------------------------------------------------------------
clear dynmat needed
------------------------------------------------------------------------- */
void DynamicalMatrix::dynmat_clear(double **dynmat)
{
size_t nbytes = sizeof(double) * dynlen;
if (nbytes) {
for (int i=0; i<3; i++)
memset(&dynmat[i][0],0,nbytes);
}
}
/* ---------------------------------------------------------------------- */
void DynamicalMatrix::convert_units(const char *style)
{
// physical constants from:
// http://physics.nist.gov/cuu/Constants/Table/allascii.txt
// using thermochemical calorie = 4.184 J
if (strcmp(style,"lj") == 0) {
error->all(FLERR,"Conversion Not Set");
//conversion = 1; // lj -> 10 J/mol
} else if (strcmp(style,"real") == 0) {
conv_energy = 418.4; // kcal/mol -> 10 J/mol
conv_mass = 1; // g/mol -> g/mol
conv_distance = 1; // angstrom -> angstrom
} else if (strcmp(style,"metal") == 0) {
conv_energy = 9648.5; // eV -> 10 J/mol
conv_mass = 1; // g/mol -> g/mol
conv_distance = 1; // angstrom -> angstrom
} else if (strcmp(style,"si") == 0) {
if (comm->me) error->warning(FLERR,"Conversion Warning: Multiplication by Large Float");
conv_energy = 6.022E22; // J -> 10 J/mol
conv_mass = 6.022E26; // kg -> g/mol
conv_distance = 1E-10; // meter -> angstrom
} else if (strcmp(style,"cgs") == 0) {
if (comm->me) error->warning(FLERR,"Conversion Warning: Multiplication by Large Float");
conv_energy = 6.022E12; // Erg -> 10 J/mol
conv_mass = 6.022E23; // g -> g/mol
conv_distance = 1E-7; // centimeter -> angstrom
} else if (strcmp(style,"electron") == 0) {
conv_energy = 262550; // Hartree -> 10 J/mol
conv_mass = 1; // amu -> g/mol
conv_distance = 0.529177249; // bohr -> angstrom
} else if (strcmp(style,"micro") == 0) {
if (comm->me) error->warning(FLERR,"Conversion Warning: Untested Conversion");
conv_energy = 6.022E10; // picogram-micrometer^2/microsecond^2 -> 10 J/mol
conv_mass = 6.022E11; // pg -> g/mol
conv_distance = 1E-4; // micrometer -> angstrom
} else if (strcmp(style,"nano") == 0) {
if (comm->me) error->warning(FLERR,"Conversion Warning: Untested Conversion");
conv_energy = 6.022E4; // attogram-nanometer^2/nanosecond^2 -> 10 J/mol
conv_mass = 6.022E5; // ag -> g/mol
conv_distance = 0.1; // angstrom -> angstrom
} else error->all(FLERR,"Units Type Conversion Not Found");
}
/* ---------------------------------------------------------------------- */
void DynamicalMatrix::create_groupmap()
{
//Create a group map which maps atom order onto group
int local_idx; // local index
int gid = 0; //group index
int nlocal = atom->nlocal;
int *mask = atom->mask;
bigint natoms = atom->natoms;
int *recv = new int[comm->nprocs];
int *displs = new int[comm->nprocs];
int *temp_groupmap = new int[natoms];
//find number of local atoms in the group (final_gid)
for (bigint i=1; i<=natoms; i++){
local_idx = atom->map(i);
if ((local_idx >= 0) && (local_idx < nlocal) && mask[local_idx] & groupbit)
gid += 1; // gid at the end of loop is final_Gid
}
//create an array of length final_gid
int *sub_groupmap = new int[gid];
gid = 0;
//create a map between global atom id and group atom id for each proc
for (bigint i=1; i<=natoms; i++){
local_idx = atom->map(i);
if ((local_idx >= 0) && (local_idx < nlocal) && mask[local_idx] & groupbit){
sub_groupmap[gid] = i;
gid += 1;
}
}
//populate arrays for Allgatherv
for (int i=0; i<comm->nprocs; i++){
recv[i] = 0;
}
recv[comm->me] = gid;
MPI_Allreduce(recv,displs,4,MPI_INT,MPI_SUM,world);
for (int i=0; i<comm->nprocs; i++){
recv[i]=displs[i];
if (i>0) displs[i] = displs[i-1]+recv[i-1];
else displs[i] = 0;
}
//combine subgroup maps into total temporary groupmap
MPI_Allgatherv(sub_groupmap,gid,MPI_INT,temp_groupmap,recv,displs,MPI_INT,world);
std::sort(temp_groupmap,temp_groupmap+gcount);
//populate member groupmap based on temp groupmap
for (bigint i=0; i<natoms; i++){
if (i==temp_groupmap[i]-1)
groupmap[i] = temp_groupmap[i]-1;
else
groupmap[i] = -1;
}
//free that memory!
delete[] recv;
delete[] displs;
delete[] sub_groupmap;
delete[] temp_groupmap;
}

View File

@ -0,0 +1,74 @@
//
// Created by charlie sievers on 6/21/18.
//
#ifdef COMMAND_CLASS
CommandStyle(dynamical_matrix,DynamicalMatrix)
#else
#ifndef LMP_DYNAMICAL_MATRIX_H
#define LMP_DYNAMICAL_MATRIX_H
#include "pointers.h"
namespace LAMMPS_NS {
class DynamicalMatrix : protected Pointers {
public:
DynamicalMatrix(class LAMMPS *);
virtual ~DynamicalMatrix();
void command(int, char **);
void setup();
protected:
int eflag,vflag; // flags for energy/virial computation
int external_force_clear; // clear forces locally or externally
int triclinic; // 0 if domain is orthog, 1 if triclinic
int pairflag;
int pair_compute_flag; // 0 if pair->compute is skipped
int kspace_compute_flag; // 0 if kspace->compute is skipped
int nvec; // local atomic dof = length of xvec
void update_force();
void force_clear();
virtual void openfile(const char* filename);
private:
void options(int, char **);
void calculateMatrix();
void dynmat_clear(double **dynmat);
void create_groupmap();
void writeMatrix(double **dynmat);
void convert_units(const char *style);
void displace_atom(int local_idx, int direction, int magnitude);
double conversion;
double conv_energy;
double conv_distance;
double conv_mass;
double del;
int igroup,groupbit;
int gcount; // number of atoms in group
int scaleflag;
int me;
bigint dynlen;
int *groupmap;
int compressed; // 1 if dump file is written compressed, 0 no
int binaryflag; // 1 if dump file is written binary, 0 no
int file_opened; // 1 if openfile method has been called, 0 no
int file_flag; // 1 custom file name, 0 dynmat.dat
FILE *fp;
};
}
#endif //LMP_DYNAMICAL_MATRIX_H
#endif