git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@6033 f3b2605a-c512-4ea7-a41b-209d697bcdaa

This commit is contained in:
sjplimp
2011-04-29 15:52:26 +00:00
parent 995a92b9f3
commit 199c005d93
10 changed files with 601 additions and 153 deletions

View File

@ -32,13 +32,16 @@
using namespace LAMMPS_NS; using namespace LAMMPS_NS;
enum{ROTATE,ALL};
#define INERTIA 0.2 // moment of inertia for ellipsoid
/* ---------------------------------------------------------------------- */ /* ---------------------------------------------------------------------- */
ComputeTempAsphere::ComputeTempAsphere(LAMMPS *lmp, int narg, char **arg) : ComputeTempAsphere::ComputeTempAsphere(LAMMPS *lmp, int narg, char **arg) :
Compute(lmp, narg, arg) Compute(lmp, narg, arg)
{ {
if (narg != 3 && narg != 4) if (narg < 3) error->all("Illegal compute temp/asphere command");
error->all("Illegal compute temp/asphere command");
scalar_flag = vector_flag = 1; scalar_flag = vector_flag = 1;
size_vector = 6; size_vector = 6;
@ -48,11 +51,24 @@ ComputeTempAsphere::ComputeTempAsphere(LAMMPS *lmp, int narg, char **arg) :
tempbias = 0; tempbias = 0;
id_bias = NULL; id_bias = NULL;
if (narg == 4) { mode = ALL;
tempbias = 1;
int n = strlen(arg[3]) + 1; int iarg = 3;
id_bias = new char[n]; while (iarg < narg) {
strcpy(id_bias,arg[3]); if (strcmp(arg[iarg],"bias") == 0) {
if (iarg+2 > narg) error->all("Illegal compute temp/asphere command");
tempbias = 1;
int n = strlen(arg[iarg+1]) + 1;
id_bias = new char[n];
strcpy(id_bias,arg[iarg+1]);
iarg += 2;
} else if (strcmp(arg[iarg],"dof") == 0) {
if (iarg+2 > narg) error->all("Illegal compute temp/asphere command");
if (strcmp(arg[iarg+1],"rotate") == 0) mode = ROTATE;
else if (strcmp(arg[iarg+1],"all") == 0) mode = ALL;
else error->all("Illegal compute temp/asphere command");
iarg += 2;
} else error->all("Illegal compute temp/asphere command");
} }
vector = new double[6]; vector = new double[6];
@ -76,8 +92,7 @@ ComputeTempAsphere::~ComputeTempAsphere()
void ComputeTempAsphere::init() void ComputeTempAsphere::init()
{ {
// check that all particles are finite-size // check that all particles are finite-size, no point particles allowed
// no point particles allowed, spherical is OK
int *ellipsoid = atom->ellipsoid; int *ellipsoid = atom->ellipsoid;
int *mask = atom->mask; int *mask = atom->mask;
@ -114,18 +129,26 @@ void ComputeTempAsphere::init()
void ComputeTempAsphere::dof_compute() void ComputeTempAsphere::dof_compute()
{ {
// 6 dof for 3d, 3 dof for 2d // 6 dof for 3d, 3 dof for 2d
// which dof are included also depends on mode
// assume full rotation of extended particles // assume full rotation of extended particles
// user should correct this via compute_modify if needed // user should correct this via compute_modify if needed
double natoms = group->count(igroup); double natoms = group->count(igroup);
int nper = 6; int nper;
if (domain->dimension == 2) nper = 3; if (domain->dimension == 3) {
if (mode == ALL) nper = 6;
else nper = 3;
} else {
if (mode == ALL) nper = 3;
else nper = 1;
}
dof = nper*natoms; dof = nper*natoms;
// additional adjustments to dof // additional adjustments to dof
if (tempbias == 1) dof -= tbias->dof_remove(-1) * natoms; if (tempbias == 1) {
else if (tempbias == 2) { if (mode == ALL) dof -= tbias->dof_remove(-1) * natoms;
} else if (tempbias == 2) {
int *mask = atom->mask; int *mask = atom->mask;
int nlocal = atom->nlocal; int nlocal = atom->nlocal;
int count = 0; int count = 0;
@ -154,46 +177,73 @@ double ComputeTempAsphere::compute_scalar()
} }
AtomVecEllipsoid::Bonus *bonus = avec->bonus; AtomVecEllipsoid::Bonus *bonus = avec->bonus;
int *ellipsoid = atom->ellipsoid;
double **v = atom->v; double **v = atom->v;
double **angmom = atom->angmom; double **angmom = atom->angmom;
double *rmass = atom->rmass; double *rmass = atom->rmass;
int *ellipsoid = atom->ellipsoid;
int *mask = atom->mask; int *mask = atom->mask;
int nlocal = atom->nlocal; int nlocal = atom->nlocal;
double *shape,*quat; double *shape,*quat;
double wbody[3],inertia[3]; double wbody[3],inertia[3];
double rot[3][3]; double rot[3][3];
double t = 0.0;
// sum translationals and rotational energy for each particle // sum translational and rotational energy for each particle
// no point particles since divide by inertia // no point particles since divide by inertia
for (int i = 0; i < nlocal; i++) double t = 0.0;
if (mask[i] & groupbit) {
shape = bonus[ellipsoid[i]].shape; if (mode == ALL) {
quat = bonus[ellipsoid[i]].quat; for (int i = 0; i < nlocal; i++)
if (mask[i] & groupbit) {
t += (v[i][0]*v[i][0] + v[i][1]*v[i][1] + v[i][2]*v[i][2]) * rmass[i];
t += (v[i][0]*v[i][0] + v[i][1]*v[i][1] + v[i][2]*v[i][2]) * rmass[i]; // principal moments of inertia
// principal moments of inertia shape = bonus[ellipsoid[i]].shape;
quat = bonus[ellipsoid[i]].quat;
inertia[0] = rmass[i] * (shape[1]*shape[1]+shape[2]*shape[2]) / 5.0; inertia[0] = INERTIA*rmass[i] * (shape[1]*shape[1]+shape[2]*shape[2]);
inertia[1] = rmass[i] * (shape[0]*shape[0]+shape[2]*shape[2]) / 5.0; inertia[1] = INERTIA*rmass[i] * (shape[0]*shape[0]+shape[2]*shape[2]);
inertia[2] = rmass[i] * (shape[0]*shape[0]+shape[1]*shape[1]) / 5.0; inertia[2] = INERTIA*rmass[i] * (shape[0]*shape[0]+shape[1]*shape[1]);
// wbody = angular velocity in body frame // wbody = angular velocity in body frame
MathExtra::quat_to_mat(quat,rot); MathExtra::quat_to_mat(quat,rot);
MathExtra::transpose_matvec(rot,angmom[i],wbody); MathExtra::transpose_matvec(rot,angmom[i],wbody);
wbody[0] /= inertia[0]; wbody[0] /= inertia[0];
wbody[1] /= inertia[1]; wbody[1] /= inertia[1];
wbody[2] /= inertia[2]; wbody[2] /= inertia[2];
t += inertia[0]*wbody[0]*wbody[0] +
inertia[1]*wbody[1]*wbody[1] + inertia[2]*wbody[2]*wbody[2];
}
t += inertia[0]*wbody[0]*wbody[0] + } else {
inertia[1]*wbody[1]*wbody[1] + inertia[2]*wbody[2]*wbody[2]; for (int i = 0; i < nlocal; i++)
} if (mask[i] & groupbit) {
// principal moments of inertia
shape = bonus[ellipsoid[i]].shape;
quat = bonus[ellipsoid[i]].quat;
inertia[0] = INERTIA*rmass[i] * (shape[1]*shape[1]+shape[2]*shape[2]);
inertia[1] = INERTIA*rmass[i] * (shape[0]*shape[0]+shape[2]*shape[2]);
inertia[2] = INERTIA*rmass[i] * (shape[0]*shape[0]+shape[1]*shape[1]);
// wbody = angular velocity in body frame
MathExtra::quat_to_mat(quat,rot);
MathExtra::transpose_matvec(rot,angmom[i],wbody);
wbody[0] /= inertia[0];
wbody[1] /= inertia[1];
wbody[2] /= inertia[2];
t += inertia[0]*wbody[0]*wbody[0] +
inertia[1]*wbody[1]*wbody[1] + inertia[2]*wbody[2]*wbody[2];
}
}
if (tempbias) tbias->restore_bias_all(); if (tempbias) tbias->restore_bias_all();
@ -217,58 +267,93 @@ void ComputeTempAsphere::compute_vector()
} }
AtomVecEllipsoid::Bonus *bonus = avec->bonus; AtomVecEllipsoid::Bonus *bonus = avec->bonus;
int *ellipsoid = atom->ellipsoid;
double **v = atom->v; double **v = atom->v;
double **angmom = atom->angmom; double **angmom = atom->angmom;
double *rmass = atom->rmass; double *rmass = atom->rmass;
int *ellipsoid = atom->ellipsoid;
int *mask = atom->mask; int *mask = atom->mask;
int nlocal = atom->nlocal; int nlocal = atom->nlocal;
double *shape,*quat; double *shape,*quat;
double wbody[3],inertia[3]; double wbody[3],inertia[3],t[6];
double rot[3][3]; double rot[3][3];
double massone,t[6]; double massone;
// sum translational and rotational energy for each particle
// no point particles since divide by inertia
for (i = 0; i < 6; i++) t[i] = 0.0; for (i = 0; i < 6; i++) t[i] = 0.0;
for (i = 0; i < nlocal; i++) if (mode == ALL) {
if (mask[i] & groupbit) { for (i = 0; i < nlocal; i++)
if (mask[i] & groupbit) {
massone = rmass[i];
t[0] += massone * v[i][0]*v[i][0];
t[1] += massone * v[i][1]*v[i][1];
t[2] += massone * v[i][2]*v[i][2];
t[3] += massone * v[i][0]*v[i][1];
t[4] += massone * v[i][0]*v[i][2];
t[5] += massone * v[i][1]*v[i][2];
// principal moments of inertia
shape = bonus[ellipsoid[i]].shape; shape = bonus[ellipsoid[i]].shape;
quat = bonus[ellipsoid[i]].quat; quat = bonus[ellipsoid[i]].quat;
// translational kinetic energy inertia[0] = INERTIA*massone * (shape[1]*shape[1]+shape[2]*shape[2]);
inertia[1] = INERTIA*massone * (shape[0]*shape[0]+shape[2]*shape[2]);
inertia[2] = INERTIA*massone * (shape[0]*shape[0]+shape[1]*shape[1]);
// wbody = angular velocity in body frame
MathExtra::quat_to_mat(quat,rot);
MathExtra::transpose_matvec(rot,angmom[i],wbody);
wbody[0] /= inertia[0];
wbody[1] /= inertia[1];
wbody[2] /= inertia[2];
// rotational kinetic energy
t[0] += inertia[0]*wbody[0]*wbody[0];
t[1] += inertia[1]*wbody[1]*wbody[1];
t[2] += inertia[2]*wbody[2]*wbody[2];
t[3] += inertia[0]*wbody[0]*wbody[1];
t[4] += inertia[1]*wbody[0]*wbody[2];
t[5] += inertia[2]*wbody[1]*wbody[2];
}
massone = rmass[i]; } else {
t[0] += massone * v[i][0]*v[i][0]; for (i = 0; i < nlocal; i++)
t[1] += massone * v[i][1]*v[i][1]; if (mask[i] & groupbit) {
t[2] += massone * v[i][2]*v[i][2];
t[3] += massone * v[i][0]*v[i][1]; // principal moments of inertia
t[4] += massone * v[i][0]*v[i][2];
t[5] += massone * v[i][1]*v[i][2];
// principal moments of inertia shape = bonus[ellipsoid[i]].shape;
quat = bonus[ellipsoid[i]].quat;
massone = rmass[i];
inertia[0] = rmass[i] * (shape[1]*shape[1]+shape[2]*shape[2]) / 5.0; inertia[0] = INERTIA*massone * (shape[1]*shape[1]+shape[2]*shape[2]);
inertia[1] = rmass[i] * (shape[0]*shape[0]+shape[2]*shape[2]) / 5.0; inertia[1] = INERTIA*massone * (shape[0]*shape[0]+shape[2]*shape[2]);
inertia[2] = rmass[i] * (shape[0]*shape[0]+shape[1]*shape[1]) / 5.0; inertia[2] = INERTIA*massone * (shape[0]*shape[0]+shape[1]*shape[1]);
// wbody = angular velocity in body frame // wbody = angular velocity in body frame
MathExtra::quat_to_mat(quat,rot); MathExtra::quat_to_mat(quat,rot);
MathExtra::transpose_matvec(rot,angmom[i],wbody); MathExtra::transpose_matvec(rot,angmom[i],wbody);
wbody[0] /= inertia[0]; wbody[0] /= inertia[0];
wbody[1] /= inertia[1]; wbody[1] /= inertia[1];
wbody[2] /= inertia[2]; wbody[2] /= inertia[2];
// rotational kinetic energy // rotational kinetic energy
t[0] += inertia[0]*wbody[0]*wbody[0]; t[0] += inertia[0]*wbody[0]*wbody[0];
t[1] += inertia[1]*wbody[1]*wbody[1]; t[1] += inertia[1]*wbody[1]*wbody[1];
t[2] += inertia[2]*wbody[2]*wbody[2]; t[2] += inertia[2]*wbody[2]*wbody[2];
t[3] += inertia[0]*wbody[0]*wbody[1]; t[3] += inertia[0]*wbody[0]*wbody[1];
t[4] += inertia[1]*wbody[0]*wbody[2]; t[4] += inertia[1]*wbody[0]*wbody[2];
t[5] += inertia[2]*wbody[1]*wbody[2]; t[5] += inertia[2]*wbody[1]*wbody[2];
} }
}
if (tempbias) tbias->restore_bias_all(); if (tempbias) tbias->restore_bias_all();

View File

@ -36,7 +36,7 @@ class ComputeTempAsphere : public Compute {
void restore_bias(int, double *); void restore_bias(int, double *);
private: private:
int fix_dof; int fix_dof,mode;
double tfactor; double tfactor;
char *id_bias; char *id_bias;
class Compute *tbias; // ptr to additional bias compute class Compute *tbias; // ptr to additional bias compute

View File

@ -29,6 +29,8 @@
using namespace LAMMPS_NS; using namespace LAMMPS_NS;
#define INERTIA 0.2 // moment of inertia for ellipsoid
/* ---------------------------------------------------------------------- */ /* ---------------------------------------------------------------------- */
FixNVEAsphere::FixNVEAsphere(LAMMPS *lmp, int narg, char **arg) : FixNVEAsphere::FixNVEAsphere(LAMMPS *lmp, int narg, char **arg) :
@ -103,9 +105,9 @@ void FixNVEAsphere::initial_integrate(int vflag)
shape = bonus[ellipsoid[i]].shape; shape = bonus[ellipsoid[i]].shape;
quat = bonus[ellipsoid[i]].quat; quat = bonus[ellipsoid[i]].quat;
inertia[0] = rmass[i] * (shape[1]*shape[1]+shape[2]*shape[2]) / 5.0; inertia[0] = INERTIA*rmass[i] * (shape[1]*shape[1]+shape[2]*shape[2]);
inertia[1] = rmass[i] * (shape[0]*shape[0]+shape[2]*shape[2]) / 5.0; inertia[1] = INERTIA*rmass[i] * (shape[0]*shape[0]+shape[2]*shape[2]);
inertia[2] = rmass[i] * (shape[0]*shape[0]+shape[1]*shape[1]) / 5.0; inertia[2] = INERTIA*rmass[i] * (shape[0]*shape[0]+shape[1]*shape[1]);
// compute omega at 1/2 step from angmom at 1/2 step and current q // compute omega at 1/2 step from angmom at 1/2 step and current q
// update quaternion a full step via Richardson iteration // update quaternion a full step via Richardson iteration

View File

@ -88,7 +88,9 @@ void FixLangevinEff::post_force_no_tally()
f[i][0] += gamma1*v[i][0] + gamma2*(random->uniform()-0.5); f[i][0] += gamma1*v[i][0] + gamma2*(random->uniform()-0.5);
f[i][1] += gamma1*v[i][1] + gamma2*(random->uniform()-0.5); f[i][1] += gamma1*v[i][1] + gamma2*(random->uniform()-0.5);
f[i][2] += gamma1*v[i][2] + gamma2*(random->uniform()-0.5); f[i][2] += gamma1*v[i][2] + gamma2*(random->uniform()-0.5);
if (abs(spin[i])==1) erforce[i] += 0.75*gamma1*ervel[i] + 0.866025404*gamma2*(random->uniform()-0.5); if (abs(spin[i])==1)
erforce[i] += 0.75*gamma1*ervel[i] +
0.866025404*gamma2*(random->uniform()-0.5);
} }
} }
} else if (which == BIAS) { } else if (which == BIAS) {
@ -105,7 +107,8 @@ void FixLangevinEff::post_force_no_tally()
if (v[i][2] != 0.0) if (v[i][2] != 0.0)
f[i][2] += gamma1*v[i][2] + gamma2*(random->uniform()-0.5); f[i][2] += gamma1*v[i][2] + gamma2*(random->uniform()-0.5);
if (abs(spin[i])==1 && ervel[i] != 0.0) if (abs(spin[i])==1 && ervel[i] != 0.0)
erforce[i] += 0.75*gamma1*ervel[i] + 0.866025404*gamma2*(random->uniform()-0.5); erforce[i] += 0.75*gamma1*ervel[i] +
0.866025404*gamma2*(random->uniform()-0.5);
temperature->restore_bias(i,v[i]); temperature->restore_bias(i,v[i]);
} }
} }
@ -158,7 +161,8 @@ void FixLangevinEff::post_force_tally()
flangevin[i][0] = gamma1*v[i][0] + gamma2*(random->uniform()-0.5); flangevin[i][0] = gamma1*v[i][0] + gamma2*(random->uniform()-0.5);
flangevin[i][1] = gamma1*v[i][1] + gamma2*(random->uniform()-0.5); flangevin[i][1] = gamma1*v[i][1] + gamma2*(random->uniform()-0.5);
flangevin[i][2] = gamma1*v[i][2] + gamma2*(random->uniform()-0.5); flangevin[i][2] = gamma1*v[i][2] + gamma2*(random->uniform()-0.5);
erforcelangevin[i] = 0.75*gamma1*ervel[i]+0.866025404*gamma2*(random->uniform()-0.5); erforcelangevin[i] = 0.75*gamma1*ervel[i] +
0.866025404*gamma2*(random->uniform()-0.5);
f[i][0] += flangevin[i][0]; f[i][0] += flangevin[i][0];
f[i][1] += flangevin[i][1]; f[i][1] += flangevin[i][1];
f[i][2] += flangevin[i][2]; f[i][2] += flangevin[i][2];
@ -175,14 +179,16 @@ void FixLangevinEff::post_force_tally()
flangevin[i][0] = gamma1*v[i][0] + gamma2*(random->uniform()-0.5); flangevin[i][0] = gamma1*v[i][0] + gamma2*(random->uniform()-0.5);
flangevin[i][1] = gamma1*v[i][1] + gamma2*(random->uniform()-0.5); flangevin[i][1] = gamma1*v[i][1] + gamma2*(random->uniform()-0.5);
flangevin[i][2] = gamma1*v[i][2] + gamma2*(random->uniform()-0.5); flangevin[i][2] = gamma1*v[i][2] + gamma2*(random->uniform()-0.5);
erforcelangevin[i] = 0.75*gamma1*ervel[i]+0.866025404*gamma2*(random->uniform()-0.5); erforcelangevin[i] = 0.75*gamma1*ervel[i] +
0.866025404*gamma2*(random->uniform()-0.5);
if (v[i][0] != 0.0) f[i][0] += flangevin[i][0]; if (v[i][0] != 0.0) f[i][0] += flangevin[i][0];
else flangevin[i][0] = 0.0; else flangevin[i][0] = 0.0;
if (v[i][1] != 0.0) f[i][1] += flangevin[i][1]; if (v[i][1] != 0.0) f[i][1] += flangevin[i][1];
else flangevin[i][1] = 0.0; else flangevin[i][1] = 0.0;
if (v[i][2] != 0.0) f[i][2] += flangevin[i][2]; if (v[i][2] != 0.0) f[i][2] += flangevin[i][2];
else flangevin[i][2] = 0.0; else flangevin[i][2] = 0.0;
if (abs(spin[i])==1 && ervel[i] != 0.0) erforce[i] += erforcelangevin[i]; if (abs(spin[i])==1 && ervel[i] != 0.0)
erforce[i] += erforcelangevin[i];
temperature->restore_bias(i,v[i]); temperature->restore_bias(i,v[i]);
} }
} }

View File

@ -26,6 +26,8 @@
using namespace LAMMPS_NS; using namespace LAMMPS_NS;
enum{ROTATE,ALL};
#define INERTIA 0.4 // moment of inertia for sphere #define INERTIA 0.4 // moment of inertia for sphere
/* ---------------------------------------------------------------------- */ /* ---------------------------------------------------------------------- */
@ -33,8 +35,7 @@ using namespace LAMMPS_NS;
ComputeTempSphere::ComputeTempSphere(LAMMPS *lmp, int narg, char **arg) : ComputeTempSphere::ComputeTempSphere(LAMMPS *lmp, int narg, char **arg) :
Compute(lmp, narg, arg) Compute(lmp, narg, arg)
{ {
if (narg != 3 && narg != 4) if (narg < 3) error->all("Illegal compute temp/sphere command");
error->all("Illegal compute temp/sphere command");
scalar_flag = vector_flag = 1; scalar_flag = vector_flag = 1;
size_vector = 6; size_vector = 6;
@ -44,11 +45,24 @@ ComputeTempSphere::ComputeTempSphere(LAMMPS *lmp, int narg, char **arg) :
tempbias = 0; tempbias = 0;
id_bias = NULL; id_bias = NULL;
if (narg == 4) { mode = ALL;
tempbias = 1;
int n = strlen(arg[3]) + 1; int iarg = 3;
id_bias = new char[n]; while (iarg < narg) {
strcpy(id_bias,arg[3]); if (strcmp(arg[iarg],"bias") == 0) {
if (iarg+2 > narg) error->all("Illegal compute temp/sphere command");
tempbias = 1;
int n = strlen(arg[iarg+1]) + 1;
id_bias = new char[n];
strcpy(id_bias,arg[iarg+1]);
iarg += 2;
} else if (strcmp(arg[iarg],"dof") == 0) {
if (iarg+2 > narg) error->all("Illegal compute temp/sphere command");
if (strcmp(arg[iarg+1],"rotate") == 0) mode = ROTATE;
else if (strcmp(arg[iarg+1],"all") == 0) mode = ALL;
else error->all("Illegal compute temp/sphere command");
iarg += 2;
} else error->all("Illegal compute temp/sphere command");
} }
vector = new double[6]; vector = new double[6];
@ -100,27 +114,34 @@ void ComputeTempSphere::dof_compute()
// 6 or 3 dof for extended/point particles for 3d // 6 or 3 dof for extended/point particles for 3d
// 3 or 2 dof for extended/point particles for 2d // 3 or 2 dof for extended/point particles for 2d
// which dof are included also depends on mode
// assume full rotation of extended particles // assume full rotation of extended particles
// user should correct this via compute_modify if needed // user should correct this via compute_modify if needed
int dimension = domain->dimension;
double *radius = atom->radius; double *radius = atom->radius;
int *mask = atom->mask; int *mask = atom->mask;
int nlocal = atom->nlocal; int nlocal = atom->nlocal;
count = 0; count = 0;
if (dimension == 3) { if (domain->dimension == 3) {
for (int i = 0; i < nlocal; i++) for (int i = 0; i < nlocal; i++)
if (mask[i] & groupbit) { if (mask[i] & groupbit) {
if (radius[i] == 0.0) count += 3; if (radius[i] == 0.0) {
else count += 6; if (mode == ALL) count += 3;
} else {
if (mode == ALL) count += 6;
else count += 3;
}
} }
} else { } else {
for (int i = 0; i < nlocal; i++) for (int i = 0; i < nlocal; i++)
if (mask[i] & groupbit) { if (mask[i] & groupbit) {
if (radius[i] == 0.0) count += 2; if (radius[i] == 0.0) {
else count += 3; if (mode == ALL) count += 2;
} else {
if (mode == ALL) count += 3;
else count += 1;
}
} }
} }
@ -130,28 +151,38 @@ void ComputeTempSphere::dof_compute()
// additional adjustments to dof // additional adjustments to dof
if (tempbias == 1) { if (tempbias == 1) {
double natoms = group->count(igroup); if (mode == ALL) {
dof -= tbias->dof_remove(-1) * natoms; double natoms = group->count(igroup);
dof -= tbias->dof_remove(-1) * natoms;
}
} else if (tempbias == 2) { } else if (tempbias == 2) {
int *mask = atom->mask; int *mask = atom->mask;
int nlocal = atom->nlocal; int nlocal = atom->nlocal;
count = 0; count = 0;
if (dimension == 3) { if (domain->dimension == 3) {
for (int i = 0; i < nlocal; i++) for (int i = 0; i < nlocal; i++)
if (mask[i] & groupbit) { if (mask[i] & groupbit) {
if (tbias->dof_remove(i)) { if (tbias->dof_remove(i)) {
if (radius[i] == 0.0) count += 3; if (radius[i] == 0.0) {
else count += 6; if (mode == ALL) count += 3;
} else {
if (mode == ALL) count += 6;
else count += 3;
}
} }
} }
} else { } else {
for (int i = 0; i < nlocal; i++) for (int i = 0; i < nlocal; i++)
if (mask[i] & groupbit) { if (mask[i] & groupbit) {
if (tbias->dof_remove(i)) { if (tbias->dof_remove(i)) {
if (radius[i] == 0.0) count += 2; if (radius[i] == 0.0) {
else count += 3; if (mode == ALL) count += 2;
} else {
if (mode == ALL) count += 3;
else count += 1;
}
} }
} }
} }
@ -187,12 +218,19 @@ double ComputeTempSphere::compute_scalar()
double t = 0.0; double t = 0.0;
for (int i = 0; i < nlocal; i++) if (mode == ALL) {
if (mask[i] & groupbit) { for (int i = 0; i < nlocal; i++)
t += (v[i][0]*v[i][0] + v[i][1]*v[i][1] + v[i][2]*v[i][2]) * rmass[i]; if (mask[i] & groupbit) {
t += (omega[i][0]*omega[i][0] + omega[i][1]*omega[i][1] + t += (v[i][0]*v[i][0] + v[i][1]*v[i][1] + v[i][2]*v[i][2]) * rmass[i];
omega[i][2]*omega[i][2]) * INERTIA*radius[i]*radius[i]*rmass[i]; t += (omega[i][0]*omega[i][0] + omega[i][1]*omega[i][1] +
} omega[i][2]*omega[i][2]) * INERTIA*rmass[i]*radius[i]*radius[i];
}
} else {
for (int i = 0; i < nlocal; i++)
if (mask[i] & groupbit)
t += (omega[i][0]*omega[i][0] + omega[i][1]*omega[i][1] +
omega[i][2]*omega[i][2]) * INERTIA*rmass[i]*radius[i]*radius[i];
}
if (tempbias) tbias->restore_bias_all(); if (tempbias) tbias->restore_bias_all();
@ -225,25 +263,38 @@ void ComputeTempSphere::compute_vector()
double massone,inertiaone,t[6]; double massone,inertiaone,t[6];
for (int i = 0; i < 6; i++) t[i] = 0.0; for (int i = 0; i < 6; i++) t[i] = 0.0;
for (int i = 0; i < nlocal; i++) if (mode == ALL) {
if (mask[i] & groupbit) { for (int i = 0; i < nlocal; i++)
massone = rmass[i]; if (mask[i] & groupbit) {
t[0] += massone * v[i][0]*v[i][0]; massone = rmass[i];
t[1] += massone * v[i][1]*v[i][1]; t[0] += massone * v[i][0]*v[i][0];
t[2] += massone * v[i][2]*v[i][2]; t[1] += massone * v[i][1]*v[i][1];
t[3] += massone * v[i][0]*v[i][1]; t[2] += massone * v[i][2]*v[i][2];
t[4] += massone * v[i][0]*v[i][2]; t[3] += massone * v[i][0]*v[i][1];
t[5] += massone * v[i][1]*v[i][2]; t[4] += massone * v[i][0]*v[i][2];
t[5] += massone * v[i][1]*v[i][2];
inertiaone = INERTIA*radius[i]*radius[i]*rmass[i];
t[0] += inertiaone * omega[i][0]*omega[i][0]; inertiaone = INERTIA*rmass[i]*radius[i]*radius[i];
t[1] += inertiaone * omega[i][1]*omega[i][1]; t[0] += inertiaone * omega[i][0]*omega[i][0];
t[2] += inertiaone * omega[i][2]*omega[i][2]; t[1] += inertiaone * omega[i][1]*omega[i][1];
t[3] += inertiaone * omega[i][0]*omega[i][1]; t[2] += inertiaone * omega[i][2]*omega[i][2];
t[4] += inertiaone * omega[i][0]*omega[i][2]; t[3] += inertiaone * omega[i][0]*omega[i][1];
t[5] += inertiaone * omega[i][1]*omega[i][2]; t[4] += inertiaone * omega[i][0]*omega[i][2];
} t[5] += inertiaone * omega[i][1]*omega[i][2];
}
} else {
for (int i = 0; i < nlocal; i++)
if (mask[i] & groupbit) {
inertiaone = INERTIA*rmass[i]*radius[i]*radius[i];
t[0] += inertiaone * omega[i][0]*omega[i][0];
t[1] += inertiaone * omega[i][1]*omega[i][1];
t[2] += inertiaone * omega[i][2]*omega[i][2];
t[3] += inertiaone * omega[i][0]*omega[i][1];
t[4] += inertiaone * omega[i][0]*omega[i][2];
t[5] += inertiaone * omega[i][1]*omega[i][2];
}
}
if (tempbias) tbias->restore_bias_all(); if (tempbias) tbias->restore_bias_all();
MPI_Allreduce(t,vector,6,MPI_DOUBLE,MPI_SUM,world); MPI_Allreduce(t,vector,6,MPI_DOUBLE,MPI_SUM,world);

View File

@ -36,7 +36,7 @@ class ComputeTempSphere : public Compute {
void restore_bias(int, double *); void restore_bias(int, double *);
private: private:
int fix_dof; int fix_dof,mode;
double tfactor; double tfactor;
double *inertia; double *inertia;
char *id_bias; char *id_bias;

View File

@ -20,7 +20,9 @@
#include "string.h" #include "string.h"
#include "stdlib.h" #include "stdlib.h"
#include "fix_langevin.h" #include "fix_langevin.h"
#include "math_extra.h"
#include "atom.h" #include "atom.h"
#include "atom_vec_ellipsoid.h"
#include "force.h" #include "force.h"
#include "update.h" #include "update.h"
#include "modify.h" #include "modify.h"
@ -38,6 +40,9 @@ using namespace LAMMPS_NS;
enum{NOBIAS,BIAS}; enum{NOBIAS,BIAS};
#define SINERTIA 0.4 // moment of inertia for sphere
#define EINERTIA 0.2 // moment of inertia for ellipsoid
/* ---------------------------------------------------------------------- */ /* ---------------------------------------------------------------------- */
FixLangevin::FixLangevin(LAMMPS *lmp, int narg, char **arg) : FixLangevin::FixLangevin(LAMMPS *lmp, int narg, char **arg) :
@ -71,6 +76,7 @@ FixLangevin::FixLangevin(LAMMPS *lmp, int narg, char **arg) :
// optional args // optional args
for (int i = 1; i <= atom->ntypes; i++) ratio[i] = 1.0; for (int i = 1; i <= atom->ntypes; i++) ratio[i] = 1.0;
oflag = aflag = 0;
tally = 0; tally = 0;
zeroflag = 0; zeroflag = 0;
@ -96,9 +102,29 @@ FixLangevin::FixLangevin(LAMMPS *lmp, int narg, char **arg) :
else if (strcmp(arg[iarg+1],"yes") == 0) zeroflag = 1; else if (strcmp(arg[iarg+1],"yes") == 0) zeroflag = 1;
else error->all("Illegal fix langevin command"); else error->all("Illegal fix langevin command");
iarg += 2; iarg += 2;
} else if (strcmp(arg[iarg],"omega") == 0) {
if (iarg+2 > narg) error->all("Illegal fix langevin command");
if (strcmp(arg[iarg+1],"no") == 0) oflag = 0;
else if (strcmp(arg[iarg+1],"yes") == 0) oflag = 1;
else error->all("Illegal fix langevin command");
iarg += 2;
} else if (strcmp(arg[iarg],"angmom") == 0) {
if (iarg+2 > narg) error->all("Illegal fix langevin command");
if (strcmp(arg[iarg+1],"no") == 0) aflag = 0;
else if (strcmp(arg[iarg+1],"yes") == 0) aflag = 1;
else error->all("Illegal fix langevin command");
iarg += 2;
} else error->all("Illegal fix langevin command"); } else error->all("Illegal fix langevin command");
} }
// error check
if (aflag) {
avec = (AtomVecEllipsoid *) atom->style_match("ellipsoid");
if (!avec)
error->all("Fix langevin angmom requires atom style ellipsoid");
}
// set temperature = NULL, user can override via fix_modify if wants bias // set temperature = NULL, user can override via fix_modify if wants bias
id_temp = NULL; id_temp = NULL;
@ -140,6 +166,35 @@ int FixLangevin::setmask()
void FixLangevin::init() void FixLangevin::init()
{ {
if (oflag && !atom->sphere_flag)
error->all("Fix langevin omega require atom style sphere");
if (aflag && !atom->ellipsoid_flag)
error->all("Fix langevin angmom require atom style ellipsoid");
// if oflag or aflag set, check that all group particles are finite-size
if (oflag) {
double *radius = atom->radius;
int *mask = atom->mask;
int nlocal = atom->nlocal;
for (int i = 0; i < nlocal; i++)
if (mask[i] & groupbit)
if (radius[i] == 0.0)
error->one("Fix langevin omega requires extended particles");
}
if (aflag) {
int *ellipsoid = atom->ellipsoid;
int *mask = atom->mask;
int nlocal = atom->nlocal;
for (int i = 0; i < nlocal; i++)
if (mask[i] & groupbit)
if (ellipsoid[i] < 0)
error->one("Fix langevin angmom requires extended particles");
}
// set force prefactors // set force prefactors
if (!atom->rmass) { if (!atom->rmass) {
@ -219,6 +274,11 @@ void FixLangevin::post_force_no_tally()
double fran[3],fsum[3],fsumall[3]; double fran[3],fsum[3],fsumall[3];
fsum[0] = fsum[1] = fsum[2] = 0.0; fsum[0] = fsum[1] = fsum[2] = 0.0;
bigint count; bigint count;
double boltz = force->boltz;
double dt = update->dt;
double mvv2e = force->mvv2e;
double ftm2v = force->ftm2v;
if (zeroflag) { if (zeroflag) {
count = group->count(igroup); count = group->count(igroup);
@ -227,11 +287,6 @@ void FixLangevin::post_force_no_tally()
} }
if (rmass) { if (rmass) {
double boltz = force->boltz;
double dt = update->dt;
double mvv2e = force->mvv2e;
double ftm2v = force->ftm2v;
if (which == NOBIAS) { if (which == NOBIAS) {
for (int i = 0; i < nlocal; i++) { for (int i = 0; i < nlocal; i++) {
if (mask[i] & groupbit) { if (mask[i] & groupbit) {
@ -280,7 +335,6 @@ void FixLangevin::post_force_no_tally()
} else { } else {
if (which == NOBIAS) { if (which == NOBIAS) {
for (int i = 0; i < nlocal; i++) { for (int i = 0; i < nlocal; i++) {
if (mask[i] & groupbit) { if (mask[i] & groupbit) {
gamma1 = gfactor1[type[i]]; gamma1 = gfactor1[type[i]];
@ -295,7 +349,6 @@ void FixLangevin::post_force_no_tally()
fsum[1] += fran[1]; fsum[1] += fran[1];
fsum[2] += fran[2]; fsum[2] += fran[2];
} }
} }
} else if (which == BIAS) { } else if (which == BIAS) {
@ -338,6 +391,11 @@ void FixLangevin::post_force_no_tally()
} }
} }
} }
// thermostat omega and angmom
if (oflag) omega_thermostat(tsqrt);
if (aflag) angmom_thermostat(tsqrt);
} }
/* ---------------------------------------------------------------------- */ /* ---------------------------------------------------------------------- */
@ -373,12 +431,12 @@ void FixLangevin::post_force_tally()
// test v = 0 since some computes mask non-participating atoms via v = 0 // test v = 0 since some computes mask non-participating atoms via v = 0
// and added force has extra term not multiplied by v = 0 // and added force has extra term not multiplied by v = 0
if (rmass) { double boltz = force->boltz;
double boltz = force->boltz; double dt = update->dt;
double dt = update->dt; double mvv2e = force->mvv2e;
double mvv2e = force->mvv2e; double ftm2v = force->ftm2v;
double ftm2v = force->ftm2v;
if (rmass) {
if (which == NOBIAS) { if (which == NOBIAS) {
for (int i = 0; i < nlocal; i++) { for (int i = 0; i < nlocal; i++) {
if (mask[i] & groupbit) { if (mask[i] & groupbit) {
@ -454,6 +512,100 @@ void FixLangevin::post_force_tally()
} }
} }
} }
// thermostat omega and angmom
if (oflag) omega_thermostat(tsqrt);
if (aflag) angmom_thermostat(tsqrt);
}
/* ----------------------------------------------------------------------
thermostat rotational dof via omega
------------------------------------------------------------------------- */
void FixLangevin::omega_thermostat(double tsqrt)
{
double gamma1,gamma2;
double boltz = force->boltz;
double dt = update->dt;
double mvv2e = force->mvv2e;
double ftm2v = force->ftm2v;
double **torque = atom->torque;
double **omega = atom->omega;
double *radius = atom->radius;
double *rmass = atom->rmass;
int *mask = atom->mask;
int *type = atom->type;
int nlocal = atom->nlocal;
double tran[3];
double inertiaone;
for (int i = 0; i < nlocal; i++) {
if (mask[i] & groupbit) {
inertiaone = SINERTIA*radius[i]*radius[i]*rmass[i];
gamma1 = -inertiaone / t_period / ftm2v;
gamma2 = sqrt(inertiaone) * sqrt(24.0*boltz/t_period/dt/mvv2e) / ftm2v;
gamma1 *= 1.0/ratio[type[i]];
gamma2 *= 1.0/sqrt(ratio[type[i]]) * tsqrt;
tran[0] = gamma2*(random->uniform()-0.5);
tran[1] = gamma2*(random->uniform()-0.5);
tran[2] = gamma2*(random->uniform()-0.5);
torque[i][0] += gamma1*omega[i][0] + tran[0];
torque[i][1] += gamma1*omega[i][1] + tran[1];
torque[i][2] += gamma1*omega[i][2] + tran[2];
}
}
}
/* ----------------------------------------------------------------------
thermostat rotational dof via angmom
------------------------------------------------------------------------- */
void FixLangevin::angmom_thermostat(double tsqrt)
{
double gamma1,gamma2;
double boltz = force->boltz;
double dt = update->dt;
double mvv2e = force->mvv2e;
double ftm2v = force->ftm2v;
AtomVecEllipsoid::Bonus *bonus = avec->bonus;
double **torque = atom->torque;
double **angmom = atom->angmom;
double *rmass = atom->rmass;
int *ellipsoid = atom->ellipsoid;
int *mask = atom->mask;
int *type = atom->type;
int nlocal = atom->nlocal;
double inertia[3],wbody[3],omega[3],tran[3],rot[3][3];
double *shape,*quat;
for (int i = 0; i < nlocal; i++) {
if (mask[i] & groupbit) {
shape = bonus[ellipsoid[i]].shape;
inertia[0] = EINERTIA*rmass[i] * (shape[1]*shape[1]+shape[2]*shape[2]);
inertia[1] = EINERTIA*rmass[i] * (shape[0]*shape[0]+shape[2]*shape[2]);
inertia[2] = EINERTIA*rmass[i] * (shape[0]*shape[0]+shape[1]*shape[1]);
quat = bonus[ellipsoid[i]].quat;
MathExtra::mq_to_omega(angmom[i],quat,inertia,omega);
gamma1 = -1.0 / t_period / ftm2v;
gamma2 = sqrt(24.0*boltz/t_period/dt/mvv2e) / ftm2v;
gamma1 *= 1.0/ratio[type[i]];
gamma2 *= 1.0/sqrt(ratio[type[i]]) * tsqrt;
tran[0] = sqrt(inertia[0])*gamma2*(random->uniform()-0.5);
tran[1] = sqrt(inertia[1])*gamma2*(random->uniform()-0.5);
tran[2] = sqrt(inertia[2])*gamma2*(random->uniform()-0.5);
torque[i][0] += inertia[0]*gamma1*omega[0] + tran[0];
torque[i][1] += inertia[1]*gamma1*omega[1] + tran[1];
torque[i][2] += inertia[2]*gamma1*omega[2] + tran[2];
}
}
} }
/* ---------------------------------------------------------------------- /* ----------------------------------------------------------------------

View File

@ -41,11 +41,13 @@ class FixLangevin : public Fix {
double memory_usage(); double memory_usage();
protected: protected:
int which,tally,zeroflag; int which,tally,zeroflag,oflag,aflag;
double t_start,t_stop,t_period; double t_start,t_stop,t_period;
double *gfactor1,*gfactor2,*ratio; double *gfactor1,*gfactor2,*ratio;
double energy,energy_onestep; double energy,energy_onestep;
class AtomVecEllipsoid *avec;
int nmax; int nmax;
double **flangevin; double **flangevin;
@ -57,6 +59,8 @@ class FixLangevin : public Fix {
virtual void post_force_no_tally(); virtual void post_force_no_tally();
virtual void post_force_tally(); virtual void post_force_tally();
void omega_thermostat(double);
void angmom_thermostat(double);
}; };
} }

View File

@ -25,6 +25,7 @@
#include "modify.h" #include "modify.h"
#include "group.h" #include "group.h"
#include "comm.h" #include "comm.h"
#include "random_mars.h"
#include "force.h" #include "force.h"
#include "output.h" #include "output.h"
#include "memory.h" #include "memory.h"
@ -45,11 +46,16 @@ FixRigid::FixRigid(LAMMPS *lmp, int narg, char **arg) :
{ {
int i,ibody; int i,ibody;
scalar_flag = 1;
extscalar = 0;
time_integrate = 1; time_integrate = 1;
rigid_flag = 1; rigid_flag = 1;
virial_flag = 1; virial_flag = 1;
create_attribute = 1; create_attribute = 1;
MPI_Comm_rank(world,&me);
MPI_Comm_size(world,&nprocs);
// perform initial allocation of atom-based arrays // perform initial allocation of atom-based arrays
// register with Atom class // register with Atom class
@ -193,12 +199,14 @@ FixRigid::FixRigid(LAMMPS *lmp, int narg, char **arg) :
memory->create(imagebody,nbody,"rigid:imagebody"); memory->create(imagebody,nbody,"rigid:imagebody");
memory->create(fflag,nbody,3,"rigid:fflag"); memory->create(fflag,nbody,3,"rigid:fflag");
memory->create(tflag,nbody,3,"rigid:tflag"); memory->create(tflag,nbody,3,"rigid:tflag");
memory->create(langextra,nbody,6,"rigid:langextra");
memory->create(sum,nbody,6,"rigid:sum"); memory->create(sum,nbody,6,"rigid:sum");
memory->create(all,nbody,6,"rigid:all"); memory->create(all,nbody,6,"rigid:all");
memory->create(remapflag,nbody,4,"rigid:remapflag"); memory->create(remapflag,nbody,4,"rigid:remapflag");
// initialize force/torque flags to default = 1.0 // initialize force/torque flags to default = 1.0
// for 2d: fz, tx, ty = 0.0
array_flag = 1; array_flag = 1;
size_array_rows = nbody; size_array_rows = nbody;
@ -209,10 +217,13 @@ FixRigid::FixRigid(LAMMPS *lmp, int narg, char **arg) :
for (i = 0; i < nbody; i++) { for (i = 0; i < nbody; i++) {
fflag[i][0] = fflag[i][1] = fflag[i][2] = 1.0; fflag[i][0] = fflag[i][1] = fflag[i][2] = 1.0;
tflag[i][0] = tflag[i][1] = tflag[i][2] = 1.0; tflag[i][0] = tflag[i][1] = tflag[i][2] = 1.0;
if (domain->dimension == 2) fflag[i][2] = tflag[i][0] = tflag[i][1] = 0.0;
} }
// parse optional args // parse optional args
int seed;
langflag = 0;
tempflag = 0; tempflag = 0;
pressflag = 0; pressflag = 0;
t_chain = 10; t_chain = 10;
@ -238,6 +249,9 @@ FixRigid::FixRigid(LAMMPS *lmp, int narg, char **arg) :
else if (strcmp(arg[iarg+4],"on") == 0) zflag = 1.0; else if (strcmp(arg[iarg+4],"on") == 0) zflag = 1.0;
else error->all("Illegal fix rigid command"); else error->all("Illegal fix rigid command");
if (domain->dimension == 2 && zflag == 1.0)
error->all("Fix rigid z force cannot be on for 2d simulation");
int count = 0; int count = 0;
for (int m = mlo; m <= mhi; m++) { for (int m = mlo; m <= mhi; m++) {
fflag[m-1][0] = xflag; fflag[m-1][0] = xflag;
@ -266,6 +280,9 @@ FixRigid::FixRigid(LAMMPS *lmp, int narg, char **arg) :
else if (strcmp(arg[iarg+4],"on") == 0) zflag = 1.0; else if (strcmp(arg[iarg+4],"on") == 0) zflag = 1.0;
else error->all("Illegal fix rigid command"); else error->all("Illegal fix rigid command");
if (domain->dimension == 2 && (xflag == 1.0 || yflag == 1.0))
error->all("Fix rigid xy torque cannot be on for 2d simulation");
int count = 0; int count = 0;
for (int m = mlo; m <= mhi; m++) { for (int m = mlo; m <= mhi; m++) {
tflag[m-1][0] = xflag; tflag[m-1][0] = xflag;
@ -277,10 +294,24 @@ FixRigid::FixRigid(LAMMPS *lmp, int narg, char **arg) :
iarg += 5; iarg += 5;
} else if (strcmp(arg[iarg],"langevin") == 0) {
if (iarg+5 > narg) error->all("Illegal fix rigid command");
if (strcmp(style,"rigid") != 0 && strcmp(style,"rigid/nve") != 0)
error->all("Illegal fix rigid command");
langflag = 1;
t_start = atof(arg[iarg+1]);
t_stop = atof(arg[iarg+2]);
t_period = atof(arg[iarg+3]);
seed = atoi(arg[iarg+4]);
if (t_period <= 0.0)
error->all("Fix rigid langevin period must be > 0.0");
if (seed <= 0) error->all("Illegal fix rigid command");
iarg += 5;
} else if (strcmp(arg[iarg],"temp") == 0) { } else if (strcmp(arg[iarg],"temp") == 0) {
if (iarg+4 > narg) error->all("Illegal fix rigid command"); if (iarg+4 > narg) error->all("Illegal fix rigid command");
if (strcmp(style,"rigid/nvt") != 0 && strcmp(style,"rigid/npt") != 0) if (strcmp(style,"rigid/nvt") != 0 && strcmp(style,"rigid/npt") != 0)
error->all("Illegal fix/rigid command"); error->all("Illegal fix rigid command");
tempflag = 1; tempflag = 1;
t_start = atof(arg[iarg+1]); t_start = atof(arg[iarg+1]);
t_stop = atof(arg[iarg+2]); t_stop = atof(arg[iarg+2]);
@ -290,7 +321,7 @@ FixRigid::FixRigid(LAMMPS *lmp, int narg, char **arg) :
} else if (strcmp(arg[iarg],"press") == 0) { } else if (strcmp(arg[iarg],"press") == 0) {
if (iarg+4 > narg) error->all("Illegal fix rigid command"); if (iarg+4 > narg) error->all("Illegal fix rigid command");
if (strcmp(style,"rigid/npt") != 0) if (strcmp(style,"rigid/npt") != 0)
error->all("Illegal fix/rigid command"); error->all("Illegal fix rigid command");
pressflag = 1; pressflag = 1;
p_start = atof(arg[iarg+1]); p_start = atof(arg[iarg+1]);
p_stop = atof(arg[iarg+2]); p_stop = atof(arg[iarg+2]);
@ -300,7 +331,7 @@ FixRigid::FixRigid(LAMMPS *lmp, int narg, char **arg) :
} else if (strcmp(arg[iarg],"tparam") == 0) { } else if (strcmp(arg[iarg],"tparam") == 0) {
if (iarg+4 > narg) error->all("Illegal fix rigid command"); if (iarg+4 > narg) error->all("Illegal fix rigid command");
if (strcmp(style,"rigid/nvt") != 0) if (strcmp(style,"rigid/nvt") != 0)
error->all("Illegal fix/rigid command"); error->all("Illegal fix rigid command");
t_chain = atoi(arg[iarg+1]); t_chain = atoi(arg[iarg+1]);
t_iter = atoi(arg[iarg+2]); t_iter = atoi(arg[iarg+2]);
t_order = atoi(arg[iarg+3]); t_order = atoi(arg[iarg+3]);
@ -309,13 +340,18 @@ FixRigid::FixRigid(LAMMPS *lmp, int narg, char **arg) :
} else if (strcmp(arg[iarg],"pparam") == 0) { } else if (strcmp(arg[iarg],"pparam") == 0) {
if (iarg+2 > narg) error->all("Illegal fix rigid command"); if (iarg+2 > narg) error->all("Illegal fix rigid command");
if (strcmp(style,"rigid/npt") != 0) if (strcmp(style,"rigid/npt") != 0)
error->all("Illegal fix/rigid command"); error->all("Illegal fix rigid command");
p_chain = atoi(arg[iarg+1]); p_chain = atoi(arg[iarg+1]);
iarg += 2; iarg += 2;
} else error->all("Illegal fix rigid command"); } else error->all("Illegal fix rigid command");
} }
// initialize Marsaglia RNG with processor-unique seed
if (langflag) random = new RanMars(lmp,seed + me);
else random = NULL;
// initialize vector output quantities in case accessed before run // initialize vector output quantities in case accessed before run
for (i = 0; i < nbody; i++) { for (i = 0; i < nbody; i++) {
@ -369,7 +405,7 @@ FixRigid::FixRigid(LAMMPS *lmp, int narg, char **arg) :
int nsum = 0; int nsum = 0;
for (ibody = 0; ibody < nbody; ibody++) nsum += nrigid[ibody]; for (ibody = 0; ibody < nbody; ibody++) nsum += nrigid[ibody];
if (comm->me == 0) { if (me == 0) {
if (screen) fprintf(screen,"%d rigid bodies with %d atoms\n",nbody,nsum); if (screen) fprintf(screen,"%d rigid bodies with %d atoms\n",nbody,nsum);
if (logfile) fprintf(logfile,"%d rigid bodies with %d atoms\n",nbody,nsum); if (logfile) fprintf(logfile,"%d rigid bodies with %d atoms\n",nbody,nsum);
} }
@ -383,6 +419,8 @@ FixRigid::~FixRigid()
atom->delete_callback(id,0); atom->delete_callback(id,0);
delete random;
// delete locally stored arrays // delete locally stored arrays
memory->destroy(body); memory->destroy(body);
@ -409,6 +447,7 @@ FixRigid::~FixRigid()
memory->destroy(imagebody); memory->destroy(imagebody);
memory->destroy(fflag); memory->destroy(fflag);
memory->destroy(tflag); memory->destroy(tflag);
memory->destroy(langextra);
memory->destroy(sum); memory->destroy(sum);
memory->destroy(all); memory->destroy(all);
@ -422,6 +461,7 @@ int FixRigid::setmask()
int mask = 0; int mask = 0;
mask |= INITIAL_INTEGRATE; mask |= INITIAL_INTEGRATE;
mask |= FINAL_INTEGRATE; mask |= FINAL_INTEGRATE;
if (langflag) mask |= POST_FORCE;
mask |= PRE_NEIGHBOR; mask |= PRE_NEIGHBOR;
mask |= INITIAL_INTEGRATE_RESPA; mask |= INITIAL_INTEGRATE_RESPA;
mask |= FINAL_INTEGRATE_RESPA; mask |= FINAL_INTEGRATE_RESPA;
@ -441,7 +481,7 @@ void FixRigid::init()
int count = 0; int count = 0;
for (int i = 0; i < modify->nfix; i++) for (int i = 0; i < modify->nfix; i++)
if (strcmp(modify->fix[i]->style,"rigid") == 0) count++; if (strcmp(modify->fix[i]->style,"rigid") == 0) count++;
if (count > 1 && comm->me == 0) error->warning("More than one fix rigid"); if (count > 1 && me == 0) error->warning("More than one fix rigid");
// error if npt,nph fix comes before rigid fix // error if npt,nph fix comes before rigid fix
@ -855,6 +895,15 @@ void FixRigid::init()
fabs(all[ibody][5]/norm) > TOLERANCE) fabs(all[ibody][5]/norm) > TOLERANCE)
error->all("Fix rigid: Bad principal moments"); error->all("Fix rigid: Bad principal moments");
} }
// temperature scale factor
double ndof = 0.0;
for (ibody = 0; ibody < nbody; ibody++) {
ndof += fflag[ibody][0] + fflag[ibody][1] + fflag[ibody][2];
ndof += tflag[ibody][0] + tflag[ibody][1] + tflag[ibody][2];
}
tfactor = force->mvv2e / (ndof * force->boltz);
} }
/* ---------------------------------------------------------------------- */ /* ---------------------------------------------------------------------- */
@ -998,6 +1047,13 @@ void FixRigid::setup(int vflag)
torque[ibody][2] = all[ibody][5]; torque[ibody][2] = all[ibody][5];
} }
// zero langextra in case Langevin thermostat not used
// no point to calling post_force() here since langextra
// is only added to fcm/torque in final_integrate()
for (ibody = 0; ibody < nbody; ibody++)
for (i = 0; i < 6; i++) langextra[ibody][i] = 0.0;
// virial setup before call to set_v // virial setup before call to set_v
if (vflag) v_setup(vflag); if (vflag) v_setup(vflag);
@ -1072,6 +1128,50 @@ void FixRigid::initial_integrate(int vflag)
set_xv(); set_xv();
} }
/* ----------------------------------------------------------------------
apply Langevin thermostat to all 6 DOF of rigid bodies
computed by proc 0, broadcast to other procs
unlike fix langevin, this stores extra force in extra arrays,
which are added in when final_integrate() calculates a new fcm/torque
------------------------------------------------------------------------- */
void FixRigid::post_force(int vflag)
{
if (me == 0) {
double gamma1,gamma2;
double delta = update->ntimestep - update->beginstep;
delta /= update->endstep - update->beginstep;
double t_target = t_start + delta * (t_stop-t_start);
double tsqrt = sqrt(t_target);
double boltz = force->boltz;
double dt = update->dt;
double mvv2e = force->mvv2e;
double ftm2v = force->ftm2v;
for (int i = 0; i < nbody; i++) {
gamma1 = -masstotal[i] / t_period / ftm2v;
gamma2 = sqrt(masstotal[i]) * tsqrt *
sqrt(24.0*boltz/t_period/dt/mvv2e) / ftm2v;
langextra[i][0] = gamma1*vcm[i][0] + gamma2*(random->uniform()-0.5);
langextra[i][1] = gamma1*vcm[i][1] + gamma2*(random->uniform()-0.5);
langextra[i][2] = gamma1*vcm[i][2] + gamma2*(random->uniform()-0.5);
gamma1 = -1.0 / t_period / ftm2v;
gamma2 = tsqrt * sqrt(24.0*boltz/t_period/dt/mvv2e) / ftm2v;
langextra[i][3] = inertia[i][0]*gamma1*omega[i][0] +
sqrt(inertia[i][0])*gamma2*(random->uniform()-0.5);
langextra[i][4] = inertia[i][1]*gamma1*omega[i][1] +
sqrt(inertia[i][1])*gamma2*(random->uniform()-0.5);
langextra[i][5] = inertia[i][2]*gamma1*omega[i][2] +
sqrt(inertia[i][2])*gamma2*(random->uniform()-0.5);
}
}
MPI_Bcast(&langextra[0][0],6*nbody,MPI_DOUBLE,0,world);
}
/* ---------------------------------------------------------------------- */ /* ---------------------------------------------------------------------- */
void FixRigid::final_integrate() void FixRigid::final_integrate()
@ -1150,13 +1250,17 @@ void FixRigid::final_integrate()
MPI_Allreduce(sum[0],all[0],6*nbody,MPI_DOUBLE,MPI_SUM,world); MPI_Allreduce(sum[0],all[0],6*nbody,MPI_DOUBLE,MPI_SUM,world);
// update vcm and angmom
// include Langevin thermostat forces
// fflag,tflag = 0 for some dimensions in 2d
for (ibody = 0; ibody < nbody; ibody++) { for (ibody = 0; ibody < nbody; ibody++) {
fcm[ibody][0] = all[ibody][0]; fcm[ibody][0] = all[ibody][0] + langextra[ibody][0];
fcm[ibody][1] = all[ibody][1]; fcm[ibody][1] = all[ibody][1] + langextra[ibody][1];
fcm[ibody][2] = all[ibody][2]; fcm[ibody][2] = all[ibody][2] + langextra[ibody][2];
torque[ibody][0] = all[ibody][3]; torque[ibody][0] = all[ibody][3] + langextra[ibody][3];
torque[ibody][1] = all[ibody][4]; torque[ibody][1] = all[ibody][4] + langextra[ibody][4];
torque[ibody][2] = all[ibody][5]; torque[ibody][2] = all[ibody][5] + langextra[ibody][5];
// update vcm by 1/2 step // update vcm by 1/2 step
@ -1360,7 +1464,7 @@ int FixRigid::dof(int igroup)
if (nall[ibody]+mall[ibody] > 0 && if (nall[ibody]+mall[ibody] > 0 &&
nall[ibody]+mall[ibody] != nrigid[ibody]) flag = 1; nall[ibody]+mall[ibody] != nrigid[ibody]) flag = 1;
} }
if (flag && comm->me == 0) if (flag && me == 0)
error->warning("Computing temperature of portions of rigid bodies"); error->warning("Computing temperature of portions of rigid bodies");
// remove appropriate DOFs for each rigid body wholly in temperature group // remove appropriate DOFs for each rigid body wholly in temperature group
@ -1834,6 +1938,42 @@ void FixRigid::reset_dt()
dtq = 0.5 * update->dt; dtq = 0.5 * update->dt;
} }
/* ----------------------------------------------------------------------
return temperature of collection of rigid bodies
non-active DOF are removed by fflag/tflag and in tfactor
------------------------------------------------------------------------- */
double FixRigid::compute_scalar()
{
double wbody[3],rot[3][3];
double t = 0.0;
for (int i = 0; i < nbody; i++) {
t += masstotal[i] * (fflag[i][0]*vcm[i][0]*vcm[i][0] +
fflag[i][1]*vcm[i][1]*vcm[i][1] + \
fflag[i][2]*vcm[i][2]*vcm[i][2]);
// wbody = angular velocity in body frame
MathExtra::quat_to_mat(quat[i],rot);
MathExtra::transpose_matvec(rot,angmom[i],wbody);
if (inertia[i][0] == 0.0) wbody[0] = 0.0;
else wbody[0] /= inertia[i][0];
if (inertia[i][1] == 0.0) wbody[1] = 0.0;
else wbody[1] /= inertia[i][1];
if (inertia[i][2] == 0.0) wbody[2] = 0.0;
else wbody[2] /= inertia[i][2];
t += tflag[i][0]*inertia[i][0]*wbody[0]*wbody[0] +
tflag[i][1]*inertia[i][1]*wbody[1]*wbody[1] +
tflag[i][2]*inertia[i][2]*wbody[2]*wbody[2];
}
t *= tfactor;
return t;
}
/* ---------------------------------------------------------------------- /* ----------------------------------------------------------------------
return attributes of a rigid body return attributes of a rigid body
15 values per body 15 values per body

View File

@ -32,9 +32,11 @@ class FixRigid : public Fix {
virtual void init(); virtual void init();
virtual void setup(int); virtual void setup(int);
virtual void initial_integrate(int); virtual void initial_integrate(int);
void post_force(int);
virtual void final_integrate(); virtual void final_integrate();
void initial_integrate_respa(int, int, int); void initial_integrate_respa(int, int, int);
void final_integrate_respa(int, int); void final_integrate_respa(int, int);
virtual double compute_scalar();
double memory_usage(); double memory_usage();
void grow_arrays(int); void grow_arrays(int);
@ -50,6 +52,7 @@ class FixRigid : public Fix {
double compute_array(int, int); double compute_array(int, int);
protected: protected:
int me,nprocs;
double dtv,dtf,dtq; double dtv,dtf,dtq;
double *step_respa; double *step_respa;
int triclinic; int triclinic;
@ -70,6 +73,7 @@ class FixRigid : public Fix {
int *imagebody; // image flags of xcm of each rigid body int *imagebody; // image flags of xcm of each rigid body
double **fflag; // flag for on/off of center-of-mass force double **fflag; // flag for on/off of center-of-mass force
double **tflag; // flag for on/off of center-of-mass torque double **tflag; // flag for on/off of center-of-mass torque
double **langextra; // Langevin thermostat forces and torques
int *body; // which body each atom is part of (-1 if none) int *body; // which body each atom is part of (-1 if none)
double **displace; // displacement of each atom in body coords double **displace; // displacement of each atom in body coords
@ -85,6 +89,9 @@ class FixRigid : public Fix {
double **qorient; // rotation state of ext particle wrt rigid body double **qorient; // rotation state of ext particle wrt rigid body
double **dorient; // orientation of dipole mu wrt rigid body double **dorient; // orientation of dipole mu wrt rigid body
double tfactor; // scale factor on temperature of rigid bodies
int langflag; // 0/1 = no/yes Langevin thermostat
int tempflag; // NVT settings int tempflag; // NVT settings
double t_start,t_stop; double t_start,t_stop;
double t_period,t_freq; double t_period,t_freq;
@ -95,6 +102,7 @@ class FixRigid : public Fix {
double p_period,p_freq; double p_period,p_freq;
int p_chain; int p_chain;
class RanMars *random;
class AtomVecEllipsoid *avec_ellipsoid; class AtomVecEllipsoid *avec_ellipsoid;
// bitmasks for eflags // bitmasks for eflags