git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@3341 f3b2605a-c512-4ea7-a41b-209d697bcdaa

This commit is contained in:
sjplimp
2009-11-06 21:01:28 +00:00
parent 5418229410
commit 21b5ea51a7
21 changed files with 367 additions and 78 deletions

Binary file not shown.

After

Width:  |  Height:  |  Size: 1.9 KiB

View File

@ -0,0 +1,9 @@
\documentclass[12pt]{article}
\begin{document}
$$
E = \frac{A}{\kappa} e^{- \kappa (r - (r_i + r_j))} \qquad r < r_c
$$
\end{document}

View File

@ -327,8 +327,8 @@ of each style or click on the style itself for a full description:
<TR ALIGN="center"><TD ><A HREF = "fix_nve_asphere.html">nve/asphere</A></TD><TD ><A HREF = "fix_nve_limit.html">nve/limit</A></TD><TD ><A HREF = "fix_nve_noforce.html">nve/noforce</A></TD><TD ><A HREF = "fix_nve_sphere.html">nve/sphere</A></TD><TD ><A HREF = "fix_nvt.html">nvt</A></TD><TD ><A HREF = "fix_nvt_asphere.html">nvt/asphere</A></TD><TD ><A HREF = "fix_nvt_sllod.html">nvt/sllod</A></TD><TD ><A HREF = "fix_nvt_sphere.html">nvt/sphere</A></TD></TR> <TR ALIGN="center"><TD ><A HREF = "fix_nve_asphere.html">nve/asphere</A></TD><TD ><A HREF = "fix_nve_limit.html">nve/limit</A></TD><TD ><A HREF = "fix_nve_noforce.html">nve/noforce</A></TD><TD ><A HREF = "fix_nve_sphere.html">nve/sphere</A></TD><TD ><A HREF = "fix_nvt.html">nvt</A></TD><TD ><A HREF = "fix_nvt_asphere.html">nvt/asphere</A></TD><TD ><A HREF = "fix_nvt_sllod.html">nvt/sllod</A></TD><TD ><A HREF = "fix_nvt_sphere.html">nvt/sphere</A></TD></TR>
<TR ALIGN="center"><TD ><A HREF = "fix_orient_fcc.html">orient/fcc</A></TD><TD ><A HREF = "fix_planeforce.html">planeforce</A></TD><TD ><A HREF = "fix_poems.html">poems</A></TD><TD ><A HREF = "fix_pour.html">pour</A></TD><TD ><A HREF = "fix_press_berendsen.html">press/berendsen</A></TD><TD ><A HREF = "fix_print.html">print</A></TD><TD ><A HREF = "fix_rdf.html">rdf</A></TD><TD ><A HREF = "fix_reax_bonds.html">reax/bonds</A></TD></TR> <TR ALIGN="center"><TD ><A HREF = "fix_orient_fcc.html">orient/fcc</A></TD><TD ><A HREF = "fix_planeforce.html">planeforce</A></TD><TD ><A HREF = "fix_poems.html">poems</A></TD><TD ><A HREF = "fix_pour.html">pour</A></TD><TD ><A HREF = "fix_press_berendsen.html">press/berendsen</A></TD><TD ><A HREF = "fix_print.html">print</A></TD><TD ><A HREF = "fix_rdf.html">rdf</A></TD><TD ><A HREF = "fix_reax_bonds.html">reax/bonds</A></TD></TR>
<TR ALIGN="center"><TD ><A HREF = "fix_recenter.html">recenter</A></TD><TD ><A HREF = "fix_rigid.html">rigid</A></TD><TD ><A HREF = "fix_setforce.html">setforce</A></TD><TD ><A HREF = "fix_shake.html">shake</A></TD><TD ><A HREF = "fix_spring.html">spring</A></TD><TD ><A HREF = "fix_spring_rg.html">spring/rg</A></TD><TD ><A HREF = "fix_spring_self.html">spring/self</A></TD><TD ><A HREF = "fix_temp_berendsen.html">temp/berendsen</A></TD></TR> <TR ALIGN="center"><TD ><A HREF = "fix_recenter.html">recenter</A></TD><TD ><A HREF = "fix_rigid.html">rigid</A></TD><TD ><A HREF = "fix_setforce.html">setforce</A></TD><TD ><A HREF = "fix_shake.html">shake</A></TD><TD ><A HREF = "fix_spring.html">spring</A></TD><TD ><A HREF = "fix_spring_rg.html">spring/rg</A></TD><TD ><A HREF = "fix_spring_self.html">spring/self</A></TD><TD ><A HREF = "fix_temp_berendsen.html">temp/berendsen</A></TD></TR>
<TR ALIGN="center"><TD ><A HREF = "fix_temp_rescale.html">temp/rescale</A></TD><TD ><A HREF = "fix_thermal_conductivity.html">thermal/conductivity</A></TD><TD ><A HREF = "fix_tmd.html">tmd</A></TD><TD ><A HREF = "fix_ttm.html">ttm</A></TD><TD ><A HREF = "fix_viscosity.html">viscosity</A></TD><TD ><A HREF = "fix_viscous.html">viscous</A></TD><TD ><A HREF = "fix_wall_gran.html">wall/gran</A></TD><TD ><A HREF = "fix_wall_lj126.html">wall/lj126</A></TD></TR> <TR ALIGN="center"><TD ><A HREF = "fix_temp_rescale.html">temp/rescale</A></TD><TD ><A HREF = "fix_thermal_conductivity.html">thermal/conductivity</A></TD><TD ><A HREF = "fix_tmd.html">tmd</A></TD><TD ><A HREF = "fix_ttm.html">ttm</A></TD><TD ><A HREF = "fix_viscosity.html">viscosity</A></TD><TD ><A HREF = "fix_viscous.html">viscous</A></TD><TD ><A HREF = "fix_wall_colloid.html">wall/colloid</A></TD><TD ><A HREF = "fix_wall_gran.html">wall/gran</A></TD></TR>
<TR ALIGN="center"><TD ><A HREF = "fix_wall_lj93.html">wall/lj93</A></TD><TD ><A HREF = "fix_wall_reflect.html">wall/reflect</A></TD><TD ><A HREF = "fix_wiggle.html">wiggle</A> <TR ALIGN="center"><TD ><A HREF = "fix_wall_lj126.html">wall/lj126</A></TD><TD ><A HREF = "fix_wall_lj93.html">wall/lj93</A></TD><TD ><A HREF = "fix_wall_reflect.html">wall/reflect</A></TD><TD ><A HREF = "fix_wiggle.html">wiggle</A>
</TD></TR></TABLE></DIV> </TD></TR></TABLE></DIV>
<P>These are fix styles contributed by users, which can be used if <P>These are fix styles contributed by users, which can be used if
@ -382,7 +382,7 @@ potentials. Click on the style itself for a full description:
<TR ALIGN="center"><TD ><A HREF = "pair_lj96_cut.html">lj96/cut</A></TD><TD ><A HREF = "pair_lubricate.html">lubricate</A></TD><TD ><A HREF = "pair_meam.html">meam</A></TD><TD ><A HREF = "pair_morse.html">morse</A></TD></TR> <TR ALIGN="center"><TD ><A HREF = "pair_lj96_cut.html">lj96/cut</A></TD><TD ><A HREF = "pair_lubricate.html">lubricate</A></TD><TD ><A HREF = "pair_meam.html">meam</A></TD><TD ><A HREF = "pair_morse.html">morse</A></TD></TR>
<TR ALIGN="center"><TD ><A HREF = "pair_morse.html">morse/opt</A></TD><TD ><A HREF = "pair_peri_pmb.html">peri/pmb</A></TD><TD ><A HREF = "pair_reax.html">reax</A></TD><TD ><A HREF = "pair_resquared.html">resquared</A></TD></TR> <TR ALIGN="center"><TD ><A HREF = "pair_morse.html">morse/opt</A></TD><TD ><A HREF = "pair_peri_pmb.html">peri/pmb</A></TD><TD ><A HREF = "pair_reax.html">reax</A></TD><TD ><A HREF = "pair_resquared.html">resquared</A></TD></TR>
<TR ALIGN="center"><TD ><A HREF = "pair_soft.html">soft</A></TD><TD ><A HREF = "pair_sw.html">sw</A></TD><TD ><A HREF = "pair_table.html">table</A></TD><TD ><A HREF = "pair_tersoff.html">tersoff</A></TD></TR> <TR ALIGN="center"><TD ><A HREF = "pair_soft.html">soft</A></TD><TD ><A HREF = "pair_sw.html">sw</A></TD><TD ><A HREF = "pair_table.html">table</A></TD><TD ><A HREF = "pair_tersoff.html">tersoff</A></TD></TR>
<TR ALIGN="center"><TD ><A HREF = "pair_tersoff_zbl.html">tersoff/zbl</A></TD><TD ><A HREF = "pair_yukawa.html">yukawa</A> <TR ALIGN="center"><TD ><A HREF = "pair_tersoff_zbl.html">tersoff/zbl</A></TD><TD ><A HREF = "pair_yukawa.html">yukawa</A><A HREF = "pair_yukawa_colloid.html">yukawa/colloid</A>
</TD></TR></TABLE></DIV> </TD></TR></TABLE></DIV>
<P>These are pair styles contributed by users, which can be used if <P>These are pair styles contributed by users, which can be used if

View File

@ -441,6 +441,7 @@ of each style or click on the style itself for a full description:
"ttm"_fix_ttm.html, "ttm"_fix_ttm.html,
"viscosity"_fix_viscosity.html, "viscosity"_fix_viscosity.html,
"viscous"_fix_viscous.html, "viscous"_fix_viscous.html,
"wall/colloid"_fix_wall_colloid.html,
"wall/gran"_fix_wall_gran.html, "wall/gran"_fix_wall_gran.html,
"wall/lj126"_fix_wall_lj126.html, "wall/lj126"_fix_wall_lj126.html,
"wall/lj93"_fix_wall_lj93.html, "wall/lj93"_fix_wall_lj93.html,
@ -558,7 +559,8 @@ potentials. Click on the style itself for a full description:
"table"_pair_table.html, "table"_pair_table.html,
"tersoff"_pair_tersoff.html, "tersoff"_pair_tersoff.html,
"tersoff/zbl"_pair_tersoff_zbl.html, "tersoff/zbl"_pair_tersoff_zbl.html,
"yukawa"_pair_yukawa.html :tb(c=4,ea=c) "yukawa"_pair_yukawa.html
"yukawa/colloid"_pair_yukawa_colloid.html :tb(c=4,ea=c)
These are pair styles contributed by users, which can be used if These are pair styles contributed by users, which can be used if
"LAMMPS is built with the appropriate package"_Section_start.html#2_3. "LAMMPS is built with the appropriate package"_Section_start.html#2_3.

View File

@ -15,7 +15,7 @@
</P> </P>
<PRE>atom_style style args <PRE>atom_style style args
</PRE> </PRE>
<UL><LI>style = <I>angle</I> or <I>atomic</I> or <I>bond</I> or <I>charge</I> or <I>dipole</I> or <I>dpd</I> or <I>ellipsoid</I> or <I>full</I> or <I>granular</I> or <I>molecular</I> or <I>peri</I> or <I>hybrid</I> <UL><LI>style = <I>angle</I> or <I>atomic</I> or <I>bond</I> or <I>charge</I> or <I>colloid</I> or <I>dipole</I> or <I>dpd</I> or <I>ellipsoid</I> or <I>full</I> or <I>granular</I> or <I>molecular</I> or <I>peri</I> or <I>hybrid</I>
</UL> </UL>
<PRE> args = none for any style except <I>hybrid</I> <PRE> args = none for any style except <I>hybrid</I>
<I>hybrid</I> args = list of one or more sub-styles <I>hybrid</I> args = list of one or more sub-styles
@ -57,33 +57,40 @@ quantities.
<TR><TD ><I>atomic</I> </TD><TD > only the default values </TD><TD > coarse-grain liquids, solids, metals </TD></TR> <TR><TD ><I>atomic</I> </TD><TD > only the default values </TD><TD > coarse-grain liquids, solids, metals </TD></TR>
<TR><TD ><I>bond</I> </TD><TD > bonds </TD><TD > bead-spring polymers </TD></TR> <TR><TD ><I>bond</I> </TD><TD > bonds </TD><TD > bead-spring polymers </TD></TR>
<TR><TD ><I>charge</I> </TD><TD > charge </TD><TD > atomic system with charges </TD></TR> <TR><TD ><I>charge</I> </TD><TD > charge </TD><TD > atomic system with charges </TD></TR>
<TR><TD ><I>colloid</I> </TD><TD > angular velocity </TD><TD > extended spherical particles </TD></TR>
<TR><TD ><I>dipole</I> </TD><TD > charge and dipole moment </TD><TD > atomic system with dipoles </TD></TR> <TR><TD ><I>dipole</I> </TD><TD > charge and dipole moment </TD><TD > atomic system with dipoles </TD></TR>
<TR><TD ><I>dpd</I> </TD><TD > default values, also communicates velocities </TD><TD > DPD models </TD></TR> <TR><TD ><I>dpd</I> </TD><TD > default values, also communicates velocities </TD><TD > DPD models </TD></TR>
<TR><TD ><I>ellipsoid</I> </TD><TD > quaternion for particle orientation, angular momentum </TD><TD > aspherical particles </TD></TR> <TR><TD ><I>ellipsoid</I> </TD><TD > quaternion for particle orientation, angular momentum </TD><TD > extended aspherical particles </TD></TR>
<TR><TD ><I>full</I> </TD><TD > molecular + charge </TD><TD > bio-molecules </TD></TR> <TR><TD ><I>full</I> </TD><TD > molecular + charge </TD><TD > bio-molecules </TD></TR>
<TR><TD ><I>granular</I> </TD><TD > diameter, density, angular velocity </TD><TD > granular models </TD></TR> <TR><TD ><I>granular</I> </TD><TD > diameter, density, angular velocity </TD><TD > granular models </TD></TR>
<TR><TD ><I>molecular</I> </TD><TD > bonds, angles, dihedrals, impropers </TD><TD > uncharged molecules </TD></TR> <TR><TD ><I>molecular</I> </TD><TD > bonds, angles, dihedrals, impropers </TD><TD > uncharged molecules </TD></TR>
<TR><TD ><I>peri</I> </TD><TD > density, volume </TD><TD > mesocopic Peridynamic models <TR><TD ><I>peri</I> </TD><TD > density, volume </TD><TD > mesocopic Peridynamic models
</TD></TR></TABLE></DIV> </TD></TR></TABLE></DIV>
<P>All of the styles define point particles, except the <I>ellipsoid</I> and <P>All of the styles define point particles, except the <I>colloid</I>,
<I>granular</I> and <I>peri</I> styles. These define finite-size particles. <I>dipole</I>, <I>ellipsoid</I>, <I>granular</I>, and <I>peri</I> styles. These define
For <I>ellipsoidal</I> systems, the <A HREF = "shape.html">shape</A> command is used to finite-size particles. For <I>colloid</I>, <I>dipole</I>, and <I>ellipsoid</I>
specify the size and shape of particles, which can be spherical or systems, the <A HREF = "shape.html">shape</A> command is used to specify the size
aspherical. For <I>granular</I> systems, the particles are spherical and and shape of particles on a per-type basis, which is spherical for
each has a specified diameter. For <I>peri</I> systems, the particles are <I>colloid</I> and <I>dipole</I> particles and spherical or aspherical for
spherical and each has a specified volume. <I>ellipsoid</I> particles. For <I>granular</I> systems, the particles are
spherical and each has a per-particle specified diameter. For <I>peri</I>
systems, the particles are spherical and each has a per-particle
specified volume.
</P> </P>
<P>All of the styles assign mass to particles on a per-type basis, using <P>All of the styles assign mass to particles on a per-type basis, using
the <A HREF = "mass.html">mass</A> command, except the <I>granular</I> and <I>peri</I> styles. the <A HREF = "mass.html">mass</A> command, except the <I>granular</I> and <I>peri</I> styles
For <I>granular</I> systems, the specified diameter and density are used to which assign mass on a per-particle basis. For <I>granular</I> systems,
calculate each particle's mass. For <I>peri</I> systems, the speficied the specified diameter and density are used to calculate each
volume and density are used to calculate each particle's mass. particle's mass. For <I>peri</I> systems, the speficied volume and density
are used to calculate each particle's mass.
</P> </P>
<P>Only the <I>dpd</I> and <I>granular</I> styles communicate velocities with ghost <P>Only the <I>colloid</I>, <I>dpd</I>, and <I>granular</I> styles communicate
atoms; the others do not. This is because the pairwise interactions velocities and angular velocities (if defined) with ghost atoms; the
calculated by the <A HREF = "pair_dpd.html">pair_style dpd</A> and <A HREF = "pair_gran.html">pair_style others do not. This is because the pairwise interactions calculated
granular</A> commands require velocities. by the pair styles that typically use these atom styles
(e.g. <A HREF = "pair_dpd.html">pair_style dpd</A> and <A HREF = "pair_gran.html">pair_style
granular</A>) require velocities of both particles.
</P> </P>
<HR> <HR>
@ -111,12 +118,13 @@ section</A>.
</P> </P>
<P>The <I>angle</I>, <I>bond</I>, <I>full</I>, and <I>molecular</I> styles are part of the <P>The <I>angle</I>, <I>bond</I>, <I>full</I>, and <I>molecular</I> styles are part of the
"molecular" package. The <I>granular</I> style is part of the "granular" "molecular" package. The <I>granular</I> style is part of the "granular"
package. The <I>dpd</I> style is part of the "dpd" package. The <I>dipole</I> package. The <I>dpd</I> style is part of the "dpd" package. The <I>colloid</I>
style is part of the "dipole" package. The <I>ellipsoid</I> style is part style is part of the "colloid" package. The <I>dipole</I> style is part of
of the "asphere" package. The <I>peri</I> style is part of the "peri" the "dipole" package. The <I>ellipsoid</I> style is part of the "asphere"
package for Peridynamics. They are only enabled if LAMMPS was built package. The <I>peri</I> style is part of the "peri" package for
with that package. See the <A HREF = "Section_start.html#2_3">Making LAMMPS</A> Peridynamics. They are only enabled if LAMMPS was built with that
section for more info. package. See the <A HREF = "Section_start.html#2_3">Making LAMMPS</A> section for
more info.
</P> </P>
<P><B>Related commands:</B> <P><B>Related commands:</B>
</P> </P>

View File

@ -12,7 +12,7 @@ atom_style command :h3
atom_style style args :pre atom_style style args :pre
style = {angle} or {atomic} or {bond} or {charge} or {dipole} or \ style = {angle} or {atomic} or {bond} or {charge} or {colloid} or {dipole} or \
{dpd} or {ellipsoid} or {full} or {granular} or {molecular} or \ {dpd} or {ellipsoid} or {full} or {granular} or {molecular} or \
{peri} or {hybrid} :ul {peri} or {hybrid} :ul
args = none for any style except {hybrid} args = none for any style except {hybrid}
@ -54,32 +54,39 @@ quantities.
{atomic} | only the default values | coarse-grain liquids, solids, metals | {atomic} | only the default values | coarse-grain liquids, solids, metals |
{bond} | bonds | bead-spring polymers | {bond} | bonds | bead-spring polymers |
{charge} | charge | atomic system with charges | {charge} | charge | atomic system with charges |
{colloid} | angular velocity | extended spherical particles |
{dipole} | charge and dipole moment | atomic system with dipoles | {dipole} | charge and dipole moment | atomic system with dipoles |
{dpd} | default values, also communicates velocities | DPD models | {dpd} | default values, also communicates velocities | DPD models |
{ellipsoid} | quaternion for particle orientation, angular momentum | aspherical particles | {ellipsoid} | quaternion for particle orientation, angular momentum | extended aspherical particles |
{full} | molecular + charge | bio-molecules | {full} | molecular + charge | bio-molecules |
{granular} | diameter, density, angular velocity | granular models | {granular} | diameter, density, angular velocity | granular models |
{molecular} | bonds, angles, dihedrals, impropers | uncharged molecules | {molecular} | bonds, angles, dihedrals, impropers | uncharged molecules |
{peri} | density, volume | mesocopic Peridynamic models :tb(c=3,s=|) {peri} | density, volume | mesocopic Peridynamic models :tb(c=3,s=|)
All of the styles define point particles, except the {ellipsoid} and All of the styles define point particles, except the {colloid},
{granular} and {peri} styles. These define finite-size particles. {dipole}, {ellipsoid}, {granular}, and {peri} styles. These define
For {ellipsoidal} systems, the "shape"_shape.html command is used to finite-size particles. For {colloid}, {dipole}, and {ellipsoid}
specify the size and shape of particles, which can be spherical or systems, the "shape"_shape.html command is used to specify the size
aspherical. For {granular} systems, the particles are spherical and and shape of particles on a per-type basis, which is spherical for
each has a specified diameter. For {peri} systems, the particles are {colloid} and {dipole} particles and spherical or aspherical for
spherical and each has a specified volume. {ellipsoid} particles. For {granular} systems, the particles are
spherical and each has a per-particle specified diameter. For {peri}
systems, the particles are spherical and each has a per-particle
specified volume.
All of the styles assign mass to particles on a per-type basis, using All of the styles assign mass to particles on a per-type basis, using
the "mass"_mass.html command, except the {granular} and {peri} styles. the "mass"_mass.html command, except the {granular} and {peri} styles
For {granular} systems, the specified diameter and density are used to which assign mass on a per-particle basis. For {granular} systems,
calculate each particle's mass. For {peri} systems, the speficied the specified diameter and density are used to calculate each
volume and density are used to calculate each particle's mass. particle's mass. For {peri} systems, the speficied volume and density
are used to calculate each particle's mass.
Only the {dpd} and {granular} styles communicate velocities with ghost Only the {colloid}, {dpd}, and {granular} styles communicate
atoms; the others do not. This is because the pairwise interactions velocities and angular velocities (if defined) with ghost atoms; the
calculated by the "pair_style dpd"_pair_dpd.html and "pair_style others do not. This is because the pairwise interactions calculated
granular"_pair_gran.html commands require velocities. by the pair styles that typically use these atom styles
(e.g. "pair_style dpd"_pair_dpd.html and "pair_style
granular"_pair_gran.html) require velocities of both particles.
:line :line
@ -107,12 +114,13 @@ This command cannot be used after the simulation box is defined by a
The {angle}, {bond}, {full}, and {molecular} styles are part of the The {angle}, {bond}, {full}, and {molecular} styles are part of the
"molecular" package. The {granular} style is part of the "granular" "molecular" package. The {granular} style is part of the "granular"
package. The {dpd} style is part of the "dpd" package. The {dipole} package. The {dpd} style is part of the "dpd" package. The {colloid}
style is part of the "dipole" package. The {ellipsoid} style is part style is part of the "colloid" package. The {dipole} style is part of
of the "asphere" package. The {peri} style is part of the "peri" the "dipole" package. The {ellipsoid} style is part of the "asphere"
package for Peridynamics. They are only enabled if LAMMPS was built package. The {peri} style is part of the "peri" package for
with that package. See the "Making LAMMPS"_Section_start.html#2_3 Peridynamics. They are only enabled if LAMMPS was built with that
section for more info. package. See the "Making LAMMPS"_Section_start.html#2_3 section for
more info.
[Related commands:] [Related commands:]

View File

@ -164,6 +164,7 @@ list of fix styles available in LAMMPS:
<LI><A HREF = "fix_ttm.html">ttm</A> - two-temperature model for electronic/atomic coupling <LI><A HREF = "fix_ttm.html">ttm</A> - two-temperature model for electronic/atomic coupling
<LI><A HREF = "fix_viscosity.html">viscosity</A> - Muller-Plathe momentum exchange for viscosity calculation <LI><A HREF = "fix_viscosity.html">viscosity</A> - Muller-Plathe momentum exchange for viscosity calculation
<LI><A HREF = "fix_viscous.html">viscous</A> - viscous damping for granular simulations <LI><A HREF = "fix_viscous.html">viscous</A> - viscous damping for granular simulations
<LI><A HREF = "fix_wall_colloid.html">wall/colloid</A> - Lennard-Jones wall interacting with finite-size particles
<LI><A HREF = "fix_wall_gran.html">wall/gran</A> - frictional wall(s) for granular simulations <LI><A HREF = "fix_wall_gran.html">wall/gran</A> - frictional wall(s) for granular simulations
<LI><A HREF = "fix_wall_lj126.html">wall/lj126</A> - Lennard-Jones 12-6 wall <LI><A HREF = "fix_wall_lj126.html">wall/lj126</A> - Lennard-Jones 12-6 wall
<LI><A HREF = "fix_wall_lj93.html">wall/lj93</A> - Lennard-Jones 9-3 wall <LI><A HREF = "fix_wall_lj93.html">wall/lj93</A> - Lennard-Jones 9-3 wall

View File

@ -173,8 +173,8 @@ list of fix styles available in LAMMPS:
"viscosity"_fix_viscosity.html - Muller-Plathe momentum exchange for \ "viscosity"_fix_viscosity.html - Muller-Plathe momentum exchange for \
viscosity calculation viscosity calculation
"viscous"_fix_viscous.html - viscous damping for granular simulations "viscous"_fix_viscous.html - viscous damping for granular simulations
"wall/gran"_fix_wall_gran.html - frictional wall(s) for \ "wall/colloid"_fix_wall_colloid.html - Lennard-Jones wall interacting with finite-size particles
granular simulations "wall/gran"_fix_wall_gran.html - frictional wall(s) for granular simulations
"wall/lj126"_fix_wall_lj126.html - Lennard-Jones 12-6 wall "wall/lj126"_fix_wall_lj126.html - Lennard-Jones 12-6 wall
"wall/lj93"_fix_wall_lj93.html - Lennard-Jones 9-3 wall "wall/lj93"_fix_wall_lj93.html - Lennard-Jones 9-3 wall
"wall/reflect"_fix_wall_reflect.html - reflecting wall(s) "wall/reflect"_fix_wall_reflect.html - reflecting wall(s)

View File

@ -142,6 +142,7 @@ the pair_style command, and coefficients specified by the associated
<LI><A HREF = "pair_tersoff.html">pair_style tersoff</A> - Tersoff 3-body potential <LI><A HREF = "pair_tersoff.html">pair_style tersoff</A> - Tersoff 3-body potential
<LI><A HREF = "pair_tersoff.html">pair_style tersoff/zbl</A> - Tersoff/ZBL 3-body potential <LI><A HREF = "pair_tersoff.html">pair_style tersoff/zbl</A> - Tersoff/ZBL 3-body potential
<LI><A HREF = "pair_yukawa.html">pair_style yukawa</A> - Yukawa potential <LI><A HREF = "pair_yukawa.html">pair_style yukawa</A> - Yukawa potential
<LI><A HREF = "pair_yukawa_colloid.html">pair_style yukawa/colloid</A> - screened Yukawa potential for finite-size particles
</UL> </UL>
<P>There are also additional pair styles submitted by users which are <P>There are also additional pair styles submitted by users which are
included in the LAMMPS distribution. The list of these with links to included in the LAMMPS distribution. The list of these with links to

View File

@ -138,7 +138,8 @@ the pair_style command, and coefficients specified by the associated
"pair_style table"_pair_table.html - tabulated pair potential "pair_style table"_pair_table.html - tabulated pair potential
"pair_style tersoff"_pair_tersoff.html - Tersoff 3-body potential "pair_style tersoff"_pair_tersoff.html - Tersoff 3-body potential
"pair_style tersoff/zbl"_pair_tersoff.html - Tersoff/ZBL 3-body potential "pair_style tersoff/zbl"_pair_tersoff.html - Tersoff/ZBL 3-body potential
"pair_style yukawa"_pair_yukawa.html - Yukawa potential :ul "pair_style yukawa"_pair_yukawa.html - Yukawa potential
"pair_style yukawa/colloid"_pair_yukawa_colloid.html - screened Yukawa potential for finite-size particles :ul
There are also additional pair styles submitted by users which are There are also additional pair styles submitted by users which are
included in the LAMMPS distribution. The list of these with links to included in the LAMMPS distribution. The list of these with links to

View File

@ -59,6 +59,11 @@ Lennard-Jones formula
<P>with A_ss set appropriately, which results from letting both particle <P>with A_ss set appropriately, which results from letting both particle
sizes go to zero. sizes go to zero.
</P> </P>
<P>When used in combination with <A HREF = "pair_colloid.html">pair_style
yukawa/colloid</A>, the two terms become the so-called
DLVO potential, which combines electrostatic repulsion and van der
Waals attraction.
</P>
<P>The following coefficients must be defined for each pair of atoms <P>The following coefficients must be defined for each pair of atoms
types via the <A HREF = "pair_coeff.html">pair_coeff</A> command as in the examples types via the <A HREF = "pair_coeff.html">pair_coeff</A> command as in the examples
above, or in the data file or restart files read by the above, or in the data file or restart files read by the

View File

@ -56,6 +56,11 @@ Lennard-Jones formula
with A_ss set appropriately, which results from letting both particle with A_ss set appropriately, which results from letting both particle
sizes go to zero. sizes go to zero.
When used in combination with "pair_style
yukawa/colloid"_pair_colloid.html, the two terms become the so-called
DLVO potential, which combines electrostatic repulsion and van der
Waals attraction.
The following coefficients must be defined for each pair of atoms The following coefficients must be defined for each pair of atoms
types via the "pair_coeff"_pair_coeff.html command as in the examples types via the "pair_coeff"_pair_coeff.html command as in the examples
above, or in the data file or restart files read by the above, or in the data file or restart files read by the

View File

@ -144,6 +144,7 @@ the pair_style command, and coefficients specified by the associated
<LI><A HREF = "pair_tersoff.html">pair_style tersoff</A> - Tersoff 3-body potential <LI><A HREF = "pair_tersoff.html">pair_style tersoff</A> - Tersoff 3-body potential
<LI><A HREF = "pair_tersoff.html">pair_style tersoff/zbl</A> - Tersoff/ZBL 3-body potential <LI><A HREF = "pair_tersoff.html">pair_style tersoff/zbl</A> - Tersoff/ZBL 3-body potential
<LI><A HREF = "pair_yukawa.html">pair_style yukawa</A> - Yukawa potential <LI><A HREF = "pair_yukawa.html">pair_style yukawa</A> - Yukawa potential
<LI><A HREF = "pair_yukawa_colloid.html">pair_style yukawa/colloid</A> - screened Yukawa potential for finite-size particles
</UL> </UL>
<P>There are also additional pair styles submitted by users which are <P>There are also additional pair styles submitted by users which are
included in the LAMMPS distribution. The list of these with links to included in the LAMMPS distribution. The list of these with links to

View File

@ -140,7 +140,8 @@ the pair_style command, and coefficients specified by the associated
"pair_style table"_pair_table.html - tabulated pair potential "pair_style table"_pair_table.html - tabulated pair potential
"pair_style tersoff"_pair_tersoff.html - Tersoff 3-body potential "pair_style tersoff"_pair_tersoff.html - Tersoff 3-body potential
"pair_style tersoff/zbl"_pair_tersoff.html - Tersoff/ZBL 3-body potential "pair_style tersoff/zbl"_pair_tersoff.html - Tersoff/ZBL 3-body potential
"pair_style yukawa"_pair_yukawa.html - Yukawa potential :ul "pair_style yukawa"_pair_yukawa.html - Yukawa potential
"pair_style yukawa/colloid"_pair_yukawa_colloid.html - screened Yukawa potential for finite-size particles :ul
There are also additional pair styles submitted by users which are There are also additional pair styles submitted by users which are
included in the LAMMPS distribution. The list of these with links to included in the LAMMPS distribution. The list of these with links to

View File

@ -0,0 +1,126 @@
<HTML>
<CENTER><A HREF = "http://lammps.sandia.gov">LAMMPS WWW Site</A> - <A HREF = "Manual.html">LAMMPS Documentation</A> - <A HREF = "Section_commands.html#comm">LAMMPS Commands</A>
</CENTER>
<HR>
<H3>pair_style yukawa/colloid command
</H3>
<P><B>Syntax:</B>
</P>
<PRE>pair_style yukawa/colloid kappa cutoff
</PRE>
<UL><LI>kappa = screening length (inverse distance units)
<LI>cutoff = global cutoff for colloidal Yukawa interactions (distance units)
</UL>
<P><B>Examples:</B>
</P>
<PRE>pair_style yukawa/colloid 2.0 2.5
pair_coeff 1 1 100.0 2.3
pair_coeff * * 100.0
</PRE>
<P><B>Description:</B>
</P>
<P>Style <I>yukawa/colloid</I> computes pairwise interactions with the formula
</P>
<CENTER><IMG SRC = "Eqs/pair_yukawa_colloid.jpg">
</CENTER>
<P>where Ri and Rj are the radii of the two particles and Rc is the
cutoff.
</P>
<P>In contrast to <A HREF = "pair_yukawa.html">pair_style yukawa</A>, this functional
form arises from the Coulombic interaction between two colloid
particles, screened due to the presence of an electrolyte.
<A HREF = "pair_yukawa.html">Pair_style yukawa</A> is a screened Coulombic potential
between two point-charges and uses no such approximation.
</P>
<P>This potential applies to nearby particle pairs for which the Derjagin
approximation holds, meaning h << Ri + Rj, where h is the
surface-to-surface separation of the two particles.
</P>
<P>When used in combination with <A HREF = "pair_colloid.html">pair_style colloid</A>,
the two terms become the so-called DLVO potential, which combines
electrostatic repulsion and van der Waals attraction.
</P>
<P>The following coefficients must be defined for each pair of atoms
types via the <A HREF = "pair_coeff.html">pair_coeff</A> command as in the examples
above, or in the data file or restart files read by the
<A HREF = "read_data.html">read_data</A> or <A HREF = "read_restart.html">read_restart</A>
commands, or by mixing as described below:
</P>
<UL><LI>A (energy/distance units)
<LI>cutoff (distance units)
</UL>
<P>The prefactor A is determined from the relationship between surface
charge and surface potential due to the presence of electrolyte. Note
that the A for this potential style has different units than the A
used in <A HREF = "pair_yukawa.html">pair_style yukawa</A>. For low surface
potentials, i.e. less than about 25 mV, A can be written as:
</P>
<PRE>A = 2 * PI * R*eps*eps0 * kappa * psi^2
</PRE>
<P>where
</P>
<UL><LI>R = colloid radius (distance units)
<LI>eps0 = permittivity of free space (charge^2/energy/distance units)
<LI>eps = relative permittivity of fluid medium (dimensionless)
<LI>kappa = inverse screening length (1/distance units)
<LI>psi = surface potential (energy/charge units)
</UL>
<P>The last coefficient is optional. If not specified, the global
yukawa/colloid cutoff is used.
</P>
<HR>
<P><B>Mixing, shift, table, tail correction, restart, rRESPA info</B>:
</P>
<P>For atom type pairs I,J and I != J, the A coefficient and cutoff
distance for this pair style can be mixed. A is an energy value mixed
like a LJ epsilon. The default mix value is <I>geometric</I>. See the
"pair_modify" command for details.
</P>
<P>This pair style supports the <A HREF = "pair_modify.html">pair_modify</A> shift
option for the energy of the pair interaction.
</P>
<P>The <A HREF = "pair_modify.html">pair_modify</A> table option is not relevant
for this pair style.
</P>
<P>This pair style does not support the <A HREF = "pair_modify.html">pair_modify</A>
tail option for adding long-range tail corrections to energy and
pressure.
</P>
<P>This pair style writes its information to <A HREF = "restart.html">binary restart
files</A>, so pair_style and pair_coeff commands do not need
to be specified in an input script that reads a restart file.
</P>
<P>This pair style can only be used via the <I>pair</I> keyword of the
<A HREF = "run_style.html">run_style respa</A> command. It does not support the
<I>inner</I>, <I>middle</I>, <I>outer</I> keywords.
</P>
<HR>
<P><B>Restrictions:</B>
</P>
<P>This style is part of the "colloid" package. It is only enabled if
LAMMPS was built with that package. See the <A HREF = "Section_start.html#2_3">Making
LAMMPS</A> section for more info.
</P>
<P>Because this potential uses the radii of the particles, the atom style
must support particles whose size is set via the <A HREF = "shape.html">shape</A>
command. For example <A HREF = "atom_style.html">atom_style</A> colloid or
ellipsoid. Only spherical mono-disperse particles are currently
allowed for pair_style yukawa/colloid, which means the 3 shape
diameters for all particle types must be the same.
</P>
<P><B>Related commands:</B>
</P>
<P><A HREF = "pair_coeff.html">pair_coeff</A>
</P>
<P><B>Default:</B> none
</P>
</HTML>

121
doc/pair_yukawa_colloid.txt Normal file
View File

@ -0,0 +1,121 @@
"LAMMPS WWW Site"_lws - "LAMMPS Documentation"_ld - "LAMMPS Commands"_lc :c
:link(lws,http://lammps.sandia.gov)
:link(ld,Manual.html)
:link(lc,Section_commands.html#comm)
:line
pair_style yukawa/colloid command :h3
[Syntax:]
pair_style yukawa/colloid kappa cutoff :pre
kappa = screening length (inverse distance units)
cutoff = global cutoff for colloidal Yukawa interactions (distance units) :ul
[Examples:]
pair_style yukawa/colloid 2.0 2.5
pair_coeff 1 1 100.0 2.3
pair_coeff * * 100.0 :pre
[Description:]
Style {yukawa/colloid} computes pairwise interactions with the formula
:c,image(Eqs/pair_yukawa_colloid.jpg)
where Ri and Rj are the radii of the two particles and Rc is the
cutoff.
In contrast to "pair_style yukawa"_pair_yukawa.html, this functional
form arises from the Coulombic interaction between two colloid
particles, screened due to the presence of an electrolyte.
"Pair_style yukawa"_pair_yukawa.html is a screened Coulombic potential
between two point-charges and uses no such approximation.
This potential applies to nearby particle pairs for which the Derjagin
approximation holds, meaning h << Ri + Rj, where h is the
surface-to-surface separation of the two particles.
When used in combination with "pair_style colloid"_pair_colloid.html,
the two terms become the so-called DLVO potential, which combines
electrostatic repulsion and van der Waals attraction.
The following coefficients must be defined for each pair of atoms
types via the "pair_coeff"_pair_coeff.html command as in the examples
above, or in the data file or restart files read by the
"read_data"_read_data.html or "read_restart"_read_restart.html
commands, or by mixing as described below:
A (energy/distance units)
cutoff (distance units) :ul
The prefactor A is determined from the relationship between surface
charge and surface potential due to the presence of electrolyte. Note
that the A for this potential style has different units than the A
used in "pair_style yukawa"_pair_yukawa.html. For low surface
potentials, i.e. less than about 25 mV, A can be written as:
A = 2 * PI * R*eps*eps0 * kappa * psi^2 :pre
where
R = colloid radius (distance units)
eps0 = permittivity of free space (charge^2/energy/distance units)
eps = relative permittivity of fluid medium (dimensionless)
kappa = inverse screening length (1/distance units)
psi = surface potential (energy/charge units) :ul
The last coefficient is optional. If not specified, the global
yukawa/colloid cutoff is used.
:line
[Mixing, shift, table, tail correction, restart, rRESPA info]:
For atom type pairs I,J and I != J, the A coefficient and cutoff
distance for this pair style can be mixed. A is an energy value mixed
like a LJ epsilon. The default mix value is {geometric}. See the
"pair_modify" command for details.
This pair style supports the "pair_modify"_pair_modify.html shift
option for the energy of the pair interaction.
The "pair_modify"_pair_modify.html table option is not relevant
for this pair style.
This pair style does not support the "pair_modify"_pair_modify.html
tail option for adding long-range tail corrections to energy and
pressure.
This pair style writes its information to "binary restart
files"_restart.html, so pair_style and pair_coeff commands do not need
to be specified in an input script that reads a restart file.
This pair style can only be used via the {pair} keyword of the
"run_style respa"_run_style.html command. It does not support the
{inner}, {middle}, {outer} keywords.
:line
[Restrictions:]
This style is part of the "colloid" package. It is only enabled if
LAMMPS was built with that package. See the "Making
LAMMPS"_Section_start.html#2_3 section for more info.
Because this potential uses the radii of the particles, the atom style
must support particles whose size is set via the "shape"_shape.html
command. For example "atom_style"_atom_style.html colloid or
ellipsoid. Only spherical mono-disperse particles are currently
allowed for pair_style yukawa/colloid, which means the 3 shape
diameters for all particle types must be the same.
[Related commands:]
"pair_coeff"_pair_coeff.html
[Default:] none

View File

@ -270,6 +270,7 @@ of analysis.
<TR><TD >atomic</TD><TD > atom-ID atom-type x y z</TD></TR> <TR><TD >atomic</TD><TD > atom-ID atom-type x y z</TD></TR>
<TR><TD >bond</TD><TD > atom-ID molecule-ID atom-type x y z</TD></TR> <TR><TD >bond</TD><TD > atom-ID molecule-ID atom-type x y z</TD></TR>
<TR><TD >charge</TD><TD > atom-ID atom-type q x y z</TD></TR> <TR><TD >charge</TD><TD > atom-ID atom-type q x y z</TD></TR>
<TR><TD >colloid</TD><TD > atom-ID atom-type x y z</TD></TR>
<TR><TD >dipole</TD><TD > atom-ID atom-type q x y z mux muy muz</TD></TR> <TR><TD >dipole</TD><TD > atom-ID atom-type q x y z mux muy muz</TD></TR>
<TR><TD >dpd</TD><TD > atom-ID atom-type x y z</TD></TR> <TR><TD >dpd</TD><TD > atom-ID atom-type x y z</TD></TR>
<TR><TD >ellipsoid</TD><TD > atom-ID atom-type x y z quatw quati quatj quatk</TD></TR> <TR><TD >ellipsoid</TD><TD > atom-ID atom-type x y z quatw quati quatj quatk</TD></TR>

View File

@ -250,6 +250,7 @@ angle: atom-ID molecule-ID atom-type x y z
atomic: atom-ID atom-type x y z atomic: atom-ID atom-type x y z
bond: atom-ID molecule-ID atom-type x y z bond: atom-ID molecule-ID atom-type x y z
charge: atom-ID atom-type q x y z charge: atom-ID atom-type q x y z
colloid: atom-ID atom-type x y z
dipole: atom-ID atom-type q x y z mux muy muz dipole: atom-ID atom-type q x y z mux muy muz
dpd: atom-ID atom-type x y z dpd: atom-ID atom-type x y z
ellipsoid: atom-ID atom-type x y z quatw quati quatj quatk ellipsoid: atom-ID atom-type x y z quatw quati quatj quatk

View File

@ -62,14 +62,13 @@ pages of individual commands for details.
</P> </P>
<P>Note that the shape command can only be used if the <A HREF = "atom_style.html">atom <P>Note that the shape command can only be used if the <A HREF = "atom_style.html">atom
style</A> requires per-type atom shape to be set. style</A> requires per-type atom shape to be set.
Currently, only the <I>dipole</I> and <I>ellipsoid</I> styles do. The Currently, only the <I>colloid</I>, <I>dipole</I>, and <I>ellipsoid</I> styles do.
<I>granular</I> and <I>peri</I> styles require the shape to be set for indivual The <I>granular</I> and <I>peri</I> styles also define finite-size spherical
particles, not types. For these styles, the only option currently particles, but their size is set on a per-particle basis. These are
allowed is for spherical particles, so a single diameter value are defined in the data file read by the <A HREF = "read_data.html">read_data</A>
suffices to determine the shape. Per-atom diameters are defined in command, or set to default values by the
the data file read by the <A HREF = "read_data.html">read_data</A> command, or set <A HREF = "create_atoms.html">create_atoms</A> command, or set to new values by the
to default values by the <A HREF = "create_atoms.html">create_atoms</A> command, or <A HREF = "set.html">set diameter</A> command.
set to new values by the <A HREF = "set.html">set diamter</A> command.
</P> </P>
<P>Dipoles use the atom shape to compute a moment of inertia for <P>Dipoles use the atom shape to compute a moment of inertia for
rotational energy. See the <A HREF = "pair_dipole.html">pair_style dipole</A> rotational energy. See the <A HREF = "pair_dipole.html">pair_style dipole</A>
@ -79,8 +78,8 @@ particles are assumed to be spherical.
<P>Ellipsoids use the atom shape to compute a generalized inertia tensor. <P>Ellipsoids use the atom shape to compute a generalized inertia tensor.
For example, a shape setting of 3.0 1.0 1.0 defines a particle 3x For example, a shape setting of 3.0 1.0 1.0 defines a particle 3x
longer in x than in y or z and with a circular cross-section in yz. longer in x than in y or z and with a circular cross-section in yz.
Degenerate ellipsoids which are spherical can be defined by setting Ellipsoids which are in fact spherical can be defined by setting all 3
all 3 shape components the same. shape components the same.
</P> </P>
<P>If you define a <A HREF = "atom_style.html">hybrid atom style</A> which includes one <P>If you define a <A HREF = "atom_style.html">hybrid atom style</A> which includes one
(or more) sub-styles which require per-type shape and one (or more) (or more) sub-styles which require per-type shape and one (or more)

View File

@ -59,14 +59,13 @@ pages of individual commands for details.
Note that the shape command can only be used if the "atom Note that the shape command can only be used if the "atom
style"_atom_style.html requires per-type atom shape to be set. style"_atom_style.html requires per-type atom shape to be set.
Currently, only the {dipole} and {ellipsoid} styles do. The Currently, only the {colloid}, {dipole}, and {ellipsoid} styles do.
{granular} and {peri} styles require the shape to be set for indivual The {granular} and {peri} styles also define finite-size spherical
particles, not types. For these styles, the only option currently particles, but their size is set on a per-particle basis. These are
allowed is for spherical particles, so a single diameter value are defined in the data file read by the "read_data"_read_data.html
suffices to determine the shape. Per-atom diameters are defined in command, or set to default values by the
the data file read by the "read_data"_read_data.html command, or set "create_atoms"_create_atoms.html command, or set to new values by the
to default values by the "create_atoms"_create_atoms.html command, or "set diameter"_set.html command.
set to new values by the "set diamter"_set.html command.
Dipoles use the atom shape to compute a moment of inertia for Dipoles use the atom shape to compute a moment of inertia for
rotational energy. See the "pair_style dipole"_pair_dipole.html rotational energy. See the "pair_style dipole"_pair_dipole.html
@ -76,8 +75,8 @@ particles are assumed to be spherical.
Ellipsoids use the atom shape to compute a generalized inertia tensor. Ellipsoids use the atom shape to compute a generalized inertia tensor.
For example, a shape setting of 3.0 1.0 1.0 defines a particle 3x For example, a shape setting of 3.0 1.0 1.0 defines a particle 3x
longer in x than in y or z and with a circular cross-section in yz. longer in x than in y or z and with a circular cross-section in yz.
Degenerate ellipsoids which are spherical can be defined by setting Ellipsoids which are in fact spherical can be defined by setting all 3
all 3 shape components the same. shape components the same.
If you define a "hybrid atom style"_atom_style.html which includes one If you define a "hybrid atom style"_atom_style.html which includes one
(or more) sub-styles which require per-type shape and one (or more) (or more) sub-styles which require per-type shape and one (or more)