diff --git a/doc/src/Howto_client_server.txt b/doc/src/Howto_client_server.txt index 96939809dc..f46d887a45 100644 --- a/doc/src/Howto_client_server.txt +++ b/doc/src/Howto_client_server.txt @@ -72,6 +72,7 @@ client or server code: examples/message examples/COUPLE/README examples/COUPLE/lammps_mc +examples/COUPLE/lammps_nwchem examples/COUPLE/lammps_vasp :ul The examples/message dir couples a client instance of LAMMPS to a @@ -80,6 +81,10 @@ server instance of LAMMPS. The lammps_mc dir shows how to couple LAMMPS as a server to a simple Monte Carlo client code as the driver. +The lammps_nwchem dir shows how to couple LAMMPS as a client code +running MD timestepping to NWChem acting as a server providing quantum +DFT forces, through a Python wrapper script on NWChem. + The lammps_vasp dir shows how to couple LAMMPS as a client code running MD timestepping to VASP acting as a server providing quantum DFT forces, through a Python wrapper script on VASP. diff --git a/doc/src/server_md.txt b/doc/src/server_md.txt index 495c890c59..daa6ab57ce 100644 --- a/doc/src/server_md.txt +++ b/doc/src/server_md.txt @@ -64,8 +64,9 @@ in this pseudo code is a pointer to an instance of the CSlib. See the src/MESSAGE/server_md.cpp and src/MESSAGE/fix_client_md.cpp files for details on how LAMMPS uses these messages. See the -examples/COUPLE/lammps_vasp/vasp_wrapper.py file for an example of how -a quantum code (VASP) can use these messages. +examples/COUPLE/lammps_vasp/vasp_wrap.py or +examples/COUPLE/lammps_nwchem/nwchem_wrap.py files for examples of how +a quantum code (VASP or NWChem) can use these messages. The following pseudo-code uses these values, defined as enums. diff --git a/examples/COUPLE/README b/examples/COUPLE/README index 0e611befbd..061ce39f54 100644 --- a/examples/COUPLE/README +++ b/examples/COUPLE/README @@ -6,23 +6,16 @@ codes or calling LAMMPS as a library. The examples are provided for demonstration purposes. The physics they calculate is too simple to model a realistic problem. +In many of the examples included here, LAMMPS must first be built as a +library. + See these sections of the LAMMPS manaul for details: -2.5 Building LAMMPS as a library (doc/Section_start.html#start_5) -6.10 Coupling LAMMPS to other codes (doc/Section_howto.html#howto_10) -6.29 Using LAMMPS in client/server mode (doc/Section_howto.html#howto_29) - -In all of the examples included here, LAMMPS must first be built as a -library. Basically, in the src dir you type one of - -make mode=lib machine -make mode=shlib machine - -to create the static library liblammps_machine.a or the shared library -liblammps_machine.so for your code to link against. A soft link -(liblammps.a or liblammps.so) is also created that points to the most -recently built static or shared library. Your code build can simply -use the soft link if you prefer. +Build LAMMPS as a library (doc/Build_basics.html) +Link LAMMPS as a library to another code (doc/Build_link.html) +Coupling LAMMPS to other codes (doc/Howto_couple.html) +Using LAMMPS in client/server mode (doc/Howto_client_server.html) +Library interface to LAMMPS (doc/Howto_library.html) The library interface to LAMMPS is in src/library.cpp. Routines can be easily added to this file so an external program can perform the @@ -36,10 +29,12 @@ simple simple example of driver code calling LAMMPS as a lib multiple example of driver code calling multiple instances of LAMMPS lammps_mc client/server coupling of Monte Carlo client with LAMMPS server for energy evaluation +lammps_nwchem client/server coupling of LAMMPS client with + NWChem quantum DFT as server for quantum forces lammps_quest MD with quantum forces, coupling to Quest DFT code lammps_spparks grain-growth Monte Carlo with strain via MD, coupling to SPPARKS kinetic MC code -lammps_vasp client/server coupling of LAMMPS client with +lammps_vasp client/server coupling of LAMMPS client with VASP quantum DFT as server for quantum forces library collection of useful inter-code communication routines fortran a simple wrapper on the LAMMPS library API that diff --git a/examples/COUPLE/lammps_nwchem/README b/examples/COUPLE/lammps_nwchem/README new file mode 100644 index 0000000000..2ee07f959f --- /dev/null +++ b/examples/COUPLE/lammps_nwchem/README @@ -0,0 +1,197 @@ +Sample LAMMPS MD wrapper on NWChem via client/server coupling + +See the MESSAGE package (doc/Section_messages.html#MESSAGE) and +Section_howto.html#howto10 for more details on how client/server +coupling works in LAMMPS. + +In this dir, the nwchem_wrap.py is a wrapper on the NWChem electronic +structure code so it can work as a "server" code which LAMMPS drives +as a "client" code to perform ab initio MD. LAMMPS performs the MD +timestepping, sends NWChem a current set of coordinates each timestep, +NWChem computes forces and energy (and virial) and returns that info +to LAMMPS. + +Messages are exchanged between NWChem and LAMMPS via a client/server +library (CSlib), which is included in the LAMMPS distribution in +lib/message. As explained below you can choose to exchange data +between the two programs either via files or sockets (ZMQ). If the +nwchem_wrap.py program became parallel, or the CSlib library calls were +integrated into NWChem directly, then data could also be exchanged via +MPI. + +There are 2 examples provided in the planeware and ao_basis +sub-directories. See details below. + +---------------- + +Build LAMMPS with its MESSAGE package installed: + +See the Build extras doc page and its MESSAGE package +section for details. + +CMake: + +-D PKG_MESSAGE=yes # include the MESSAGE package +-D MESSAGE_ZMQ=value # build with ZeroMQ support, value = no (default) or yes + +Traditional make: + +cd lammps/lib/message +python Install.py -m -z # build CSlib with MPI and ZMQ support +cd lammps/src +make yes-message +make mpi + +You can leave off the -z if you do not have ZMQ on your system. + +---------------- + +Build the CSlib in a form usable by the nwchem_wrapper.py script: + +% cd lammps/lib/message/cslib/src +% make shlib # build serial and parallel shared lib with ZMQ support +% make shlib zmq=no # build serial and parallel shared lib w/out ZMQ support + +This will make a shared library versions of the CSlib, which Python +requires. Python must be able to find both the cslib.py script and +the libcsnompi.so library in your lammps/lib/message/cslib/src +directory. If it is not able to do this, you will get an error when +you run nwchem_wrapper.py. + +You can do this by augmenting two environment variables, either from +the command line, or in your shell start-up script. Here is the +sample syntax for the csh or tcsh shells: + +setenv PYTHONPATH ${PYTHONPATH}:/home/sjplimp/lammps/lib/message/cslib/src +setenv LD_LIBRARY_PATH ${LD_LIBRARY_PATH}:/home/sjplimp/lammps/lib/message/cslib/src + +---------------- + +Prepare to use NWChem and the nwchem_wrap.py script + +You can run the nwchem_wrap.py script as-is to test that the coupling +between it and LAMMPS is functional. This will use the included +nwchem_lammps.out files output by a previous NWChem run. + +But note that the as-is version of nwchem_wrap.py will not attempt to +run NWChem. + +To do this, you must edit the 1st nwchemcmd line at the top of +nwchem_wrapper.py to be the launch command needed to run NWChem on +your system. It can be a command to run NWChem in serial or in +parallel, e.g. an mpirun command. Then comment out the 2nd nwchemcmd +line immediately following it. + +Ensure you have the necessary NWChem input file in this directory, +suitable for the NWChem calculation you want to perform. + +Example input files are provided for both atom-centered AO basis sets +and plane-wave basis sets. Note that the NWChem template file should +be matched to the LAMMPS input script (# of atoms and atom types, box +size, etc). + +Once you run NWChem yourself, the nwchem_lammps.out file will be +overwritten. + +The syntax of the wrapper is: +nwchem_wrap.py file/zmq ao/pw input_template +* file/zmg = messaging mode, must match LAMMPS messaging mode +* ao/pw = basis set mode, selects between atom-centered and plane-wave + the input_template file must correspond to the appropriate basis set mode: + the "ao" mode supports the scf and dft modules in NWChem, + the "pw" mode supports the nwpw module. +* input_template = NWChem input file used as template, must include a + "geometry" block with the atoms in the simulation, dummy + xyz coordinates should be included (but are not used). + Atom ordering must match LAMMPS input. + +During a simulation, the molecular orbitals from the previous timestep +will be used as the initial guess for the next NWChem calculation. If +a file named "nwchem_lammps.movecs" is in the directory the wrapper is +called from, these orbitals will be used as the initial guess orbitals +in the first step of the simulation. + +---------------- + +Example directories + +(1) planewave + +Demonstrates coupling of the nwpw module in NWChem with LAMMPS. Only fully +periodic boundary conditions and orthogonal simulation boxes are currently +supported by the wrapper. The included files provide an example run using a +2 atom unit cell of tungsten. + +Files: + * data.W LAMMPS input with geometry information + * in.client.W LAMMPS simulation input + * log.client.output LAMMPS simulation output + * w.nw NWChem template input file + * nwchem_lammps.out NWChem output + +(2) ao_basis + +Demonstrates coupling of the scf (or dft) modules in NWChem with +LAMMPS. Only fully aperiodic boundary conditions are currently +supported by the wrapper. The included files provide an example run +using a single water molecule. + +Files: + * data.h2o LAMMPS input with geometry information + * in.client.h2o LAMMPS simulation input + * log.client.output LAMMPS simulation output + * h2o.nw NWChem template input file + * nwchem_lammps.out NWChem output + +As noted above, you can run the nwchem_wrap.py script as-is to test that +the coupling between it and LAMMPS is functional. This will use the included +nwchem_lammps.out files. + +---------------- + +To run in client/server mode: + +NOTE: The nwchem_wrap.py script must be run with Python version 2, not +3. This is because it used the CSlib python wrapper, which only +supports version 2. We plan to upgrade CSlib to support Python 3. + +Both the client (LAMMPS) and server (nwchem_wrap.py) must use the same +messaging mode, namely file or zmq. This is an argument to the +nwchem_wrap.py code; it can be selected by setting the "mode" variable +when you run LAMMPS. The default mode = file. + +Here we assume LAMMPS was built to run in parallel, and the MESSAGE +package was installed with socket (ZMQ) support. This means either of +the messaging modes can be used and LAMMPS can be run in serial or +parallel. The nwchem_wrap.py code is always run in serial, but it +launches NWChem from Python via an mpirun command which can run NWChem +itself in parallel. + +When you run, the server should print out thermodynamic info every +timestep which corresponds to the forces and virial computed by NWChem. +NWChem will also generate output files each timestep. Output files from +previous timesteps are archived in a "nwchem_logs" directory. + +The examples below are commands you should use in two different +terminal windows. The order of the two commands (client or server +launch) does not matter. You can run them both in the same window if +you append a "&" character to the first one to run it in the +background. + +-------------- + +File mode of messaging: + +% mpirun -np 1 lmp_mpi -v mode file < in.client.W +% python nwchem_wrap.py file pw w.nw + +% mpirun -np 2 lmp_mpi -v mode file < in.client.h2o +% python nwchem_wrap.py file ao h2o_dft.nw + +ZMQ mode of messaging: + +% mpirun -np 1 lmp_mpi -v mode zmq < in.client.W +% python nwchem_wrap.py zmq pw w.nw + +% mpirun -np 2 lmp_mpi -v mode zmq < in.client.h2o +% python nwchem_wrap.py zmq ao h2o_dft.nw diff --git a/examples/COUPLE/lammps_nwchem/ao_basis/data.h2o b/examples/COUPLE/lammps_nwchem/ao_basis/data.h2o new file mode 100644 index 0000000000..90f63e17ce --- /dev/null +++ b/examples/COUPLE/lammps_nwchem/ao_basis/data.h2o @@ -0,0 +1,20 @@ +LAMMPS H2O data file + +3 atoms + +2 atom types + +-10.0 10.0 xlo xhi +-10.0 10.0 ylo yhi +-10.0 10.0 zlo zhi + +Masses + +1 15.994915008544922 +2 1.0078250169754028 + +Atoms + +1 1 0.0 0.0 0.0 +2 2 0.0 0.756723 -0.585799 +3 2 0.0 -0.756723 -0.585799 diff --git a/examples/COUPLE/lammps_nwchem/ao_basis/h2o.nw b/examples/COUPLE/lammps_nwchem/ao_basis/h2o.nw new file mode 100644 index 0000000000..285a2a33c8 --- /dev/null +++ b/examples/COUPLE/lammps_nwchem/ao_basis/h2o.nw @@ -0,0 +1,25 @@ +echo + +memory global 40 mb stack 23 mb heap 5 mb + +geometry units angstrom noautosym + O 0.0 0.0 0.0 + H 1.0 0.5 0.0 + H -1.0 0.5 0.0 +end + +basis + O library 6-31g* + H library 6-31g* +end + +scf + maxiter 100 +end + +#dft +# xc b3lyp +#end + +task scf gradient +#task dft gradient diff --git a/examples/COUPLE/lammps_nwchem/ao_basis/in.client.h2o b/examples/COUPLE/lammps_nwchem/ao_basis/in.client.h2o new file mode 100644 index 0000000000..f56a5e9399 --- /dev/null +++ b/examples/COUPLE/lammps_nwchem/ao_basis/in.client.h2o @@ -0,0 +1,33 @@ +# H2O with NWChem + +variable mode index file + +if "${mode} == file" then & + "message client md file tmp.couple" & +elif "${mode} == zmq" & + "message client md zmq localhost:5555" & + +variable x index 1 +variable y index 1 +variable z index 1 + +units metal +atom_style atomic +atom_modify sort 0 0.0 map yes + +boundary m m m +read_data data.h2o + +replicate $x $y $z + +velocity all create 300.0 87287 loop geom + +neighbor 0.3 bin +neigh_modify delay 0 every 10 check no + +fix 1 all nve +fix 2 all client/md +fix_modify 2 energy yes + +thermo 1 +run 3 diff --git a/examples/COUPLE/lammps_nwchem/ao_basis/log.client.output b/examples/COUPLE/lammps_nwchem/ao_basis/log.client.output new file mode 100644 index 0000000000..4f0af43d40 --- /dev/null +++ b/examples/COUPLE/lammps_nwchem/ao_basis/log.client.output @@ -0,0 +1,77 @@ +LAMMPS (18 Sep 2018) +OMP_NUM_THREADS environment is not set. Defaulting to 1 thread. (src/comm.cpp:87) + using 1 OpenMP thread(s) per MPI task +# H2O with NWChem + +variable mode index file + +if "${mode} == file" then "message client md file tmp.couple" elif "${mode} == zmq" "message client md zmq localhost:5555" +message client md zmq localhost:5555 +variable x index 1 +variable y index 1 +variable z index 1 + +units metal +atom_style atomic +atom_modify sort 0 0.0 map yes + +boundary m m m +read_data data.h2o + orthogonal box = (-10 -10 -10) to (10 10 10) + 1 by 1 by 1 MPI processor grid + reading atoms ... + 3 atoms + +replicate $x $y $z +replicate 1 $y $z +replicate 1 1 $z +replicate 1 1 1 + orthogonal box = (-10 -10 -10) to (10 10 10) + 1 by 1 by 1 MPI processor grid + 3 atoms + Time spent = 5.8016e-05 secs + +velocity all create 300.0 87287 loop geom + +neighbor 0.3 bin +neigh_modify delay 0 every 10 check no + +fix 1 all nve +fix 2 all client/md +fix_modify 2 energy yes + +thermo 1 +run 3 +Per MPI rank memory allocation (min/avg/max) = 0.02705 | 0.02705 | 0.02705 Mbytes +Step Temp E_pair E_mol TotEng Press Volume + 0 300 0 0 -2068.2746 10.354878 8000 + 1 368.98118 0 0 -2068.2567 12.735851 8000 + 2 459.96278 0 0 -2068.2332 15.876195 8000 + 3 572.94479 0 0 -2068.204 19.775912 8000 +Loop time of 0.0174769 on 1 procs for 3 steps with 3 atoms + +Performance: 14.831 ns/day, 1.618 hours/ns, 171.655 timesteps/s +8.4% CPU use with 1 MPI tasks x 1 OpenMP threads + +MPI task timing breakdown: +Section | min time | avg time | max time |%varavg| %total +--------------------------------------------------------------- +Pair | 0 | 0 | 0 | 0.0 | 0.00 +Neigh | 0 | 0 | 0 | 0.0 | 0.00 +Comm | 2.555e-06 | 2.555e-06 | 2.555e-06 | 0.0 | 0.01 +Output | 8.4169e-05 | 8.4169e-05 | 8.4169e-05 | 0.0 | 0.48 +Modify | 0.017383 | 0.017383 | 0.017383 | 0.0 | 99.46 +Other | | 7.694e-06 | | | 0.04 + +Nlocal: 3 ave 3 max 3 min +Histogram: 1 0 0 0 0 0 0 0 0 0 +Nghost: 0 ave 0 max 0 min +Histogram: 1 0 0 0 0 0 0 0 0 0 +Neighs: 0 ave 0 max 0 min +Histogram: 1 0 0 0 0 0 0 0 0 0 + +Total # of neighbors = 0 +Ave neighs/atom = 0 +Neighbor list builds = 0 +Dangerous builds not checked +Total wall time: 0:00:01 diff --git a/examples/COUPLE/lammps_nwchem/ao_basis/nwchem_lammps.out b/examples/COUPLE/lammps_nwchem/ao_basis/nwchem_lammps.out new file mode 100644 index 0000000000..1556d13f84 --- /dev/null +++ b/examples/COUPLE/lammps_nwchem/ao_basis/nwchem_lammps.out @@ -0,0 +1,622 @@ + argument 1 = nwchem_lammps.nw + + + +============================== echo of input deck ============================== +echo + +memory global 40 mb stack 23 mb heap 5 mb + +geometry units angstrom noautosym +O 0 0 0 +H 0 0.756723 -0.585799 +H 0 -0.756723 -0.585799 +end + +scf + vectors input nwchem_lammps.movecs +end + +dft + vectors input nwchem_lammps.movecs +end + +basis + O library 6-31g* + H library 6-31g* +end + +scf + maxiter 100 +end + +task scf gradient + +================================================================================ + + + + + + + Northwest Computational Chemistry Package (NWChem) 6.8 + ------------------------------------------------------ + + + Environmental Molecular Sciences Laboratory + Pacific Northwest National Laboratory + Richland, WA 99352 + + Copyright (c) 1994-2017 + Pacific Northwest National Laboratory + Battelle Memorial Institute + + NWChem is an open-source computational chemistry package + distributed under the terms of the + Educational Community License (ECL) 2.0 + A copy of the license is included with this distribution + in the LICENSE.TXT file + + ACKNOWLEDGMENT + -------------- + + This software and its documentation were developed at the + EMSL at Pacific Northwest National Laboratory, a multiprogram + national laboratory, operated for the U.S. Department of Energy + by Battelle under Contract Number DE-AC05-76RL01830. Support + for this work was provided by the Department of Energy Office + of Biological and Environmental Research, Office of Basic + Energy Sciences, and the Office of Advanced Scientific Computing. + + + Job information + --------------- + + hostname = mcq + program = /usr/bin/nwchem + date = Mon Sep 23 16:28:27 2019 + + compiled = Wed_Aug_15_19:14:19_2018 + source = /home/edo/debichem-team/nwchem/nwchem-6.8.1 + nwchem branch = 6.8.1 + nwchem revision = v6.8-133-ge032219 + ga revision = 5.6.5 + use scalapack = T + input = nwchem_lammps.nw + prefix = nwchem_lammps. + data base = ./nwchem_lammps.db + status = restart + nproc = 1 + time left = -1s + + + + Memory information + ------------------ + + heap = 655358 doubles = 5.0 Mbytes + stack = 3014651 doubles = 23.0 Mbytes + global = 5242880 doubles = 40.0 Mbytes (distinct from heap & stack) + total = 8912889 doubles = 68.0 Mbytes + verify = yes + hardfail = no + + + Directory information + --------------------- + + 0 permanent = . + 0 scratch = . + + + Previous task information + ------------------------- + + Theory = scf + Operation = gradient + Status = ok + Qmmm = F + Ignore = F + + + Geometries in the database + -------------------------- + + Name Natoms Last Modified + -------------------------------- ------ ------------------------ + 1 geometry 3 Mon Sep 23 16:26:29 2019 + + The geometry named "geometry" is the default for restart + + + + Basis sets in the database + -------------------------- + + Name Natoms Last Modified + -------------------------------- ------ ------------------------ + 1 ao basis 2 Mon Sep 23 16:26:29 2019 + + The basis set named "ao basis" is the default AO basis for restart + + + + + NWChem Input Module + ------------------- + + + + Scaling coordinates for geometry "geometry" by 1.889725989 + (inverse scale = 0.529177249) + + + ------ + auto-z + ------ + + + Geometry "geometry" -> "" + ------------------------- + + Output coordinates in angstroms (scale by 1.889725989 to convert to a.u.) + + No. Tag Charge X Y Z + ---- ---------------- ---------- -------------- -------------- -------------- + 1 O 8.0000 0.00000000 0.00000000 0.11715980 + 2 H 1.0000 0.00000000 0.75672300 -0.46863920 + 3 H 1.0000 0.00000000 -0.75672300 -0.46863920 + + Atomic Mass + ----------- + + O 15.994910 + H 1.007825 + + + Effective nuclear repulsion energy (a.u.) 9.1972032776 + + Nuclear Dipole moment (a.u.) + ---------------------------- + X Y Z + ---------------- ---------------- ---------------- + 0.0000000000 0.0000000000 0.0000000000 + + + + Z-matrix (autoz) + -------- + + Units are Angstrom for bonds and degrees for angles + + Type Name I J K L M Value + ----------- -------- ----- ----- ----- ----- ----- ---------- + 1 Stretch 1 2 0.95697 + 2 Stretch 1 3 0.95697 + 3 Bend 2 1 3 104.51122 + + + XYZ format geometry + ------------------- + 3 + geometry + O 0.00000000 0.00000000 0.11715980 + H 0.00000000 0.75672300 -0.46863920 + H 0.00000000 -0.75672300 -0.46863920 + + ============================================================================== + internuclear distances + ------------------------------------------------------------------------------ + center one | center two | atomic units | angstroms + ------------------------------------------------------------------------------ + 2 H | 1 O | 1.80841 | 0.95697 + 3 H | 1 O | 1.80841 | 0.95697 + ------------------------------------------------------------------------------ + number of included internuclear distances: 2 + ============================================================================== + + + + ============================================================================== + internuclear angles + ------------------------------------------------------------------------------ + center 1 | center 2 | center 3 | degrees + ------------------------------------------------------------------------------ + 2 H | 1 O | 3 H | 104.51 + ------------------------------------------------------------------------------ + number of included internuclear angles: 1 + ============================================================================== + + + + Basis "ao basis" -> "" (cartesian) + ----- + O (Oxygen) + ---------- + Exponent Coefficients + -------------- --------------------------------------------------------- + 1 S 5.48467170E+03 0.001831 + 1 S 8.25234950E+02 0.013950 + 1 S 1.88046960E+02 0.068445 + 1 S 5.29645000E+01 0.232714 + 1 S 1.68975700E+01 0.470193 + 1 S 5.79963530E+00 0.358521 + + 2 S 1.55396160E+01 -0.110778 + 2 S 3.59993360E+00 -0.148026 + 2 S 1.01376180E+00 1.130767 + + 3 P 1.55396160E+01 0.070874 + 3 P 3.59993360E+00 0.339753 + 3 P 1.01376180E+00 0.727159 + + 4 S 2.70005800E-01 1.000000 + + 5 P 2.70005800E-01 1.000000 + + 6 D 8.00000000E-01 1.000000 + + H (Hydrogen) + ------------ + Exponent Coefficients + -------------- --------------------------------------------------------- + 1 S 1.87311370E+01 0.033495 + 1 S 2.82539370E+00 0.234727 + 1 S 6.40121700E-01 0.813757 + + 2 S 1.61277800E-01 1.000000 + + + + Summary of "ao basis" -> "" (cartesian) + ------------------------------------------------------------------------------ + Tag Description Shells Functions and Types + ---------------- ------------------------------ ------ --------------------- + O 6-31g* 6 15 3s2p1d + H 6-31g* 2 2 2s + + + NWChem SCF Module + ----------------- + + + + ao basis = "ao basis" + functions = 19 + atoms = 3 + closed shells = 5 + open shells = 0 + charge = 0.00 + wavefunction = RHF + input vectors = ./nwchem_lammps.movecs + output vectors = ./nwchem_lammps.movecs + use symmetry = F + symmetry adapt = F + + + Summary of "ao basis" -> "ao basis" (cartesian) + ------------------------------------------------------------------------------ + Tag Description Shells Functions and Types + ---------------- ------------------------------ ------ --------------------- + O 6-31g* 6 15 3s2p1d + H 6-31g* 2 2 2s + + + + Forming initial guess at 0.0s + + + Loading old vectors from job with title : + + + + + Starting SCF solution at 0.0s + + + + ---------------------------------------------- + Quadratically convergent ROHF + + Convergence threshold : 1.000E-04 + Maximum no. of iterations : 100 + Final Fock-matrix accuracy: 1.000E-07 + ---------------------------------------------- + + + #quartets = 1.540D+03 #integrals = 8.874D+03 #direct = 0.0% #cached =100.0% + + + Integral file = ./nwchem_lammps.aoints.0 + Record size in doubles = 65536 No. of integs per rec = 43688 + Max. records in memory = 2 Max. records in file = 326674 + No. of bits per label = 8 No. of bits per value = 64 + + + iter energy gnorm gmax time + ----- ------------------- --------- --------- -------- + 1 -75.9732571733 7.14D-01 3.37D-01 0.3 + 2 -76.0055117003 3.10D-01 1.79D-01 0.3 + 3 -76.0098071888 1.15D-01 5.21D-02 0.3 + 4 -76.0105377099 2.55D-03 9.57D-04 0.3 + 5 -76.0105386346 9.48D-06 3.52D-06 0.3 + + + Final RHF results + ------------------ + + Total SCF energy = -76.010538634624 + One-electron energy = -123.058850386783 + Two-electron energy = 37.851108474513 + Nuclear repulsion energy = 9.197203277646 + + Time for solution = 0.1s + + + Final eigenvalues + ----------------- + + 1 + 1 -20.5603 + 2 -1.3419 + 3 -0.7071 + 4 -0.5711 + 5 -0.4979 + 6 0.2108 + 7 0.3042 + 8 1.0227 + 9 1.1318 + 10 1.1678 + 11 1.1719 + 12 1.3809 + 13 1.4341 + 14 2.0201 + 15 2.0337 + + ROHF Final Molecular Orbital Analysis + ------------------------------------- + + Vector 2 Occ=2.000000D+00 E=-1.341930D+00 + MO Center= -7.7D-08, 1.6D-07, -5.6D-02, r^2= 5.0D-01 + Bfn. Coefficient Atom+Function Bfn. Coefficient Atom+Function + ----- ------------ --------------- ----- ------------ --------------- + 2 0.475861 1 O s 6 0.439201 1 O s + 1 -0.209676 1 O s + + Vector 3 Occ=2.000000D+00 E=-7.070591D-01 + MO Center= 5.8D-08, -1.2D-07, -1.0D-01, r^2= 7.7D-01 + Bfn. Coefficient Atom+Function Bfn. Coefficient Atom+Function + ----- ------------ --------------- ----- ------------ --------------- + 4 0.507651 1 O py 8 0.306488 1 O py + 16 0.230979 2 H s 18 -0.230979 3 H s + + Vector 4 Occ=2.000000D+00 E=-5.710712D-01 + MO Center= 6.9D-07, -2.0D-07, 1.7D-01, r^2= 6.9D-01 + Bfn. Coefficient Atom+Function Bfn. Coefficient Atom+Function + ----- ------------ --------------- ----- ------------ --------------- + 5 0.555446 1 O pz 9 0.403175 1 O pz + 6 0.325535 1 O s 2 0.164591 1 O s + + Vector 5 Occ=2.000000D+00 E=-4.979251D-01 + MO Center= -9.5D-08, -7.1D-08, 9.7D-02, r^2= 6.0D-01 + Bfn. Coefficient Atom+Function Bfn. Coefficient Atom+Function + ----- ------------ --------------- ----- ------------ --------------- + 3 0.639615 1 O px 7 0.511470 1 O px + + Vector 6 Occ=0.000000D+00 E= 2.108019D-01 + MO Center= -5.7D-07, 1.0D-06, -6.5D-01, r^2= 2.6D+00 + Bfn. Coefficient Atom+Function Bfn. Coefficient Atom+Function + ----- ------------ --------------- ----- ------------ --------------- + 6 1.415545 1 O s 17 -1.041449 2 H s + 19 -1.041447 3 H s 9 -0.508218 1 O pz + 5 -0.217054 1 O pz + + Vector 7 Occ=0.000000D+00 E= 3.042327D-01 + MO Center= -1.9D-09, -9.8D-07, -6.2D-01, r^2= 2.7D+00 + Bfn. Coefficient Atom+Function Bfn. Coefficient Atom+Function + ----- ------------ --------------- ----- ------------ --------------- + 17 1.395012 2 H s 19 -1.395014 3 H s + 8 -0.833805 1 O py 4 -0.329272 1 O py + + Vector 8 Occ=0.000000D+00 E= 1.022735D+00 + MO Center= -1.1D-10, 6.2D-07, -4.7D-02, r^2= 1.4D+00 + Bfn. Coefficient Atom+Function Bfn. Coefficient Atom+Function + ----- ------------ --------------- ----- ------------ --------------- + 16 0.838912 2 H s 18 -0.838911 3 H s + 8 -0.662620 1 O py 17 -0.459236 2 H s + 19 0.459235 3 H s 14 -0.343167 1 O dyz + + Vector 9 Occ=0.000000D+00 E= 1.131842D+00 + MO Center= 2.2D-07, 3.1D-07, 2.0D-01, r^2= 1.6D+00 + Bfn. Coefficient Atom+Function Bfn. Coefficient Atom+Function + ----- ------------ --------------- ----- ------------ --------------- + 6 1.636696 1 O s 2 -0.921950 1 O s + 9 0.708679 1 O pz 16 0.548799 2 H s + 18 0.548800 3 H s 17 -0.474050 2 H s + 19 -0.474049 3 H s 5 -0.419243 1 O pz + 10 -0.387486 1 O dxx 15 -0.318053 1 O dzz + + Vector 10 Occ=0.000000D+00 E= 1.167786D+00 + MO Center= 2.2D-05, 5.1D-09, 1.1D-01, r^2= 1.1D+00 + Bfn. Coefficient Atom+Function Bfn. Coefficient Atom+Function + ----- ------------ --------------- ----- ------------ --------------- + 7 -1.036049 1 O px 3 0.962745 1 O px + + Vector 11 Occ=0.000000D+00 E= 1.171944D+00 + MO Center= -2.2D-05, -4.7D-07, -3.9D-02, r^2= 1.1D+00 + Bfn. Coefficient Atom+Function Bfn. Coefficient Atom+Function + ----- ------------ --------------- ----- ------------ --------------- + 5 0.761007 1 O pz 16 0.661205 2 H s + 18 0.661206 3 H s 6 -0.462694 1 O s + 9 -0.370404 1 O pz 17 -0.357353 2 H s + 19 -0.357353 3 H s 13 0.249348 1 O dyy + + Vector 12 Occ=0.000000D+00 E= 1.380937D+00 + MO Center= -2.5D-09, 2.4D-07, 5.7D-02, r^2= 1.4D+00 + Bfn. Coefficient Atom+Function Bfn. Coefficient Atom+Function + ----- ------------ --------------- ----- ------------ --------------- + 8 1.537091 1 O py 4 -1.037376 1 O py + 17 -0.915091 2 H s 19 0.915090 3 H s + + Vector 13 Occ=0.000000D+00 E= 1.434077D+00 + MO Center= 5.4D-08, -5.6D-07, -3.9D-01, r^2= 1.4D+00 + Bfn. Coefficient Atom+Function Bfn. Coefficient Atom+Function + ----- ------------ --------------- ----- ------------ --------------- + 6 3.574401 1 O s 2 -1.418426 1 O s + 9 -1.174649 1 O pz 17 -0.784923 2 H s + 19 -0.784925 3 H s 13 -0.644454 1 O dyy + 5 0.506381 1 O pz 15 -0.402328 1 O dzz + 16 -0.323132 2 H s 18 -0.323132 3 H s + + Vector 14 Occ=0.000000D+00 E= 2.020054D+00 + MO Center= -2.1D-08, 1.2D-08, 1.6D-01, r^2= 6.2D-01 + Bfn. Coefficient Atom+Function Bfn. Coefficient Atom+Function + ----- ------------ --------------- ----- ------------ --------------- + 15 1.008815 1 O dzz 13 -0.580616 1 O dyy + 10 -0.366779 1 O dxx 6 -0.227333 1 O s + + Vector 15 Occ=0.000000D+00 E= 2.033720D+00 + MO Center= -5.0D-08, 6.6D-08, 1.2D-01, r^2= 6.1D-01 + Bfn. Coefficient Atom+Function Bfn. Coefficient Atom+Function + ----- ------------ --------------- ----- ------------ --------------- + 11 1.732051 1 O dxy + + + center of mass + -------------- + x = 0.00000000 y = 0.00000000 z = 0.09751017 + + moments of inertia (a.u.) + ------------------ + 6.315433940446 0.000000000000 0.000000000000 + 0.000000000000 2.193636332720 0.000000000000 + 0.000000000000 0.000000000000 4.121797607726 + + Mulliken analysis of the total density + -------------------------------------- + + Atom Charge Shell Charges + ----------- ------ ------------------------------------------------------- + 1 O 8 8.87 2.00 0.90 2.90 0.92 2.07 0.08 + 2 H 1 0.57 0.46 0.10 + 3 H 1 0.57 0.46 0.10 + + Multipole analysis of the density wrt the origin + ------------------------------------------------ + + L x y z total open nuclear + - - - - ----- ---- ------- + 0 0 0 0 0.000000 0.000000 10.000000 + + 1 1 0 0 -0.000002 0.000000 0.000000 + 1 0 1 0 0.000001 0.000000 0.000000 + 1 0 0 1 -0.875296 0.000000 0.000000 + + 2 2 0 0 -5.372336 0.000000 0.000000 + 2 1 1 0 -0.000002 0.000000 0.000000 + 2 1 0 1 0.000001 0.000000 0.000000 + 2 0 2 0 -3.071804 0.000000 4.089795 + 2 0 1 1 0.000000 0.000000 0.000000 + 2 0 0 2 -4.444596 0.000000 1.960717 + + + Parallel integral file used 1 records with 0 large values + + NWChem Gradients Module + ----------------------- + + + + wavefunction = RHF + + + + RHF ENERGY GRADIENTS + + atom coordinates gradient + x y z x y z + 1 O 0.000000 0.000000 0.221400 0.000001 0.000000 0.014490 + 2 H 0.000000 1.429999 -0.885600 -0.000001 0.007296 -0.007245 + 3 H 0.000000 -1.429999 -0.885600 -0.000000 -0.007296 -0.007245 + + ---------------------------------------- + | Time | 1-e(secs) | 2-e(secs) | + ---------------------------------------- + | CPU | 0.00 | 0.07 | + ---------------------------------------- + | WALL | 0.00 | 0.03 | + ---------------------------------------- + + Task times cpu: 0.2s wall: 0.1s + + + NWChem Input Module + ------------------- + + + Summary of allocated global arrays +----------------------------------- + No active global arrays + + + + GA Statistics for process 0 + ------------------------------ + + create destroy get put acc scatter gather read&inc +calls: 225 225 3182 894 878 0 0 68 +number of processes/call 1.00e+00 1.00e+00 1.00e+00 0.00e+00 0.00e+00 +bytes total: 8.62e+05 5.44e+05 1.23e+05 0.00e+00 0.00e+00 5.44e+02 +bytes remote: 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 +Max memory consumed for GA by this process: 39432 bytes + +MA_summarize_allocated_blocks: starting scan ... +MA_summarize_allocated_blocks: scan completed: 0 heap blocks, 0 stack blocks +MA usage statistics: + + allocation statistics: + heap stack + ---- ----- + current number of blocks 0 0 + maximum number of blocks 18 28 + current total bytes 0 0 + maximum total bytes 1060104 16000888 + maximum total K-bytes 1061 16001 + maximum total M-bytes 2 17 + + + CITATION + -------- + Please cite the following reference when publishing + results obtained with NWChem: + + M. Valiev, E.J. Bylaska, N. Govind, K. Kowalski, + T.P. Straatsma, H.J.J. van Dam, D. Wang, J. Nieplocha, + E. Apra, T.L. Windus, W.A. de Jong + "NWChem: a comprehensive and scalable open-source + solution for large scale molecular simulations" + Comput. Phys. Commun. 181, 1477 (2010) + doi:10.1016/j.cpc.2010.04.018 + + AUTHORS + ------- + E. Apra, E. J. Bylaska, W. A. de Jong, N. Govind, K. Kowalski, + T. P. Straatsma, M. Valiev, H. J. J. van Dam, D. Wang, T. L. Windus, + J. Hammond, J. Autschbach, K. Bhaskaran-Nair, J. Brabec, K. Lopata, + S. A. Fischer, S. Krishnamoorthy, M. Jacquelin, W. Ma, M. Klemm, O. Villa, + Y. Chen, V. Anisimov, F. Aquino, S. Hirata, M. T. Hackler, V. Konjkov, + D. Mejia-Rodriguez, T. Risthaus, M. Malagoli, A. Marenich, + A. Otero-de-la-Roza, J. Mullin, P. Nichols, R. Peverati, J. Pittner, Y. Zhao, + P.-D. Fan, A. Fonari, M. J. Williamson, R. J. Harrison, J. R. Rehr, + M. Dupuis, D. Silverstein, D. M. A. Smith, J. Nieplocha, V. Tipparaju, + M. Krishnan, B. E. Van Kuiken, A. Vazquez-Mayagoitia, L. Jensen, M. Swart, + Q. Wu, T. Van Voorhis, A. A. Auer, M. Nooijen, L. D. Crosby, E. Brown, + G. Cisneros, G. I. Fann, H. Fruchtl, J. Garza, K. Hirao, R. A. Kendall, + J. A. Nichols, K. Tsemekhman, K. Wolinski, J. Anchell, D. E. Bernholdt, + P. Borowski, T. Clark, D. Clerc, H. Dachsel, M. J. O. Deegan, K. Dyall, + D. Elwood, E. Glendening, M. Gutowski, A. C. Hess, J. Jaffe, B. G. Johnson, + J. Ju, R. Kobayashi, R. Kutteh, Z. Lin, R. Littlefield, X. Long, B. Meng, + T. Nakajima, S. Niu, L. Pollack, M. Rosing, K. Glaesemann, G. Sandrone, + M. Stave, H. Taylor, G. Thomas, J. H. van Lenthe, A. T. Wong, Z. Zhang. + + Total times cpu: 0.2s wall: 0.1s diff --git a/examples/COUPLE/lammps_nwchem/lammps_nwchem/README b/examples/COUPLE/lammps_nwchem/lammps_nwchem/README new file mode 100644 index 0000000000..2ee07f959f --- /dev/null +++ b/examples/COUPLE/lammps_nwchem/lammps_nwchem/README @@ -0,0 +1,197 @@ +Sample LAMMPS MD wrapper on NWChem via client/server coupling + +See the MESSAGE package (doc/Section_messages.html#MESSAGE) and +Section_howto.html#howto10 for more details on how client/server +coupling works in LAMMPS. + +In this dir, the nwchem_wrap.py is a wrapper on the NWChem electronic +structure code so it can work as a "server" code which LAMMPS drives +as a "client" code to perform ab initio MD. LAMMPS performs the MD +timestepping, sends NWChem a current set of coordinates each timestep, +NWChem computes forces and energy (and virial) and returns that info +to LAMMPS. + +Messages are exchanged between NWChem and LAMMPS via a client/server +library (CSlib), which is included in the LAMMPS distribution in +lib/message. As explained below you can choose to exchange data +between the two programs either via files or sockets (ZMQ). If the +nwchem_wrap.py program became parallel, or the CSlib library calls were +integrated into NWChem directly, then data could also be exchanged via +MPI. + +There are 2 examples provided in the planeware and ao_basis +sub-directories. See details below. + +---------------- + +Build LAMMPS with its MESSAGE package installed: + +See the Build extras doc page and its MESSAGE package +section for details. + +CMake: + +-D PKG_MESSAGE=yes # include the MESSAGE package +-D MESSAGE_ZMQ=value # build with ZeroMQ support, value = no (default) or yes + +Traditional make: + +cd lammps/lib/message +python Install.py -m -z # build CSlib with MPI and ZMQ support +cd lammps/src +make yes-message +make mpi + +You can leave off the -z if you do not have ZMQ on your system. + +---------------- + +Build the CSlib in a form usable by the nwchem_wrapper.py script: + +% cd lammps/lib/message/cslib/src +% make shlib # build serial and parallel shared lib with ZMQ support +% make shlib zmq=no # build serial and parallel shared lib w/out ZMQ support + +This will make a shared library versions of the CSlib, which Python +requires. Python must be able to find both the cslib.py script and +the libcsnompi.so library in your lammps/lib/message/cslib/src +directory. If it is not able to do this, you will get an error when +you run nwchem_wrapper.py. + +You can do this by augmenting two environment variables, either from +the command line, or in your shell start-up script. Here is the +sample syntax for the csh or tcsh shells: + +setenv PYTHONPATH ${PYTHONPATH}:/home/sjplimp/lammps/lib/message/cslib/src +setenv LD_LIBRARY_PATH ${LD_LIBRARY_PATH}:/home/sjplimp/lammps/lib/message/cslib/src + +---------------- + +Prepare to use NWChem and the nwchem_wrap.py script + +You can run the nwchem_wrap.py script as-is to test that the coupling +between it and LAMMPS is functional. This will use the included +nwchem_lammps.out files output by a previous NWChem run. + +But note that the as-is version of nwchem_wrap.py will not attempt to +run NWChem. + +To do this, you must edit the 1st nwchemcmd line at the top of +nwchem_wrapper.py to be the launch command needed to run NWChem on +your system. It can be a command to run NWChem in serial or in +parallel, e.g. an mpirun command. Then comment out the 2nd nwchemcmd +line immediately following it. + +Ensure you have the necessary NWChem input file in this directory, +suitable for the NWChem calculation you want to perform. + +Example input files are provided for both atom-centered AO basis sets +and plane-wave basis sets. Note that the NWChem template file should +be matched to the LAMMPS input script (# of atoms and atom types, box +size, etc). + +Once you run NWChem yourself, the nwchem_lammps.out file will be +overwritten. + +The syntax of the wrapper is: +nwchem_wrap.py file/zmq ao/pw input_template +* file/zmg = messaging mode, must match LAMMPS messaging mode +* ao/pw = basis set mode, selects between atom-centered and plane-wave + the input_template file must correspond to the appropriate basis set mode: + the "ao" mode supports the scf and dft modules in NWChem, + the "pw" mode supports the nwpw module. +* input_template = NWChem input file used as template, must include a + "geometry" block with the atoms in the simulation, dummy + xyz coordinates should be included (but are not used). + Atom ordering must match LAMMPS input. + +During a simulation, the molecular orbitals from the previous timestep +will be used as the initial guess for the next NWChem calculation. If +a file named "nwchem_lammps.movecs" is in the directory the wrapper is +called from, these orbitals will be used as the initial guess orbitals +in the first step of the simulation. + +---------------- + +Example directories + +(1) planewave + +Demonstrates coupling of the nwpw module in NWChem with LAMMPS. Only fully +periodic boundary conditions and orthogonal simulation boxes are currently +supported by the wrapper. The included files provide an example run using a +2 atom unit cell of tungsten. + +Files: + * data.W LAMMPS input with geometry information + * in.client.W LAMMPS simulation input + * log.client.output LAMMPS simulation output + * w.nw NWChem template input file + * nwchem_lammps.out NWChem output + +(2) ao_basis + +Demonstrates coupling of the scf (or dft) modules in NWChem with +LAMMPS. Only fully aperiodic boundary conditions are currently +supported by the wrapper. The included files provide an example run +using a single water molecule. + +Files: + * data.h2o LAMMPS input with geometry information + * in.client.h2o LAMMPS simulation input + * log.client.output LAMMPS simulation output + * h2o.nw NWChem template input file + * nwchem_lammps.out NWChem output + +As noted above, you can run the nwchem_wrap.py script as-is to test that +the coupling between it and LAMMPS is functional. This will use the included +nwchem_lammps.out files. + +---------------- + +To run in client/server mode: + +NOTE: The nwchem_wrap.py script must be run with Python version 2, not +3. This is because it used the CSlib python wrapper, which only +supports version 2. We plan to upgrade CSlib to support Python 3. + +Both the client (LAMMPS) and server (nwchem_wrap.py) must use the same +messaging mode, namely file or zmq. This is an argument to the +nwchem_wrap.py code; it can be selected by setting the "mode" variable +when you run LAMMPS. The default mode = file. + +Here we assume LAMMPS was built to run in parallel, and the MESSAGE +package was installed with socket (ZMQ) support. This means either of +the messaging modes can be used and LAMMPS can be run in serial or +parallel. The nwchem_wrap.py code is always run in serial, but it +launches NWChem from Python via an mpirun command which can run NWChem +itself in parallel. + +When you run, the server should print out thermodynamic info every +timestep which corresponds to the forces and virial computed by NWChem. +NWChem will also generate output files each timestep. Output files from +previous timesteps are archived in a "nwchem_logs" directory. + +The examples below are commands you should use in two different +terminal windows. The order of the two commands (client or server +launch) does not matter. You can run them both in the same window if +you append a "&" character to the first one to run it in the +background. + +-------------- + +File mode of messaging: + +% mpirun -np 1 lmp_mpi -v mode file < in.client.W +% python nwchem_wrap.py file pw w.nw + +% mpirun -np 2 lmp_mpi -v mode file < in.client.h2o +% python nwchem_wrap.py file ao h2o_dft.nw + +ZMQ mode of messaging: + +% mpirun -np 1 lmp_mpi -v mode zmq < in.client.W +% python nwchem_wrap.py zmq pw w.nw + +% mpirun -np 2 lmp_mpi -v mode zmq < in.client.h2o +% python nwchem_wrap.py zmq ao h2o_dft.nw diff --git a/examples/COUPLE/lammps_nwchem/lammps_nwchem/ao_basis/data.h2o b/examples/COUPLE/lammps_nwchem/lammps_nwchem/ao_basis/data.h2o new file mode 100644 index 0000000000..90f63e17ce --- /dev/null +++ b/examples/COUPLE/lammps_nwchem/lammps_nwchem/ao_basis/data.h2o @@ -0,0 +1,20 @@ +LAMMPS H2O data file + +3 atoms + +2 atom types + +-10.0 10.0 xlo xhi +-10.0 10.0 ylo yhi +-10.0 10.0 zlo zhi + +Masses + +1 15.994915008544922 +2 1.0078250169754028 + +Atoms + +1 1 0.0 0.0 0.0 +2 2 0.0 0.756723 -0.585799 +3 2 0.0 -0.756723 -0.585799 diff --git a/examples/COUPLE/lammps_nwchem/lammps_nwchem/ao_basis/h2o.nw b/examples/COUPLE/lammps_nwchem/lammps_nwchem/ao_basis/h2o.nw new file mode 100644 index 0000000000..285a2a33c8 --- /dev/null +++ b/examples/COUPLE/lammps_nwchem/lammps_nwchem/ao_basis/h2o.nw @@ -0,0 +1,25 @@ +echo + +memory global 40 mb stack 23 mb heap 5 mb + +geometry units angstrom noautosym + O 0.0 0.0 0.0 + H 1.0 0.5 0.0 + H -1.0 0.5 0.0 +end + +basis + O library 6-31g* + H library 6-31g* +end + +scf + maxiter 100 +end + +#dft +# xc b3lyp +#end + +task scf gradient +#task dft gradient diff --git a/examples/COUPLE/lammps_nwchem/lammps_nwchem/ao_basis/in.client.h2o b/examples/COUPLE/lammps_nwchem/lammps_nwchem/ao_basis/in.client.h2o new file mode 100644 index 0000000000..f56a5e9399 --- /dev/null +++ b/examples/COUPLE/lammps_nwchem/lammps_nwchem/ao_basis/in.client.h2o @@ -0,0 +1,33 @@ +# H2O with NWChem + +variable mode index file + +if "${mode} == file" then & + "message client md file tmp.couple" & +elif "${mode} == zmq" & + "message client md zmq localhost:5555" & + +variable x index 1 +variable y index 1 +variable z index 1 + +units metal +atom_style atomic +atom_modify sort 0 0.0 map yes + +boundary m m m +read_data data.h2o + +replicate $x $y $z + +velocity all create 300.0 87287 loop geom + +neighbor 0.3 bin +neigh_modify delay 0 every 10 check no + +fix 1 all nve +fix 2 all client/md +fix_modify 2 energy yes + +thermo 1 +run 3 diff --git a/examples/COUPLE/lammps_nwchem/lammps_nwchem/ao_basis/log.client.output b/examples/COUPLE/lammps_nwchem/lammps_nwchem/ao_basis/log.client.output new file mode 100644 index 0000000000..4f0af43d40 --- /dev/null +++ b/examples/COUPLE/lammps_nwchem/lammps_nwchem/ao_basis/log.client.output @@ -0,0 +1,77 @@ +LAMMPS (18 Sep 2018) +OMP_NUM_THREADS environment is not set. Defaulting to 1 thread. (src/comm.cpp:87) + using 1 OpenMP thread(s) per MPI task +# H2O with NWChem + +variable mode index file + +if "${mode} == file" then "message client md file tmp.couple" elif "${mode} == zmq" "message client md zmq localhost:5555" +message client md zmq localhost:5555 +variable x index 1 +variable y index 1 +variable z index 1 + +units metal +atom_style atomic +atom_modify sort 0 0.0 map yes + +boundary m m m +read_data data.h2o + orthogonal box = (-10 -10 -10) to (10 10 10) + 1 by 1 by 1 MPI processor grid + reading atoms ... + 3 atoms + +replicate $x $y $z +replicate 1 $y $z +replicate 1 1 $z +replicate 1 1 1 + orthogonal box = (-10 -10 -10) to (10 10 10) + 1 by 1 by 1 MPI processor grid + 3 atoms + Time spent = 5.8016e-05 secs + +velocity all create 300.0 87287 loop geom + +neighbor 0.3 bin +neigh_modify delay 0 every 10 check no + +fix 1 all nve +fix 2 all client/md +fix_modify 2 energy yes + +thermo 1 +run 3 +Per MPI rank memory allocation (min/avg/max) = 0.02705 | 0.02705 | 0.02705 Mbytes +Step Temp E_pair E_mol TotEng Press Volume + 0 300 0 0 -2068.2746 10.354878 8000 + 1 368.98118 0 0 -2068.2567 12.735851 8000 + 2 459.96278 0 0 -2068.2332 15.876195 8000 + 3 572.94479 0 0 -2068.204 19.775912 8000 +Loop time of 0.0174769 on 1 procs for 3 steps with 3 atoms + +Performance: 14.831 ns/day, 1.618 hours/ns, 171.655 timesteps/s +8.4% CPU use with 1 MPI tasks x 1 OpenMP threads + +MPI task timing breakdown: +Section | min time | avg time | max time |%varavg| %total +--------------------------------------------------------------- +Pair | 0 | 0 | 0 | 0.0 | 0.00 +Neigh | 0 | 0 | 0 | 0.0 | 0.00 +Comm | 2.555e-06 | 2.555e-06 | 2.555e-06 | 0.0 | 0.01 +Output | 8.4169e-05 | 8.4169e-05 | 8.4169e-05 | 0.0 | 0.48 +Modify | 0.017383 | 0.017383 | 0.017383 | 0.0 | 99.46 +Other | | 7.694e-06 | | | 0.04 + +Nlocal: 3 ave 3 max 3 min +Histogram: 1 0 0 0 0 0 0 0 0 0 +Nghost: 0 ave 0 max 0 min +Histogram: 1 0 0 0 0 0 0 0 0 0 +Neighs: 0 ave 0 max 0 min +Histogram: 1 0 0 0 0 0 0 0 0 0 + +Total # of neighbors = 0 +Ave neighs/atom = 0 +Neighbor list builds = 0 +Dangerous builds not checked +Total wall time: 0:00:01 diff --git a/examples/COUPLE/lammps_nwchem/lammps_nwchem/ao_basis/nwchem_lammps.out b/examples/COUPLE/lammps_nwchem/lammps_nwchem/ao_basis/nwchem_lammps.out new file mode 100644 index 0000000000..1556d13f84 --- /dev/null +++ b/examples/COUPLE/lammps_nwchem/lammps_nwchem/ao_basis/nwchem_lammps.out @@ -0,0 +1,622 @@ + argument 1 = nwchem_lammps.nw + + + +============================== echo of input deck ============================== +echo + +memory global 40 mb stack 23 mb heap 5 mb + +geometry units angstrom noautosym +O 0 0 0 +H 0 0.756723 -0.585799 +H 0 -0.756723 -0.585799 +end + +scf + vectors input nwchem_lammps.movecs +end + +dft + vectors input nwchem_lammps.movecs +end + +basis + O library 6-31g* + H library 6-31g* +end + +scf + maxiter 100 +end + +task scf gradient + +================================================================================ + + + + + + + Northwest Computational Chemistry Package (NWChem) 6.8 + ------------------------------------------------------ + + + Environmental Molecular Sciences Laboratory + Pacific Northwest National Laboratory + Richland, WA 99352 + + Copyright (c) 1994-2017 + Pacific Northwest National Laboratory + Battelle Memorial Institute + + NWChem is an open-source computational chemistry package + distributed under the terms of the + Educational Community License (ECL) 2.0 + A copy of the license is included with this distribution + in the LICENSE.TXT file + + ACKNOWLEDGMENT + -------------- + + This software and its documentation were developed at the + EMSL at Pacific Northwest National Laboratory, a multiprogram + national laboratory, operated for the U.S. Department of Energy + by Battelle under Contract Number DE-AC05-76RL01830. Support + for this work was provided by the Department of Energy Office + of Biological and Environmental Research, Office of Basic + Energy Sciences, and the Office of Advanced Scientific Computing. + + + Job information + --------------- + + hostname = mcq + program = /usr/bin/nwchem + date = Mon Sep 23 16:28:27 2019 + + compiled = Wed_Aug_15_19:14:19_2018 + source = /home/edo/debichem-team/nwchem/nwchem-6.8.1 + nwchem branch = 6.8.1 + nwchem revision = v6.8-133-ge032219 + ga revision = 5.6.5 + use scalapack = T + input = nwchem_lammps.nw + prefix = nwchem_lammps. + data base = ./nwchem_lammps.db + status = restart + nproc = 1 + time left = -1s + + + + Memory information + ------------------ + + heap = 655358 doubles = 5.0 Mbytes + stack = 3014651 doubles = 23.0 Mbytes + global = 5242880 doubles = 40.0 Mbytes (distinct from heap & stack) + total = 8912889 doubles = 68.0 Mbytes + verify = yes + hardfail = no + + + Directory information + --------------------- + + 0 permanent = . + 0 scratch = . + + + Previous task information + ------------------------- + + Theory = scf + Operation = gradient + Status = ok + Qmmm = F + Ignore = F + + + Geometries in the database + -------------------------- + + Name Natoms Last Modified + -------------------------------- ------ ------------------------ + 1 geometry 3 Mon Sep 23 16:26:29 2019 + + The geometry named "geometry" is the default for restart + + + + Basis sets in the database + -------------------------- + + Name Natoms Last Modified + -------------------------------- ------ ------------------------ + 1 ao basis 2 Mon Sep 23 16:26:29 2019 + + The basis set named "ao basis" is the default AO basis for restart + + + + + NWChem Input Module + ------------------- + + + + Scaling coordinates for geometry "geometry" by 1.889725989 + (inverse scale = 0.529177249) + + + ------ + auto-z + ------ + + + Geometry "geometry" -> "" + ------------------------- + + Output coordinates in angstroms (scale by 1.889725989 to convert to a.u.) + + No. Tag Charge X Y Z + ---- ---------------- ---------- -------------- -------------- -------------- + 1 O 8.0000 0.00000000 0.00000000 0.11715980 + 2 H 1.0000 0.00000000 0.75672300 -0.46863920 + 3 H 1.0000 0.00000000 -0.75672300 -0.46863920 + + Atomic Mass + ----------- + + O 15.994910 + H 1.007825 + + + Effective nuclear repulsion energy (a.u.) 9.1972032776 + + Nuclear Dipole moment (a.u.) + ---------------------------- + X Y Z + ---------------- ---------------- ---------------- + 0.0000000000 0.0000000000 0.0000000000 + + + + Z-matrix (autoz) + -------- + + Units are Angstrom for bonds and degrees for angles + + Type Name I J K L M Value + ----------- -------- ----- ----- ----- ----- ----- ---------- + 1 Stretch 1 2 0.95697 + 2 Stretch 1 3 0.95697 + 3 Bend 2 1 3 104.51122 + + + XYZ format geometry + ------------------- + 3 + geometry + O 0.00000000 0.00000000 0.11715980 + H 0.00000000 0.75672300 -0.46863920 + H 0.00000000 -0.75672300 -0.46863920 + + ============================================================================== + internuclear distances + ------------------------------------------------------------------------------ + center one | center two | atomic units | angstroms + ------------------------------------------------------------------------------ + 2 H | 1 O | 1.80841 | 0.95697 + 3 H | 1 O | 1.80841 | 0.95697 + ------------------------------------------------------------------------------ + number of included internuclear distances: 2 + ============================================================================== + + + + ============================================================================== + internuclear angles + ------------------------------------------------------------------------------ + center 1 | center 2 | center 3 | degrees + ------------------------------------------------------------------------------ + 2 H | 1 O | 3 H | 104.51 + ------------------------------------------------------------------------------ + number of included internuclear angles: 1 + ============================================================================== + + + + Basis "ao basis" -> "" (cartesian) + ----- + O (Oxygen) + ---------- + Exponent Coefficients + -------------- --------------------------------------------------------- + 1 S 5.48467170E+03 0.001831 + 1 S 8.25234950E+02 0.013950 + 1 S 1.88046960E+02 0.068445 + 1 S 5.29645000E+01 0.232714 + 1 S 1.68975700E+01 0.470193 + 1 S 5.79963530E+00 0.358521 + + 2 S 1.55396160E+01 -0.110778 + 2 S 3.59993360E+00 -0.148026 + 2 S 1.01376180E+00 1.130767 + + 3 P 1.55396160E+01 0.070874 + 3 P 3.59993360E+00 0.339753 + 3 P 1.01376180E+00 0.727159 + + 4 S 2.70005800E-01 1.000000 + + 5 P 2.70005800E-01 1.000000 + + 6 D 8.00000000E-01 1.000000 + + H (Hydrogen) + ------------ + Exponent Coefficients + -------------- --------------------------------------------------------- + 1 S 1.87311370E+01 0.033495 + 1 S 2.82539370E+00 0.234727 + 1 S 6.40121700E-01 0.813757 + + 2 S 1.61277800E-01 1.000000 + + + + Summary of "ao basis" -> "" (cartesian) + ------------------------------------------------------------------------------ + Tag Description Shells Functions and Types + ---------------- ------------------------------ ------ --------------------- + O 6-31g* 6 15 3s2p1d + H 6-31g* 2 2 2s + + + NWChem SCF Module + ----------------- + + + + ao basis = "ao basis" + functions = 19 + atoms = 3 + closed shells = 5 + open shells = 0 + charge = 0.00 + wavefunction = RHF + input vectors = ./nwchem_lammps.movecs + output vectors = ./nwchem_lammps.movecs + use symmetry = F + symmetry adapt = F + + + Summary of "ao basis" -> "ao basis" (cartesian) + ------------------------------------------------------------------------------ + Tag Description Shells Functions and Types + ---------------- ------------------------------ ------ --------------------- + O 6-31g* 6 15 3s2p1d + H 6-31g* 2 2 2s + + + + Forming initial guess at 0.0s + + + Loading old vectors from job with title : + + + + + Starting SCF solution at 0.0s + + + + ---------------------------------------------- + Quadratically convergent ROHF + + Convergence threshold : 1.000E-04 + Maximum no. of iterations : 100 + Final Fock-matrix accuracy: 1.000E-07 + ---------------------------------------------- + + + #quartets = 1.540D+03 #integrals = 8.874D+03 #direct = 0.0% #cached =100.0% + + + Integral file = ./nwchem_lammps.aoints.0 + Record size in doubles = 65536 No. of integs per rec = 43688 + Max. records in memory = 2 Max. records in file = 326674 + No. of bits per label = 8 No. of bits per value = 64 + + + iter energy gnorm gmax time + ----- ------------------- --------- --------- -------- + 1 -75.9732571733 7.14D-01 3.37D-01 0.3 + 2 -76.0055117003 3.10D-01 1.79D-01 0.3 + 3 -76.0098071888 1.15D-01 5.21D-02 0.3 + 4 -76.0105377099 2.55D-03 9.57D-04 0.3 + 5 -76.0105386346 9.48D-06 3.52D-06 0.3 + + + Final RHF results + ------------------ + + Total SCF energy = -76.010538634624 + One-electron energy = -123.058850386783 + Two-electron energy = 37.851108474513 + Nuclear repulsion energy = 9.197203277646 + + Time for solution = 0.1s + + + Final eigenvalues + ----------------- + + 1 + 1 -20.5603 + 2 -1.3419 + 3 -0.7071 + 4 -0.5711 + 5 -0.4979 + 6 0.2108 + 7 0.3042 + 8 1.0227 + 9 1.1318 + 10 1.1678 + 11 1.1719 + 12 1.3809 + 13 1.4341 + 14 2.0201 + 15 2.0337 + + ROHF Final Molecular Orbital Analysis + ------------------------------------- + + Vector 2 Occ=2.000000D+00 E=-1.341930D+00 + MO Center= -7.7D-08, 1.6D-07, -5.6D-02, r^2= 5.0D-01 + Bfn. Coefficient Atom+Function Bfn. Coefficient Atom+Function + ----- ------------ --------------- ----- ------------ --------------- + 2 0.475861 1 O s 6 0.439201 1 O s + 1 -0.209676 1 O s + + Vector 3 Occ=2.000000D+00 E=-7.070591D-01 + MO Center= 5.8D-08, -1.2D-07, -1.0D-01, r^2= 7.7D-01 + Bfn. Coefficient Atom+Function Bfn. Coefficient Atom+Function + ----- ------------ --------------- ----- ------------ --------------- + 4 0.507651 1 O py 8 0.306488 1 O py + 16 0.230979 2 H s 18 -0.230979 3 H s + + Vector 4 Occ=2.000000D+00 E=-5.710712D-01 + MO Center= 6.9D-07, -2.0D-07, 1.7D-01, r^2= 6.9D-01 + Bfn. Coefficient Atom+Function Bfn. Coefficient Atom+Function + ----- ------------ --------------- ----- ------------ --------------- + 5 0.555446 1 O pz 9 0.403175 1 O pz + 6 0.325535 1 O s 2 0.164591 1 O s + + Vector 5 Occ=2.000000D+00 E=-4.979251D-01 + MO Center= -9.5D-08, -7.1D-08, 9.7D-02, r^2= 6.0D-01 + Bfn. Coefficient Atom+Function Bfn. Coefficient Atom+Function + ----- ------------ --------------- ----- ------------ --------------- + 3 0.639615 1 O px 7 0.511470 1 O px + + Vector 6 Occ=0.000000D+00 E= 2.108019D-01 + MO Center= -5.7D-07, 1.0D-06, -6.5D-01, r^2= 2.6D+00 + Bfn. Coefficient Atom+Function Bfn. Coefficient Atom+Function + ----- ------------ --------------- ----- ------------ --------------- + 6 1.415545 1 O s 17 -1.041449 2 H s + 19 -1.041447 3 H s 9 -0.508218 1 O pz + 5 -0.217054 1 O pz + + Vector 7 Occ=0.000000D+00 E= 3.042327D-01 + MO Center= -1.9D-09, -9.8D-07, -6.2D-01, r^2= 2.7D+00 + Bfn. Coefficient Atom+Function Bfn. Coefficient Atom+Function + ----- ------------ --------------- ----- ------------ --------------- + 17 1.395012 2 H s 19 -1.395014 3 H s + 8 -0.833805 1 O py 4 -0.329272 1 O py + + Vector 8 Occ=0.000000D+00 E= 1.022735D+00 + MO Center= -1.1D-10, 6.2D-07, -4.7D-02, r^2= 1.4D+00 + Bfn. Coefficient Atom+Function Bfn. Coefficient Atom+Function + ----- ------------ --------------- ----- ------------ --------------- + 16 0.838912 2 H s 18 -0.838911 3 H s + 8 -0.662620 1 O py 17 -0.459236 2 H s + 19 0.459235 3 H s 14 -0.343167 1 O dyz + + Vector 9 Occ=0.000000D+00 E= 1.131842D+00 + MO Center= 2.2D-07, 3.1D-07, 2.0D-01, r^2= 1.6D+00 + Bfn. Coefficient Atom+Function Bfn. Coefficient Atom+Function + ----- ------------ --------------- ----- ------------ --------------- + 6 1.636696 1 O s 2 -0.921950 1 O s + 9 0.708679 1 O pz 16 0.548799 2 H s + 18 0.548800 3 H s 17 -0.474050 2 H s + 19 -0.474049 3 H s 5 -0.419243 1 O pz + 10 -0.387486 1 O dxx 15 -0.318053 1 O dzz + + Vector 10 Occ=0.000000D+00 E= 1.167786D+00 + MO Center= 2.2D-05, 5.1D-09, 1.1D-01, r^2= 1.1D+00 + Bfn. Coefficient Atom+Function Bfn. Coefficient Atom+Function + ----- ------------ --------------- ----- ------------ --------------- + 7 -1.036049 1 O px 3 0.962745 1 O px + + Vector 11 Occ=0.000000D+00 E= 1.171944D+00 + MO Center= -2.2D-05, -4.7D-07, -3.9D-02, r^2= 1.1D+00 + Bfn. Coefficient Atom+Function Bfn. Coefficient Atom+Function + ----- ------------ --------------- ----- ------------ --------------- + 5 0.761007 1 O pz 16 0.661205 2 H s + 18 0.661206 3 H s 6 -0.462694 1 O s + 9 -0.370404 1 O pz 17 -0.357353 2 H s + 19 -0.357353 3 H s 13 0.249348 1 O dyy + + Vector 12 Occ=0.000000D+00 E= 1.380937D+00 + MO Center= -2.5D-09, 2.4D-07, 5.7D-02, r^2= 1.4D+00 + Bfn. Coefficient Atom+Function Bfn. Coefficient Atom+Function + ----- ------------ --------------- ----- ------------ --------------- + 8 1.537091 1 O py 4 -1.037376 1 O py + 17 -0.915091 2 H s 19 0.915090 3 H s + + Vector 13 Occ=0.000000D+00 E= 1.434077D+00 + MO Center= 5.4D-08, -5.6D-07, -3.9D-01, r^2= 1.4D+00 + Bfn. Coefficient Atom+Function Bfn. Coefficient Atom+Function + ----- ------------ --------------- ----- ------------ --------------- + 6 3.574401 1 O s 2 -1.418426 1 O s + 9 -1.174649 1 O pz 17 -0.784923 2 H s + 19 -0.784925 3 H s 13 -0.644454 1 O dyy + 5 0.506381 1 O pz 15 -0.402328 1 O dzz + 16 -0.323132 2 H s 18 -0.323132 3 H s + + Vector 14 Occ=0.000000D+00 E= 2.020054D+00 + MO Center= -2.1D-08, 1.2D-08, 1.6D-01, r^2= 6.2D-01 + Bfn. Coefficient Atom+Function Bfn. Coefficient Atom+Function + ----- ------------ --------------- ----- ------------ --------------- + 15 1.008815 1 O dzz 13 -0.580616 1 O dyy + 10 -0.366779 1 O dxx 6 -0.227333 1 O s + + Vector 15 Occ=0.000000D+00 E= 2.033720D+00 + MO Center= -5.0D-08, 6.6D-08, 1.2D-01, r^2= 6.1D-01 + Bfn. Coefficient Atom+Function Bfn. Coefficient Atom+Function + ----- ------------ --------------- ----- ------------ --------------- + 11 1.732051 1 O dxy + + + center of mass + -------------- + x = 0.00000000 y = 0.00000000 z = 0.09751017 + + moments of inertia (a.u.) + ------------------ + 6.315433940446 0.000000000000 0.000000000000 + 0.000000000000 2.193636332720 0.000000000000 + 0.000000000000 0.000000000000 4.121797607726 + + Mulliken analysis of the total density + -------------------------------------- + + Atom Charge Shell Charges + ----------- ------ ------------------------------------------------------- + 1 O 8 8.87 2.00 0.90 2.90 0.92 2.07 0.08 + 2 H 1 0.57 0.46 0.10 + 3 H 1 0.57 0.46 0.10 + + Multipole analysis of the density wrt the origin + ------------------------------------------------ + + L x y z total open nuclear + - - - - ----- ---- ------- + 0 0 0 0 0.000000 0.000000 10.000000 + + 1 1 0 0 -0.000002 0.000000 0.000000 + 1 0 1 0 0.000001 0.000000 0.000000 + 1 0 0 1 -0.875296 0.000000 0.000000 + + 2 2 0 0 -5.372336 0.000000 0.000000 + 2 1 1 0 -0.000002 0.000000 0.000000 + 2 1 0 1 0.000001 0.000000 0.000000 + 2 0 2 0 -3.071804 0.000000 4.089795 + 2 0 1 1 0.000000 0.000000 0.000000 + 2 0 0 2 -4.444596 0.000000 1.960717 + + + Parallel integral file used 1 records with 0 large values + + NWChem Gradients Module + ----------------------- + + + + wavefunction = RHF + + + + RHF ENERGY GRADIENTS + + atom coordinates gradient + x y z x y z + 1 O 0.000000 0.000000 0.221400 0.000001 0.000000 0.014490 + 2 H 0.000000 1.429999 -0.885600 -0.000001 0.007296 -0.007245 + 3 H 0.000000 -1.429999 -0.885600 -0.000000 -0.007296 -0.007245 + + ---------------------------------------- + | Time | 1-e(secs) | 2-e(secs) | + ---------------------------------------- + | CPU | 0.00 | 0.07 | + ---------------------------------------- + | WALL | 0.00 | 0.03 | + ---------------------------------------- + + Task times cpu: 0.2s wall: 0.1s + + + NWChem Input Module + ------------------- + + + Summary of allocated global arrays +----------------------------------- + No active global arrays + + + + GA Statistics for process 0 + ------------------------------ + + create destroy get put acc scatter gather read&inc +calls: 225 225 3182 894 878 0 0 68 +number of processes/call 1.00e+00 1.00e+00 1.00e+00 0.00e+00 0.00e+00 +bytes total: 8.62e+05 5.44e+05 1.23e+05 0.00e+00 0.00e+00 5.44e+02 +bytes remote: 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 +Max memory consumed for GA by this process: 39432 bytes + +MA_summarize_allocated_blocks: starting scan ... +MA_summarize_allocated_blocks: scan completed: 0 heap blocks, 0 stack blocks +MA usage statistics: + + allocation statistics: + heap stack + ---- ----- + current number of blocks 0 0 + maximum number of blocks 18 28 + current total bytes 0 0 + maximum total bytes 1060104 16000888 + maximum total K-bytes 1061 16001 + maximum total M-bytes 2 17 + + + CITATION + -------- + Please cite the following reference when publishing + results obtained with NWChem: + + M. Valiev, E.J. Bylaska, N. Govind, K. Kowalski, + T.P. Straatsma, H.J.J. van Dam, D. Wang, J. Nieplocha, + E. Apra, T.L. Windus, W.A. de Jong + "NWChem: a comprehensive and scalable open-source + solution for large scale molecular simulations" + Comput. Phys. Commun. 181, 1477 (2010) + doi:10.1016/j.cpc.2010.04.018 + + AUTHORS + ------- + E. Apra, E. J. Bylaska, W. A. de Jong, N. Govind, K. Kowalski, + T. P. Straatsma, M. Valiev, H. J. J. van Dam, D. Wang, T. L. Windus, + J. Hammond, J. Autschbach, K. Bhaskaran-Nair, J. Brabec, K. Lopata, + S. A. Fischer, S. Krishnamoorthy, M. Jacquelin, W. Ma, M. Klemm, O. Villa, + Y. Chen, V. Anisimov, F. Aquino, S. Hirata, M. T. Hackler, V. Konjkov, + D. Mejia-Rodriguez, T. Risthaus, M. Malagoli, A. Marenich, + A. Otero-de-la-Roza, J. Mullin, P. Nichols, R. Peverati, J. Pittner, Y. Zhao, + P.-D. Fan, A. Fonari, M. J. Williamson, R. J. Harrison, J. R. Rehr, + M. Dupuis, D. Silverstein, D. M. A. Smith, J. Nieplocha, V. Tipparaju, + M. Krishnan, B. E. Van Kuiken, A. Vazquez-Mayagoitia, L. Jensen, M. Swart, + Q. Wu, T. Van Voorhis, A. A. Auer, M. Nooijen, L. D. Crosby, E. Brown, + G. Cisneros, G. I. Fann, H. Fruchtl, J. Garza, K. Hirao, R. A. Kendall, + J. A. Nichols, K. Tsemekhman, K. Wolinski, J. Anchell, D. E. Bernholdt, + P. Borowski, T. Clark, D. Clerc, H. Dachsel, M. J. O. Deegan, K. Dyall, + D. Elwood, E. Glendening, M. Gutowski, A. C. Hess, J. Jaffe, B. G. Johnson, + J. Ju, R. Kobayashi, R. Kutteh, Z. Lin, R. Littlefield, X. Long, B. Meng, + T. Nakajima, S. Niu, L. Pollack, M. Rosing, K. Glaesemann, G. Sandrone, + M. Stave, H. Taylor, G. Thomas, J. H. van Lenthe, A. T. Wong, Z. Zhang. + + Total times cpu: 0.2s wall: 0.1s diff --git a/examples/COUPLE/lammps_nwchem/lammps_nwchem/nwchem_wrap.py b/examples/COUPLE/lammps_nwchem/lammps_nwchem/nwchem_wrap.py new file mode 100644 index 0000000000..8774eb74fe --- /dev/null +++ b/examples/COUPLE/lammps_nwchem/lammps_nwchem/nwchem_wrap.py @@ -0,0 +1,448 @@ +#!/usr/bin/env python + +# ---------------------------------------------------------------------- +# LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator +# http://lammps.sandia.gov, Sandia National Laboratories +# Steve Plimpton, sjplimp@sandia.gov +# ---------------------------------------------------------------------- + +# Syntax: nwchem_wrap.py file/zmq ao/pw input_template +# file/zmg = messaging mode, must match LAMMPS messaging mode +# ao/pw = basis set mode, selects between atom-centered and plane-wave +# the input_template file must correspond to the appropriate basis set mode: +# the "ao" mode supports the scf and dft modules in NWChem, +# the "pw" mode supports the nwpw module. +# input_template = NWChem input file used as template, must include a +# "geometry" block with the atoms in the simulation, dummy +# xyz coordinates should be included (but are not used). +# Atom ordering must match LAMMPS input. + +# wrapper on NWChem +# receives message with list of coords +# creates NWChem inputs +# invokes NWChem to calculate self-consistent energy of that config +# reads NWChem outputs +# sends message with energy, forces, pressure to client + +from __future__ import print_function +import sys + +version = sys.version_info[0] +if version == 3: + sys.exit("The CSlib python wrapper does not yet support python 3") + +import subprocess +import re +import os +import shutil +from cslib import CSlib + +# comment out 2nd line once 1st line is correct for your system + +nwchemcmd = "mpirun -np 1 /usr/bin/nwchem nwchem_lammps.nw > " +nwchemcmd = "touch tmp" + +# enums matching FixClientMD class in LAMMPS + +SETUP,STEP = range(1,2+1) +DIM,PERIODICITY,ORIGIN,BOX,NATOMS,NTYPES,TYPES,COORDS,UNITS,CHARGE = range(1,10+1) +FORCES,ENERGY,VIRIAL,ERROR = range(1,4+1) + +# ------------------------------------- +# functions + +# error message and exit + +def error(txt): + print("ERROR:",txt) + sys.exit(1) + +# ------------------------------------- +# read initial input file to setup problem +# return natoms + +def nwchem_setup_ao(input): + + template = open(input,'r') + + geometry_block = False + natoms = 0 + + while True: + line = template.readline() + if not line: break + + if geometry_block and re.search("end",line): + geometry_block = False + if geometry_block and not re.match("#",line) : + natoms += 1 + if re.search("geometry",line): + geometry_block = True + + return natoms + +# ------------------------------------- +# write a new input file for NWChem +# assumes the NWChem input geometry is to be specified in angstroms + +def nwchem_input_write_ao(input,coords): + + template = open(input,'r') + new_input = open("nwchem_lammps.nw",'w') + + geometry_block = False + i = 0 + + while True: + line = template.readline() + if not line: break + + if geometry_block and not re.match("#",line) and re.search("end",line): + geometry_block = False + if os.path.exists("nwchem_lammps.movecs"): + # The below is hacky, but one of these lines will be ignored + # by NWChem depending on if the input file is for scf/dft. + append = "\nscf\n vectors input nwchem_lammps.movecs\nend\n" + append2 = "\ndft\n vectors input nwchem_lammps.movecs\nend\n" + line = line + append + append2 + + if geometry_block and not re.match("#",line): + x = coords[3*i+0] + y = coords[3*i+1] + z = coords[3*i+2] + coord_string = " %g %g %g \n" % (x,y,z) + atom_string = line.split()[0] + line = atom_string + coord_string + i += 1 + + if (not re.match("#",line)) and re.search("geometry",line): + geometry_block = True + line = "geometry units angstrom noautosym\n" + + print(line,file=new_input,end='') + + new_input.close() + +# ------------------------------------- +# read a NWChem output nwchem_lammps.out file + +def nwchem_read_ao(natoms, log): + + nwchem_output = open(log, 'r') + energy_pattern = r"Total \w+ energy" + gradient_pattern = "x y z x y z" + + eout = 0.0 + fout = [] + + while True: + line = nwchem_output.readline() + if not line: break + + # pattern match for energy + if re.search(energy_pattern,line): + eout = float(line.split()[4]) + + # pattern match for forces + if re.search(gradient_pattern, line): + for i in range(natoms): + line = nwchem_output.readline() + forces = line.split() + fout += [float(forces[5]), float(forces[6]), float(forces[7])] + + # convert units + hartree2eV = 27.21138602 + bohr2angstrom = 0.52917721092 + eout = eout * hartree2eV + fout = [i * hartree2eV/bohr2angstrom for i in fout] + print(eout) + + return eout,fout + +# ------------------------------------- +# read initial planewave input file to setup problem +# return natoms,box +def nwchem_setup_pw(input): + + template = open(input,'r') + + geometry_block = False + system_block = False + coord_pattern = r"^\s*\w{1,2}(?:\s+-?(?:\d+.?\d*|\d*.?\d+)){3}" + natoms = 0 + box = [] + + while True: + line = template.readline() + if not line: break + + if geometry_block and re.search("system crystal",line): + system_block = True + for i in range(3): + line = template.readline() + line = re.sub(r'd|D', 'e', line) + box += [float(line.split()[1])] + + if geometry_block and not system_block and re.match("#",line) and re.search("end",line): + geometry_block = False + + if system_block and re.search("end",line): + system_block = False + + if geometry_block and not re.match("#",line) and re.search(coord_pattern,line): + natoms += 1 + + if re.search("geometry",line) and not re.match("#",line): + geometry_block = True + + return natoms,box + +# ------------------------------------- +# write a new planewave input file for NWChem +# assumes the NWChem input geometry is to be specified fractional coordinates + +def nwchem_input_write_pw(input,coords,box): + + template = open(input,'r') + new_input = open("nwchem_lammps.nw",'w') + + writing_atoms = False + geometry_block = False + system_block = False + coord_pattern = r"^\s*\w{1,2}(?:\s+-?(?:\d+.?\d*|\d*.?\d+)){3}" + i = 0 + + while True: + line = template.readline() + if not line: break + + if geometry_block and re.search("system crystal",line): + system_block = True + + if geometry_block and not system_block and not re.match("#",line) and re.search("end",line): + geometry_block = False + if os.path.exists("nwchem_lammps.movecs"): + append = "\nnwpw\n vectors input nwchem_lammps.movecs\nend\n" + line = line + append + + if system_block and re.search("end",line): + system_block = False + + if geometry_block and not re.match("#",line) and re.search(coord_pattern,line): + x = coords[3*i+0] / box[0] + y = coords[3*i+1] / box[1] + z = coords[3*i+2] / box[2] + coord_string = " %g %g %g \n" % (x,y,z) + atom_string = line.split()[0] + line = atom_string + coord_string + i += 1 + + if re.search("geometry",line) and not re.match("#",line): + geometry_block = True + + print(line,file=new_input,end='') + + new_input.close() + +# ------------------------------------- +# read a NWChem output nwchem_lammps.out file for planewave calculation + +def nwchem_read_pw(log): + nw_output = open(log, 'r') + + eout = 0.0 + sout = [] + fout = [] + reading_forces = False + + while True: + line = nw_output.readline() + if not line: break + + # pattern match for energy + if re.search("PSPW energy",line): + eout = float(line.split()[4]) + + # pattern match for forces + if re.search("C\.O\.M", line): + reading_forces = False + if reading_forces: + forces = line.split() + fout += [float(forces[3]), float(forces[4]), float(forces[5])] + if re.search("Ion Forces",line): + reading_forces = True + + # pattern match for stress + if re.search("=== total gradient ===",line): + stensor = [] + for i in range(3): + line = nw_output.readline() + line = line.replace("S ="," ") + stress = line.split() + stensor += [float(stress[1]), float(stress[2]), float(stress[3])] + sxx = stensor[0] + syy = stensor[4] + szz = stensor[8] + sxy = 0.5 * (float(stensor[1]) + float(stensor[3])) + sxz = 0.5 * (stensor[2] + stensor[6]) + syz = 0.5 * (stensor[5] + stensor[7]) + sout = [sxx,syy,szz,sxy,sxz,syz] + + # convert units + hartree2eV = 27.21138602 + bohr2angstrom = 0.52917721092 + austress2bar = 294210156.97 + eout = eout * hartree2eV + fout = [i * hartree2eV/bohr2angstrom for i in fout] + sout = [i * austress2bar for i in sout] + + return eout,fout,sout + +# ------------------------------------- +# main program + +# command-line args +# +if len(sys.argv) != 4: + print("Syntax: python nwchem_wrap.py file/zmq ao/pw input_template") + sys.exit(1) + +comm_mode = sys.argv[1] +basis_type = sys.argv[2] +input_template = sys.argv[3] + +if comm_mode == "file": cs = CSlib(1,comm_mode,"tmp.couple",None) +elif comm_mode == "zmq": cs = CSlib(1,comm_mode,"*:5555",None) +else: + print("Syntax: python nwchem_wrap.py file/zmq") + sys.exit(1) + + +natoms = 0 +box = [] +if basis_type == "ao": + natoms = nwchem_setup_ao(input_template) +elif basis_type == "pw": + natoms,box = nwchem_setup_pw(input_template) + +# initial message for AIMD protocol + +msgID,nfield,fieldID,fieldtype,fieldlen = cs.recv() +if msgID != 0: error("Bad initial client/server handshake") +protocol = cs.unpack_string(1) +if protocol != "md": error("Mismatch in client/server protocol") +cs.send(0,0) + +# endless server loop + +i = 0 +if not os.path.exists("nwchem_logs"): + os.mkdir("nwchem_logs") + +while 1: + + # recv message from client + # msgID = 0 = all-done message + + msgID,nfield,fieldID,fieldtype,fieldlen = cs.recv() + if msgID < 0: break + + # SETUP receive at beginning of each run + # required fields: DIM, PERIODICITY, ORIGIN, BOX, + # NATOMS, COORDS + # optional fields: others in enum above, but NWChem ignores them + + if msgID == SETUP: + + origin = [] + box_lmp = [] + natoms_recv = ntypes_recv = 0 + types = [] + coords = [] + + for field in fieldID: + if field == DIM: + dim = cs.unpack_int(DIM) + if dim != 3: error("NWChem only performs 3d simulations") + elif field == PERIODICITY: + periodicity = cs.unpack(PERIODICITY,1) + if basis_type == "ao": + if periodicity[0] or periodicity[1] or periodicity[2]: + error("NWChem AO basis wrapper only currently supports fully aperiodic systems") + elif basis_type == "pw": + if not periodicity[0] or not periodicity[1] or not periodicity[2]: + error("NWChem PW basis wrapper only currently supports fully periodic systems") + elif field == ORIGIN: + origin = cs.unpack(ORIGIN,1) + elif field == BOX: + box_lmp = cs.unpack(BOX,1) + if (basis_type == "pw"): + if (box[0] != box_lmp[0] or box[1] != box_lmp[4] or box[2] != box_lmp[8]): + error("NWChem wrapper mismatch in box dimensions") + elif field == NATOMS: + natoms_recv = cs.unpack_int(NATOMS) + if natoms != natoms_recv: + error("NWChem wrapper mismatch in number of atoms") + elif field == COORDS: + coords = cs.unpack(COORDS,1) + + if not origin or not box_lmp or not natoms or not coords: + error("Required NWChem wrapper setup field not received"); + + # STEP receive at each timestep of run or minimization + # required fields: COORDS + # optional fields: ORIGIN, BOX + + elif msgID == STEP: + + coords = [] + + for field in fieldID: + if field == COORDS: + coords = cs.unpack(COORDS,1) + + if not coords: error("Required NWChem wrapper step field not received"); + + else: error("NWChem wrapper received unrecognized message") + + # unpack coords from client + # create NWChem input + + if basis_type == "ao": + nwchem_input_write_ao(input_template,coords) + elif basis_type == "pw": + nwchem_input_write_pw(input_template,coords,box) + + # invoke NWChem + + i += 1 + log = "nwchem_lammps.out" + archive = "nwchem_logs/nwchem_lammps" + str(i) + ".out" + cmd = nwchemcmd + log + print("\nLaunching NWChem ...") + print(cmd) + subprocess.check_output(cmd,stderr=subprocess.STDOUT,shell=True) + + shutil.copyfile(log,archive) + + # process NWChem output + + if basis_type == "ao": + energy,forces = nwchem_read_ao(natoms,log) + virial = [0,0,0,0,0,0] + elif basis_type == "pw": + energy,forces,virial = nwchem_read_pw(log) + + # return forces, energy to client + cs.send(msgID,3) + cs.pack(FORCES,4,3*natoms,forces) + cs.pack_double(ENERGY,energy) + cs.pack(VIRIAL,4,6,virial) + +# final reply to client + +cs.send(0,0) + +# clean-up + +del cs diff --git a/examples/COUPLE/lammps_nwchem/lammps_nwchem/planewave/data.W b/examples/COUPLE/lammps_nwchem/lammps_nwchem/planewave/data.W new file mode 100644 index 0000000000..8accd9ca79 --- /dev/null +++ b/examples/COUPLE/lammps_nwchem/lammps_nwchem/planewave/data.W @@ -0,0 +1,15 @@ +LAMMPS W data file + +2 atoms + +1 atom types + +0.0 3.16 xlo xhi +0.0 3.16 ylo yhi +0.0 3.16 zlo zhi + +Atoms + +1 1 0.000 0.000 0.000 +2 1 1.58 1.58 1.58 + diff --git a/examples/COUPLE/lammps_nwchem/lammps_nwchem/planewave/in.client.W b/examples/COUPLE/lammps_nwchem/lammps_nwchem/planewave/in.client.W new file mode 100644 index 0000000000..8eef888b5b --- /dev/null +++ b/examples/COUPLE/lammps_nwchem/lammps_nwchem/planewave/in.client.W @@ -0,0 +1,34 @@ +# small W unit cell for use with NWChem + +variable mode index file + +if "${mode} == file" then & + "message client md file tmp.couple" & +elif "${mode} == zmq" & + "message client md zmq localhost:5555" & + +variable x index 1 +variable y index 1 +variable z index 1 + +units metal +atom_style atomic +atom_modify sort 0 0.0 map yes + +read_data data.W +mass 1 183.85 + +replicate $x $y $z + +velocity all create 300.0 87287 loop geom + +neighbor 0.3 bin +neigh_modify delay 0 every 10 check no + +fix 1 all nve +fix 2 all client/md +fix_modify 2 energy yes + +thermo 1 +run 3 + diff --git a/examples/COUPLE/lammps_nwchem/lammps_nwchem/planewave/log.client.output b/examples/COUPLE/lammps_nwchem/lammps_nwchem/planewave/log.client.output new file mode 100644 index 0000000000..b797816583 --- /dev/null +++ b/examples/COUPLE/lammps_nwchem/lammps_nwchem/planewave/log.client.output @@ -0,0 +1,76 @@ +LAMMPS (18 Sep 2018) +# small W unit cell for use with NWChem + +variable mode index file + +if "${mode} == file" then "message client md file tmp.couple" elif "${mode} == zmq" "message client md zmq localhost:5555" +message client md file tmp.couple +variable x index 1 +variable y index 1 +variable z index 1 + +units metal +atom_style atomic +atom_modify sort 0 0.0 map yes + +read_data data.W + orthogonal box = (0 0 0) to (3.16 3.16 3.16) + 1 by 1 by 1 MPI processor grid + reading atoms ... + 2 atoms +mass 1 183.85 + +replicate $x $y $z +replicate 1 $y $z +replicate 1 1 $z +replicate 1 1 1 + orthogonal box = (0 0 0) to (3.16 3.16 3.16) + 1 by 1 by 1 MPI processor grid + 2 atoms + Time spent = 0.000187325 secs + +velocity all create 300.0 87287 loop geom + +neighbor 0.3 bin +neigh_modify delay 0 every 10 check no + +fix 1 all nve +fix 2 all client/md +fix_modify 2 energy yes + +thermo 1 +run 3 +Per MPI rank memory allocation (min/avg/max) = 1.8 | 1.8 | 1.8 Mbytes +Step Temp E_pair E_mol TotEng Press + 0 300 0 0 -549.75686 36815830 + 1 300 0 0 -549.75686 36815830 + 2 300 0 0 -549.75686 36815830 + 3 300 0 0 -549.75686 36815830 +Loop time of 0.400933 on 1 procs for 3 steps with 2 atoms + +Performance: 0.646 ns/day, 37.123 hours/ns, 7.483 timesteps/s +0.1% CPU use with 1 MPI tasks x 1 OpenMP threads + +MPI task timing breakdown: +Section | min time | avg time | max time |%varavg| %total +--------------------------------------------------------------- +Pair | 0 | 0 | 0 | 0.0 | 0.00 +Neigh | 0 | 0 | 0 | 0.0 | 0.00 +Comm | 4.755e-06 | 4.755e-06 | 4.755e-06 | 0.0 | 0.00 +Output | 0.00010114 | 0.00010114 | 0.00010114 | 0.0 | 0.03 +Modify | 0.40082 | 0.40082 | 0.40082 | 0.0 | 99.97 +Other | | 1.232e-05 | | | 0.00 + +Nlocal: 2 ave 2 max 2 min +Histogram: 1 0 0 0 0 0 0 0 0 0 +Nghost: 7 ave 7 max 7 min +Histogram: 1 0 0 0 0 0 0 0 0 0 +Neighs: 0 ave 0 max 0 min +Histogram: 1 0 0 0 0 0 0 0 0 0 + +Total # of neighbors = 0 +Ave neighs/atom = 0 +Neighbor list builds = 0 +Dangerous builds not checked + +Total wall time: 0:00:09 diff --git a/examples/COUPLE/lammps_nwchem/lammps_nwchem/planewave/nwchem_lammps.out b/examples/COUPLE/lammps_nwchem/lammps_nwchem/planewave/nwchem_lammps.out new file mode 100644 index 0000000000..27185413eb --- /dev/null +++ b/examples/COUPLE/lammps_nwchem/lammps_nwchem/planewave/nwchem_lammps.out @@ -0,0 +1,2305 @@ + argument 1 = w.nw + + + +============================== echo of input deck ============================== +echo + +#**** Enter the geometry using fractional coordinates **** +geometry units angstrom noautosym + system crystal + lat_a 3.16d0 + lat_b 3.16d0 + lat_c 3.16d0 + end +W 0.0 0.0 0.0 +W 0.5 0.5 0.5 +end + +#***** setup the nwpw gamma point code **** +nwpw + simulation_cell + ngrid 16 16 16 + end + ewald_ncut 8 + mulliken + lcao #old default +end + +nwpw + tolerances 1.0d-9 1.0d-9 +end + +task pspw stress +================================================================================ + + + + + + + Northwest Computational Chemistry Package (NWChem) 6.8 + ------------------------------------------------------ + + + Environmental Molecular Sciences Laboratory + Pacific Northwest National Laboratory + Richland, WA 99352 + + Copyright (c) 1994-2017 + Pacific Northwest National Laboratory + Battelle Memorial Institute + + NWChem is an open-source computational chemistry package + distributed under the terms of the + Educational Community License (ECL) 2.0 + A copy of the license is included with this distribution + in the LICENSE.TXT file + + ACKNOWLEDGMENT + -------------- + + This software and its documentation were developed at the + EMSL at Pacific Northwest National Laboratory, a multiprogram + national laboratory, operated for the U.S. Department of Energy + by Battelle under Contract Number DE-AC05-76RL01830. Support + for this work was provided by the Department of Energy Office + of Biological and Environmental Research, Office of Basic + Energy Sciences, and the Office of Advanced Scientific Computing. + + + Job information + --------------- + + hostname = mcq + program = nwchem + date = Mon Sep 23 14:29:18 2019 + + compiled = Wed_Aug_15_19:14:19_2018 + source = /home/edo/debichem-team/nwchem/nwchem-6.8.1 + nwchem branch = 6.8.1 + nwchem revision = v6.8-133-ge032219 + ga revision = 5.6.5 + use scalapack = T + input = w.nw + prefix = w. + data base = ./w.db + status = startup + nproc = 1 + time left = -1s + + + + Memory information + ------------------ + + heap = 13107194 doubles = 100.0 Mbytes + stack = 13107199 doubles = 100.0 Mbytes + global = 26214400 doubles = 200.0 Mbytes (distinct from heap & stack) + total = 52428793 doubles = 400.0 Mbytes + verify = yes + hardfail = no + + + Directory information + --------------------- + + 0 permanent = . + 0 scratch = . + + + + + NWChem Input Module + ------------------- + + + + !!!!!!!!! geom_3d NEEDS TESTING !!!!!!!!!! + + + Geometry "geometry" -> "" + ------------------------- + + Output coordinates in angstroms (scale by 1.889725989 to convert to a.u.) + + No. Tag Charge X Y Z + ---- ---------------- ---------- -------------- -------------- -------------- + 1 W 74.0000 0.00000000 0.00000000 0.00000000 + 2 W 74.0000 1.58000000 1.58000000 1.58000000 + + Lattice Parameters + ------------------ + + lattice vectors in angstroms (scale by 1.889725989 to convert to a.u.) + + a1=< 3.160 0.000 0.000 > + a2=< 0.000 3.160 0.000 > + a3=< 0.000 0.000 3.160 > + a= 3.160 b= 3.160 c= 3.160 + alpha= 90.000 beta= 90.000 gamma= 90.000 + omega= 31.6 + + reciprocal lattice vectors in a.u. + + b1=< 1.052 0.000 -0.000 > + b2=< -0.000 1.052 -0.000 > + b3=< 0.000 0.000 1.052 > + + Atomic Mass + ----------- + + W 183.951000 + + + + XYZ format geometry + ------------------- + 2 + geometry + W 0.00000000 0.00000000 0.00000000 + W 1.58000000 1.58000000 1.58000000 + + ============================================================================== + internuclear distances + ------------------------------------------------------------------------------ + center one | center two | atomic units | angstroms + ------------------------------------------------------------------------------ + 2 W | 1 W | 5.17150 | 2.73664 + ------------------------------------------------------------------------------ + number of included internuclear distances: 1 + ============================================================================== + + + + >>>> PSPW Parallel Module - stress <<<< + **************************************************** + * * + * NWPW PSPW Calculation * + * * + * [ (Grassmann/Stiefel manifold implementation) ] * + * * + * [ NorthWest Chemistry implementation ] * + * * + * version #5.10 06/12/02 * + * * + * This code was developed by Eric J. Bylaska, * + * and was based upon algorithms and code * + * developed by the group of Prof. John H. Weare * + * * + **************************************************** + >>> JOB STARTED AT Mon Sep 23 14:29:18 2019 <<< + ================ input data ======================== + library name resolved from: compiled reference + NWCHEM_NWPW_LIBRARY set to: + Generating 1d pseudopotential for W + + Generated formatted_filename: ./W.vpp + library name resolved from: compiled reference + NWCHEM_NWPW_LIBRARY set to: + + Generated formatted atomic orbitals, filename: ./W.aorb + + lcao guess, initial psi:w.movecs + - spin, nalpha, nbeta: 1 6 0 + + input psi filename:./w.movecs + + initializing pspw_APC data structure + ------------------------------------ + nga, ngs: 3 6 + Gc : 2.5000000000000000 + APC gamma: 1 0.59999999999999998 + APC gamma: 2 0.90000000000000002 + APC gamma: 3 1.3500000000000001 + + number of processors used: 1 + processor grid : 1 x 1 + parallel mapping :2d hilbert + parallel mapping : balanced + number of threads : 1 + parallel io : off + + options: + boundary conditions = periodic (version3) + electron spin = restricted + exchange-correlation = LDA (Vosko et al) parameterization + + elements involved in the cluster: + 1: W valence charge: 6.0000 lmax= 2 + comment : Troullier-Martins pseudopotential + pseudpotential type : 0 + highest angular component : 2 + local potential used : 0 + number of non-local projections: 8 + semicore corrections included : 1.800 (radius) 4.533 (charge) + cutoff = 2.389 3.185 2.244 + + + total charge: 0.000 + + atomic composition: + W : 2 + + number of electrons: spin up= 6 ( 6 per task) down= 6 ( 6 per task) (Fourier space) + number of orbitals : spin up= 6 ( 6 per task) down= 6 ( 6 per task) (Fourier space) + + supercell: + cell_name: cell_default + lattice: a1=< 5.972 0.000 0.000 > + a2=< 0.000 5.972 0.000 > + a3=< 0.000 0.000 5.972 > + reciprocal: b1=< 1.052 0.000 -0.000 > + b2=< -0.000 1.052 -0.000 > + b3=< 0.000 0.000 1.052 > + lattice: a= 5.972 b= 5.972 c= 5.972 + alpha= 90.000 beta= 90.000 gamma= 90.000 + omega= 212.9 + + density cutoff= 8.857 fft= 16x 16x 16( 126 waves 126 per task) + wavefnc cutoff= 8.857 fft= 16x 16x 16( 126 waves 126 per task) + Ewald summation: cut radius= 1.90 and 8 + Madelung Wigner-Seitz= 1.76011888 (alpha= 2.83729748 rs= 3.70444413) + + technical parameters: + time step= 5.80 fictitious mass= 400000.0 + tolerance=0.100E-08 (energy) 0.100E-08 (density) + maximum iterations = 1000 ( 10 inner 100 outer ) + + + + + +== Energy Calculation == + + + ====== Grassmann conjugate gradient iteration ====== + >>> ITERATION STARTED AT Mon Sep 23 14:29:20 2019 <<< + iter. Energy DeltaE DeltaRho + ------------------------------------------------------ + - 15 steepest descent iterations performed + 10 -0.2000104801E+02 -0.37587E-05 0.13338E-06 + 20 -0.2000105396E+02 -0.10125E-07 0.37843E-09 + 30 -0.2000105397E+02 -0.67882E-09 0.25413E-10 + *** tolerance ok. iteration terminated + >>> ITERATION ENDED AT Mon Sep 23 14:29:20 2019 <<< + + +== Summary Of Results == + + number of electrons: spin up= 6.00000 down= 6.00000 (real space) + + total energy : -0.2000105397E+02 ( -0.10001E+02/ion) + total orbital energy: 0.5258382071E+01 ( 0.87640E+00/electron) + hartree energy : 0.2613505492E+00 ( 0.43558E-01/electron) + exc-corr energy : -0.9420636831E+01 ( -0.15701E+01/electron) + ion-ion energy : -0.2193948839E+02 ( -0.10970E+02/ion) + + kinetic (planewave) : 0.1407870943E+02 ( 0.23465E+01/electron) + V_local (planewave) : 0.1138092693E+02 ( 0.18968E+01/electron) + V_nl (planewave) : -0.1436191566E+02 ( -0.23937E+01/electron) + V_Coul (planewave) : 0.5227010984E+00 ( 0.87117E-01/electron) + V_xc. (planewave) : -0.6362039732E+01 ( -0.10603E+01/electron) + Virial Coefficient : -0.6265011295E+00 + + orbital energies: + 0.5487535E+00 ( 14.932eV) + 0.5487525E+00 ( 14.932eV) + 0.5487517E+00 ( 14.932eV) + 0.3889676E+00 ( 10.584eV) + 0.3889667E+00 ( 10.584eV) + 0.2049989E+00 ( 5.578eV) + + Total PSPW energy : -0.2000105397E+02 + + +=== Spin Contamination === + + = 0.0000000000000000 + = 0.0000000000000000 + + + +== Center of Charge == + +spin up ( -0.0000, -0.0000, -0.0000 ) +spin down ( -0.0000, -0.0000, -0.0000 ) + total ( -0.0000, -0.0000, -0.0000 ) +ionic ( 1.4929, 1.4929, 1.4929 ) + + +== Molecular Dipole wrt Center of Mass == + +mu = ( 17.9146, 17.9146, 17.9146 ) au +|mu| = 31.0290 au, 78.8633 Debye + +== W.psp1 expansion coefficients == + +ATOM S P D F +W : 0.93998E-01 0.56488E-01 0.13036E+01 0.00000E+00 + + + + Generated formatted atomic orbitals, filename: ./W.aorb + + + + ************************************************************* + ** ** + ** PSPW Mulliken analysis ** + ** ** + ** Population analysis algorithm devloped by Ryoichi Kawai ** + ** ** + ** Mon Sep 23 14:29 ** + ** ** + ************************************************************* + + +== XYZ OUTPUT == + + + 2 + +W 0.000000 0.000000 0.000000 +W 1.579999 1.579999 1.579999 + + +== Atomic Orbital Expansion == + + W nodamping + + + ===================================================== + | POPULATION ANALYSIS OF FILLED MOLECULAR ORBITALS | + ===================================================== + + +== Using pseudoatomic orbital expansion == + + +------------------------------------------------------------------------------ + + +*** ORBITAL= 1*** SPIN=BOTH SUM= 0.12495E+01 E= 0.54875E+00 ( 14.932eV) + +NO ATOM L POPULATION + s + 1 W 0 0.00000 -0.00000 + px pz py + 1 W 1 0.00000 -0.00000 -0.00000 0.00000 + dx2-y2 dzx d3z2-1 dyz dxy + 1 W 2 0.50000 0.00000 -0.42734 -0.00000 0.56337 -0.00000 + fx(x2-3y2) fz(5z2-1) fx(5z2-1) fz(5z2-3) fy(5z2-1) fxyz fy(3x2-y2) + 1 W 3 0.00000 0.00000 -0.00000 -0.00000 -0.00000 -0.00000 0.00000 0.00000 + s + 2 W 0 0.00000 -0.00000 + px pz py + 2 W 1 0.00000 0.00000 0.00000 -0.00000 + dx2-y2 dzx d3z2-1 dyz dxy + 2 W 2 0.50000 0.00000 -0.42734 -0.00000 0.56337 -0.00000 + fx(x2-3y2) fz(5z2-1) fx(5z2-1) fz(5z2-3) fy(5z2-1) fxyz fy(3x2-y2) + 2 W 3 0.00000 0.00000 -0.00000 -0.00000 -0.00000 -0.00000 -0.00000 0.00000 + + +=== DISTRIBUTION === + + 1(W ) 0.5000 2(W ) 0.5000 + + +== ANGULAR MOMENTUM POPULATIONS === + + s p d f + 0.0000 0.0000 1.0000 0.0000 + + +------------------------------------------------------------------------------ + + +*** ORBITAL= 2*** SPIN=BOTH SUM= 0.12495E+01 E= 0.54875E+00 ( 14.932eV) + +NO ATOM L POPULATION + s + 1 W 0 0.00000 0.00000 + px pz py + 1 W 1 0.00000 0.00000 0.00000 -0.00000 + dx2-y2 dzx d3z2-1 dyz dxy + 1 W 2 0.50000 -0.00000 -0.00000 0.00002 0.00000 0.70711 + fx(x2-3y2) fz(5z2-1) fx(5z2-1) fz(5z2-3) fy(5z2-1) fxyz fy(3x2-y2) + 1 W 3 0.00000 -0.00001 0.00000 0.00000 -0.00000 0.00000 0.00000 -0.00000 + s + 2 W 0 0.00000 0.00000 + px pz py + 2 W 1 0.00000 -0.00000 -0.00000 0.00000 + dx2-y2 dzx d3z2-1 dyz dxy + 2 W 2 0.50000 -0.00000 -0.00000 0.00002 0.00000 0.70711 + fx(x2-3y2) fz(5z2-1) fx(5z2-1) fz(5z2-3) fy(5z2-1) fxyz fy(3x2-y2) + 2 W 3 0.00000 -0.00001 0.00000 0.00000 -0.00000 0.00000 -0.00000 -0.00000 + + +=== DISTRIBUTION === + + 1(W ) 0.5000 2(W ) 0.5000 + + +== ANGULAR MOMENTUM POPULATIONS === + + s p d f + 0.0000 0.0000 1.0000 0.0000 + + +------------------------------------------------------------------------------ + + +*** ORBITAL= 3*** SPIN=BOTH SUM= 0.12495E+01 E= 0.54875E+00 ( 14.932eV) + +NO ATOM L POPULATION + s + 1 W 0 0.00000 -0.00000 + px pz py + 1 W 1 0.00000 -0.00000 0.00000 0.00000 + dx2-y2 dzx d3z2-1 dyz dxy + 1 W 2 0.50000 0.00000 -0.56337 -0.00000 -0.42734 -0.00000 + fx(x2-3y2) fz(5z2-1) fx(5z2-1) fz(5z2-3) fy(5z2-1) fxyz fy(3x2-y2) + 1 W 3 0.00000 0.00000 0.00000 -0.00000 0.00000 -0.00000 -0.00000 0.00000 + s + 2 W 0 0.00000 -0.00000 + px pz py + 2 W 1 0.00000 0.00000 -0.00000 -0.00000 + dx2-y2 dzx d3z2-1 dyz dxy + 2 W 2 0.50000 0.00000 -0.56337 -0.00000 -0.42734 -0.00000 + fx(x2-3y2) fz(5z2-1) fx(5z2-1) fz(5z2-3) fy(5z2-1) fxyz fy(3x2-y2) + 2 W 3 0.00000 0.00000 0.00000 -0.00000 -0.00000 -0.00000 -0.00000 0.00000 + + +=== DISTRIBUTION === + + 1(W ) 0.5000 2(W ) 0.5000 + + +== ANGULAR MOMENTUM POPULATIONS === + + s p d f + 0.0000 0.0000 1.0000 0.0000 + + +------------------------------------------------------------------------------ + + +*** ORBITAL= 4*** SPIN=BOTH SUM= 0.14281E+01 E= 0.38897E+00 ( 10.584eV) + +NO ATOM L POPULATION + s + 1 W 0 0.00000 0.00000 + px pz py + 1 W 1 0.00000 0.00000 0.00000 -0.00000 + dx2-y2 dzx d3z2-1 dyz dxy + 1 W 2 0.49992 0.42773 0.00000 0.56299 0.00000 -0.00000 + fx(x2-3y2) fz(5z2-1) fx(5z2-1) fz(5z2-3) fy(5z2-1) fxyz fy(3x2-y2) + 1 W 3 0.00009 0.00925 0.00000 0.00000 0.00000 -0.00000 -0.00000 0.00000 + s + 2 W 0 0.00000 0.00000 + px pz py + 2 W 1 0.00000 -0.00000 0.00000 0.00000 + dx2-y2 dzx d3z2-1 dyz dxy + 2 W 2 0.49991 -0.42773 0.00000 -0.56299 0.00000 0.00000 + fx(x2-3y2) fz(5z2-1) fx(5z2-1) fz(5z2-3) fy(5z2-1) fxyz fy(3x2-y2) + 2 W 3 0.00009 -0.00925 0.00000 0.00000 0.00000 -0.00000 -0.00000 0.00000 + + +=== DISTRIBUTION === + + 1(W ) 0.5000 2(W ) 0.5000 + + +== ANGULAR MOMENTUM POPULATIONS === + + s p d f + 0.0000 0.0000 0.9998 0.0002 + + +------------------------------------------------------------------------------ + + +*** ORBITAL= 5*** SPIN=BOTH SUM= 0.15051E+01 E= 0.38897E+00 ( 10.584eV) + +NO ATOM L POPULATION + s + 1 W 0 0.00000 -0.00000 + px pz py + 1 W 1 0.00000 -0.00000 0.00000 -0.00000 + dx2-y2 dzx d3z2-1 dyz dxy + 1 W 2 0.47435 -0.54841 0.00000 0.41665 0.00000 -0.00000 + fx(x2-3y2) fz(5z2-1) fx(5z2-1) fz(5z2-3) fy(5z2-1) fxyz fy(3x2-y2) + 1 W 3 0.02565 -0.16016 -0.00000 0.00000 0.00000 0.00000 0.00000 -0.00000 + s + 2 W 0 0.00000 -0.00000 + px pz py + 2 W 1 0.00000 0.00000 0.00000 0.00000 + dx2-y2 dzx d3z2-1 dyz dxy + 2 W 2 0.47435 0.54841 0.00000 -0.41665 0.00000 0.00000 + fx(x2-3y2) fz(5z2-1) fx(5z2-1) fz(5z2-3) fy(5z2-1) fxyz fy(3x2-y2) + 2 W 3 0.02565 0.16016 -0.00000 0.00000 0.00000 0.00000 -0.00000 -0.00000 + + +=== DISTRIBUTION === + + 1(W ) 0.5000 2(W ) 0.5000 + + +== ANGULAR MOMENTUM POPULATIONS === + + s p d f + 0.0000 0.0000 0.9487 0.0513 + + +------------------------------------------------------------------------------ + + +*** ORBITAL= 6*** SPIN=BOTH SUM= 0.19550E+01 E= 0.20500E+00 ( 5.578eV) + +NO ATOM L POPULATION + s + 1 W 0 0.49970 0.70689 + px pz py + 1 W 1 0.00000 0.00000 0.00000 0.00000 + dx2-y2 dzx d3z2-1 dyz dxy + 1 W 2 0.00000 -0.00000 -0.00000 0.00000 0.00000 -0.00000 + fx(x2-3y2) fz(5z2-1) fx(5z2-1) fz(5z2-3) fy(5z2-1) fxyz fy(3x2-y2) + 1 W 3 0.00030 -0.01746 -0.00000 0.00000 -0.00000 0.00000 -0.00000 -0.00000 + s + 2 W 0 0.49970 0.70689 + px pz py + 2 W 1 0.00000 -0.00000 -0.00000 -0.00000 + dx2-y2 dzx d3z2-1 dyz dxy + 2 W 2 0.00000 0.00000 -0.00000 -0.00000 0.00000 -0.00000 + fx(x2-3y2) fz(5z2-1) fx(5z2-1) fz(5z2-3) fy(5z2-1) fxyz fy(3x2-y2) + 2 W 3 0.00030 -0.01746 -0.00000 0.00000 -0.00000 0.00000 -0.00000 -0.00000 + + +=== DISTRIBUTION === + + 1(W ) 0.5000 2(W ) 0.5000 + + +== ANGULAR MOMENTUM POPULATIONS === + + s p d f + 0.9994 0.0000 0.0000 0.0006 + + + ======================================== + | POPULATION ANALYSIS ON EACH ATOM | + ======================================== + + +NO ATOM SPIN TOTAL s p d f + 1 W UP 3.00000 0.49970 0.00000 2.47426 0.02604 + 1 W DOWN 3.00000 0.49970 0.00000 2.47426 0.02604 + 2 W UP 3.00000 0.49970 0.00000 2.47426 0.02604 + 2 W DOWN 3.00000 0.49970 0.00000 2.47426 0.02604 + + + +=== TOTAL ANGULAR MOMENTUM POPULATION === + + SPIN s p d f + UP 16.66% 0.00% 82.48% 0.87% + UP 16.66% 0.00% 82.48% 0.87% + TOTAL 16.66% 0.00% 82.48% 0.87% + + ************************************************************* + ** ** + ** PSPW Atomic Point Charge (APC) Analysis ** + ** ** + ** Point charge analysis based on paper by P.E. Blochl ** + ** (J. Chem. Phys. vol 103, page 7422, 1995) ** + ** ** + ************************************************************* + + pspw_APC data structure + ----------------------- + nga, ngs: 3 6 + Gc : 2.5000000000000000 + APC gamma: 1 0.59999999999999998 + APC gamma: 2 0.90000000000000002 + APC gamma: 3 1.3500000000000001 + + charge analysis on each atom + ---------------------------- + + no atom Qelc Qion Qtotal + -- ---- ------- ------- ------- + 1 W -3.500 6.000 2.500 + 2 W -9.500 6.000 -3.500 + Total Q -13.000 12.000 -1.000 + + + gaussian coefficients of model density + -------------------------------------- + + no atom g=0.000 g=0.600 g=0.900 g=1.350 + -- ---- ------- ------- ------- ------- + 1 W 6.000 46.000 -75.500 26.000 + 2 W 6.000 -17.625 40.500 -32.375 + + +=== Electric Field at Atoms === + + 1 W Atomic Electric Field =( -0.00000 0.00000 0.00000 ) + (ion) =( 0.00000 0.00000 -0.00000 ) + (electronic) =( -0.00000 0.00000 0.00000 ) + 2 W Atomic Electric Field =( -0.00000 -0.00000 0.00000 ) + (ion) =( -0.00000 -0.00000 0.00000 ) + (electronic) =( -0.00000 -0.00000 0.00000 ) + + output psi filename:./w.movecs + + +== Timing == + +cputime in seconds + prologue : 0.246520E+01 + main loop : 0.218408E+00 + epilogue : 0.196378E+00 + total : 0.287999E+01 + cputime/step: 0.186674E-02 ( 117 evalulations, 25 linesearches) + + +Time spent doing total step percent + total time : 0.288044E+01 0.246191E-01 100.0 % + i/o time : 0.793162E+00 0.677916E-02 27.5 % + FFTs : 0.794410E-01 0.678983E-03 2.8 % + dot products : 0.401928E-02 0.343528E-04 0.1 % + geodesic : 0.812297E-02 0.694271E-04 0.3 % + ffm_dgemm : 0.340981E-03 0.291437E-05 0.0 % + fmf_dgemm : 0.111075E-02 0.949356E-05 0.0 % + mmm_dgemm : 0.146757E-03 0.125433E-05 0.0 % + m_diagonalize : 0.464895E-03 0.397346E-05 0.0 % + exchange correlation : 0.105077E+00 0.898093E-03 3.6 % + local pseudopotentials : 0.326800E-04 0.279316E-06 0.0 % + non-local pseudopotentials : 0.585081E-02 0.500069E-04 0.2 % + hartree potentials : 0.774990E-03 0.662385E-05 0.0 % + ion-ion interaction : 0.368566E-02 0.315014E-04 0.1 % + structure factors : 0.526235E+00 0.449774E-02 18.3 % + phase factors : 0.173820E-04 0.148564E-06 0.0 % + masking and packing : 0.134380E+00 0.114855E-02 4.7 % + queue fft : 0.649379E-01 0.555025E-03 2.3 % + queue fft (serial) : 0.461475E-01 0.394423E-03 1.6 % + queue fft (message passing): 0.166764E-01 0.142533E-03 0.6 % + non-local psp FFM : 0.303331E-02 0.259257E-04 0.1 % + non-local psp FMF : 0.706270E-03 0.603650E-05 0.0 % + non-local psp FFM A : 0.298729E-03 0.255324E-05 0.0 % + non-local psp FFM B : 0.252926E-02 0.216176E-04 0.1 % + + >>> JOB COMPLETED AT Mon Sep 23 14:29:21 2019 <<< + **************************************************** + * * + * NWPW PSPW Calculation * + * * + * [ (Grassmann/Stiefel manifold implementation) ] * + * * + * [ NorthWest Chemistry implementation ] * + * * + * version #5.10 06/12/02 * + * * + * This code was developed by Eric J. Bylaska, * + * and was based upon algorithms and code * + * developed by the group of Prof. John H. Weare * + * * + **************************************************** + >>> JOB STARTED AT Mon Sep 23 14:29:21 2019 <<< + ================ input data ======================== + + input psi filename:./w.movecs + + initializing pspw_APC data structure + ------------------------------------ + nga, ngs: 3 6 + Gc : 2.5000000000000000 + APC gamma: 1 0.59999999999999998 + APC gamma: 2 0.90000000000000002 + APC gamma: 3 1.3500000000000001 + + number of processors used: 1 + processor grid : 1 x 1 + parallel mapping :2d hilbert + parallel mapping : balanced + number of threads : 1 + parallel io : off + + options: + boundary conditions = periodic (version3) + electron spin = restricted + exchange-correlation = LDA (Vosko et al) parameterization + + elements involved in the cluster: + 1: W valence charge: 6.0000 lmax= 2 + comment : Troullier-Martins pseudopotential + pseudpotential type : 0 + highest angular component : 2 + local potential used : 0 + number of non-local projections: 8 + semicore corrections included : 1.800 (radius) 4.537 (charge) + cutoff = 2.389 3.185 2.244 + + + total charge: 0.000 + + atomic composition: + W : 2 + + number of electrons: spin up= 6 ( 6 per task) down= 6 ( 6 per task) (Fourier space) + number of orbitals : spin up= 6 ( 6 per task) down= 6 ( 6 per task) (Fourier space) + + supercell: + cell_name: cell_default + lattice: a1=< 5.972 0.000 0.000 > + a2=< 0.000 5.972 0.000 > + a3=< 0.000 0.000 5.972 > + reciprocal: b1=< 1.052 0.000 -0.000 > + b2=< -0.000 1.052 -0.000 > + b3=< 0.000 0.000 1.052 > + lattice: a= 5.972 b= 5.972 c= 5.972 + alpha= 90.000 beta= 90.000 gamma= 90.000 + omega= 212.9 + + density cutoff= 17.714 fft= 16x 16x 16( 370 waves 370 per task) + wavefnc cutoff= 17.714 fft= 16x 16x 16( 370 waves 370 per task) + Ewald summation: cut radius= 1.90 and 8 + Madelung Wigner-Seitz= 1.76011888 (alpha= 2.83729748 rs= 3.70444413) + + technical parameters: + time step= 5.80 fictitious mass= 400000.0 + tolerance=0.100E-08 (energy) 0.100E-08 (density) + maximum iterations = 1000 ( 10 inner 100 outer ) + + + + + +== Energy Calculation == + + + ====== Grassmann conjugate gradient iteration ====== + >>> ITERATION STARTED AT Mon Sep 23 14:29:21 2019 <<< + iter. Energy DeltaE DeltaRho + ------------------------------------------------------ + 10 -0.2020117257E+02 -0.65975E-06 0.18611E-07 + 20 -0.2020117265E+02 -0.51757E-09 0.18099E-10 + *** tolerance ok. iteration terminated + >>> ITERATION ENDED AT Mon Sep 23 14:29:21 2019 <<< + + +== Summary Of Results == + + number of electrons: spin up= 6.00000 down= 6.00000 (real space) + + total energy : -0.2020117265E+02 ( -0.10101E+02/ion) + total orbital energy: 0.5095674266E+01 ( 0.84928E+00/electron) + hartree energy : 0.2895200675E+00 ( 0.48253E-01/electron) + exc-corr energy : -0.9444169901E+01 ( -0.15740E+01/electron) + ion-ion energy : -0.2193948849E+02 ( -0.10970E+02/ion) + + kinetic (planewave) : 0.1440959829E+02 ( 0.24016E+01/electron) + V_local (planewave) : 0.1156148265E+02 ( 0.19269E+01/electron) + V_nl (planewave) : -0.1507811526E+02 ( -0.25130E+01/electron) + V_Coul (planewave) : 0.5790401350E+00 ( 0.96507E-01/electron) + V_xc. (planewave) : -0.6376331545E+01 ( -0.10627E+01/electron) + Virial Coefficient : -0.6463694432E+00 + + orbital energies: + 0.5415668E+00 ( 14.737eV) + 0.5415663E+00 ( 14.737eV) + 0.5415658E+00 ( 14.737eV) + 0.3599778E+00 ( 9.796eV) + 0.3599778E+00 ( 9.796eV) + 0.2031826E+00 ( 5.529eV) + + Total PSPW energy : -0.2020117265E+02 + + +=== Spin Contamination === + + = 0.0000000000000000 + = 0.0000000000000000 + + + +== Center of Charge == + +spin up ( -0.0000, -0.0000, 0.0000 ) +spin down ( -0.0000, -0.0000, 0.0000 ) + total ( -0.0000, -0.0000, 0.0000 ) +ionic ( 1.4929, 1.4929, 1.4929 ) + + +== Molecular Dipole wrt Center of Mass == + +mu = ( 17.9146, 17.9146, 17.9146 ) au +|mu| = 31.0290 au, 78.8633 Debye + + + + ************************************************************* + ** ** + ** PSPW Mulliken analysis ** + ** ** + ** Population analysis algorithm devloped by Ryoichi Kawai ** + ** ** + ** Mon Sep 23 14:29 ** + ** ** + ************************************************************* + + +== XYZ OUTPUT == + + + 2 + +W 0.000000 0.000000 0.000000 +W 1.579999 1.579999 1.579999 + + +== Atomic Orbital Expansion == + + W nodamping + + + ===================================================== + | POPULATION ANALYSIS OF FILLED MOLECULAR ORBITALS | + ===================================================== + + +== Using pseudoatomic orbital expansion == + + +------------------------------------------------------------------------------ + + +*** ORBITAL= 1*** SPIN=BOTH SUM= 0.12471E+01 E= 0.54157E+00 ( 14.737eV) + +NO ATOM L POPULATION + s + 1 W 0 0.00000 0.00000 + px pz py + 1 W 1 0.00000 0.00000 0.00000 -0.00000 + dx2-y2 dzx d3z2-1 dyz dxy + 1 W 2 0.50000 -0.00000 0.49980 0.00000 -0.50020 0.00000 + fx(x2-3y2) fz(5z2-1) fx(5z2-1) fz(5z2-3) fy(5z2-1) fxyz fy(3x2-y2) + 1 W 3 0.00000 -0.00000 0.00000 0.00000 0.00000 0.00000 -0.00000 -0.00000 + s + 2 W 0 0.00000 0.00000 + px pz py + 2 W 1 0.00000 -0.00000 -0.00000 0.00000 + dx2-y2 dzx d3z2-1 dyz dxy + 2 W 2 0.50000 -0.00000 0.49980 0.00000 -0.50020 0.00000 + fx(x2-3y2) fz(5z2-1) fx(5z2-1) fz(5z2-3) fy(5z2-1) fxyz fy(3x2-y2) + 2 W 3 0.00000 -0.00000 0.00000 0.00000 -0.00000 0.00000 0.00000 -0.00000 + + +=== DISTRIBUTION === + + 1(W ) 0.5000 2(W ) 0.5000 + + +== ANGULAR MOMENTUM POPULATIONS === + + s p d f + 0.0000 0.0000 1.0000 0.0000 + + +------------------------------------------------------------------------------ + + +*** ORBITAL= 2*** SPIN=BOTH SUM= 0.12471E+01 E= 0.54157E+00 ( 14.737eV) + +NO ATOM L POPULATION + s + 1 W 0 0.00000 -0.00000 + px pz py + 1 W 1 0.00000 -0.00000 -0.00000 0.00000 + dx2-y2 dzx d3z2-1 dyz dxy + 1 W 2 0.50000 0.00000 0.00000 -0.00001 -0.00000 -0.70711 + fx(x2-3y2) fz(5z2-1) fx(5z2-1) fz(5z2-3) fy(5z2-1) fxyz fy(3x2-y2) + 1 W 3 0.00000 0.00001 -0.00000 -0.00000 -0.00000 -0.00000 -0.00000 0.00000 + s + 2 W 0 0.00000 -0.00000 + px pz py + 2 W 1 0.00000 0.00000 0.00000 -0.00000 + dx2-y2 dzx d3z2-1 dyz dxy + 2 W 2 0.50000 0.00000 0.00000 -0.00001 -0.00000 -0.70711 + fx(x2-3y2) fz(5z2-1) fx(5z2-1) fz(5z2-3) fy(5z2-1) fxyz fy(3x2-y2) + 2 W 3 0.00000 0.00001 -0.00000 -0.00000 0.00000 -0.00000 0.00000 0.00000 + + +=== DISTRIBUTION === + + 1(W ) 0.5000 2(W ) 0.5000 + + +== ANGULAR MOMENTUM POPULATIONS === + + s p d f + 0.0000 0.0000 1.0000 0.0000 + + +------------------------------------------------------------------------------ + + +*** ORBITAL= 3*** SPIN=BOTH SUM= 0.12471E+01 E= 0.54157E+00 ( 14.737eV) + +NO ATOM L POPULATION + s + 1 W 0 0.00000 -0.00000 + px pz py + 1 W 1 0.00000 -0.00000 0.00000 0.00000 + dx2-y2 dzx d3z2-1 dyz dxy + 1 W 2 0.50000 0.00000 -0.50020 -0.00000 -0.49980 -0.00000 + fx(x2-3y2) fz(5z2-1) fx(5z2-1) fz(5z2-3) fy(5z2-1) fxyz fy(3x2-y2) + 1 W 3 0.00000 0.00000 0.00000 -0.00000 0.00000 -0.00000 -0.00000 0.00000 + s + 2 W 0 0.00000 -0.00000 + px pz py + 2 W 1 0.00000 0.00000 -0.00000 -0.00000 + dx2-y2 dzx d3z2-1 dyz dxy + 2 W 2 0.50000 0.00000 -0.50020 -0.00000 -0.49980 -0.00000 + fx(x2-3y2) fz(5z2-1) fx(5z2-1) fz(5z2-3) fy(5z2-1) fxyz fy(3x2-y2) + 2 W 3 0.00000 0.00000 0.00000 -0.00000 -0.00000 -0.00000 0.00000 0.00000 + + +=== DISTRIBUTION === + + 1(W ) 0.5000 2(W ) 0.5000 + + +== ANGULAR MOMENTUM POPULATIONS === + + s p d f + 0.0000 0.0000 1.0000 0.0000 + + +------------------------------------------------------------------------------ + + +*** ORBITAL= 4*** SPIN=BOTH SUM= 0.14815E+01 E= 0.35998E+00 ( 9.796eV) + +NO ATOM L POPULATION + s + 1 W 0 0.00000 0.00000 + px pz py + 1 W 1 0.00000 0.00000 -0.00000 0.00000 + dx2-y2 dzx d3z2-1 dyz dxy + 1 W 2 0.48214 0.68695 -0.00000 -0.10120 -0.00000 0.00000 + fx(x2-3y2) fz(5z2-1) fx(5z2-1) fz(5z2-3) fy(5z2-1) fxyz fy(3x2-y2) + 1 W 3 0.01786 0.13364 0.00000 -0.00000 -0.00000 -0.00000 0.00000 -0.00000 + s + 2 W 0 0.00000 0.00000 + px pz py + 2 W 1 0.00000 -0.00000 -0.00000 -0.00000 + dx2-y2 dzx d3z2-1 dyz dxy + 2 W 2 0.48214 -0.68695 -0.00000 0.10120 -0.00000 -0.00000 + fx(x2-3y2) fz(5z2-1) fx(5z2-1) fz(5z2-3) fy(5z2-1) fxyz fy(3x2-y2) + 2 W 3 0.01786 -0.13364 0.00000 0.00000 -0.00000 -0.00000 -0.00000 0.00000 + + +=== DISTRIBUTION === + + 1(W ) 0.5000 2(W ) 0.5000 + + +== ANGULAR MOMENTUM POPULATIONS === + + s p d f + 0.0000 0.0000 0.9643 0.0357 + + +------------------------------------------------------------------------------ + + +*** ORBITAL= 5*** SPIN=BOTH SUM= 0.14420E+01 E= 0.35998E+00 ( 9.796eV) + +NO ATOM L POPULATION + s + 1 W 0 0.00000 -0.00000 + px pz py + 1 W 1 0.00000 -0.00000 0.00000 -0.00000 + dx2-y2 dzx d3z2-1 dyz dxy + 1 W 2 0.49535 0.10258 0.00000 0.69630 0.00000 -0.00000 + fx(x2-3y2) fz(5z2-1) fx(5z2-1) fz(5z2-3) fy(5z2-1) fxyz fy(3x2-y2) + 1 W 3 0.00465 -0.06819 0.00000 0.00000 0.00000 0.00000 -0.00000 0.00000 + s + 2 W 0 0.00000 -0.00000 + px pz py + 2 W 1 0.00000 0.00000 0.00000 0.00000 + dx2-y2 dzx d3z2-1 dyz dxy + 2 W 2 0.49535 -0.10258 0.00000 -0.69630 0.00000 0.00000 + fx(x2-3y2) fz(5z2-1) fx(5z2-1) fz(5z2-3) fy(5z2-1) fxyz fy(3x2-y2) + 2 W 3 0.00465 0.06819 0.00000 -0.00000 0.00000 -0.00000 0.00000 -0.00000 + + +=== DISTRIBUTION === + + 1(W ) 0.5000 2(W ) 0.5000 + + +== ANGULAR MOMENTUM POPULATIONS === + + s p d f + 0.0000 0.0000 0.9907 0.0093 + + +------------------------------------------------------------------------------ + + +*** ORBITAL= 6*** SPIN=BOTH SUM= 0.19541E+01 E= 0.20318E+00 ( 5.529eV) + +NO ATOM L POPULATION + s + 1 W 0 0.49972 0.70691 + px pz py + 1 W 1 0.00000 -0.00000 0.00000 0.00000 + dx2-y2 dzx d3z2-1 dyz dxy + 1 W 2 0.00000 -0.00000 -0.00000 0.00000 0.00000 -0.00000 + fx(x2-3y2) fz(5z2-1) fx(5z2-1) fz(5z2-3) fy(5z2-1) fxyz fy(3x2-y2) + 1 W 3 0.00028 -0.01665 0.00000 0.00000 0.00000 -0.00000 0.00000 -0.00000 + s + 2 W 0 0.49972 0.70691 + px pz py + 2 W 1 0.00000 0.00000 -0.00000 -0.00000 + dx2-y2 dzx d3z2-1 dyz dxy + 2 W 2 0.00000 0.00000 -0.00000 -0.00000 0.00000 -0.00000 + fx(x2-3y2) fz(5z2-1) fx(5z2-1) fz(5z2-3) fy(5z2-1) fxyz fy(3x2-y2) + 2 W 3 0.00028 -0.01665 0.00000 -0.00000 0.00000 0.00000 0.00000 0.00000 + + +=== DISTRIBUTION === + + 1(W ) 0.5000 2(W ) 0.5000 + + +== ANGULAR MOMENTUM POPULATIONS === + + s p d f + 0.9994 0.0000 0.0000 0.0006 + + + ======================================== + | POPULATION ANALYSIS ON EACH ATOM | + ======================================== + + +NO ATOM SPIN TOTAL s p d f + 1 W UP 3.00000 0.49972 0.00000 2.47749 0.02279 + 1 W DOWN 3.00000 0.49972 0.00000 2.47749 0.02279 + 2 W UP 3.00000 0.49972 0.00000 2.47749 0.02279 + 2 W DOWN 3.00000 0.49972 0.00000 2.47749 0.02279 + + + +=== TOTAL ANGULAR MOMENTUM POPULATION === + + SPIN s p d f + UP 16.66% 0.00% 82.58% 0.76% + UP 16.66% 0.00% 82.58% 0.76% + TOTAL 16.66% 0.00% 82.58% 0.76% + + ************************************************************* + ** ** + ** PSPW Atomic Point Charge (APC) Analysis ** + ** ** + ** Point charge analysis based on paper by P.E. Blochl ** + ** (J. Chem. Phys. vol 103, page 7422, 1995) ** + ** ** + ************************************************************* + + pspw_APC data structure + ----------------------- + nga, ngs: 3 6 + Gc : 2.5000000000000000 + APC gamma: 1 0.59999999999999998 + APC gamma: 2 0.90000000000000002 + APC gamma: 3 1.3500000000000001 + + charge analysis on each atom + ---------------------------- + + no atom Qelc Qion Qtotal + -- ---- ------- ------- ------- + 1 W -8.000 6.000 -2.000 + 2 W -5.500 6.000 0.500 + Total Q -13.500 12.000 -1.500 + + + gaussian coefficients of model density + -------------------------------------- + + no atom g=0.000 g=0.600 g=0.900 g=1.350 + -- ---- ------- ------- ------- ------- + 1 W 6.000 37.000 -52.000 7.000 + 2 W 6.000 -7.500 18.000 -16.000 + + +=== Electric Field at Atoms === + + 1 W Atomic Electric Field =( -0.00000 -0.00000 0.00000 ) + (ion) =( 0.00000 0.00000 -0.00000 ) + (electronic) =( -0.00000 -0.00000 0.00000 ) + 2 W Atomic Electric Field =( 0.00000 -0.00000 0.00000 ) + (ion) =( -0.00000 -0.00000 0.00000 ) + (electronic) =( 0.00000 -0.00000 0.00000 ) + + output psi filename:./w.movecs + + +== Timing == + +cputime in seconds + prologue : 0.745387E-01 + main loop : 0.136737E+00 + epilogue : 0.182997E-01 + total : 0.229575E+00 + cputime/step: 0.210365E-02 ( 65 evalulations, 15 linesearches) + + +Time spent doing total step percent + total time : 0.230022E+00 0.353880E-02 100.0 % + i/o time : 0.368268E-02 0.566566E-04 1.6 % + FFTs : 0.118074E-01 0.181652E-03 5.1 % + dot products : 0.278644E-02 0.428683E-04 1.2 % + geodesic : 0.648055E-02 0.997007E-04 2.8 % + ffm_dgemm : 0.284575E-03 0.437808E-05 0.1 % + fmf_dgemm : 0.189982E-02 0.292280E-04 0.8 % + mmm_dgemm : 0.513420E-04 0.789877E-06 0.0 % + m_diagonalize : 0.289267E-03 0.445026E-05 0.1 % + exchange correlation : 0.533441E-01 0.820678E-03 23.2 % + local pseudopotentials : 0.185780E-04 0.285815E-06 0.0 % + non-local pseudopotentials : 0.490618E-02 0.754796E-04 2.1 % + hartree potentials : 0.506539E-03 0.779291E-05 0.2 % + ion-ion interaction : 0.228455E-02 0.351469E-04 1.0 % + structure factors : 0.998308E-02 0.153586E-03 4.3 % + phase factors : 0.119090E-04 0.183215E-06 0.0 % + masking and packing : 0.834395E-02 0.128368E-03 3.6 % + queue fft : 0.432896E-01 0.665994E-03 18.8 % + queue fft (serial) : 0.309097E-01 0.475534E-03 13.4 % + queue fft (message passing): 0.111107E-01 0.170934E-03 4.8 % + non-local psp FFM : 0.270164E-02 0.415637E-04 1.2 % + non-local psp FMF : 0.966417E-03 0.148680E-04 0.4 % + non-local psp FFM A : 0.351360E-03 0.540554E-05 0.2 % + non-local psp FFM B : 0.216041E-02 0.332371E-04 0.9 % + + >>> JOB COMPLETED AT Mon Sep 23 14:29:21 2019 <<< + **************************************************** + * * + * NWPW PSPW Calculation * + * * + * [ (Grassmann/Stiefel manifold implementation) ] * + * * + * [ NorthWest Chemistry implementation ] * + * * + * version #5.10 06/12/02 * + * * + * This code was developed by Eric J. Bylaska, * + * and was based upon algorithms and code * + * developed by the group of Prof. John H. Weare * + * * + **************************************************** + >>> JOB STARTED AT Mon Sep 23 14:29:21 2019 <<< + ================ input data ======================== + + input psi filename:./w.movecs + + initializing pspw_APC data structure + ------------------------------------ + nga, ngs: 3 6 + Gc : 2.5000000000000000 + APC gamma: 1 0.59999999999999998 + APC gamma: 2 0.90000000000000002 + APC gamma: 3 1.3500000000000001 + + number of processors used: 1 + processor grid : 1 x 1 + parallel mapping :2d hilbert + parallel mapping : balanced + number of threads : 1 + parallel io : off + + options: + boundary conditions = periodic (version3) + electron spin = restricted + exchange-correlation = LDA (Vosko et al) parameterization + + elements involved in the cluster: + 1: W valence charge: 6.0000 lmax= 2 + comment : Troullier-Martins pseudopotential + pseudpotential type : 0 + highest angular component : 2 + local potential used : 0 + number of non-local projections: 8 + semicore corrections included : 1.800 (radius) 4.538 (charge) + cutoff = 2.389 3.185 2.244 + + + total charge: 0.000 + + atomic composition: + W : 2 + + number of electrons: spin up= 6 ( 6 per task) down= 6 ( 6 per task) (Fourier space) + number of orbitals : spin up= 6 ( 6 per task) down= 6 ( 6 per task) (Fourier space) + + supercell: + cell_name: cell_default + lattice: a1=< 5.972 0.000 0.000 > + a2=< 0.000 5.972 0.000 > + a3=< 0.000 0.000 5.972 > + reciprocal: b1=< 1.052 0.000 -0.000 > + b2=< -0.000 1.052 -0.000 > + b3=< 0.000 0.000 1.052 > + lattice: a= 5.972 b= 5.972 c= 5.972 + alpha= 90.000 beta= 90.000 gamma= 90.000 + omega= 212.9 + + density cutoff= 26.570 fft= 16x 16x 16( 679 waves 679 per task) + wavefnc cutoff= 26.570 fft= 16x 16x 16( 679 waves 679 per task) + Ewald summation: cut radius= 1.90 and 8 + Madelung Wigner-Seitz= 1.76011888 (alpha= 2.83729748 rs= 3.70444413) + + technical parameters: + time step= 5.80 fictitious mass= 400000.0 + tolerance=0.100E-08 (energy) 0.100E-08 (density) + maximum iterations = 1000 ( 10 inner 100 outer ) + + + + + +== Energy Calculation == + + + ====== Grassmann conjugate gradient iteration ====== + >>> ITERATION STARTED AT Mon Sep 23 14:29:21 2019 <<< + iter. Energy DeltaE DeltaRho + ------------------------------------------------------ + 10 -0.2020451899E+02 -0.26409E-08 0.50388E-10 + 20 -0.2020451899E+02 -0.97153E-09 0.52248E-11 + *** tolerance ok. iteration terminated + >>> ITERATION ENDED AT Mon Sep 23 14:29:21 2019 <<< + + +== Summary Of Results == + + number of electrons: spin up= 6.00000 down= 6.00000 (real space) + + total energy : -0.2020451899E+02 ( -0.10102E+02/ion) + total orbital energy: 0.5093462286E+01 ( 0.84891E+00/electron) + hartree energy : 0.2902599490E+00 ( 0.48377E-01/electron) + exc-corr energy : -0.9444898225E+01 ( -0.15741E+01/electron) + ion-ion energy : -0.2193948849E+02 ( -0.10970E+02/ion) + + kinetic (planewave) : 0.1441599938E+02 ( 0.24027E+01/electron) + V_local (planewave) : 0.1156112031E+02 ( 0.19269E+01/electron) + V_nl (planewave) : -0.1508751191E+02 ( -0.25146E+01/electron) + V_Coul (planewave) : 0.5805198980E+00 ( 0.96753E-01/electron) + V_xc. (planewave) : -0.6376665384E+01 ( -0.10628E+01/electron) + Virial Coefficient : -0.6466799038E+00 + + orbital energies: + 0.5414224E+00 ( 14.733eV) + 0.5414220E+00 ( 14.733eV) + 0.5414216E+00 ( 14.733eV) + 0.3596618E+00 ( 9.787eV) + 0.3596618E+00 ( 9.787eV) + 0.2031417E+00 ( 5.528eV) + + Total PSPW energy : -0.2020451899E+02 + + +=== Spin Contamination === + + = 0.0000000000000000 + = 0.0000000000000000 + + + +== Center of Charge == + +spin up ( -0.0000, -0.0000, 0.0000 ) +spin down ( -0.0000, -0.0000, 0.0000 ) + total ( -0.0000, -0.0000, 0.0000 ) +ionic ( 1.4929, 1.4929, 1.4929 ) + + +== Molecular Dipole wrt Center of Mass == + +mu = ( 17.9146, 17.9146, 17.9146 ) au +|mu| = 31.0290 au, 78.8633 Debye + + + + ************************************************************* + ** ** + ** PSPW Mulliken analysis ** + ** ** + ** Population analysis algorithm devloped by Ryoichi Kawai ** + ** ** + ** Mon Sep 23 14:29 ** + ** ** + ************************************************************* + + +== XYZ OUTPUT == + + + 2 + +W 0.000000 0.000000 0.000000 +W 1.579999 1.579999 1.579999 + + +== Atomic Orbital Expansion == + + W nodamping + + + ===================================================== + | POPULATION ANALYSIS OF FILLED MOLECULAR ORBITALS | + ===================================================== + + +== Using pseudoatomic orbital expansion == + + +------------------------------------------------------------------------------ + + +*** ORBITAL= 1*** SPIN=BOTH SUM= 0.12471E+01 E= 0.54142E+00 ( 14.733eV) + +NO ATOM L POPULATION + s + 1 W 0 0.00000 0.00000 + px pz py + 1 W 1 0.00000 0.00000 -0.00000 -0.00000 + dx2-y2 dzx d3z2-1 dyz dxy + 1 W 2 0.50000 -0.00000 -0.50150 0.00000 0.49850 0.00000 + fx(x2-3y2) fz(5z2-1) fx(5z2-1) fz(5z2-3) fy(5z2-1) fxyz fy(3x2-y2) + 1 W 3 0.00000 -0.00000 -0.00000 0.00000 -0.00000 0.00000 0.00000 -0.00000 + s + 2 W 0 0.00000 0.00000 + px pz py + 2 W 1 0.00000 -0.00000 0.00000 0.00000 + dx2-y2 dzx d3z2-1 dyz dxy + 2 W 2 0.50000 -0.00000 -0.50150 0.00000 0.49850 0.00000 + fx(x2-3y2) fz(5z2-1) fx(5z2-1) fz(5z2-3) fy(5z2-1) fxyz fy(3x2-y2) + 2 W 3 0.00000 -0.00000 -0.00000 0.00000 0.00000 0.00000 -0.00000 -0.00000 + + +=== DISTRIBUTION === + + 1(W ) 0.5000 2(W ) 0.5000 + + +== ANGULAR MOMENTUM POPULATIONS === + + s p d f + 0.0000 0.0000 1.0000 0.0000 + + +------------------------------------------------------------------------------ + + +*** ORBITAL= 2*** SPIN=BOTH SUM= 0.12471E+01 E= 0.54142E+00 ( 14.733eV) + +NO ATOM L POPULATION + s + 1 W 0 0.00000 0.00000 + px pz py + 1 W 1 0.00000 0.00000 -0.00000 -0.00000 + dx2-y2 dzx d3z2-1 dyz dxy + 1 W 2 0.50000 -0.00000 0.00000 0.00001 -0.00000 0.70711 + fx(x2-3y2) fz(5z2-1) fx(5z2-1) fz(5z2-3) fy(5z2-1) fxyz fy(3x2-y2) + 1 W 3 0.00000 -0.00001 -0.00000 0.00000 -0.00000 0.00000 0.00000 -0.00000 + s + 2 W 0 0.00000 0.00000 + px pz py + 2 W 1 0.00000 -0.00000 0.00000 0.00000 + dx2-y2 dzx d3z2-1 dyz dxy + 2 W 2 0.50000 -0.00000 0.00000 0.00001 -0.00000 0.70711 + fx(x2-3y2) fz(5z2-1) fx(5z2-1) fz(5z2-3) fy(5z2-1) fxyz fy(3x2-y2) + 2 W 3 0.00000 -0.00001 -0.00000 0.00000 0.00000 0.00000 -0.00000 -0.00000 + + +=== DISTRIBUTION === + + 1(W ) 0.5000 2(W ) 0.5000 + + +== ANGULAR MOMENTUM POPULATIONS === + + s p d f + 0.0000 0.0000 1.0000 0.0000 + + +------------------------------------------------------------------------------ + + +*** ORBITAL= 3*** SPIN=BOTH SUM= 0.12471E+01 E= 0.54142E+00 ( 14.733eV) + +NO ATOM L POPULATION + s + 1 W 0 0.00000 -0.00000 + px pz py + 1 W 1 0.00000 -0.00000 -0.00000 0.00000 + dx2-y2 dzx d3z2-1 dyz dxy + 1 W 2 0.50000 0.00000 0.49850 -0.00000 0.50150 -0.00000 + fx(x2-3y2) fz(5z2-1) fx(5z2-1) fz(5z2-3) fy(5z2-1) fxyz fy(3x2-y2) + 1 W 3 0.00000 0.00000 -0.00000 -0.00000 -0.00000 -0.00000 0.00000 0.00000 + s + 2 W 0 0.00000 -0.00000 + px pz py + 2 W 1 0.00000 0.00000 0.00000 -0.00000 + dx2-y2 dzx d3z2-1 dyz dxy + 2 W 2 0.50000 0.00000 0.49850 -0.00000 0.50150 -0.00000 + fx(x2-3y2) fz(5z2-1) fx(5z2-1) fz(5z2-3) fy(5z2-1) fxyz fy(3x2-y2) + 2 W 3 0.00000 0.00000 -0.00000 -0.00000 0.00000 -0.00000 -0.00000 0.00000 + + +=== DISTRIBUTION === + + 1(W ) 0.5000 2(W ) 0.5000 + + +== ANGULAR MOMENTUM POPULATIONS === + + s p d f + 0.0000 0.0000 1.0000 0.0000 + + +------------------------------------------------------------------------------ + + +*** ORBITAL= 4*** SPIN=BOTH SUM= 0.14906E+01 E= 0.35966E+00 ( 9.787eV) + +NO ATOM L POPULATION + s + 1 W 0 0.00000 0.00000 + px pz py + 1 W 1 0.00000 0.00000 -0.00000 0.00000 + dx2-y2 dzx d3z2-1 dyz dxy + 1 W 2 0.47918 0.62168 0.00000 -0.30446 0.00000 0.00000 + fx(x2-3y2) fz(5z2-1) fx(5z2-1) fz(5z2-3) fy(5z2-1) fxyz fy(3x2-y2) + 1 W 3 0.02082 0.14429 0.00000 -0.00000 -0.00000 -0.00000 -0.00000 -0.00000 + s + 2 W 0 0.00000 0.00000 + px pz py + 2 W 1 0.00000 -0.00000 -0.00000 -0.00000 + dx2-y2 dzx d3z2-1 dyz dxy + 2 W 2 0.47918 -0.62168 -0.00000 0.30446 0.00000 -0.00000 + fx(x2-3y2) fz(5z2-1) fx(5z2-1) fz(5z2-3) fy(5z2-1) fxyz fy(3x2-y2) + 2 W 3 0.02082 -0.14429 0.00000 0.00000 -0.00000 0.00000 -0.00000 0.00000 + + +=== DISTRIBUTION === + + 1(W ) 0.5000 2(W ) 0.5000 + + +== ANGULAR MOMENTUM POPULATIONS === + + s p d f + 0.0000 0.0000 0.9584 0.0416 + + +------------------------------------------------------------------------------ + + +*** ORBITAL= 5*** SPIN=BOTH SUM= 0.14301E+01 E= 0.35966E+00 ( 9.787eV) + +NO ATOM L POPULATION + s + 1 W 0 0.00000 0.00000 + px pz py + 1 W 1 0.00000 0.00000 -0.00000 0.00000 + dx2-y2 dzx d3z2-1 dyz dxy + 1 W 2 0.49946 -0.31083 -0.00000 -0.63470 0.00000 0.00000 + fx(x2-3y2) fz(5z2-1) fx(5z2-1) fz(5z2-3) fy(5z2-1) fxyz fy(3x2-y2) + 1 W 3 0.00054 0.02331 -0.00000 -0.00000 -0.00000 -0.00000 -0.00000 -0.00000 + s + 2 W 0 0.00000 0.00000 + px pz py + 2 W 1 0.00000 -0.00000 -0.00000 -0.00000 + dx2-y2 dzx d3z2-1 dyz dxy + 2 W 2 0.49946 0.31083 0.00000 0.63470 0.00000 -0.00000 + fx(x2-3y2) fz(5z2-1) fx(5z2-1) fz(5z2-3) fy(5z2-1) fxyz fy(3x2-y2) + 2 W 3 0.00054 -0.02331 -0.00000 -0.00000 -0.00000 0.00000 -0.00000 0.00000 + + +=== DISTRIBUTION === + + 1(W ) 0.5000 2(W ) 0.5000 + + +== ANGULAR MOMENTUM POPULATIONS === + + s p d f + 0.0000 0.0000 0.9989 0.0011 + + +------------------------------------------------------------------------------ + + +*** ORBITAL= 6*** SPIN=BOTH SUM= 0.19541E+01 E= 0.20314E+00 ( 5.528eV) + +NO ATOM L POPULATION + s + 1 W 0 0.49973 0.70692 + px pz py + 1 W 1 0.00000 -0.00000 0.00000 0.00000 + dx2-y2 dzx d3z2-1 dyz dxy + 1 W 2 0.00000 -0.00000 0.00000 0.00000 -0.00000 -0.00000 + fx(x2-3y2) fz(5z2-1) fx(5z2-1) fz(5z2-3) fy(5z2-1) fxyz fy(3x2-y2) + 1 W 3 0.00027 -0.01628 0.00000 0.00000 0.00000 -0.00000 -0.00000 -0.00000 + s + 2 W 0 0.49973 0.70692 + px pz py + 2 W 1 0.00000 0.00000 0.00000 -0.00000 + dx2-y2 dzx d3z2-1 dyz dxy + 2 W 2 0.00000 0.00000 0.00000 -0.00000 0.00000 -0.00000 + fx(x2-3y2) fz(5z2-1) fx(5z2-1) fz(5z2-3) fy(5z2-1) fxyz fy(3x2-y2) + 2 W 3 0.00027 -0.01628 0.00000 -0.00000 0.00000 -0.00000 -0.00000 0.00000 + + +=== DISTRIBUTION === + + 1(W ) 0.5000 2(W ) 0.5000 + + +== ANGULAR MOMENTUM POPULATIONS === + + s p d f + 0.9995 0.0000 0.0000 0.0005 + + + ======================================== + | POPULATION ANALYSIS ON EACH ATOM | + ======================================== + + +NO ATOM SPIN TOTAL s p d f + 1 W UP 3.00000 0.49973 0.00000 2.47864 0.02163 + 1 W DOWN 3.00000 0.49973 0.00000 2.47864 0.02163 + 2 W UP 3.00000 0.49973 0.00000 2.47864 0.02163 + 2 W DOWN 3.00000 0.49973 0.00000 2.47864 0.02163 + + + +=== TOTAL ANGULAR MOMENTUM POPULATION === + + SPIN s p d f + UP 16.66% 0.00% 82.62% 0.72% + UP 16.66% 0.00% 82.62% 0.72% + TOTAL 16.66% 0.00% 82.62% 0.72% + + ************************************************************* + ** ** + ** PSPW Atomic Point Charge (APC) Analysis ** + ** ** + ** Point charge analysis based on paper by P.E. Blochl ** + ** (J. Chem. Phys. vol 103, page 7422, 1995) ** + ** ** + ************************************************************* + + pspw_APC data structure + ----------------------- + nga, ngs: 3 6 + Gc : 2.5000000000000000 + APC gamma: 1 0.59999999999999998 + APC gamma: 2 0.90000000000000002 + APC gamma: 3 1.3500000000000001 + + charge analysis on each atom + ---------------------------- + + no atom Qelc Qion Qtotal + -- ---- ------- ------- ------- + 1 W -6.906 6.000 -0.906 + 2 W -5.625 6.000 0.375 + Total Q -12.531 12.000 -0.531 + + + gaussian coefficients of model density + -------------------------------------- + + no atom g=0.000 g=0.600 g=0.900 g=1.350 + -- ---- ------- ------- ------- ------- + 1 W 6.000 -25.719 50.250 -31.438 + 2 W 6.000 -5.000 12.188 -12.812 + + +=== Electric Field at Atoms === + + 1 W Atomic Electric Field =( -0.00000 -0.00000 0.00000 ) + (ion) =( 0.00000 0.00000 -0.00000 ) + (electronic) =( -0.00000 -0.00000 0.00000 ) + 2 W Atomic Electric Field =( 0.00000 -0.00000 -0.00000 ) + (ion) =( -0.00000 -0.00000 0.00000 ) + (electronic) =( 0.00000 -0.00000 -0.00000 ) + + output psi filename:./w.movecs + + +== Timing == + +cputime in seconds + prologue : 0.745646E-01 + main loop : 0.114422E+00 + epilogue : 0.186484E-01 + total : 0.207635E+00 + cputime/step: 0.233514E-02 ( 49 evalulations, 11 linesearches) + + +Time spent doing total step percent + total time : 0.208073E+00 0.424639E-02 100.0 % + i/o time : 0.369110E-02 0.753285E-04 1.8 % + FFTs : 0.938805E-02 0.191593E-03 4.5 % + dot products : 0.334735E-02 0.683133E-04 1.6 % + geodesic : 0.620612E-02 0.126655E-03 3.0 % + ffm_dgemm : 0.410025E-03 0.836786E-05 0.2 % + fmf_dgemm : 0.262005E-02 0.534703E-04 1.3 % + mmm_dgemm : 0.403200E-04 0.822857E-06 0.0 % + m_diagonalize : 0.265351E-03 0.541533E-05 0.1 % + exchange correlation : 0.403655E-01 0.823786E-03 19.4 % + local pseudopotentials : 0.218100E-04 0.445102E-06 0.0 % + non-local pseudopotentials : 0.583915E-02 0.119166E-03 2.8 % + hartree potentials : 0.445709E-03 0.909610E-05 0.2 % + ion-ion interaction : 0.230654E-02 0.470722E-04 1.1 % + structure factors : 0.101746E-01 0.207644E-03 4.9 % + phase factors : 0.125530E-04 0.256184E-06 0.0 % + masking and packing : 0.763773E-02 0.155872E-03 3.7 % + queue fft : 0.369776E-01 0.754645E-03 17.8 % + queue fft (serial) : 0.262466E-01 0.535645E-03 12.6 % + queue fft (message passing): 0.969198E-02 0.197796E-03 4.7 % + non-local psp FFM : 0.320117E-02 0.653300E-04 1.5 % + non-local psp FMF : 0.137954E-02 0.281539E-04 0.7 % + non-local psp FFM A : 0.490631E-03 0.100129E-04 0.2 % + non-local psp FFM B : 0.245399E-02 0.500814E-04 1.2 % + + >>> JOB COMPLETED AT Mon Sep 23 14:29:21 2019 <<< + **************************************************** + * * + * NWPW PSPW Calculation * + * * + * [ (Grassmann/Stiefel manifold implementation) ] * + * * + * [ NorthWest Chemistry implementation ] * + * * + * version #5.10 06/12/02 * + * * + * This code was developed by Eric J. Bylaska, * + * and was based upon algorithms and code * + * developed by the group of Prof. John H. Weare * + * * + **************************************************** + >>> JOB STARTED AT Mon Sep 23 14:29:21 2019 <<< + ================ input data ======================== + + input psi filename:./w.movecs + + initializing pspw_APC data structure + ------------------------------------ + nga, ngs: 3 6 + Gc : 2.5000000000000000 + APC gamma: 1 0.59999999999999998 + APC gamma: 2 0.90000000000000002 + APC gamma: 3 1.3500000000000001 + + number of processors used: 1 + processor grid : 1 x 1 + parallel mapping :2d hilbert + parallel mapping : balanced + number of threads : 1 + parallel io : off + + options: + boundary conditions = periodic (version3) + electron spin = restricted + exchange-correlation = LDA (Vosko et al) parameterization + + elements involved in the cluster: + 1: W valence charge: 6.0000 lmax= 2 + comment : Troullier-Martins pseudopotential + pseudpotential type : 0 + highest angular component : 2 + local potential used : 0 + number of non-local projections: 8 + semicore corrections included : 1.800 (radius) 4.538 (charge) + cutoff = 2.389 3.185 2.244 + + + total charge: 0.000 + + atomic composition: + W : 2 + + number of electrons: spin up= 6 ( 6 per task) down= 6 ( 6 per task) (Fourier space) + number of orbitals : spin up= 6 ( 6 per task) down= 6 ( 6 per task) (Fourier space) + + supercell: + cell_name: cell_default + lattice: a1=< 5.972 0.000 0.000 > + a2=< 0.000 5.972 0.000 > + a3=< 0.000 0.000 5.972 > + reciprocal: b1=< 1.052 0.000 -0.000 > + b2=< -0.000 1.052 -0.000 > + b3=< 0.000 0.000 1.052 > + lattice: a= 5.972 b= 5.972 c= 5.972 + alpha= 90.000 beta= 90.000 gamma= 90.000 + omega= 212.9 + + density cutoff= 35.427 fft= 16x 16x 16( 1052 waves 1052 per task) + wavefnc cutoff= 35.427 fft= 16x 16x 16( 1052 waves 1052 per task) + Ewald summation: cut radius= 1.90 and 8 + Madelung Wigner-Seitz= 1.76011888 (alpha= 2.83729748 rs= 3.70444413) + + technical parameters: + time step= 5.80 fictitious mass= 400000.0 + tolerance=0.100E-08 (energy) 0.100E-08 (density) + maximum iterations = 1000 ( 10 inner 100 outer ) + + + + + +== Energy Calculation == + + + ====== Grassmann conjugate gradient iteration ====== + >>> ITERATION STARTED AT Mon Sep 23 14:29:21 2019 <<< + iter. Energy DeltaE DeltaRho + ------------------------------------------------------ + 10 -0.2020461705E+02 -0.23340E-09 0.27270E-11 + *** tolerance ok. iteration terminated + >>> ITERATION ENDED AT Mon Sep 23 14:29:21 2019 <<< + + +== Summary Of Results == + + number of electrons: spin up= 6.00000 down= 6.00000 (real space) + + total energy : -0.2020461705E+02 ( -0.10102E+02/ion) + total orbital energy: 0.5093528357E+01 ( 0.84892E+00/electron) + hartree energy : 0.2902733730E+00 ( 0.48379E-01/electron) + exc-corr energy : -0.9445058980E+01 ( -0.15742E+01/electron) + ion-ion energy : -0.2193948849E+02 ( -0.10970E+02/ion) + + kinetic (planewave) : 0.1441576162E+02 ( 0.24026E+01/electron) + V_local (planewave) : 0.1156121019E+02 ( 0.19269E+01/electron) + V_nl (planewave) : -0.1508731476E+02 ( -0.25146E+01/electron) + V_Coul (planewave) : 0.5805467460E+00 ( 0.96758E-01/electron) + V_xc. (planewave) : -0.6376675440E+01 ( -0.10628E+01/electron) + Virial Coefficient : -0.6466694934E+00 + + orbital energies: + 0.5414197E+00 ( 14.733eV) + 0.5414193E+00 ( 14.733eV) + 0.5414189E+00 ( 14.733eV) + 0.3596821E+00 ( 9.788eV) + 0.3596821E+00 ( 9.788eV) + 0.2031419E+00 ( 5.528eV) + + Total PSPW energy : -0.2020461705E+02 + + +=== Spin Contamination === + + = 0.0000000000000000 + = 0.0000000000000000 + + + +== Center of Charge == + +spin up ( -0.0000, -0.0000, -0.0000 ) +spin down ( -0.0000, -0.0000, -0.0000 ) + total ( -0.0000, -0.0000, -0.0000 ) +ionic ( 1.4929, 1.4929, 1.4929 ) + + +== Molecular Dipole wrt Center of Mass == + +mu = ( 17.9146, 17.9146, 17.9146 ) au +|mu| = 31.0290 au, 78.8633 Debye + + +Translation force removed: ( -0.00000 -0.00000 -0.00000) + + + ============= Ion Gradients ================= + Ion Forces: + 1 W ( 0.000000 0.000000 -0.000000 ) + 2 W ( -0.000000 -0.000000 -0.000000 ) + C.O.M. ( 0.000000 0.000000 -0.000000 ) + =============================================== + |F| = 0.418432E-08 + |F|/nion = 0.209216E-08 + max|Fatom|= 0.295876E-08 ( 0.000eV/Angstrom) + + + + Outputing formatted_stress_filename: ./W.vpp2 + + +====================== += Stress calculation = +====================== + + + ============= total gradient ============== + S = ( 0.12513 0.00001 0.00000 ) + ( 0.00001 0.12513 0.00000 ) + ( 0.00000 0.00000 0.12513 ) + =================================================== + |S| = 0.21673E+00 + pressure = 0.125E+00 au + = 0.368E+02 Mbar + = 0.368E+04 GPa + = 0.363E+08 atm + + + dE/da = 0.12513 + dE/db = 0.12513 + dE/dc = 0.12513 + dE/dalpha = 0.00000 + dE/dbeta = 0.00000 + dE/dgamma = -0.00004 + + + + + ************************************************************* + ** ** + ** PSPW Mulliken analysis ** + ** ** + ** Population analysis algorithm devloped by Ryoichi Kawai ** + ** ** + ** Mon Sep 23 14:29 ** + ** ** + ************************************************************* + + +== XYZ OUTPUT == + + + 2 + +W 0.000000 0.000000 0.000000 +W 1.579999 1.579999 1.579999 + + +== Atomic Orbital Expansion == + + W nodamping + + + ===================================================== + | POPULATION ANALYSIS OF FILLED MOLECULAR ORBITALS | + ===================================================== + + +== Using pseudoatomic orbital expansion == + + +------------------------------------------------------------------------------ + + +*** ORBITAL= 1*** SPIN=BOTH SUM= 0.12471E+01 E= 0.54142E+00 ( 14.733eV) + +NO ATOM L POPULATION + s + 1 W 0 0.00000 0.00000 + px pz py + 1 W 1 0.00000 0.00000 -0.00000 -0.00000 + dx2-y2 dzx d3z2-1 dyz dxy + 1 W 2 0.50000 -0.00000 -0.50144 0.00000 0.49855 0.00000 + fx(x2-3y2) fz(5z2-1) fx(5z2-1) fz(5z2-3) fy(5z2-1) fxyz fy(3x2-y2) + 1 W 3 0.00000 -0.00000 -0.00000 0.00000 -0.00000 0.00000 0.00000 -0.00000 + s + 2 W 0 0.00000 0.00000 + px pz py + 2 W 1 0.00000 -0.00000 0.00000 -0.00000 + dx2-y2 dzx d3z2-1 dyz dxy + 2 W 2 0.50000 -0.00000 -0.50144 0.00000 0.49855 0.00000 + fx(x2-3y2) fz(5z2-1) fx(5z2-1) fz(5z2-3) fy(5z2-1) fxyz fy(3x2-y2) + 2 W 3 0.00000 -0.00000 -0.00000 0.00000 0.00000 0.00000 -0.00000 -0.00000 + + +=== DISTRIBUTION === + + 1(W ) 0.5000 2(W ) 0.5000 + + +== ANGULAR MOMENTUM POPULATIONS === + + s p d f + 0.0000 0.0000 1.0000 0.0000 + + +------------------------------------------------------------------------------ + + +*** ORBITAL= 2*** SPIN=BOTH SUM= 0.12471E+01 E= 0.54142E+00 ( 14.733eV) + +NO ATOM L POPULATION + s + 1 W 0 0.00000 -0.00000 + px pz py + 1 W 1 0.00000 -0.00000 0.00000 0.00000 + dx2-y2 dzx d3z2-1 dyz dxy + 1 W 2 0.50000 0.00000 -0.00000 -0.00001 0.00000 -0.70711 + fx(x2-3y2) fz(5z2-1) fx(5z2-1) fz(5z2-3) fy(5z2-1) fxyz fy(3x2-y2) + 1 W 3 0.00000 0.00001 0.00000 -0.00000 0.00000 -0.00000 -0.00000 0.00000 + s + 2 W 0 0.00000 -0.00000 + px pz py + 2 W 1 0.00000 0.00000 -0.00000 -0.00000 + dx2-y2 dzx d3z2-1 dyz dxy + 2 W 2 0.50000 0.00000 -0.00000 -0.00001 0.00000 -0.70711 + fx(x2-3y2) fz(5z2-1) fx(5z2-1) fz(5z2-3) fy(5z2-1) fxyz fy(3x2-y2) + 2 W 3 0.00000 0.00001 0.00000 -0.00000 -0.00000 -0.00000 0.00000 0.00000 + + +=== DISTRIBUTION === + + 1(W ) 0.5000 2(W ) 0.5000 + + +== ANGULAR MOMENTUM POPULATIONS === + + s p d f + 0.0000 0.0000 1.0000 0.0000 + + +------------------------------------------------------------------------------ + + +*** ORBITAL= 3*** SPIN=BOTH SUM= 0.12471E+01 E= 0.54142E+00 ( 14.733eV) + +NO ATOM L POPULATION + s + 1 W 0 0.00000 0.00000 + px pz py + 1 W 1 0.00000 0.00000 0.00000 -0.00000 + dx2-y2 dzx d3z2-1 dyz dxy + 1 W 2 0.50000 -0.00000 -0.49855 0.00000 -0.50144 0.00000 + fx(x2-3y2) fz(5z2-1) fx(5z2-1) fz(5z2-3) fy(5z2-1) fxyz fy(3x2-y2) + 1 W 3 0.00000 -0.00000 0.00000 0.00000 0.00000 0.00000 -0.00000 -0.00000 + s + 2 W 0 0.00000 0.00000 + px pz py + 2 W 1 0.00000 -0.00000 -0.00000 0.00000 + dx2-y2 dzx d3z2-1 dyz dxy + 2 W 2 0.50000 -0.00000 -0.49855 0.00000 -0.50144 0.00000 + fx(x2-3y2) fz(5z2-1) fx(5z2-1) fz(5z2-3) fy(5z2-1) fxyz fy(3x2-y2) + 2 W 3 0.00000 -0.00000 0.00000 0.00000 -0.00000 0.00000 0.00000 -0.00000 + + +=== DISTRIBUTION === + + 1(W ) 0.5000 2(W ) 0.5000 + + +== ANGULAR MOMENTUM POPULATIONS === + + s p d f + 0.0000 0.0000 1.0000 0.0000 + + +------------------------------------------------------------------------------ + + +*** ORBITAL= 4*** SPIN=BOTH SUM= 0.14893E+01 E= 0.35968E+00 ( 9.788eV) + +NO ATOM L POPULATION + s + 1 W 0 0.00000 -0.00000 + px pz py + 1 W 1 0.00000 -0.00000 0.00000 -0.00000 + dx2-y2 dzx d3z2-1 dyz dxy + 1 W 2 0.47961 -0.61917 -0.00000 0.31022 -0.00000 -0.00000 + fx(x2-3y2) fz(5z2-1) fx(5z2-1) fz(5z2-3) fy(5z2-1) fxyz fy(3x2-y2) + 1 W 3 0.02039 -0.14281 -0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 + s + 2 W 0 0.00000 -0.00000 + px pz py + 2 W 1 0.00000 0.00000 0.00000 0.00000 + dx2-y2 dzx d3z2-1 dyz dxy + 2 W 2 0.47961 0.61917 0.00000 -0.31022 -0.00000 0.00000 + fx(x2-3y2) fz(5z2-1) fx(5z2-1) fz(5z2-3) fy(5z2-1) fxyz fy(3x2-y2) + 2 W 3 0.02039 0.14281 -0.00000 -0.00000 0.00000 -0.00000 -0.00000 -0.00000 + + +=== DISTRIBUTION === + + 1(W ) 0.5000 2(W ) 0.5000 + + +== ANGULAR MOMENTUM POPULATIONS === + + s p d f + 0.0000 0.0000 0.9592 0.0408 + + +------------------------------------------------------------------------------ + + +*** ORBITAL= 5*** SPIN=BOTH SUM= 0.14299E+01 E= 0.35968E+00 ( 9.788eV) + +NO ATOM L POPULATION + s + 1 W 0 0.00000 -0.00000 + px pz py + 1 W 1 0.00000 -0.00000 0.00000 -0.00000 + dx2-y2 dzx d3z2-1 dyz dxy + 1 W 2 0.49953 0.31660 0.00000 0.63190 0.00000 -0.00000 + fx(x2-3y2) fz(5z2-1) fx(5z2-1) fz(5z2-3) fy(5z2-1) fxyz fy(3x2-y2) + 1 W 3 0.00047 -0.02171 0.00000 0.00000 0.00000 0.00000 -0.00000 0.00000 + s + 2 W 0 0.00000 -0.00000 + px pz py + 2 W 1 0.00000 0.00000 0.00000 0.00000 + dx2-y2 dzx d3z2-1 dyz dxy + 2 W 2 0.49953 -0.31660 -0.00000 -0.63190 -0.00000 0.00000 + fx(x2-3y2) fz(5z2-1) fx(5z2-1) fz(5z2-3) fy(5z2-1) fxyz fy(3x2-y2) + 2 W 3 0.00047 0.02171 0.00000 0.00000 0.00000 -0.00000 -0.00000 -0.00000 + + +=== DISTRIBUTION === + + 1(W ) 0.5000 2(W ) 0.5000 + + +== ANGULAR MOMENTUM POPULATIONS === + + s p d f + 0.0000 0.0000 0.9991 0.0009 + + +------------------------------------------------------------------------------ + + +*** ORBITAL= 6*** SPIN=BOTH SUM= 0.19540E+01 E= 0.20314E+00 ( 5.528eV) + +NO ATOM L POPULATION + s + 1 W 0 0.49974 0.70692 + px pz py + 1 W 1 0.00000 -0.00000 -0.00000 0.00000 + dx2-y2 dzx d3z2-1 dyz dxy + 1 W 2 0.00000 -0.00000 0.00000 0.00000 -0.00000 -0.00000 + fx(x2-3y2) fz(5z2-1) fx(5z2-1) fz(5z2-3) fy(5z2-1) fxyz fy(3x2-y2) + 1 W 3 0.00026 -0.01609 0.00000 0.00000 0.00000 -0.00000 -0.00000 -0.00000 + s + 2 W 0 0.49974 0.70692 + px pz py + 2 W 1 0.00000 0.00000 0.00000 -0.00000 + dx2-y2 dzx d3z2-1 dyz dxy + 2 W 2 0.00000 0.00000 0.00000 -0.00000 0.00000 -0.00000 + fx(x2-3y2) fz(5z2-1) fx(5z2-1) fz(5z2-3) fy(5z2-1) fxyz fy(3x2-y2) + 2 W 3 0.00026 -0.01609 -0.00000 -0.00000 0.00000 -0.00000 0.00000 0.00000 + + +=== DISTRIBUTION === + + 1(W ) 0.5000 2(W ) 0.5000 + + +== ANGULAR MOMENTUM POPULATIONS === + + s p d f + 0.9995 0.0000 0.0000 0.0005 + + + ======================================== + | POPULATION ANALYSIS ON EACH ATOM | + ======================================== + + +NO ATOM SPIN TOTAL s p d f + 1 W UP 3.00000 0.49974 0.00000 2.47913 0.02112 + 1 W DOWN 3.00000 0.49974 0.00000 2.47913 0.02112 + 2 W UP 3.00000 0.49974 0.00000 2.47913 0.02112 + 2 W DOWN 3.00000 0.49974 0.00000 2.47913 0.02112 + + + +=== TOTAL ANGULAR MOMENTUM POPULATION === + + SPIN s p d f + UP 16.66% 0.00% 82.64% 0.70% + UP 16.66% 0.00% 82.64% 0.70% + TOTAL 16.66% 0.00% 82.64% 0.70% + + ************************************************************* + ** ** + ** PSPW Atomic Point Charge (APC) Analysis ** + ** ** + ** Point charge analysis based on paper by P.E. Blochl ** + ** (J. Chem. Phys. vol 103, page 7422, 1995) ** + ** ** + ************************************************************* + + pspw_APC data structure + ----------------------- + nga, ngs: 3 6 + Gc : 2.5000000000000000 + APC gamma: 1 0.59999999999999998 + APC gamma: 2 0.90000000000000002 + APC gamma: 3 1.3500000000000001 + + charge analysis on each atom + ---------------------------- + + no atom Qelc Qion Qtotal + -- ---- ------- ------- ------- + 1 W -5.594 6.000 0.406 + 2 W -6.250 6.000 -0.250 + Total Q -11.844 12.000 0.156 + + + gaussian coefficients of model density + -------------------------------------- + + no atom g=0.000 g=0.600 g=0.900 g=1.350 + -- ---- ------- ------- ------- ------- + 1 W 6.000 -6.219 15.062 -14.438 + 2 W 6.000 -8.281 20.125 -18.094 + + +=== Electric Field at Atoms === + + 1 W Atomic Electric Field =( -0.00000 -0.00000 0.00000 ) + (ion) =( 0.00000 0.00000 -0.00000 ) + (electronic) =( -0.00000 -0.00000 0.00000 ) + 2 W Atomic Electric Field =( 0.00000 -0.00000 0.00000 ) + (ion) =( -0.00000 -0.00000 0.00000 ) + (electronic) =( 0.00000 -0.00000 -0.00000 ) + + output psi filename:./w.movecs + + +== Timing == + +cputime in seconds + prologue : 0.746791E-01 + main loop : 0.359966E+00 + epilogue : 0.187162E-01 + total : 0.453362E+00 + cputime/step: 0.133321E-01 ( 27 evalulations, 6 linesearches) + + +Time spent doing total step percent + total time : 0.453809E+00 0.168078E-01 100.0 % + i/o time : 0.371068E-02 0.137433E-03 0.8 % + FFTs : 0.870071E-02 0.322248E-03 1.9 % + dot products : 0.347239E-02 0.128607E-03 0.8 % + geodesic : 0.430554E-02 0.159464E-03 0.9 % + ffm_dgemm : 0.322600E-03 0.119481E-04 0.1 % + fmf_dgemm : 0.226656E-02 0.839466E-04 0.5 % + mmm_dgemm : 0.241260E-04 0.893554E-06 0.0 % + m_diagonalize : 0.143440E-03 0.531259E-05 0.0 % + exchange correlation : 0.226012E-01 0.837082E-03 5.0 % + local pseudopotentials : 0.247782E-03 0.917711E-05 0.1 % + non-local pseudopotentials : 0.596243E-02 0.220831E-03 1.3 % + hartree potentials : 0.303066E-03 0.112247E-04 0.1 % + ion-ion interaction : 0.742231E-01 0.274901E-02 16.4 % + structure factors : 0.100176E-01 0.371024E-03 2.2 % + phase factors : 0.123850E-04 0.458704E-06 0.0 % + masking and packing : 0.747819E-02 0.276970E-03 1.6 % + queue fft : 0.227258E-01 0.841697E-03 5.0 % + queue fft (serial) : 0.159551E-01 0.590931E-03 3.5 % + queue fft (message passing): 0.615529E-02 0.227974E-03 1.4 % + non-local psp FFM : 0.252122E-02 0.933787E-04 0.6 % + non-local psp FMF : 0.112022E-02 0.414896E-04 0.2 % + non-local psp FFM A : 0.456889E-03 0.169218E-04 0.1 % + non-local psp FFM B : 0.186526E-02 0.690838E-04 0.4 % + + >>> JOB COMPLETED AT Mon Sep 23 14:29:22 2019 <<< + + Task times cpu: 5.6s wall: 3.8s + + + NWChem Input Module + ------------------- + + + Summary of allocated global arrays +----------------------------------- + No active global arrays + + + + GA Statistics for process 0 + ------------------------------ + + create destroy get put acc scatter gather read&inc +calls: 8 8 86 10 0 0 0 0 +number of processes/call 1.00e+00 1.00e+00 0.00e+00 0.00e+00 0.00e+00 +bytes total: 1.81e+05 8.19e+04 0.00e+00 0.00e+00 0.00e+00 0.00e+00 +bytes remote: 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 +Max memory consumed for GA by this process: 65536 bytes + +MA_summarize_allocated_blocks: starting scan ... +heap block 'sw1t', handle 348, address 0x55eea965d008: + type of elements: double precision + number of elements: 16 + address of client space: 0x55eea965d080 + index for client space: 10242743 + total number of bytes: 256 +MA_summarize_allocated_blocks: scan completed: 1 heap block, 0 stack blocks +MA usage statistics: + + allocation statistics: + heap stack + ---- ----- + current number of blocks 1 0 + maximum number of blocks 304 17 + current total bytes 256 0 + maximum total bytes 5596824 351896 + maximum total K-bytes 5597 352 + maximum total M-bytes 6 1 + + + CITATION + -------- + Please cite the following reference when publishing + results obtained with NWChem: + + M. Valiev, E.J. Bylaska, N. Govind, K. Kowalski, + T.P. Straatsma, H.J.J. van Dam, D. Wang, J. Nieplocha, + E. Apra, T.L. Windus, W.A. de Jong + "NWChem: a comprehensive and scalable open-source + solution for large scale molecular simulations" + Comput. Phys. Commun. 181, 1477 (2010) + doi:10.1016/j.cpc.2010.04.018 + + AUTHORS + ------- + E. Apra, E. J. Bylaska, W. A. de Jong, N. Govind, K. Kowalski, + T. P. Straatsma, M. Valiev, H. J. J. van Dam, D. Wang, T. L. Windus, + J. Hammond, J. Autschbach, K. Bhaskaran-Nair, J. Brabec, K. Lopata, + S. A. Fischer, S. Krishnamoorthy, M. Jacquelin, W. Ma, M. Klemm, O. Villa, + Y. Chen, V. Anisimov, F. Aquino, S. Hirata, M. T. Hackler, V. Konjkov, + D. Mejia-Rodriguez, T. Risthaus, M. Malagoli, A. Marenich, + A. Otero-de-la-Roza, J. Mullin, P. Nichols, R. Peverati, J. Pittner, Y. Zhao, + P.-D. Fan, A. Fonari, M. J. Williamson, R. J. Harrison, J. R. Rehr, + M. Dupuis, D. Silverstein, D. M. A. Smith, J. Nieplocha, V. Tipparaju, + M. Krishnan, B. E. Van Kuiken, A. Vazquez-Mayagoitia, L. Jensen, M. Swart, + Q. Wu, T. Van Voorhis, A. A. Auer, M. Nooijen, L. D. Crosby, E. Brown, + G. Cisneros, G. I. Fann, H. Fruchtl, J. Garza, K. Hirao, R. A. Kendall, + J. A. Nichols, K. Tsemekhman, K. Wolinski, J. Anchell, D. E. Bernholdt, + P. Borowski, T. Clark, D. Clerc, H. Dachsel, M. J. O. Deegan, K. Dyall, + D. Elwood, E. Glendening, M. Gutowski, A. C. Hess, J. Jaffe, B. G. Johnson, + J. Ju, R. Kobayashi, R. Kutteh, Z. Lin, R. Littlefield, X. Long, B. Meng, + T. Nakajima, S. Niu, L. Pollack, M. Rosing, K. Glaesemann, G. Sandrone, + M. Stave, H. Taylor, G. Thomas, J. H. van Lenthe, A. T. Wong, Z. Zhang. + + Total times cpu: 5.6s wall: 3.8s diff --git a/examples/COUPLE/lammps_nwchem/lammps_nwchem/planewave/w.nw b/examples/COUPLE/lammps_nwchem/lammps_nwchem/planewave/w.nw new file mode 100644 index 0000000000..5f78801174 --- /dev/null +++ b/examples/COUPLE/lammps_nwchem/lammps_nwchem/planewave/w.nw @@ -0,0 +1,28 @@ +echo + +#**** Enter the geometry using fractional coordinates **** +geometry units angstrom noautosym + system crystal + lat_a 3.16d0 + lat_b 3.16d0 + lat_c 3.16d0 + end +W 0.0 0.0 0.0 +W 0.5 0.5 0.5 +end + +#***** setup the nwpw gamma point code **** +nwpw + simulation_cell + ngrid 16 16 16 + end + ewald_ncut 8 + mulliken + lcao #old default +end + +nwpw + tolerances 1.0d-9 1.0d-9 +end + +task pspw stress diff --git a/examples/COUPLE/lammps_nwchem/nwchem_wrap.py b/examples/COUPLE/lammps_nwchem/nwchem_wrap.py new file mode 100644 index 0000000000..8774eb74fe --- /dev/null +++ b/examples/COUPLE/lammps_nwchem/nwchem_wrap.py @@ -0,0 +1,448 @@ +#!/usr/bin/env python + +# ---------------------------------------------------------------------- +# LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator +# http://lammps.sandia.gov, Sandia National Laboratories +# Steve Plimpton, sjplimp@sandia.gov +# ---------------------------------------------------------------------- + +# Syntax: nwchem_wrap.py file/zmq ao/pw input_template +# file/zmg = messaging mode, must match LAMMPS messaging mode +# ao/pw = basis set mode, selects between atom-centered and plane-wave +# the input_template file must correspond to the appropriate basis set mode: +# the "ao" mode supports the scf and dft modules in NWChem, +# the "pw" mode supports the nwpw module. +# input_template = NWChem input file used as template, must include a +# "geometry" block with the atoms in the simulation, dummy +# xyz coordinates should be included (but are not used). +# Atom ordering must match LAMMPS input. + +# wrapper on NWChem +# receives message with list of coords +# creates NWChem inputs +# invokes NWChem to calculate self-consistent energy of that config +# reads NWChem outputs +# sends message with energy, forces, pressure to client + +from __future__ import print_function +import sys + +version = sys.version_info[0] +if version == 3: + sys.exit("The CSlib python wrapper does not yet support python 3") + +import subprocess +import re +import os +import shutil +from cslib import CSlib + +# comment out 2nd line once 1st line is correct for your system + +nwchemcmd = "mpirun -np 1 /usr/bin/nwchem nwchem_lammps.nw > " +nwchemcmd = "touch tmp" + +# enums matching FixClientMD class in LAMMPS + +SETUP,STEP = range(1,2+1) +DIM,PERIODICITY,ORIGIN,BOX,NATOMS,NTYPES,TYPES,COORDS,UNITS,CHARGE = range(1,10+1) +FORCES,ENERGY,VIRIAL,ERROR = range(1,4+1) + +# ------------------------------------- +# functions + +# error message and exit + +def error(txt): + print("ERROR:",txt) + sys.exit(1) + +# ------------------------------------- +# read initial input file to setup problem +# return natoms + +def nwchem_setup_ao(input): + + template = open(input,'r') + + geometry_block = False + natoms = 0 + + while True: + line = template.readline() + if not line: break + + if geometry_block and re.search("end",line): + geometry_block = False + if geometry_block and not re.match("#",line) : + natoms += 1 + if re.search("geometry",line): + geometry_block = True + + return natoms + +# ------------------------------------- +# write a new input file for NWChem +# assumes the NWChem input geometry is to be specified in angstroms + +def nwchem_input_write_ao(input,coords): + + template = open(input,'r') + new_input = open("nwchem_lammps.nw",'w') + + geometry_block = False + i = 0 + + while True: + line = template.readline() + if not line: break + + if geometry_block and not re.match("#",line) and re.search("end",line): + geometry_block = False + if os.path.exists("nwchem_lammps.movecs"): + # The below is hacky, but one of these lines will be ignored + # by NWChem depending on if the input file is for scf/dft. + append = "\nscf\n vectors input nwchem_lammps.movecs\nend\n" + append2 = "\ndft\n vectors input nwchem_lammps.movecs\nend\n" + line = line + append + append2 + + if geometry_block and not re.match("#",line): + x = coords[3*i+0] + y = coords[3*i+1] + z = coords[3*i+2] + coord_string = " %g %g %g \n" % (x,y,z) + atom_string = line.split()[0] + line = atom_string + coord_string + i += 1 + + if (not re.match("#",line)) and re.search("geometry",line): + geometry_block = True + line = "geometry units angstrom noautosym\n" + + print(line,file=new_input,end='') + + new_input.close() + +# ------------------------------------- +# read a NWChem output nwchem_lammps.out file + +def nwchem_read_ao(natoms, log): + + nwchem_output = open(log, 'r') + energy_pattern = r"Total \w+ energy" + gradient_pattern = "x y z x y z" + + eout = 0.0 + fout = [] + + while True: + line = nwchem_output.readline() + if not line: break + + # pattern match for energy + if re.search(energy_pattern,line): + eout = float(line.split()[4]) + + # pattern match for forces + if re.search(gradient_pattern, line): + for i in range(natoms): + line = nwchem_output.readline() + forces = line.split() + fout += [float(forces[5]), float(forces[6]), float(forces[7])] + + # convert units + hartree2eV = 27.21138602 + bohr2angstrom = 0.52917721092 + eout = eout * hartree2eV + fout = [i * hartree2eV/bohr2angstrom for i in fout] + print(eout) + + return eout,fout + +# ------------------------------------- +# read initial planewave input file to setup problem +# return natoms,box +def nwchem_setup_pw(input): + + template = open(input,'r') + + geometry_block = False + system_block = False + coord_pattern = r"^\s*\w{1,2}(?:\s+-?(?:\d+.?\d*|\d*.?\d+)){3}" + natoms = 0 + box = [] + + while True: + line = template.readline() + if not line: break + + if geometry_block and re.search("system crystal",line): + system_block = True + for i in range(3): + line = template.readline() + line = re.sub(r'd|D', 'e', line) + box += [float(line.split()[1])] + + if geometry_block and not system_block and re.match("#",line) and re.search("end",line): + geometry_block = False + + if system_block and re.search("end",line): + system_block = False + + if geometry_block and not re.match("#",line) and re.search(coord_pattern,line): + natoms += 1 + + if re.search("geometry",line) and not re.match("#",line): + geometry_block = True + + return natoms,box + +# ------------------------------------- +# write a new planewave input file for NWChem +# assumes the NWChem input geometry is to be specified fractional coordinates + +def nwchem_input_write_pw(input,coords,box): + + template = open(input,'r') + new_input = open("nwchem_lammps.nw",'w') + + writing_atoms = False + geometry_block = False + system_block = False + coord_pattern = r"^\s*\w{1,2}(?:\s+-?(?:\d+.?\d*|\d*.?\d+)){3}" + i = 0 + + while True: + line = template.readline() + if not line: break + + if geometry_block and re.search("system crystal",line): + system_block = True + + if geometry_block and not system_block and not re.match("#",line) and re.search("end",line): + geometry_block = False + if os.path.exists("nwchem_lammps.movecs"): + append = "\nnwpw\n vectors input nwchem_lammps.movecs\nend\n" + line = line + append + + if system_block and re.search("end",line): + system_block = False + + if geometry_block and not re.match("#",line) and re.search(coord_pattern,line): + x = coords[3*i+0] / box[0] + y = coords[3*i+1] / box[1] + z = coords[3*i+2] / box[2] + coord_string = " %g %g %g \n" % (x,y,z) + atom_string = line.split()[0] + line = atom_string + coord_string + i += 1 + + if re.search("geometry",line) and not re.match("#",line): + geometry_block = True + + print(line,file=new_input,end='') + + new_input.close() + +# ------------------------------------- +# read a NWChem output nwchem_lammps.out file for planewave calculation + +def nwchem_read_pw(log): + nw_output = open(log, 'r') + + eout = 0.0 + sout = [] + fout = [] + reading_forces = False + + while True: + line = nw_output.readline() + if not line: break + + # pattern match for energy + if re.search("PSPW energy",line): + eout = float(line.split()[4]) + + # pattern match for forces + if re.search("C\.O\.M", line): + reading_forces = False + if reading_forces: + forces = line.split() + fout += [float(forces[3]), float(forces[4]), float(forces[5])] + if re.search("Ion Forces",line): + reading_forces = True + + # pattern match for stress + if re.search("=== total gradient ===",line): + stensor = [] + for i in range(3): + line = nw_output.readline() + line = line.replace("S ="," ") + stress = line.split() + stensor += [float(stress[1]), float(stress[2]), float(stress[3])] + sxx = stensor[0] + syy = stensor[4] + szz = stensor[8] + sxy = 0.5 * (float(stensor[1]) + float(stensor[3])) + sxz = 0.5 * (stensor[2] + stensor[6]) + syz = 0.5 * (stensor[5] + stensor[7]) + sout = [sxx,syy,szz,sxy,sxz,syz] + + # convert units + hartree2eV = 27.21138602 + bohr2angstrom = 0.52917721092 + austress2bar = 294210156.97 + eout = eout * hartree2eV + fout = [i * hartree2eV/bohr2angstrom for i in fout] + sout = [i * austress2bar for i in sout] + + return eout,fout,sout + +# ------------------------------------- +# main program + +# command-line args +# +if len(sys.argv) != 4: + print("Syntax: python nwchem_wrap.py file/zmq ao/pw input_template") + sys.exit(1) + +comm_mode = sys.argv[1] +basis_type = sys.argv[2] +input_template = sys.argv[3] + +if comm_mode == "file": cs = CSlib(1,comm_mode,"tmp.couple",None) +elif comm_mode == "zmq": cs = CSlib(1,comm_mode,"*:5555",None) +else: + print("Syntax: python nwchem_wrap.py file/zmq") + sys.exit(1) + + +natoms = 0 +box = [] +if basis_type == "ao": + natoms = nwchem_setup_ao(input_template) +elif basis_type == "pw": + natoms,box = nwchem_setup_pw(input_template) + +# initial message for AIMD protocol + +msgID,nfield,fieldID,fieldtype,fieldlen = cs.recv() +if msgID != 0: error("Bad initial client/server handshake") +protocol = cs.unpack_string(1) +if protocol != "md": error("Mismatch in client/server protocol") +cs.send(0,0) + +# endless server loop + +i = 0 +if not os.path.exists("nwchem_logs"): + os.mkdir("nwchem_logs") + +while 1: + + # recv message from client + # msgID = 0 = all-done message + + msgID,nfield,fieldID,fieldtype,fieldlen = cs.recv() + if msgID < 0: break + + # SETUP receive at beginning of each run + # required fields: DIM, PERIODICITY, ORIGIN, BOX, + # NATOMS, COORDS + # optional fields: others in enum above, but NWChem ignores them + + if msgID == SETUP: + + origin = [] + box_lmp = [] + natoms_recv = ntypes_recv = 0 + types = [] + coords = [] + + for field in fieldID: + if field == DIM: + dim = cs.unpack_int(DIM) + if dim != 3: error("NWChem only performs 3d simulations") + elif field == PERIODICITY: + periodicity = cs.unpack(PERIODICITY,1) + if basis_type == "ao": + if periodicity[0] or periodicity[1] or periodicity[2]: + error("NWChem AO basis wrapper only currently supports fully aperiodic systems") + elif basis_type == "pw": + if not periodicity[0] or not periodicity[1] or not periodicity[2]: + error("NWChem PW basis wrapper only currently supports fully periodic systems") + elif field == ORIGIN: + origin = cs.unpack(ORIGIN,1) + elif field == BOX: + box_lmp = cs.unpack(BOX,1) + if (basis_type == "pw"): + if (box[0] != box_lmp[0] or box[1] != box_lmp[4] or box[2] != box_lmp[8]): + error("NWChem wrapper mismatch in box dimensions") + elif field == NATOMS: + natoms_recv = cs.unpack_int(NATOMS) + if natoms != natoms_recv: + error("NWChem wrapper mismatch in number of atoms") + elif field == COORDS: + coords = cs.unpack(COORDS,1) + + if not origin or not box_lmp or not natoms or not coords: + error("Required NWChem wrapper setup field not received"); + + # STEP receive at each timestep of run or minimization + # required fields: COORDS + # optional fields: ORIGIN, BOX + + elif msgID == STEP: + + coords = [] + + for field in fieldID: + if field == COORDS: + coords = cs.unpack(COORDS,1) + + if not coords: error("Required NWChem wrapper step field not received"); + + else: error("NWChem wrapper received unrecognized message") + + # unpack coords from client + # create NWChem input + + if basis_type == "ao": + nwchem_input_write_ao(input_template,coords) + elif basis_type == "pw": + nwchem_input_write_pw(input_template,coords,box) + + # invoke NWChem + + i += 1 + log = "nwchem_lammps.out" + archive = "nwchem_logs/nwchem_lammps" + str(i) + ".out" + cmd = nwchemcmd + log + print("\nLaunching NWChem ...") + print(cmd) + subprocess.check_output(cmd,stderr=subprocess.STDOUT,shell=True) + + shutil.copyfile(log,archive) + + # process NWChem output + + if basis_type == "ao": + energy,forces = nwchem_read_ao(natoms,log) + virial = [0,0,0,0,0,0] + elif basis_type == "pw": + energy,forces,virial = nwchem_read_pw(log) + + # return forces, energy to client + cs.send(msgID,3) + cs.pack(FORCES,4,3*natoms,forces) + cs.pack_double(ENERGY,energy) + cs.pack(VIRIAL,4,6,virial) + +# final reply to client + +cs.send(0,0) + +# clean-up + +del cs diff --git a/examples/COUPLE/lammps_nwchem/planewave/data.W b/examples/COUPLE/lammps_nwchem/planewave/data.W new file mode 100644 index 0000000000..8accd9ca79 --- /dev/null +++ b/examples/COUPLE/lammps_nwchem/planewave/data.W @@ -0,0 +1,15 @@ +LAMMPS W data file + +2 atoms + +1 atom types + +0.0 3.16 xlo xhi +0.0 3.16 ylo yhi +0.0 3.16 zlo zhi + +Atoms + +1 1 0.000 0.000 0.000 +2 1 1.58 1.58 1.58 + diff --git a/examples/COUPLE/lammps_nwchem/planewave/in.client.W b/examples/COUPLE/lammps_nwchem/planewave/in.client.W new file mode 100644 index 0000000000..8eef888b5b --- /dev/null +++ b/examples/COUPLE/lammps_nwchem/planewave/in.client.W @@ -0,0 +1,34 @@ +# small W unit cell for use with NWChem + +variable mode index file + +if "${mode} == file" then & + "message client md file tmp.couple" & +elif "${mode} == zmq" & + "message client md zmq localhost:5555" & + +variable x index 1 +variable y index 1 +variable z index 1 + +units metal +atom_style atomic +atom_modify sort 0 0.0 map yes + +read_data data.W +mass 1 183.85 + +replicate $x $y $z + +velocity all create 300.0 87287 loop geom + +neighbor 0.3 bin +neigh_modify delay 0 every 10 check no + +fix 1 all nve +fix 2 all client/md +fix_modify 2 energy yes + +thermo 1 +run 3 + diff --git a/examples/COUPLE/lammps_nwchem/planewave/log.client.output b/examples/COUPLE/lammps_nwchem/planewave/log.client.output new file mode 100644 index 0000000000..b797816583 --- /dev/null +++ b/examples/COUPLE/lammps_nwchem/planewave/log.client.output @@ -0,0 +1,76 @@ +LAMMPS (18 Sep 2018) +# small W unit cell for use with NWChem + +variable mode index file + +if "${mode} == file" then "message client md file tmp.couple" elif "${mode} == zmq" "message client md zmq localhost:5555" +message client md file tmp.couple +variable x index 1 +variable y index 1 +variable z index 1 + +units metal +atom_style atomic +atom_modify sort 0 0.0 map yes + +read_data data.W + orthogonal box = (0 0 0) to (3.16 3.16 3.16) + 1 by 1 by 1 MPI processor grid + reading atoms ... + 2 atoms +mass 1 183.85 + +replicate $x $y $z +replicate 1 $y $z +replicate 1 1 $z +replicate 1 1 1 + orthogonal box = (0 0 0) to (3.16 3.16 3.16) + 1 by 1 by 1 MPI processor grid + 2 atoms + Time spent = 0.000187325 secs + +velocity all create 300.0 87287 loop geom + +neighbor 0.3 bin +neigh_modify delay 0 every 10 check no + +fix 1 all nve +fix 2 all client/md +fix_modify 2 energy yes + +thermo 1 +run 3 +Per MPI rank memory allocation (min/avg/max) = 1.8 | 1.8 | 1.8 Mbytes +Step Temp E_pair E_mol TotEng Press + 0 300 0 0 -549.75686 36815830 + 1 300 0 0 -549.75686 36815830 + 2 300 0 0 -549.75686 36815830 + 3 300 0 0 -549.75686 36815830 +Loop time of 0.400933 on 1 procs for 3 steps with 2 atoms + +Performance: 0.646 ns/day, 37.123 hours/ns, 7.483 timesteps/s +0.1% CPU use with 1 MPI tasks x 1 OpenMP threads + +MPI task timing breakdown: +Section | min time | avg time | max time |%varavg| %total +--------------------------------------------------------------- +Pair | 0 | 0 | 0 | 0.0 | 0.00 +Neigh | 0 | 0 | 0 | 0.0 | 0.00 +Comm | 4.755e-06 | 4.755e-06 | 4.755e-06 | 0.0 | 0.00 +Output | 0.00010114 | 0.00010114 | 0.00010114 | 0.0 | 0.03 +Modify | 0.40082 | 0.40082 | 0.40082 | 0.0 | 99.97 +Other | | 1.232e-05 | | | 0.00 + +Nlocal: 2 ave 2 max 2 min +Histogram: 1 0 0 0 0 0 0 0 0 0 +Nghost: 7 ave 7 max 7 min +Histogram: 1 0 0 0 0 0 0 0 0 0 +Neighs: 0 ave 0 max 0 min +Histogram: 1 0 0 0 0 0 0 0 0 0 + +Total # of neighbors = 0 +Ave neighs/atom = 0 +Neighbor list builds = 0 +Dangerous builds not checked + +Total wall time: 0:00:09 diff --git a/examples/COUPLE/lammps_nwchem/planewave/nwchem_lammps.out b/examples/COUPLE/lammps_nwchem/planewave/nwchem_lammps.out new file mode 100644 index 0000000000..27185413eb --- /dev/null +++ b/examples/COUPLE/lammps_nwchem/planewave/nwchem_lammps.out @@ -0,0 +1,2305 @@ + argument 1 = w.nw + + + +============================== echo of input deck ============================== +echo + +#**** Enter the geometry using fractional coordinates **** +geometry units angstrom noautosym + system crystal + lat_a 3.16d0 + lat_b 3.16d0 + lat_c 3.16d0 + end +W 0.0 0.0 0.0 +W 0.5 0.5 0.5 +end + +#***** setup the nwpw gamma point code **** +nwpw + simulation_cell + ngrid 16 16 16 + end + ewald_ncut 8 + mulliken + lcao #old default +end + +nwpw + tolerances 1.0d-9 1.0d-9 +end + +task pspw stress +================================================================================ + + + + + + + Northwest Computational Chemistry Package (NWChem) 6.8 + ------------------------------------------------------ + + + Environmental Molecular Sciences Laboratory + Pacific Northwest National Laboratory + Richland, WA 99352 + + Copyright (c) 1994-2017 + Pacific Northwest National Laboratory + Battelle Memorial Institute + + NWChem is an open-source computational chemistry package + distributed under the terms of the + Educational Community License (ECL) 2.0 + A copy of the license is included with this distribution + in the LICENSE.TXT file + + ACKNOWLEDGMENT + -------------- + + This software and its documentation were developed at the + EMSL at Pacific Northwest National Laboratory, a multiprogram + national laboratory, operated for the U.S. Department of Energy + by Battelle under Contract Number DE-AC05-76RL01830. Support + for this work was provided by the Department of Energy Office + of Biological and Environmental Research, Office of Basic + Energy Sciences, and the Office of Advanced Scientific Computing. + + + Job information + --------------- + + hostname = mcq + program = nwchem + date = Mon Sep 23 14:29:18 2019 + + compiled = Wed_Aug_15_19:14:19_2018 + source = /home/edo/debichem-team/nwchem/nwchem-6.8.1 + nwchem branch = 6.8.1 + nwchem revision = v6.8-133-ge032219 + ga revision = 5.6.5 + use scalapack = T + input = w.nw + prefix = w. + data base = ./w.db + status = startup + nproc = 1 + time left = -1s + + + + Memory information + ------------------ + + heap = 13107194 doubles = 100.0 Mbytes + stack = 13107199 doubles = 100.0 Mbytes + global = 26214400 doubles = 200.0 Mbytes (distinct from heap & stack) + total = 52428793 doubles = 400.0 Mbytes + verify = yes + hardfail = no + + + Directory information + --------------------- + + 0 permanent = . + 0 scratch = . + + + + + NWChem Input Module + ------------------- + + + + !!!!!!!!! geom_3d NEEDS TESTING !!!!!!!!!! + + + Geometry "geometry" -> "" + ------------------------- + + Output coordinates in angstroms (scale by 1.889725989 to convert to a.u.) + + No. Tag Charge X Y Z + ---- ---------------- ---------- -------------- -------------- -------------- + 1 W 74.0000 0.00000000 0.00000000 0.00000000 + 2 W 74.0000 1.58000000 1.58000000 1.58000000 + + Lattice Parameters + ------------------ + + lattice vectors in angstroms (scale by 1.889725989 to convert to a.u.) + + a1=< 3.160 0.000 0.000 > + a2=< 0.000 3.160 0.000 > + a3=< 0.000 0.000 3.160 > + a= 3.160 b= 3.160 c= 3.160 + alpha= 90.000 beta= 90.000 gamma= 90.000 + omega= 31.6 + + reciprocal lattice vectors in a.u. + + b1=< 1.052 0.000 -0.000 > + b2=< -0.000 1.052 -0.000 > + b3=< 0.000 0.000 1.052 > + + Atomic Mass + ----------- + + W 183.951000 + + + + XYZ format geometry + ------------------- + 2 + geometry + W 0.00000000 0.00000000 0.00000000 + W 1.58000000 1.58000000 1.58000000 + + ============================================================================== + internuclear distances + ------------------------------------------------------------------------------ + center one | center two | atomic units | angstroms + ------------------------------------------------------------------------------ + 2 W | 1 W | 5.17150 | 2.73664 + ------------------------------------------------------------------------------ + number of included internuclear distances: 1 + ============================================================================== + + + + >>>> PSPW Parallel Module - stress <<<< + **************************************************** + * * + * NWPW PSPW Calculation * + * * + * [ (Grassmann/Stiefel manifold implementation) ] * + * * + * [ NorthWest Chemistry implementation ] * + * * + * version #5.10 06/12/02 * + * * + * This code was developed by Eric J. Bylaska, * + * and was based upon algorithms and code * + * developed by the group of Prof. John H. Weare * + * * + **************************************************** + >>> JOB STARTED AT Mon Sep 23 14:29:18 2019 <<< + ================ input data ======================== + library name resolved from: compiled reference + NWCHEM_NWPW_LIBRARY set to: + Generating 1d pseudopotential for W + + Generated formatted_filename: ./W.vpp + library name resolved from: compiled reference + NWCHEM_NWPW_LIBRARY set to: + + Generated formatted atomic orbitals, filename: ./W.aorb + + lcao guess, initial psi:w.movecs + - spin, nalpha, nbeta: 1 6 0 + + input psi filename:./w.movecs + + initializing pspw_APC data structure + ------------------------------------ + nga, ngs: 3 6 + Gc : 2.5000000000000000 + APC gamma: 1 0.59999999999999998 + APC gamma: 2 0.90000000000000002 + APC gamma: 3 1.3500000000000001 + + number of processors used: 1 + processor grid : 1 x 1 + parallel mapping :2d hilbert + parallel mapping : balanced + number of threads : 1 + parallel io : off + + options: + boundary conditions = periodic (version3) + electron spin = restricted + exchange-correlation = LDA (Vosko et al) parameterization + + elements involved in the cluster: + 1: W valence charge: 6.0000 lmax= 2 + comment : Troullier-Martins pseudopotential + pseudpotential type : 0 + highest angular component : 2 + local potential used : 0 + number of non-local projections: 8 + semicore corrections included : 1.800 (radius) 4.533 (charge) + cutoff = 2.389 3.185 2.244 + + + total charge: 0.000 + + atomic composition: + W : 2 + + number of electrons: spin up= 6 ( 6 per task) down= 6 ( 6 per task) (Fourier space) + number of orbitals : spin up= 6 ( 6 per task) down= 6 ( 6 per task) (Fourier space) + + supercell: + cell_name: cell_default + lattice: a1=< 5.972 0.000 0.000 > + a2=< 0.000 5.972 0.000 > + a3=< 0.000 0.000 5.972 > + reciprocal: b1=< 1.052 0.000 -0.000 > + b2=< -0.000 1.052 -0.000 > + b3=< 0.000 0.000 1.052 > + lattice: a= 5.972 b= 5.972 c= 5.972 + alpha= 90.000 beta= 90.000 gamma= 90.000 + omega= 212.9 + + density cutoff= 8.857 fft= 16x 16x 16( 126 waves 126 per task) + wavefnc cutoff= 8.857 fft= 16x 16x 16( 126 waves 126 per task) + Ewald summation: cut radius= 1.90 and 8 + Madelung Wigner-Seitz= 1.76011888 (alpha= 2.83729748 rs= 3.70444413) + + technical parameters: + time step= 5.80 fictitious mass= 400000.0 + tolerance=0.100E-08 (energy) 0.100E-08 (density) + maximum iterations = 1000 ( 10 inner 100 outer ) + + + + + +== Energy Calculation == + + + ====== Grassmann conjugate gradient iteration ====== + >>> ITERATION STARTED AT Mon Sep 23 14:29:20 2019 <<< + iter. Energy DeltaE DeltaRho + ------------------------------------------------------ + - 15 steepest descent iterations performed + 10 -0.2000104801E+02 -0.37587E-05 0.13338E-06 + 20 -0.2000105396E+02 -0.10125E-07 0.37843E-09 + 30 -0.2000105397E+02 -0.67882E-09 0.25413E-10 + *** tolerance ok. iteration terminated + >>> ITERATION ENDED AT Mon Sep 23 14:29:20 2019 <<< + + +== Summary Of Results == + + number of electrons: spin up= 6.00000 down= 6.00000 (real space) + + total energy : -0.2000105397E+02 ( -0.10001E+02/ion) + total orbital energy: 0.5258382071E+01 ( 0.87640E+00/electron) + hartree energy : 0.2613505492E+00 ( 0.43558E-01/electron) + exc-corr energy : -0.9420636831E+01 ( -0.15701E+01/electron) + ion-ion energy : -0.2193948839E+02 ( -0.10970E+02/ion) + + kinetic (planewave) : 0.1407870943E+02 ( 0.23465E+01/electron) + V_local (planewave) : 0.1138092693E+02 ( 0.18968E+01/electron) + V_nl (planewave) : -0.1436191566E+02 ( -0.23937E+01/electron) + V_Coul (planewave) : 0.5227010984E+00 ( 0.87117E-01/electron) + V_xc. (planewave) : -0.6362039732E+01 ( -0.10603E+01/electron) + Virial Coefficient : -0.6265011295E+00 + + orbital energies: + 0.5487535E+00 ( 14.932eV) + 0.5487525E+00 ( 14.932eV) + 0.5487517E+00 ( 14.932eV) + 0.3889676E+00 ( 10.584eV) + 0.3889667E+00 ( 10.584eV) + 0.2049989E+00 ( 5.578eV) + + Total PSPW energy : -0.2000105397E+02 + + +=== Spin Contamination === + + = 0.0000000000000000 + = 0.0000000000000000 + + + +== Center of Charge == + +spin up ( -0.0000, -0.0000, -0.0000 ) +spin down ( -0.0000, -0.0000, -0.0000 ) + total ( -0.0000, -0.0000, -0.0000 ) +ionic ( 1.4929, 1.4929, 1.4929 ) + + +== Molecular Dipole wrt Center of Mass == + +mu = ( 17.9146, 17.9146, 17.9146 ) au +|mu| = 31.0290 au, 78.8633 Debye + +== W.psp1 expansion coefficients == + +ATOM S P D F +W : 0.93998E-01 0.56488E-01 0.13036E+01 0.00000E+00 + + + + Generated formatted atomic orbitals, filename: ./W.aorb + + + + ************************************************************* + ** ** + ** PSPW Mulliken analysis ** + ** ** + ** Population analysis algorithm devloped by Ryoichi Kawai ** + ** ** + ** Mon Sep 23 14:29 ** + ** ** + ************************************************************* + + +== XYZ OUTPUT == + + + 2 + +W 0.000000 0.000000 0.000000 +W 1.579999 1.579999 1.579999 + + +== Atomic Orbital Expansion == + + W nodamping + + + ===================================================== + | POPULATION ANALYSIS OF FILLED MOLECULAR ORBITALS | + ===================================================== + + +== Using pseudoatomic orbital expansion == + + +------------------------------------------------------------------------------ + + +*** ORBITAL= 1*** SPIN=BOTH SUM= 0.12495E+01 E= 0.54875E+00 ( 14.932eV) + +NO ATOM L POPULATION + s + 1 W 0 0.00000 -0.00000 + px pz py + 1 W 1 0.00000 -0.00000 -0.00000 0.00000 + dx2-y2 dzx d3z2-1 dyz dxy + 1 W 2 0.50000 0.00000 -0.42734 -0.00000 0.56337 -0.00000 + fx(x2-3y2) fz(5z2-1) fx(5z2-1) fz(5z2-3) fy(5z2-1) fxyz fy(3x2-y2) + 1 W 3 0.00000 0.00000 -0.00000 -0.00000 -0.00000 -0.00000 0.00000 0.00000 + s + 2 W 0 0.00000 -0.00000 + px pz py + 2 W 1 0.00000 0.00000 0.00000 -0.00000 + dx2-y2 dzx d3z2-1 dyz dxy + 2 W 2 0.50000 0.00000 -0.42734 -0.00000 0.56337 -0.00000 + fx(x2-3y2) fz(5z2-1) fx(5z2-1) fz(5z2-3) fy(5z2-1) fxyz fy(3x2-y2) + 2 W 3 0.00000 0.00000 -0.00000 -0.00000 -0.00000 -0.00000 -0.00000 0.00000 + + +=== DISTRIBUTION === + + 1(W ) 0.5000 2(W ) 0.5000 + + +== ANGULAR MOMENTUM POPULATIONS === + + s p d f + 0.0000 0.0000 1.0000 0.0000 + + +------------------------------------------------------------------------------ + + +*** ORBITAL= 2*** SPIN=BOTH SUM= 0.12495E+01 E= 0.54875E+00 ( 14.932eV) + +NO ATOM L POPULATION + s + 1 W 0 0.00000 0.00000 + px pz py + 1 W 1 0.00000 0.00000 0.00000 -0.00000 + dx2-y2 dzx d3z2-1 dyz dxy + 1 W 2 0.50000 -0.00000 -0.00000 0.00002 0.00000 0.70711 + fx(x2-3y2) fz(5z2-1) fx(5z2-1) fz(5z2-3) fy(5z2-1) fxyz fy(3x2-y2) + 1 W 3 0.00000 -0.00001 0.00000 0.00000 -0.00000 0.00000 0.00000 -0.00000 + s + 2 W 0 0.00000 0.00000 + px pz py + 2 W 1 0.00000 -0.00000 -0.00000 0.00000 + dx2-y2 dzx d3z2-1 dyz dxy + 2 W 2 0.50000 -0.00000 -0.00000 0.00002 0.00000 0.70711 + fx(x2-3y2) fz(5z2-1) fx(5z2-1) fz(5z2-3) fy(5z2-1) fxyz fy(3x2-y2) + 2 W 3 0.00000 -0.00001 0.00000 0.00000 -0.00000 0.00000 -0.00000 -0.00000 + + +=== DISTRIBUTION === + + 1(W ) 0.5000 2(W ) 0.5000 + + +== ANGULAR MOMENTUM POPULATIONS === + + s p d f + 0.0000 0.0000 1.0000 0.0000 + + +------------------------------------------------------------------------------ + + +*** ORBITAL= 3*** SPIN=BOTH SUM= 0.12495E+01 E= 0.54875E+00 ( 14.932eV) + +NO ATOM L POPULATION + s + 1 W 0 0.00000 -0.00000 + px pz py + 1 W 1 0.00000 -0.00000 0.00000 0.00000 + dx2-y2 dzx d3z2-1 dyz dxy + 1 W 2 0.50000 0.00000 -0.56337 -0.00000 -0.42734 -0.00000 + fx(x2-3y2) fz(5z2-1) fx(5z2-1) fz(5z2-3) fy(5z2-1) fxyz fy(3x2-y2) + 1 W 3 0.00000 0.00000 0.00000 -0.00000 0.00000 -0.00000 -0.00000 0.00000 + s + 2 W 0 0.00000 -0.00000 + px pz py + 2 W 1 0.00000 0.00000 -0.00000 -0.00000 + dx2-y2 dzx d3z2-1 dyz dxy + 2 W 2 0.50000 0.00000 -0.56337 -0.00000 -0.42734 -0.00000 + fx(x2-3y2) fz(5z2-1) fx(5z2-1) fz(5z2-3) fy(5z2-1) fxyz fy(3x2-y2) + 2 W 3 0.00000 0.00000 0.00000 -0.00000 -0.00000 -0.00000 -0.00000 0.00000 + + +=== DISTRIBUTION === + + 1(W ) 0.5000 2(W ) 0.5000 + + +== ANGULAR MOMENTUM POPULATIONS === + + s p d f + 0.0000 0.0000 1.0000 0.0000 + + +------------------------------------------------------------------------------ + + +*** ORBITAL= 4*** SPIN=BOTH SUM= 0.14281E+01 E= 0.38897E+00 ( 10.584eV) + +NO ATOM L POPULATION + s + 1 W 0 0.00000 0.00000 + px pz py + 1 W 1 0.00000 0.00000 0.00000 -0.00000 + dx2-y2 dzx d3z2-1 dyz dxy + 1 W 2 0.49992 0.42773 0.00000 0.56299 0.00000 -0.00000 + fx(x2-3y2) fz(5z2-1) fx(5z2-1) fz(5z2-3) fy(5z2-1) fxyz fy(3x2-y2) + 1 W 3 0.00009 0.00925 0.00000 0.00000 0.00000 -0.00000 -0.00000 0.00000 + s + 2 W 0 0.00000 0.00000 + px pz py + 2 W 1 0.00000 -0.00000 0.00000 0.00000 + dx2-y2 dzx d3z2-1 dyz dxy + 2 W 2 0.49991 -0.42773 0.00000 -0.56299 0.00000 0.00000 + fx(x2-3y2) fz(5z2-1) fx(5z2-1) fz(5z2-3) fy(5z2-1) fxyz fy(3x2-y2) + 2 W 3 0.00009 -0.00925 0.00000 0.00000 0.00000 -0.00000 -0.00000 0.00000 + + +=== DISTRIBUTION === + + 1(W ) 0.5000 2(W ) 0.5000 + + +== ANGULAR MOMENTUM POPULATIONS === + + s p d f + 0.0000 0.0000 0.9998 0.0002 + + +------------------------------------------------------------------------------ + + +*** ORBITAL= 5*** SPIN=BOTH SUM= 0.15051E+01 E= 0.38897E+00 ( 10.584eV) + +NO ATOM L POPULATION + s + 1 W 0 0.00000 -0.00000 + px pz py + 1 W 1 0.00000 -0.00000 0.00000 -0.00000 + dx2-y2 dzx d3z2-1 dyz dxy + 1 W 2 0.47435 -0.54841 0.00000 0.41665 0.00000 -0.00000 + fx(x2-3y2) fz(5z2-1) fx(5z2-1) fz(5z2-3) fy(5z2-1) fxyz fy(3x2-y2) + 1 W 3 0.02565 -0.16016 -0.00000 0.00000 0.00000 0.00000 0.00000 -0.00000 + s + 2 W 0 0.00000 -0.00000 + px pz py + 2 W 1 0.00000 0.00000 0.00000 0.00000 + dx2-y2 dzx d3z2-1 dyz dxy + 2 W 2 0.47435 0.54841 0.00000 -0.41665 0.00000 0.00000 + fx(x2-3y2) fz(5z2-1) fx(5z2-1) fz(5z2-3) fy(5z2-1) fxyz fy(3x2-y2) + 2 W 3 0.02565 0.16016 -0.00000 0.00000 0.00000 0.00000 -0.00000 -0.00000 + + +=== DISTRIBUTION === + + 1(W ) 0.5000 2(W ) 0.5000 + + +== ANGULAR MOMENTUM POPULATIONS === + + s p d f + 0.0000 0.0000 0.9487 0.0513 + + +------------------------------------------------------------------------------ + + +*** ORBITAL= 6*** SPIN=BOTH SUM= 0.19550E+01 E= 0.20500E+00 ( 5.578eV) + +NO ATOM L POPULATION + s + 1 W 0 0.49970 0.70689 + px pz py + 1 W 1 0.00000 0.00000 0.00000 0.00000 + dx2-y2 dzx d3z2-1 dyz dxy + 1 W 2 0.00000 -0.00000 -0.00000 0.00000 0.00000 -0.00000 + fx(x2-3y2) fz(5z2-1) fx(5z2-1) fz(5z2-3) fy(5z2-1) fxyz fy(3x2-y2) + 1 W 3 0.00030 -0.01746 -0.00000 0.00000 -0.00000 0.00000 -0.00000 -0.00000 + s + 2 W 0 0.49970 0.70689 + px pz py + 2 W 1 0.00000 -0.00000 -0.00000 -0.00000 + dx2-y2 dzx d3z2-1 dyz dxy + 2 W 2 0.00000 0.00000 -0.00000 -0.00000 0.00000 -0.00000 + fx(x2-3y2) fz(5z2-1) fx(5z2-1) fz(5z2-3) fy(5z2-1) fxyz fy(3x2-y2) + 2 W 3 0.00030 -0.01746 -0.00000 0.00000 -0.00000 0.00000 -0.00000 -0.00000 + + +=== DISTRIBUTION === + + 1(W ) 0.5000 2(W ) 0.5000 + + +== ANGULAR MOMENTUM POPULATIONS === + + s p d f + 0.9994 0.0000 0.0000 0.0006 + + + ======================================== + | POPULATION ANALYSIS ON EACH ATOM | + ======================================== + + +NO ATOM SPIN TOTAL s p d f + 1 W UP 3.00000 0.49970 0.00000 2.47426 0.02604 + 1 W DOWN 3.00000 0.49970 0.00000 2.47426 0.02604 + 2 W UP 3.00000 0.49970 0.00000 2.47426 0.02604 + 2 W DOWN 3.00000 0.49970 0.00000 2.47426 0.02604 + + + +=== TOTAL ANGULAR MOMENTUM POPULATION === + + SPIN s p d f + UP 16.66% 0.00% 82.48% 0.87% + UP 16.66% 0.00% 82.48% 0.87% + TOTAL 16.66% 0.00% 82.48% 0.87% + + ************************************************************* + ** ** + ** PSPW Atomic Point Charge (APC) Analysis ** + ** ** + ** Point charge analysis based on paper by P.E. Blochl ** + ** (J. Chem. Phys. vol 103, page 7422, 1995) ** + ** ** + ************************************************************* + + pspw_APC data structure + ----------------------- + nga, ngs: 3 6 + Gc : 2.5000000000000000 + APC gamma: 1 0.59999999999999998 + APC gamma: 2 0.90000000000000002 + APC gamma: 3 1.3500000000000001 + + charge analysis on each atom + ---------------------------- + + no atom Qelc Qion Qtotal + -- ---- ------- ------- ------- + 1 W -3.500 6.000 2.500 + 2 W -9.500 6.000 -3.500 + Total Q -13.000 12.000 -1.000 + + + gaussian coefficients of model density + -------------------------------------- + + no atom g=0.000 g=0.600 g=0.900 g=1.350 + -- ---- ------- ------- ------- ------- + 1 W 6.000 46.000 -75.500 26.000 + 2 W 6.000 -17.625 40.500 -32.375 + + +=== Electric Field at Atoms === + + 1 W Atomic Electric Field =( -0.00000 0.00000 0.00000 ) + (ion) =( 0.00000 0.00000 -0.00000 ) + (electronic) =( -0.00000 0.00000 0.00000 ) + 2 W Atomic Electric Field =( -0.00000 -0.00000 0.00000 ) + (ion) =( -0.00000 -0.00000 0.00000 ) + (electronic) =( -0.00000 -0.00000 0.00000 ) + + output psi filename:./w.movecs + + +== Timing == + +cputime in seconds + prologue : 0.246520E+01 + main loop : 0.218408E+00 + epilogue : 0.196378E+00 + total : 0.287999E+01 + cputime/step: 0.186674E-02 ( 117 evalulations, 25 linesearches) + + +Time spent doing total step percent + total time : 0.288044E+01 0.246191E-01 100.0 % + i/o time : 0.793162E+00 0.677916E-02 27.5 % + FFTs : 0.794410E-01 0.678983E-03 2.8 % + dot products : 0.401928E-02 0.343528E-04 0.1 % + geodesic : 0.812297E-02 0.694271E-04 0.3 % + ffm_dgemm : 0.340981E-03 0.291437E-05 0.0 % + fmf_dgemm : 0.111075E-02 0.949356E-05 0.0 % + mmm_dgemm : 0.146757E-03 0.125433E-05 0.0 % + m_diagonalize : 0.464895E-03 0.397346E-05 0.0 % + exchange correlation : 0.105077E+00 0.898093E-03 3.6 % + local pseudopotentials : 0.326800E-04 0.279316E-06 0.0 % + non-local pseudopotentials : 0.585081E-02 0.500069E-04 0.2 % + hartree potentials : 0.774990E-03 0.662385E-05 0.0 % + ion-ion interaction : 0.368566E-02 0.315014E-04 0.1 % + structure factors : 0.526235E+00 0.449774E-02 18.3 % + phase factors : 0.173820E-04 0.148564E-06 0.0 % + masking and packing : 0.134380E+00 0.114855E-02 4.7 % + queue fft : 0.649379E-01 0.555025E-03 2.3 % + queue fft (serial) : 0.461475E-01 0.394423E-03 1.6 % + queue fft (message passing): 0.166764E-01 0.142533E-03 0.6 % + non-local psp FFM : 0.303331E-02 0.259257E-04 0.1 % + non-local psp FMF : 0.706270E-03 0.603650E-05 0.0 % + non-local psp FFM A : 0.298729E-03 0.255324E-05 0.0 % + non-local psp FFM B : 0.252926E-02 0.216176E-04 0.1 % + + >>> JOB COMPLETED AT Mon Sep 23 14:29:21 2019 <<< + **************************************************** + * * + * NWPW PSPW Calculation * + * * + * [ (Grassmann/Stiefel manifold implementation) ] * + * * + * [ NorthWest Chemistry implementation ] * + * * + * version #5.10 06/12/02 * + * * + * This code was developed by Eric J. Bylaska, * + * and was based upon algorithms and code * + * developed by the group of Prof. John H. Weare * + * * + **************************************************** + >>> JOB STARTED AT Mon Sep 23 14:29:21 2019 <<< + ================ input data ======================== + + input psi filename:./w.movecs + + initializing pspw_APC data structure + ------------------------------------ + nga, ngs: 3 6 + Gc : 2.5000000000000000 + APC gamma: 1 0.59999999999999998 + APC gamma: 2 0.90000000000000002 + APC gamma: 3 1.3500000000000001 + + number of processors used: 1 + processor grid : 1 x 1 + parallel mapping :2d hilbert + parallel mapping : balanced + number of threads : 1 + parallel io : off + + options: + boundary conditions = periodic (version3) + electron spin = restricted + exchange-correlation = LDA (Vosko et al) parameterization + + elements involved in the cluster: + 1: W valence charge: 6.0000 lmax= 2 + comment : Troullier-Martins pseudopotential + pseudpotential type : 0 + highest angular component : 2 + local potential used : 0 + number of non-local projections: 8 + semicore corrections included : 1.800 (radius) 4.537 (charge) + cutoff = 2.389 3.185 2.244 + + + total charge: 0.000 + + atomic composition: + W : 2 + + number of electrons: spin up= 6 ( 6 per task) down= 6 ( 6 per task) (Fourier space) + number of orbitals : spin up= 6 ( 6 per task) down= 6 ( 6 per task) (Fourier space) + + supercell: + cell_name: cell_default + lattice: a1=< 5.972 0.000 0.000 > + a2=< 0.000 5.972 0.000 > + a3=< 0.000 0.000 5.972 > + reciprocal: b1=< 1.052 0.000 -0.000 > + b2=< -0.000 1.052 -0.000 > + b3=< 0.000 0.000 1.052 > + lattice: a= 5.972 b= 5.972 c= 5.972 + alpha= 90.000 beta= 90.000 gamma= 90.000 + omega= 212.9 + + density cutoff= 17.714 fft= 16x 16x 16( 370 waves 370 per task) + wavefnc cutoff= 17.714 fft= 16x 16x 16( 370 waves 370 per task) + Ewald summation: cut radius= 1.90 and 8 + Madelung Wigner-Seitz= 1.76011888 (alpha= 2.83729748 rs= 3.70444413) + + technical parameters: + time step= 5.80 fictitious mass= 400000.0 + tolerance=0.100E-08 (energy) 0.100E-08 (density) + maximum iterations = 1000 ( 10 inner 100 outer ) + + + + + +== Energy Calculation == + + + ====== Grassmann conjugate gradient iteration ====== + >>> ITERATION STARTED AT Mon Sep 23 14:29:21 2019 <<< + iter. Energy DeltaE DeltaRho + ------------------------------------------------------ + 10 -0.2020117257E+02 -0.65975E-06 0.18611E-07 + 20 -0.2020117265E+02 -0.51757E-09 0.18099E-10 + *** tolerance ok. iteration terminated + >>> ITERATION ENDED AT Mon Sep 23 14:29:21 2019 <<< + + +== Summary Of Results == + + number of electrons: spin up= 6.00000 down= 6.00000 (real space) + + total energy : -0.2020117265E+02 ( -0.10101E+02/ion) + total orbital energy: 0.5095674266E+01 ( 0.84928E+00/electron) + hartree energy : 0.2895200675E+00 ( 0.48253E-01/electron) + exc-corr energy : -0.9444169901E+01 ( -0.15740E+01/electron) + ion-ion energy : -0.2193948849E+02 ( -0.10970E+02/ion) + + kinetic (planewave) : 0.1440959829E+02 ( 0.24016E+01/electron) + V_local (planewave) : 0.1156148265E+02 ( 0.19269E+01/electron) + V_nl (planewave) : -0.1507811526E+02 ( -0.25130E+01/electron) + V_Coul (planewave) : 0.5790401350E+00 ( 0.96507E-01/electron) + V_xc. (planewave) : -0.6376331545E+01 ( -0.10627E+01/electron) + Virial Coefficient : -0.6463694432E+00 + + orbital energies: + 0.5415668E+00 ( 14.737eV) + 0.5415663E+00 ( 14.737eV) + 0.5415658E+00 ( 14.737eV) + 0.3599778E+00 ( 9.796eV) + 0.3599778E+00 ( 9.796eV) + 0.2031826E+00 ( 5.529eV) + + Total PSPW energy : -0.2020117265E+02 + + +=== Spin Contamination === + + = 0.0000000000000000 + = 0.0000000000000000 + + + +== Center of Charge == + +spin up ( -0.0000, -0.0000, 0.0000 ) +spin down ( -0.0000, -0.0000, 0.0000 ) + total ( -0.0000, -0.0000, 0.0000 ) +ionic ( 1.4929, 1.4929, 1.4929 ) + + +== Molecular Dipole wrt Center of Mass == + +mu = ( 17.9146, 17.9146, 17.9146 ) au +|mu| = 31.0290 au, 78.8633 Debye + + + + ************************************************************* + ** ** + ** PSPW Mulliken analysis ** + ** ** + ** Population analysis algorithm devloped by Ryoichi Kawai ** + ** ** + ** Mon Sep 23 14:29 ** + ** ** + ************************************************************* + + +== XYZ OUTPUT == + + + 2 + +W 0.000000 0.000000 0.000000 +W 1.579999 1.579999 1.579999 + + +== Atomic Orbital Expansion == + + W nodamping + + + ===================================================== + | POPULATION ANALYSIS OF FILLED MOLECULAR ORBITALS | + ===================================================== + + +== Using pseudoatomic orbital expansion == + + +------------------------------------------------------------------------------ + + +*** ORBITAL= 1*** SPIN=BOTH SUM= 0.12471E+01 E= 0.54157E+00 ( 14.737eV) + +NO ATOM L POPULATION + s + 1 W 0 0.00000 0.00000 + px pz py + 1 W 1 0.00000 0.00000 0.00000 -0.00000 + dx2-y2 dzx d3z2-1 dyz dxy + 1 W 2 0.50000 -0.00000 0.49980 0.00000 -0.50020 0.00000 + fx(x2-3y2) fz(5z2-1) fx(5z2-1) fz(5z2-3) fy(5z2-1) fxyz fy(3x2-y2) + 1 W 3 0.00000 -0.00000 0.00000 0.00000 0.00000 0.00000 -0.00000 -0.00000 + s + 2 W 0 0.00000 0.00000 + px pz py + 2 W 1 0.00000 -0.00000 -0.00000 0.00000 + dx2-y2 dzx d3z2-1 dyz dxy + 2 W 2 0.50000 -0.00000 0.49980 0.00000 -0.50020 0.00000 + fx(x2-3y2) fz(5z2-1) fx(5z2-1) fz(5z2-3) fy(5z2-1) fxyz fy(3x2-y2) + 2 W 3 0.00000 -0.00000 0.00000 0.00000 -0.00000 0.00000 0.00000 -0.00000 + + +=== DISTRIBUTION === + + 1(W ) 0.5000 2(W ) 0.5000 + + +== ANGULAR MOMENTUM POPULATIONS === + + s p d f + 0.0000 0.0000 1.0000 0.0000 + + +------------------------------------------------------------------------------ + + +*** ORBITAL= 2*** SPIN=BOTH SUM= 0.12471E+01 E= 0.54157E+00 ( 14.737eV) + +NO ATOM L POPULATION + s + 1 W 0 0.00000 -0.00000 + px pz py + 1 W 1 0.00000 -0.00000 -0.00000 0.00000 + dx2-y2 dzx d3z2-1 dyz dxy + 1 W 2 0.50000 0.00000 0.00000 -0.00001 -0.00000 -0.70711 + fx(x2-3y2) fz(5z2-1) fx(5z2-1) fz(5z2-3) fy(5z2-1) fxyz fy(3x2-y2) + 1 W 3 0.00000 0.00001 -0.00000 -0.00000 -0.00000 -0.00000 -0.00000 0.00000 + s + 2 W 0 0.00000 -0.00000 + px pz py + 2 W 1 0.00000 0.00000 0.00000 -0.00000 + dx2-y2 dzx d3z2-1 dyz dxy + 2 W 2 0.50000 0.00000 0.00000 -0.00001 -0.00000 -0.70711 + fx(x2-3y2) fz(5z2-1) fx(5z2-1) fz(5z2-3) fy(5z2-1) fxyz fy(3x2-y2) + 2 W 3 0.00000 0.00001 -0.00000 -0.00000 0.00000 -0.00000 0.00000 0.00000 + + +=== DISTRIBUTION === + + 1(W ) 0.5000 2(W ) 0.5000 + + +== ANGULAR MOMENTUM POPULATIONS === + + s p d f + 0.0000 0.0000 1.0000 0.0000 + + +------------------------------------------------------------------------------ + + +*** ORBITAL= 3*** SPIN=BOTH SUM= 0.12471E+01 E= 0.54157E+00 ( 14.737eV) + +NO ATOM L POPULATION + s + 1 W 0 0.00000 -0.00000 + px pz py + 1 W 1 0.00000 -0.00000 0.00000 0.00000 + dx2-y2 dzx d3z2-1 dyz dxy + 1 W 2 0.50000 0.00000 -0.50020 -0.00000 -0.49980 -0.00000 + fx(x2-3y2) fz(5z2-1) fx(5z2-1) fz(5z2-3) fy(5z2-1) fxyz fy(3x2-y2) + 1 W 3 0.00000 0.00000 0.00000 -0.00000 0.00000 -0.00000 -0.00000 0.00000 + s + 2 W 0 0.00000 -0.00000 + px pz py + 2 W 1 0.00000 0.00000 -0.00000 -0.00000 + dx2-y2 dzx d3z2-1 dyz dxy + 2 W 2 0.50000 0.00000 -0.50020 -0.00000 -0.49980 -0.00000 + fx(x2-3y2) fz(5z2-1) fx(5z2-1) fz(5z2-3) fy(5z2-1) fxyz fy(3x2-y2) + 2 W 3 0.00000 0.00000 0.00000 -0.00000 -0.00000 -0.00000 0.00000 0.00000 + + +=== DISTRIBUTION === + + 1(W ) 0.5000 2(W ) 0.5000 + + +== ANGULAR MOMENTUM POPULATIONS === + + s p d f + 0.0000 0.0000 1.0000 0.0000 + + +------------------------------------------------------------------------------ + + +*** ORBITAL= 4*** SPIN=BOTH SUM= 0.14815E+01 E= 0.35998E+00 ( 9.796eV) + +NO ATOM L POPULATION + s + 1 W 0 0.00000 0.00000 + px pz py + 1 W 1 0.00000 0.00000 -0.00000 0.00000 + dx2-y2 dzx d3z2-1 dyz dxy + 1 W 2 0.48214 0.68695 -0.00000 -0.10120 -0.00000 0.00000 + fx(x2-3y2) fz(5z2-1) fx(5z2-1) fz(5z2-3) fy(5z2-1) fxyz fy(3x2-y2) + 1 W 3 0.01786 0.13364 0.00000 -0.00000 -0.00000 -0.00000 0.00000 -0.00000 + s + 2 W 0 0.00000 0.00000 + px pz py + 2 W 1 0.00000 -0.00000 -0.00000 -0.00000 + dx2-y2 dzx d3z2-1 dyz dxy + 2 W 2 0.48214 -0.68695 -0.00000 0.10120 -0.00000 -0.00000 + fx(x2-3y2) fz(5z2-1) fx(5z2-1) fz(5z2-3) fy(5z2-1) fxyz fy(3x2-y2) + 2 W 3 0.01786 -0.13364 0.00000 0.00000 -0.00000 -0.00000 -0.00000 0.00000 + + +=== DISTRIBUTION === + + 1(W ) 0.5000 2(W ) 0.5000 + + +== ANGULAR MOMENTUM POPULATIONS === + + s p d f + 0.0000 0.0000 0.9643 0.0357 + + +------------------------------------------------------------------------------ + + +*** ORBITAL= 5*** SPIN=BOTH SUM= 0.14420E+01 E= 0.35998E+00 ( 9.796eV) + +NO ATOM L POPULATION + s + 1 W 0 0.00000 -0.00000 + px pz py + 1 W 1 0.00000 -0.00000 0.00000 -0.00000 + dx2-y2 dzx d3z2-1 dyz dxy + 1 W 2 0.49535 0.10258 0.00000 0.69630 0.00000 -0.00000 + fx(x2-3y2) fz(5z2-1) fx(5z2-1) fz(5z2-3) fy(5z2-1) fxyz fy(3x2-y2) + 1 W 3 0.00465 -0.06819 0.00000 0.00000 0.00000 0.00000 -0.00000 0.00000 + s + 2 W 0 0.00000 -0.00000 + px pz py + 2 W 1 0.00000 0.00000 0.00000 0.00000 + dx2-y2 dzx d3z2-1 dyz dxy + 2 W 2 0.49535 -0.10258 0.00000 -0.69630 0.00000 0.00000 + fx(x2-3y2) fz(5z2-1) fx(5z2-1) fz(5z2-3) fy(5z2-1) fxyz fy(3x2-y2) + 2 W 3 0.00465 0.06819 0.00000 -0.00000 0.00000 -0.00000 0.00000 -0.00000 + + +=== DISTRIBUTION === + + 1(W ) 0.5000 2(W ) 0.5000 + + +== ANGULAR MOMENTUM POPULATIONS === + + s p d f + 0.0000 0.0000 0.9907 0.0093 + + +------------------------------------------------------------------------------ + + +*** ORBITAL= 6*** SPIN=BOTH SUM= 0.19541E+01 E= 0.20318E+00 ( 5.529eV) + +NO ATOM L POPULATION + s + 1 W 0 0.49972 0.70691 + px pz py + 1 W 1 0.00000 -0.00000 0.00000 0.00000 + dx2-y2 dzx d3z2-1 dyz dxy + 1 W 2 0.00000 -0.00000 -0.00000 0.00000 0.00000 -0.00000 + fx(x2-3y2) fz(5z2-1) fx(5z2-1) fz(5z2-3) fy(5z2-1) fxyz fy(3x2-y2) + 1 W 3 0.00028 -0.01665 0.00000 0.00000 0.00000 -0.00000 0.00000 -0.00000 + s + 2 W 0 0.49972 0.70691 + px pz py + 2 W 1 0.00000 0.00000 -0.00000 -0.00000 + dx2-y2 dzx d3z2-1 dyz dxy + 2 W 2 0.00000 0.00000 -0.00000 -0.00000 0.00000 -0.00000 + fx(x2-3y2) fz(5z2-1) fx(5z2-1) fz(5z2-3) fy(5z2-1) fxyz fy(3x2-y2) + 2 W 3 0.00028 -0.01665 0.00000 -0.00000 0.00000 0.00000 0.00000 0.00000 + + +=== DISTRIBUTION === + + 1(W ) 0.5000 2(W ) 0.5000 + + +== ANGULAR MOMENTUM POPULATIONS === + + s p d f + 0.9994 0.0000 0.0000 0.0006 + + + ======================================== + | POPULATION ANALYSIS ON EACH ATOM | + ======================================== + + +NO ATOM SPIN TOTAL s p d f + 1 W UP 3.00000 0.49972 0.00000 2.47749 0.02279 + 1 W DOWN 3.00000 0.49972 0.00000 2.47749 0.02279 + 2 W UP 3.00000 0.49972 0.00000 2.47749 0.02279 + 2 W DOWN 3.00000 0.49972 0.00000 2.47749 0.02279 + + + +=== TOTAL ANGULAR MOMENTUM POPULATION === + + SPIN s p d f + UP 16.66% 0.00% 82.58% 0.76% + UP 16.66% 0.00% 82.58% 0.76% + TOTAL 16.66% 0.00% 82.58% 0.76% + + ************************************************************* + ** ** + ** PSPW Atomic Point Charge (APC) Analysis ** + ** ** + ** Point charge analysis based on paper by P.E. Blochl ** + ** (J. Chem. Phys. vol 103, page 7422, 1995) ** + ** ** + ************************************************************* + + pspw_APC data structure + ----------------------- + nga, ngs: 3 6 + Gc : 2.5000000000000000 + APC gamma: 1 0.59999999999999998 + APC gamma: 2 0.90000000000000002 + APC gamma: 3 1.3500000000000001 + + charge analysis on each atom + ---------------------------- + + no atom Qelc Qion Qtotal + -- ---- ------- ------- ------- + 1 W -8.000 6.000 -2.000 + 2 W -5.500 6.000 0.500 + Total Q -13.500 12.000 -1.500 + + + gaussian coefficients of model density + -------------------------------------- + + no atom g=0.000 g=0.600 g=0.900 g=1.350 + -- ---- ------- ------- ------- ------- + 1 W 6.000 37.000 -52.000 7.000 + 2 W 6.000 -7.500 18.000 -16.000 + + +=== Electric Field at Atoms === + + 1 W Atomic Electric Field =( -0.00000 -0.00000 0.00000 ) + (ion) =( 0.00000 0.00000 -0.00000 ) + (electronic) =( -0.00000 -0.00000 0.00000 ) + 2 W Atomic Electric Field =( 0.00000 -0.00000 0.00000 ) + (ion) =( -0.00000 -0.00000 0.00000 ) + (electronic) =( 0.00000 -0.00000 0.00000 ) + + output psi filename:./w.movecs + + +== Timing == + +cputime in seconds + prologue : 0.745387E-01 + main loop : 0.136737E+00 + epilogue : 0.182997E-01 + total : 0.229575E+00 + cputime/step: 0.210365E-02 ( 65 evalulations, 15 linesearches) + + +Time spent doing total step percent + total time : 0.230022E+00 0.353880E-02 100.0 % + i/o time : 0.368268E-02 0.566566E-04 1.6 % + FFTs : 0.118074E-01 0.181652E-03 5.1 % + dot products : 0.278644E-02 0.428683E-04 1.2 % + geodesic : 0.648055E-02 0.997007E-04 2.8 % + ffm_dgemm : 0.284575E-03 0.437808E-05 0.1 % + fmf_dgemm : 0.189982E-02 0.292280E-04 0.8 % + mmm_dgemm : 0.513420E-04 0.789877E-06 0.0 % + m_diagonalize : 0.289267E-03 0.445026E-05 0.1 % + exchange correlation : 0.533441E-01 0.820678E-03 23.2 % + local pseudopotentials : 0.185780E-04 0.285815E-06 0.0 % + non-local pseudopotentials : 0.490618E-02 0.754796E-04 2.1 % + hartree potentials : 0.506539E-03 0.779291E-05 0.2 % + ion-ion interaction : 0.228455E-02 0.351469E-04 1.0 % + structure factors : 0.998308E-02 0.153586E-03 4.3 % + phase factors : 0.119090E-04 0.183215E-06 0.0 % + masking and packing : 0.834395E-02 0.128368E-03 3.6 % + queue fft : 0.432896E-01 0.665994E-03 18.8 % + queue fft (serial) : 0.309097E-01 0.475534E-03 13.4 % + queue fft (message passing): 0.111107E-01 0.170934E-03 4.8 % + non-local psp FFM : 0.270164E-02 0.415637E-04 1.2 % + non-local psp FMF : 0.966417E-03 0.148680E-04 0.4 % + non-local psp FFM A : 0.351360E-03 0.540554E-05 0.2 % + non-local psp FFM B : 0.216041E-02 0.332371E-04 0.9 % + + >>> JOB COMPLETED AT Mon Sep 23 14:29:21 2019 <<< + **************************************************** + * * + * NWPW PSPW Calculation * + * * + * [ (Grassmann/Stiefel manifold implementation) ] * + * * + * [ NorthWest Chemistry implementation ] * + * * + * version #5.10 06/12/02 * + * * + * This code was developed by Eric J. Bylaska, * + * and was based upon algorithms and code * + * developed by the group of Prof. John H. Weare * + * * + **************************************************** + >>> JOB STARTED AT Mon Sep 23 14:29:21 2019 <<< + ================ input data ======================== + + input psi filename:./w.movecs + + initializing pspw_APC data structure + ------------------------------------ + nga, ngs: 3 6 + Gc : 2.5000000000000000 + APC gamma: 1 0.59999999999999998 + APC gamma: 2 0.90000000000000002 + APC gamma: 3 1.3500000000000001 + + number of processors used: 1 + processor grid : 1 x 1 + parallel mapping :2d hilbert + parallel mapping : balanced + number of threads : 1 + parallel io : off + + options: + boundary conditions = periodic (version3) + electron spin = restricted + exchange-correlation = LDA (Vosko et al) parameterization + + elements involved in the cluster: + 1: W valence charge: 6.0000 lmax= 2 + comment : Troullier-Martins pseudopotential + pseudpotential type : 0 + highest angular component : 2 + local potential used : 0 + number of non-local projections: 8 + semicore corrections included : 1.800 (radius) 4.538 (charge) + cutoff = 2.389 3.185 2.244 + + + total charge: 0.000 + + atomic composition: + W : 2 + + number of electrons: spin up= 6 ( 6 per task) down= 6 ( 6 per task) (Fourier space) + number of orbitals : spin up= 6 ( 6 per task) down= 6 ( 6 per task) (Fourier space) + + supercell: + cell_name: cell_default + lattice: a1=< 5.972 0.000 0.000 > + a2=< 0.000 5.972 0.000 > + a3=< 0.000 0.000 5.972 > + reciprocal: b1=< 1.052 0.000 -0.000 > + b2=< -0.000 1.052 -0.000 > + b3=< 0.000 0.000 1.052 > + lattice: a= 5.972 b= 5.972 c= 5.972 + alpha= 90.000 beta= 90.000 gamma= 90.000 + omega= 212.9 + + density cutoff= 26.570 fft= 16x 16x 16( 679 waves 679 per task) + wavefnc cutoff= 26.570 fft= 16x 16x 16( 679 waves 679 per task) + Ewald summation: cut radius= 1.90 and 8 + Madelung Wigner-Seitz= 1.76011888 (alpha= 2.83729748 rs= 3.70444413) + + technical parameters: + time step= 5.80 fictitious mass= 400000.0 + tolerance=0.100E-08 (energy) 0.100E-08 (density) + maximum iterations = 1000 ( 10 inner 100 outer ) + + + + + +== Energy Calculation == + + + ====== Grassmann conjugate gradient iteration ====== + >>> ITERATION STARTED AT Mon Sep 23 14:29:21 2019 <<< + iter. Energy DeltaE DeltaRho + ------------------------------------------------------ + 10 -0.2020451899E+02 -0.26409E-08 0.50388E-10 + 20 -0.2020451899E+02 -0.97153E-09 0.52248E-11 + *** tolerance ok. iteration terminated + >>> ITERATION ENDED AT Mon Sep 23 14:29:21 2019 <<< + + +== Summary Of Results == + + number of electrons: spin up= 6.00000 down= 6.00000 (real space) + + total energy : -0.2020451899E+02 ( -0.10102E+02/ion) + total orbital energy: 0.5093462286E+01 ( 0.84891E+00/electron) + hartree energy : 0.2902599490E+00 ( 0.48377E-01/electron) + exc-corr energy : -0.9444898225E+01 ( -0.15741E+01/electron) + ion-ion energy : -0.2193948849E+02 ( -0.10970E+02/ion) + + kinetic (planewave) : 0.1441599938E+02 ( 0.24027E+01/electron) + V_local (planewave) : 0.1156112031E+02 ( 0.19269E+01/electron) + V_nl (planewave) : -0.1508751191E+02 ( -0.25146E+01/electron) + V_Coul (planewave) : 0.5805198980E+00 ( 0.96753E-01/electron) + V_xc. (planewave) : -0.6376665384E+01 ( -0.10628E+01/electron) + Virial Coefficient : -0.6466799038E+00 + + orbital energies: + 0.5414224E+00 ( 14.733eV) + 0.5414220E+00 ( 14.733eV) + 0.5414216E+00 ( 14.733eV) + 0.3596618E+00 ( 9.787eV) + 0.3596618E+00 ( 9.787eV) + 0.2031417E+00 ( 5.528eV) + + Total PSPW energy : -0.2020451899E+02 + + +=== Spin Contamination === + + = 0.0000000000000000 + = 0.0000000000000000 + + + +== Center of Charge == + +spin up ( -0.0000, -0.0000, 0.0000 ) +spin down ( -0.0000, -0.0000, 0.0000 ) + total ( -0.0000, -0.0000, 0.0000 ) +ionic ( 1.4929, 1.4929, 1.4929 ) + + +== Molecular Dipole wrt Center of Mass == + +mu = ( 17.9146, 17.9146, 17.9146 ) au +|mu| = 31.0290 au, 78.8633 Debye + + + + ************************************************************* + ** ** + ** PSPW Mulliken analysis ** + ** ** + ** Population analysis algorithm devloped by Ryoichi Kawai ** + ** ** + ** Mon Sep 23 14:29 ** + ** ** + ************************************************************* + + +== XYZ OUTPUT == + + + 2 + +W 0.000000 0.000000 0.000000 +W 1.579999 1.579999 1.579999 + + +== Atomic Orbital Expansion == + + W nodamping + + + ===================================================== + | POPULATION ANALYSIS OF FILLED MOLECULAR ORBITALS | + ===================================================== + + +== Using pseudoatomic orbital expansion == + + +------------------------------------------------------------------------------ + + +*** ORBITAL= 1*** SPIN=BOTH SUM= 0.12471E+01 E= 0.54142E+00 ( 14.733eV) + +NO ATOM L POPULATION + s + 1 W 0 0.00000 0.00000 + px pz py + 1 W 1 0.00000 0.00000 -0.00000 -0.00000 + dx2-y2 dzx d3z2-1 dyz dxy + 1 W 2 0.50000 -0.00000 -0.50150 0.00000 0.49850 0.00000 + fx(x2-3y2) fz(5z2-1) fx(5z2-1) fz(5z2-3) fy(5z2-1) fxyz fy(3x2-y2) + 1 W 3 0.00000 -0.00000 -0.00000 0.00000 -0.00000 0.00000 0.00000 -0.00000 + s + 2 W 0 0.00000 0.00000 + px pz py + 2 W 1 0.00000 -0.00000 0.00000 0.00000 + dx2-y2 dzx d3z2-1 dyz dxy + 2 W 2 0.50000 -0.00000 -0.50150 0.00000 0.49850 0.00000 + fx(x2-3y2) fz(5z2-1) fx(5z2-1) fz(5z2-3) fy(5z2-1) fxyz fy(3x2-y2) + 2 W 3 0.00000 -0.00000 -0.00000 0.00000 0.00000 0.00000 -0.00000 -0.00000 + + +=== DISTRIBUTION === + + 1(W ) 0.5000 2(W ) 0.5000 + + +== ANGULAR MOMENTUM POPULATIONS === + + s p d f + 0.0000 0.0000 1.0000 0.0000 + + +------------------------------------------------------------------------------ + + +*** ORBITAL= 2*** SPIN=BOTH SUM= 0.12471E+01 E= 0.54142E+00 ( 14.733eV) + +NO ATOM L POPULATION + s + 1 W 0 0.00000 0.00000 + px pz py + 1 W 1 0.00000 0.00000 -0.00000 -0.00000 + dx2-y2 dzx d3z2-1 dyz dxy + 1 W 2 0.50000 -0.00000 0.00000 0.00001 -0.00000 0.70711 + fx(x2-3y2) fz(5z2-1) fx(5z2-1) fz(5z2-3) fy(5z2-1) fxyz fy(3x2-y2) + 1 W 3 0.00000 -0.00001 -0.00000 0.00000 -0.00000 0.00000 0.00000 -0.00000 + s + 2 W 0 0.00000 0.00000 + px pz py + 2 W 1 0.00000 -0.00000 0.00000 0.00000 + dx2-y2 dzx d3z2-1 dyz dxy + 2 W 2 0.50000 -0.00000 0.00000 0.00001 -0.00000 0.70711 + fx(x2-3y2) fz(5z2-1) fx(5z2-1) fz(5z2-3) fy(5z2-1) fxyz fy(3x2-y2) + 2 W 3 0.00000 -0.00001 -0.00000 0.00000 0.00000 0.00000 -0.00000 -0.00000 + + +=== DISTRIBUTION === + + 1(W ) 0.5000 2(W ) 0.5000 + + +== ANGULAR MOMENTUM POPULATIONS === + + s p d f + 0.0000 0.0000 1.0000 0.0000 + + +------------------------------------------------------------------------------ + + +*** ORBITAL= 3*** SPIN=BOTH SUM= 0.12471E+01 E= 0.54142E+00 ( 14.733eV) + +NO ATOM L POPULATION + s + 1 W 0 0.00000 -0.00000 + px pz py + 1 W 1 0.00000 -0.00000 -0.00000 0.00000 + dx2-y2 dzx d3z2-1 dyz dxy + 1 W 2 0.50000 0.00000 0.49850 -0.00000 0.50150 -0.00000 + fx(x2-3y2) fz(5z2-1) fx(5z2-1) fz(5z2-3) fy(5z2-1) fxyz fy(3x2-y2) + 1 W 3 0.00000 0.00000 -0.00000 -0.00000 -0.00000 -0.00000 0.00000 0.00000 + s + 2 W 0 0.00000 -0.00000 + px pz py + 2 W 1 0.00000 0.00000 0.00000 -0.00000 + dx2-y2 dzx d3z2-1 dyz dxy + 2 W 2 0.50000 0.00000 0.49850 -0.00000 0.50150 -0.00000 + fx(x2-3y2) fz(5z2-1) fx(5z2-1) fz(5z2-3) fy(5z2-1) fxyz fy(3x2-y2) + 2 W 3 0.00000 0.00000 -0.00000 -0.00000 0.00000 -0.00000 -0.00000 0.00000 + + +=== DISTRIBUTION === + + 1(W ) 0.5000 2(W ) 0.5000 + + +== ANGULAR MOMENTUM POPULATIONS === + + s p d f + 0.0000 0.0000 1.0000 0.0000 + + +------------------------------------------------------------------------------ + + +*** ORBITAL= 4*** SPIN=BOTH SUM= 0.14906E+01 E= 0.35966E+00 ( 9.787eV) + +NO ATOM L POPULATION + s + 1 W 0 0.00000 0.00000 + px pz py + 1 W 1 0.00000 0.00000 -0.00000 0.00000 + dx2-y2 dzx d3z2-1 dyz dxy + 1 W 2 0.47918 0.62168 0.00000 -0.30446 0.00000 0.00000 + fx(x2-3y2) fz(5z2-1) fx(5z2-1) fz(5z2-3) fy(5z2-1) fxyz fy(3x2-y2) + 1 W 3 0.02082 0.14429 0.00000 -0.00000 -0.00000 -0.00000 -0.00000 -0.00000 + s + 2 W 0 0.00000 0.00000 + px pz py + 2 W 1 0.00000 -0.00000 -0.00000 -0.00000 + dx2-y2 dzx d3z2-1 dyz dxy + 2 W 2 0.47918 -0.62168 -0.00000 0.30446 0.00000 -0.00000 + fx(x2-3y2) fz(5z2-1) fx(5z2-1) fz(5z2-3) fy(5z2-1) fxyz fy(3x2-y2) + 2 W 3 0.02082 -0.14429 0.00000 0.00000 -0.00000 0.00000 -0.00000 0.00000 + + +=== DISTRIBUTION === + + 1(W ) 0.5000 2(W ) 0.5000 + + +== ANGULAR MOMENTUM POPULATIONS === + + s p d f + 0.0000 0.0000 0.9584 0.0416 + + +------------------------------------------------------------------------------ + + +*** ORBITAL= 5*** SPIN=BOTH SUM= 0.14301E+01 E= 0.35966E+00 ( 9.787eV) + +NO ATOM L POPULATION + s + 1 W 0 0.00000 0.00000 + px pz py + 1 W 1 0.00000 0.00000 -0.00000 0.00000 + dx2-y2 dzx d3z2-1 dyz dxy + 1 W 2 0.49946 -0.31083 -0.00000 -0.63470 0.00000 0.00000 + fx(x2-3y2) fz(5z2-1) fx(5z2-1) fz(5z2-3) fy(5z2-1) fxyz fy(3x2-y2) + 1 W 3 0.00054 0.02331 -0.00000 -0.00000 -0.00000 -0.00000 -0.00000 -0.00000 + s + 2 W 0 0.00000 0.00000 + px pz py + 2 W 1 0.00000 -0.00000 -0.00000 -0.00000 + dx2-y2 dzx d3z2-1 dyz dxy + 2 W 2 0.49946 0.31083 0.00000 0.63470 0.00000 -0.00000 + fx(x2-3y2) fz(5z2-1) fx(5z2-1) fz(5z2-3) fy(5z2-1) fxyz fy(3x2-y2) + 2 W 3 0.00054 -0.02331 -0.00000 -0.00000 -0.00000 0.00000 -0.00000 0.00000 + + +=== DISTRIBUTION === + + 1(W ) 0.5000 2(W ) 0.5000 + + +== ANGULAR MOMENTUM POPULATIONS === + + s p d f + 0.0000 0.0000 0.9989 0.0011 + + +------------------------------------------------------------------------------ + + +*** ORBITAL= 6*** SPIN=BOTH SUM= 0.19541E+01 E= 0.20314E+00 ( 5.528eV) + +NO ATOM L POPULATION + s + 1 W 0 0.49973 0.70692 + px pz py + 1 W 1 0.00000 -0.00000 0.00000 0.00000 + dx2-y2 dzx d3z2-1 dyz dxy + 1 W 2 0.00000 -0.00000 0.00000 0.00000 -0.00000 -0.00000 + fx(x2-3y2) fz(5z2-1) fx(5z2-1) fz(5z2-3) fy(5z2-1) fxyz fy(3x2-y2) + 1 W 3 0.00027 -0.01628 0.00000 0.00000 0.00000 -0.00000 -0.00000 -0.00000 + s + 2 W 0 0.49973 0.70692 + px pz py + 2 W 1 0.00000 0.00000 0.00000 -0.00000 + dx2-y2 dzx d3z2-1 dyz dxy + 2 W 2 0.00000 0.00000 0.00000 -0.00000 0.00000 -0.00000 + fx(x2-3y2) fz(5z2-1) fx(5z2-1) fz(5z2-3) fy(5z2-1) fxyz fy(3x2-y2) + 2 W 3 0.00027 -0.01628 0.00000 -0.00000 0.00000 -0.00000 -0.00000 0.00000 + + +=== DISTRIBUTION === + + 1(W ) 0.5000 2(W ) 0.5000 + + +== ANGULAR MOMENTUM POPULATIONS === + + s p d f + 0.9995 0.0000 0.0000 0.0005 + + + ======================================== + | POPULATION ANALYSIS ON EACH ATOM | + ======================================== + + +NO ATOM SPIN TOTAL s p d f + 1 W UP 3.00000 0.49973 0.00000 2.47864 0.02163 + 1 W DOWN 3.00000 0.49973 0.00000 2.47864 0.02163 + 2 W UP 3.00000 0.49973 0.00000 2.47864 0.02163 + 2 W DOWN 3.00000 0.49973 0.00000 2.47864 0.02163 + + + +=== TOTAL ANGULAR MOMENTUM POPULATION === + + SPIN s p d f + UP 16.66% 0.00% 82.62% 0.72% + UP 16.66% 0.00% 82.62% 0.72% + TOTAL 16.66% 0.00% 82.62% 0.72% + + ************************************************************* + ** ** + ** PSPW Atomic Point Charge (APC) Analysis ** + ** ** + ** Point charge analysis based on paper by P.E. Blochl ** + ** (J. Chem. Phys. vol 103, page 7422, 1995) ** + ** ** + ************************************************************* + + pspw_APC data structure + ----------------------- + nga, ngs: 3 6 + Gc : 2.5000000000000000 + APC gamma: 1 0.59999999999999998 + APC gamma: 2 0.90000000000000002 + APC gamma: 3 1.3500000000000001 + + charge analysis on each atom + ---------------------------- + + no atom Qelc Qion Qtotal + -- ---- ------- ------- ------- + 1 W -6.906 6.000 -0.906 + 2 W -5.625 6.000 0.375 + Total Q -12.531 12.000 -0.531 + + + gaussian coefficients of model density + -------------------------------------- + + no atom g=0.000 g=0.600 g=0.900 g=1.350 + -- ---- ------- ------- ------- ------- + 1 W 6.000 -25.719 50.250 -31.438 + 2 W 6.000 -5.000 12.188 -12.812 + + +=== Electric Field at Atoms === + + 1 W Atomic Electric Field =( -0.00000 -0.00000 0.00000 ) + (ion) =( 0.00000 0.00000 -0.00000 ) + (electronic) =( -0.00000 -0.00000 0.00000 ) + 2 W Atomic Electric Field =( 0.00000 -0.00000 -0.00000 ) + (ion) =( -0.00000 -0.00000 0.00000 ) + (electronic) =( 0.00000 -0.00000 -0.00000 ) + + output psi filename:./w.movecs + + +== Timing == + +cputime in seconds + prologue : 0.745646E-01 + main loop : 0.114422E+00 + epilogue : 0.186484E-01 + total : 0.207635E+00 + cputime/step: 0.233514E-02 ( 49 evalulations, 11 linesearches) + + +Time spent doing total step percent + total time : 0.208073E+00 0.424639E-02 100.0 % + i/o time : 0.369110E-02 0.753285E-04 1.8 % + FFTs : 0.938805E-02 0.191593E-03 4.5 % + dot products : 0.334735E-02 0.683133E-04 1.6 % + geodesic : 0.620612E-02 0.126655E-03 3.0 % + ffm_dgemm : 0.410025E-03 0.836786E-05 0.2 % + fmf_dgemm : 0.262005E-02 0.534703E-04 1.3 % + mmm_dgemm : 0.403200E-04 0.822857E-06 0.0 % + m_diagonalize : 0.265351E-03 0.541533E-05 0.1 % + exchange correlation : 0.403655E-01 0.823786E-03 19.4 % + local pseudopotentials : 0.218100E-04 0.445102E-06 0.0 % + non-local pseudopotentials : 0.583915E-02 0.119166E-03 2.8 % + hartree potentials : 0.445709E-03 0.909610E-05 0.2 % + ion-ion interaction : 0.230654E-02 0.470722E-04 1.1 % + structure factors : 0.101746E-01 0.207644E-03 4.9 % + phase factors : 0.125530E-04 0.256184E-06 0.0 % + masking and packing : 0.763773E-02 0.155872E-03 3.7 % + queue fft : 0.369776E-01 0.754645E-03 17.8 % + queue fft (serial) : 0.262466E-01 0.535645E-03 12.6 % + queue fft (message passing): 0.969198E-02 0.197796E-03 4.7 % + non-local psp FFM : 0.320117E-02 0.653300E-04 1.5 % + non-local psp FMF : 0.137954E-02 0.281539E-04 0.7 % + non-local psp FFM A : 0.490631E-03 0.100129E-04 0.2 % + non-local psp FFM B : 0.245399E-02 0.500814E-04 1.2 % + + >>> JOB COMPLETED AT Mon Sep 23 14:29:21 2019 <<< + **************************************************** + * * + * NWPW PSPW Calculation * + * * + * [ (Grassmann/Stiefel manifold implementation) ] * + * * + * [ NorthWest Chemistry implementation ] * + * * + * version #5.10 06/12/02 * + * * + * This code was developed by Eric J. Bylaska, * + * and was based upon algorithms and code * + * developed by the group of Prof. John H. Weare * + * * + **************************************************** + >>> JOB STARTED AT Mon Sep 23 14:29:21 2019 <<< + ================ input data ======================== + + input psi filename:./w.movecs + + initializing pspw_APC data structure + ------------------------------------ + nga, ngs: 3 6 + Gc : 2.5000000000000000 + APC gamma: 1 0.59999999999999998 + APC gamma: 2 0.90000000000000002 + APC gamma: 3 1.3500000000000001 + + number of processors used: 1 + processor grid : 1 x 1 + parallel mapping :2d hilbert + parallel mapping : balanced + number of threads : 1 + parallel io : off + + options: + boundary conditions = periodic (version3) + electron spin = restricted + exchange-correlation = LDA (Vosko et al) parameterization + + elements involved in the cluster: + 1: W valence charge: 6.0000 lmax= 2 + comment : Troullier-Martins pseudopotential + pseudpotential type : 0 + highest angular component : 2 + local potential used : 0 + number of non-local projections: 8 + semicore corrections included : 1.800 (radius) 4.538 (charge) + cutoff = 2.389 3.185 2.244 + + + total charge: 0.000 + + atomic composition: + W : 2 + + number of electrons: spin up= 6 ( 6 per task) down= 6 ( 6 per task) (Fourier space) + number of orbitals : spin up= 6 ( 6 per task) down= 6 ( 6 per task) (Fourier space) + + supercell: + cell_name: cell_default + lattice: a1=< 5.972 0.000 0.000 > + a2=< 0.000 5.972 0.000 > + a3=< 0.000 0.000 5.972 > + reciprocal: b1=< 1.052 0.000 -0.000 > + b2=< -0.000 1.052 -0.000 > + b3=< 0.000 0.000 1.052 > + lattice: a= 5.972 b= 5.972 c= 5.972 + alpha= 90.000 beta= 90.000 gamma= 90.000 + omega= 212.9 + + density cutoff= 35.427 fft= 16x 16x 16( 1052 waves 1052 per task) + wavefnc cutoff= 35.427 fft= 16x 16x 16( 1052 waves 1052 per task) + Ewald summation: cut radius= 1.90 and 8 + Madelung Wigner-Seitz= 1.76011888 (alpha= 2.83729748 rs= 3.70444413) + + technical parameters: + time step= 5.80 fictitious mass= 400000.0 + tolerance=0.100E-08 (energy) 0.100E-08 (density) + maximum iterations = 1000 ( 10 inner 100 outer ) + + + + + +== Energy Calculation == + + + ====== Grassmann conjugate gradient iteration ====== + >>> ITERATION STARTED AT Mon Sep 23 14:29:21 2019 <<< + iter. Energy DeltaE DeltaRho + ------------------------------------------------------ + 10 -0.2020461705E+02 -0.23340E-09 0.27270E-11 + *** tolerance ok. iteration terminated + >>> ITERATION ENDED AT Mon Sep 23 14:29:21 2019 <<< + + +== Summary Of Results == + + number of electrons: spin up= 6.00000 down= 6.00000 (real space) + + total energy : -0.2020461705E+02 ( -0.10102E+02/ion) + total orbital energy: 0.5093528357E+01 ( 0.84892E+00/electron) + hartree energy : 0.2902733730E+00 ( 0.48379E-01/electron) + exc-corr energy : -0.9445058980E+01 ( -0.15742E+01/electron) + ion-ion energy : -0.2193948849E+02 ( -0.10970E+02/ion) + + kinetic (planewave) : 0.1441576162E+02 ( 0.24026E+01/electron) + V_local (planewave) : 0.1156121019E+02 ( 0.19269E+01/electron) + V_nl (planewave) : -0.1508731476E+02 ( -0.25146E+01/electron) + V_Coul (planewave) : 0.5805467460E+00 ( 0.96758E-01/electron) + V_xc. (planewave) : -0.6376675440E+01 ( -0.10628E+01/electron) + Virial Coefficient : -0.6466694934E+00 + + orbital energies: + 0.5414197E+00 ( 14.733eV) + 0.5414193E+00 ( 14.733eV) + 0.5414189E+00 ( 14.733eV) + 0.3596821E+00 ( 9.788eV) + 0.3596821E+00 ( 9.788eV) + 0.2031419E+00 ( 5.528eV) + + Total PSPW energy : -0.2020461705E+02 + + +=== Spin Contamination === + + = 0.0000000000000000 + = 0.0000000000000000 + + + +== Center of Charge == + +spin up ( -0.0000, -0.0000, -0.0000 ) +spin down ( -0.0000, -0.0000, -0.0000 ) + total ( -0.0000, -0.0000, -0.0000 ) +ionic ( 1.4929, 1.4929, 1.4929 ) + + +== Molecular Dipole wrt Center of Mass == + +mu = ( 17.9146, 17.9146, 17.9146 ) au +|mu| = 31.0290 au, 78.8633 Debye + + +Translation force removed: ( -0.00000 -0.00000 -0.00000) + + + ============= Ion Gradients ================= + Ion Forces: + 1 W ( 0.000000 0.000000 -0.000000 ) + 2 W ( -0.000000 -0.000000 -0.000000 ) + C.O.M. ( 0.000000 0.000000 -0.000000 ) + =============================================== + |F| = 0.418432E-08 + |F|/nion = 0.209216E-08 + max|Fatom|= 0.295876E-08 ( 0.000eV/Angstrom) + + + + Outputing formatted_stress_filename: ./W.vpp2 + + +====================== += Stress calculation = +====================== + + + ============= total gradient ============== + S = ( 0.12513 0.00001 0.00000 ) + ( 0.00001 0.12513 0.00000 ) + ( 0.00000 0.00000 0.12513 ) + =================================================== + |S| = 0.21673E+00 + pressure = 0.125E+00 au + = 0.368E+02 Mbar + = 0.368E+04 GPa + = 0.363E+08 atm + + + dE/da = 0.12513 + dE/db = 0.12513 + dE/dc = 0.12513 + dE/dalpha = 0.00000 + dE/dbeta = 0.00000 + dE/dgamma = -0.00004 + + + + + ************************************************************* + ** ** + ** PSPW Mulliken analysis ** + ** ** + ** Population analysis algorithm devloped by Ryoichi Kawai ** + ** ** + ** Mon Sep 23 14:29 ** + ** ** + ************************************************************* + + +== XYZ OUTPUT == + + + 2 + +W 0.000000 0.000000 0.000000 +W 1.579999 1.579999 1.579999 + + +== Atomic Orbital Expansion == + + W nodamping + + + ===================================================== + | POPULATION ANALYSIS OF FILLED MOLECULAR ORBITALS | + ===================================================== + + +== Using pseudoatomic orbital expansion == + + +------------------------------------------------------------------------------ + + +*** ORBITAL= 1*** SPIN=BOTH SUM= 0.12471E+01 E= 0.54142E+00 ( 14.733eV) + +NO ATOM L POPULATION + s + 1 W 0 0.00000 0.00000 + px pz py + 1 W 1 0.00000 0.00000 -0.00000 -0.00000 + dx2-y2 dzx d3z2-1 dyz dxy + 1 W 2 0.50000 -0.00000 -0.50144 0.00000 0.49855 0.00000 + fx(x2-3y2) fz(5z2-1) fx(5z2-1) fz(5z2-3) fy(5z2-1) fxyz fy(3x2-y2) + 1 W 3 0.00000 -0.00000 -0.00000 0.00000 -0.00000 0.00000 0.00000 -0.00000 + s + 2 W 0 0.00000 0.00000 + px pz py + 2 W 1 0.00000 -0.00000 0.00000 -0.00000 + dx2-y2 dzx d3z2-1 dyz dxy + 2 W 2 0.50000 -0.00000 -0.50144 0.00000 0.49855 0.00000 + fx(x2-3y2) fz(5z2-1) fx(5z2-1) fz(5z2-3) fy(5z2-1) fxyz fy(3x2-y2) + 2 W 3 0.00000 -0.00000 -0.00000 0.00000 0.00000 0.00000 -0.00000 -0.00000 + + +=== DISTRIBUTION === + + 1(W ) 0.5000 2(W ) 0.5000 + + +== ANGULAR MOMENTUM POPULATIONS === + + s p d f + 0.0000 0.0000 1.0000 0.0000 + + +------------------------------------------------------------------------------ + + +*** ORBITAL= 2*** SPIN=BOTH SUM= 0.12471E+01 E= 0.54142E+00 ( 14.733eV) + +NO ATOM L POPULATION + s + 1 W 0 0.00000 -0.00000 + px pz py + 1 W 1 0.00000 -0.00000 0.00000 0.00000 + dx2-y2 dzx d3z2-1 dyz dxy + 1 W 2 0.50000 0.00000 -0.00000 -0.00001 0.00000 -0.70711 + fx(x2-3y2) fz(5z2-1) fx(5z2-1) fz(5z2-3) fy(5z2-1) fxyz fy(3x2-y2) + 1 W 3 0.00000 0.00001 0.00000 -0.00000 0.00000 -0.00000 -0.00000 0.00000 + s + 2 W 0 0.00000 -0.00000 + px pz py + 2 W 1 0.00000 0.00000 -0.00000 -0.00000 + dx2-y2 dzx d3z2-1 dyz dxy + 2 W 2 0.50000 0.00000 -0.00000 -0.00001 0.00000 -0.70711 + fx(x2-3y2) fz(5z2-1) fx(5z2-1) fz(5z2-3) fy(5z2-1) fxyz fy(3x2-y2) + 2 W 3 0.00000 0.00001 0.00000 -0.00000 -0.00000 -0.00000 0.00000 0.00000 + + +=== DISTRIBUTION === + + 1(W ) 0.5000 2(W ) 0.5000 + + +== ANGULAR MOMENTUM POPULATIONS === + + s p d f + 0.0000 0.0000 1.0000 0.0000 + + +------------------------------------------------------------------------------ + + +*** ORBITAL= 3*** SPIN=BOTH SUM= 0.12471E+01 E= 0.54142E+00 ( 14.733eV) + +NO ATOM L POPULATION + s + 1 W 0 0.00000 0.00000 + px pz py + 1 W 1 0.00000 0.00000 0.00000 -0.00000 + dx2-y2 dzx d3z2-1 dyz dxy + 1 W 2 0.50000 -0.00000 -0.49855 0.00000 -0.50144 0.00000 + fx(x2-3y2) fz(5z2-1) fx(5z2-1) fz(5z2-3) fy(5z2-1) fxyz fy(3x2-y2) + 1 W 3 0.00000 -0.00000 0.00000 0.00000 0.00000 0.00000 -0.00000 -0.00000 + s + 2 W 0 0.00000 0.00000 + px pz py + 2 W 1 0.00000 -0.00000 -0.00000 0.00000 + dx2-y2 dzx d3z2-1 dyz dxy + 2 W 2 0.50000 -0.00000 -0.49855 0.00000 -0.50144 0.00000 + fx(x2-3y2) fz(5z2-1) fx(5z2-1) fz(5z2-3) fy(5z2-1) fxyz fy(3x2-y2) + 2 W 3 0.00000 -0.00000 0.00000 0.00000 -0.00000 0.00000 0.00000 -0.00000 + + +=== DISTRIBUTION === + + 1(W ) 0.5000 2(W ) 0.5000 + + +== ANGULAR MOMENTUM POPULATIONS === + + s p d f + 0.0000 0.0000 1.0000 0.0000 + + +------------------------------------------------------------------------------ + + +*** ORBITAL= 4*** SPIN=BOTH SUM= 0.14893E+01 E= 0.35968E+00 ( 9.788eV) + +NO ATOM L POPULATION + s + 1 W 0 0.00000 -0.00000 + px pz py + 1 W 1 0.00000 -0.00000 0.00000 -0.00000 + dx2-y2 dzx d3z2-1 dyz dxy + 1 W 2 0.47961 -0.61917 -0.00000 0.31022 -0.00000 -0.00000 + fx(x2-3y2) fz(5z2-1) fx(5z2-1) fz(5z2-3) fy(5z2-1) fxyz fy(3x2-y2) + 1 W 3 0.02039 -0.14281 -0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 + s + 2 W 0 0.00000 -0.00000 + px pz py + 2 W 1 0.00000 0.00000 0.00000 0.00000 + dx2-y2 dzx d3z2-1 dyz dxy + 2 W 2 0.47961 0.61917 0.00000 -0.31022 -0.00000 0.00000 + fx(x2-3y2) fz(5z2-1) fx(5z2-1) fz(5z2-3) fy(5z2-1) fxyz fy(3x2-y2) + 2 W 3 0.02039 0.14281 -0.00000 -0.00000 0.00000 -0.00000 -0.00000 -0.00000 + + +=== DISTRIBUTION === + + 1(W ) 0.5000 2(W ) 0.5000 + + +== ANGULAR MOMENTUM POPULATIONS === + + s p d f + 0.0000 0.0000 0.9592 0.0408 + + +------------------------------------------------------------------------------ + + +*** ORBITAL= 5*** SPIN=BOTH SUM= 0.14299E+01 E= 0.35968E+00 ( 9.788eV) + +NO ATOM L POPULATION + s + 1 W 0 0.00000 -0.00000 + px pz py + 1 W 1 0.00000 -0.00000 0.00000 -0.00000 + dx2-y2 dzx d3z2-1 dyz dxy + 1 W 2 0.49953 0.31660 0.00000 0.63190 0.00000 -0.00000 + fx(x2-3y2) fz(5z2-1) fx(5z2-1) fz(5z2-3) fy(5z2-1) fxyz fy(3x2-y2) + 1 W 3 0.00047 -0.02171 0.00000 0.00000 0.00000 0.00000 -0.00000 0.00000 + s + 2 W 0 0.00000 -0.00000 + px pz py + 2 W 1 0.00000 0.00000 0.00000 0.00000 + dx2-y2 dzx d3z2-1 dyz dxy + 2 W 2 0.49953 -0.31660 -0.00000 -0.63190 -0.00000 0.00000 + fx(x2-3y2) fz(5z2-1) fx(5z2-1) fz(5z2-3) fy(5z2-1) fxyz fy(3x2-y2) + 2 W 3 0.00047 0.02171 0.00000 0.00000 0.00000 -0.00000 -0.00000 -0.00000 + + +=== DISTRIBUTION === + + 1(W ) 0.5000 2(W ) 0.5000 + + +== ANGULAR MOMENTUM POPULATIONS === + + s p d f + 0.0000 0.0000 0.9991 0.0009 + + +------------------------------------------------------------------------------ + + +*** ORBITAL= 6*** SPIN=BOTH SUM= 0.19540E+01 E= 0.20314E+00 ( 5.528eV) + +NO ATOM L POPULATION + s + 1 W 0 0.49974 0.70692 + px pz py + 1 W 1 0.00000 -0.00000 -0.00000 0.00000 + dx2-y2 dzx d3z2-1 dyz dxy + 1 W 2 0.00000 -0.00000 0.00000 0.00000 -0.00000 -0.00000 + fx(x2-3y2) fz(5z2-1) fx(5z2-1) fz(5z2-3) fy(5z2-1) fxyz fy(3x2-y2) + 1 W 3 0.00026 -0.01609 0.00000 0.00000 0.00000 -0.00000 -0.00000 -0.00000 + s + 2 W 0 0.49974 0.70692 + px pz py + 2 W 1 0.00000 0.00000 0.00000 -0.00000 + dx2-y2 dzx d3z2-1 dyz dxy + 2 W 2 0.00000 0.00000 0.00000 -0.00000 0.00000 -0.00000 + fx(x2-3y2) fz(5z2-1) fx(5z2-1) fz(5z2-3) fy(5z2-1) fxyz fy(3x2-y2) + 2 W 3 0.00026 -0.01609 -0.00000 -0.00000 0.00000 -0.00000 0.00000 0.00000 + + +=== DISTRIBUTION === + + 1(W ) 0.5000 2(W ) 0.5000 + + +== ANGULAR MOMENTUM POPULATIONS === + + s p d f + 0.9995 0.0000 0.0000 0.0005 + + + ======================================== + | POPULATION ANALYSIS ON EACH ATOM | + ======================================== + + +NO ATOM SPIN TOTAL s p d f + 1 W UP 3.00000 0.49974 0.00000 2.47913 0.02112 + 1 W DOWN 3.00000 0.49974 0.00000 2.47913 0.02112 + 2 W UP 3.00000 0.49974 0.00000 2.47913 0.02112 + 2 W DOWN 3.00000 0.49974 0.00000 2.47913 0.02112 + + + +=== TOTAL ANGULAR MOMENTUM POPULATION === + + SPIN s p d f + UP 16.66% 0.00% 82.64% 0.70% + UP 16.66% 0.00% 82.64% 0.70% + TOTAL 16.66% 0.00% 82.64% 0.70% + + ************************************************************* + ** ** + ** PSPW Atomic Point Charge (APC) Analysis ** + ** ** + ** Point charge analysis based on paper by P.E. Blochl ** + ** (J. Chem. Phys. vol 103, page 7422, 1995) ** + ** ** + ************************************************************* + + pspw_APC data structure + ----------------------- + nga, ngs: 3 6 + Gc : 2.5000000000000000 + APC gamma: 1 0.59999999999999998 + APC gamma: 2 0.90000000000000002 + APC gamma: 3 1.3500000000000001 + + charge analysis on each atom + ---------------------------- + + no atom Qelc Qion Qtotal + -- ---- ------- ------- ------- + 1 W -5.594 6.000 0.406 + 2 W -6.250 6.000 -0.250 + Total Q -11.844 12.000 0.156 + + + gaussian coefficients of model density + -------------------------------------- + + no atom g=0.000 g=0.600 g=0.900 g=1.350 + -- ---- ------- ------- ------- ------- + 1 W 6.000 -6.219 15.062 -14.438 + 2 W 6.000 -8.281 20.125 -18.094 + + +=== Electric Field at Atoms === + + 1 W Atomic Electric Field =( -0.00000 -0.00000 0.00000 ) + (ion) =( 0.00000 0.00000 -0.00000 ) + (electronic) =( -0.00000 -0.00000 0.00000 ) + 2 W Atomic Electric Field =( 0.00000 -0.00000 0.00000 ) + (ion) =( -0.00000 -0.00000 0.00000 ) + (electronic) =( 0.00000 -0.00000 -0.00000 ) + + output psi filename:./w.movecs + + +== Timing == + +cputime in seconds + prologue : 0.746791E-01 + main loop : 0.359966E+00 + epilogue : 0.187162E-01 + total : 0.453362E+00 + cputime/step: 0.133321E-01 ( 27 evalulations, 6 linesearches) + + +Time spent doing total step percent + total time : 0.453809E+00 0.168078E-01 100.0 % + i/o time : 0.371068E-02 0.137433E-03 0.8 % + FFTs : 0.870071E-02 0.322248E-03 1.9 % + dot products : 0.347239E-02 0.128607E-03 0.8 % + geodesic : 0.430554E-02 0.159464E-03 0.9 % + ffm_dgemm : 0.322600E-03 0.119481E-04 0.1 % + fmf_dgemm : 0.226656E-02 0.839466E-04 0.5 % + mmm_dgemm : 0.241260E-04 0.893554E-06 0.0 % + m_diagonalize : 0.143440E-03 0.531259E-05 0.0 % + exchange correlation : 0.226012E-01 0.837082E-03 5.0 % + local pseudopotentials : 0.247782E-03 0.917711E-05 0.1 % + non-local pseudopotentials : 0.596243E-02 0.220831E-03 1.3 % + hartree potentials : 0.303066E-03 0.112247E-04 0.1 % + ion-ion interaction : 0.742231E-01 0.274901E-02 16.4 % + structure factors : 0.100176E-01 0.371024E-03 2.2 % + phase factors : 0.123850E-04 0.458704E-06 0.0 % + masking and packing : 0.747819E-02 0.276970E-03 1.6 % + queue fft : 0.227258E-01 0.841697E-03 5.0 % + queue fft (serial) : 0.159551E-01 0.590931E-03 3.5 % + queue fft (message passing): 0.615529E-02 0.227974E-03 1.4 % + non-local psp FFM : 0.252122E-02 0.933787E-04 0.6 % + non-local psp FMF : 0.112022E-02 0.414896E-04 0.2 % + non-local psp FFM A : 0.456889E-03 0.169218E-04 0.1 % + non-local psp FFM B : 0.186526E-02 0.690838E-04 0.4 % + + >>> JOB COMPLETED AT Mon Sep 23 14:29:22 2019 <<< + + Task times cpu: 5.6s wall: 3.8s + + + NWChem Input Module + ------------------- + + + Summary of allocated global arrays +----------------------------------- + No active global arrays + + + + GA Statistics for process 0 + ------------------------------ + + create destroy get put acc scatter gather read&inc +calls: 8 8 86 10 0 0 0 0 +number of processes/call 1.00e+00 1.00e+00 0.00e+00 0.00e+00 0.00e+00 +bytes total: 1.81e+05 8.19e+04 0.00e+00 0.00e+00 0.00e+00 0.00e+00 +bytes remote: 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 +Max memory consumed for GA by this process: 65536 bytes + +MA_summarize_allocated_blocks: starting scan ... +heap block 'sw1t', handle 348, address 0x55eea965d008: + type of elements: double precision + number of elements: 16 + address of client space: 0x55eea965d080 + index for client space: 10242743 + total number of bytes: 256 +MA_summarize_allocated_blocks: scan completed: 1 heap block, 0 stack blocks +MA usage statistics: + + allocation statistics: + heap stack + ---- ----- + current number of blocks 1 0 + maximum number of blocks 304 17 + current total bytes 256 0 + maximum total bytes 5596824 351896 + maximum total K-bytes 5597 352 + maximum total M-bytes 6 1 + + + CITATION + -------- + Please cite the following reference when publishing + results obtained with NWChem: + + M. Valiev, E.J. Bylaska, N. Govind, K. Kowalski, + T.P. Straatsma, H.J.J. van Dam, D. Wang, J. Nieplocha, + E. Apra, T.L. Windus, W.A. de Jong + "NWChem: a comprehensive and scalable open-source + solution for large scale molecular simulations" + Comput. Phys. Commun. 181, 1477 (2010) + doi:10.1016/j.cpc.2010.04.018 + + AUTHORS + ------- + E. Apra, E. J. Bylaska, W. A. de Jong, N. Govind, K. Kowalski, + T. P. Straatsma, M. Valiev, H. J. J. van Dam, D. Wang, T. L. Windus, + J. Hammond, J. Autschbach, K. Bhaskaran-Nair, J. Brabec, K. Lopata, + S. A. Fischer, S. Krishnamoorthy, M. Jacquelin, W. Ma, M. Klemm, O. Villa, + Y. Chen, V. Anisimov, F. Aquino, S. Hirata, M. T. Hackler, V. Konjkov, + D. Mejia-Rodriguez, T. Risthaus, M. Malagoli, A. Marenich, + A. Otero-de-la-Roza, J. Mullin, P. Nichols, R. Peverati, J. Pittner, Y. Zhao, + P.-D. Fan, A. Fonari, M. J. Williamson, R. J. Harrison, J. R. Rehr, + M. Dupuis, D. Silverstein, D. M. A. Smith, J. Nieplocha, V. Tipparaju, + M. Krishnan, B. E. Van Kuiken, A. Vazquez-Mayagoitia, L. Jensen, M. Swart, + Q. Wu, T. Van Voorhis, A. A. Auer, M. Nooijen, L. D. Crosby, E. Brown, + G. Cisneros, G. I. Fann, H. Fruchtl, J. Garza, K. Hirao, R. A. Kendall, + J. A. Nichols, K. Tsemekhman, K. Wolinski, J. Anchell, D. E. Bernholdt, + P. Borowski, T. Clark, D. Clerc, H. Dachsel, M. J. O. Deegan, K. Dyall, + D. Elwood, E. Glendening, M. Gutowski, A. C. Hess, J. Jaffe, B. G. Johnson, + J. Ju, R. Kobayashi, R. Kutteh, Z. Lin, R. Littlefield, X. Long, B. Meng, + T. Nakajima, S. Niu, L. Pollack, M. Rosing, K. Glaesemann, G. Sandrone, + M. Stave, H. Taylor, G. Thomas, J. H. van Lenthe, A. T. Wong, Z. Zhang. + + Total times cpu: 5.6s wall: 3.8s diff --git a/examples/COUPLE/lammps_nwchem/planewave/w.nw b/examples/COUPLE/lammps_nwchem/planewave/w.nw new file mode 100644 index 0000000000..5f78801174 --- /dev/null +++ b/examples/COUPLE/lammps_nwchem/planewave/w.nw @@ -0,0 +1,28 @@ +echo + +#**** Enter the geometry using fractional coordinates **** +geometry units angstrom noautosym + system crystal + lat_a 3.16d0 + lat_b 3.16d0 + lat_c 3.16d0 + end +W 0.0 0.0 0.0 +W 0.5 0.5 0.5 +end + +#***** setup the nwpw gamma point code **** +nwpw + simulation_cell + ngrid 16 16 16 + end + ewald_ncut 8 + mulliken + lcao #old default +end + +nwpw + tolerances 1.0d-9 1.0d-9 +end + +task pspw stress