Update example and docs.
This commit is contained in:
@ -33,7 +33,7 @@ Syntax
|
||||
* R_1, R_2,... = list of cutoff radii, one for each type (distance units)
|
||||
* w_1, w_2,... = list of neighbor weights, one for each type
|
||||
* zero or more keyword/value pairs may be appended
|
||||
* keyword = *rmin0* or *switchflag* or *bzeroflag* or *quadraticflag* or *chem* or *bnormflag* or *wselfallflag* or *bikflag* or *switchinnerflag* or *sinner* or *dinner*
|
||||
* keyword = *rmin0* or *switchflag* or *bzeroflag* or *quadraticflag* or *chem* or *bnormflag* or *wselfallflag* or *bikflag* or *switchinnerflag* or *sinner* or *dinner* or *dgradflag*
|
||||
|
||||
.. parsed-literal::
|
||||
|
||||
@ -66,6 +66,9 @@ Syntax
|
||||
*sinnerlist* = *ntypes* values of *Sinner* (distance units)
|
||||
*dinner* values = *dinnerlist*
|
||||
*dinnerlist* = *ntypes* values of *Dinner* (distance units)
|
||||
*dgradflag* value = *0* or *1*
|
||||
*0* = bispectrum descriptor gradients are summed over neighbors
|
||||
*1* = bispectrum descriptor gradients are not summed over neighbors
|
||||
|
||||
Examples
|
||||
""""""""
|
||||
@ -340,6 +343,14 @@ When the central atom and the neighbor atom have different types,
|
||||
the values of :math:`S_{inner}` and :math:`D_{inner}` are
|
||||
the arithmetic means of the values for both types.
|
||||
|
||||
The keyword *dgradflag* determines whether or not to sum the bispectrum descriptor gradients over neighboring atoms *i'*
|
||||
as explained with *snad/atom* above. If *dgradflag* is set to 1 then the descriptor gradient rows of the global snap array
|
||||
are not summed over atoms *i'*. Instead, each row corresponds to a single term :math:`\frac{\partial {B_{i,k} }}{\partial {r}^a_j}`
|
||||
where :math:`a` is the Cartesian direction for the gradient. This also changes
|
||||
the number of columns to be equal to the number of bispectrum components, with 3
|
||||
additional columns representing the indices :math:`i`, :math:`j`, and :math:`a`,
|
||||
as explained more in the Output info section below. The option *dgradflag=1* must be used with *bikflag=1*.
|
||||
|
||||
.. note::
|
||||
|
||||
If you have a bonded system, then the settings of :doc:`special_bonds
|
||||
@ -435,6 +446,36 @@ components. For the purposes of handling contributions to force, virial,
|
||||
and quadratic combinations, these :math:`N_{elem}^3` sub-blocks are
|
||||
treated as a single block of :math:`K N_{elem}^3` columns.
|
||||
|
||||
If the *bik* keyword is set to 1, then the first :math:`N` rows of the snap array
|
||||
correspond to :math:`B_{i,k}` instead of the sum over atoms :math:`i`. In this case, the entries in the final column for these rows
|
||||
are set to zero.
|
||||
|
||||
If the *dgradflag* keyword is set to 1, this changes the structure of the snap array completely.
|
||||
Here the *snad/atom* quantities are replaced with rows corresponding to descriptor
|
||||
gradient components
|
||||
|
||||
.. math::
|
||||
|
||||
\frac{\partial {B_{i,k} }}{\partial {r}^a_j}
|
||||
|
||||
where :math:`a` is the Cartesian direction for the gradient. The rows are organized in chunks, where each chunk corresponds to
|
||||
an atom :math:`j` in the system of :math:`N` atoms. The rows in an atom :math:`j` chunk correspond to neighbors :math:`i` of :math:`j`.
|
||||
The number of rows in the atom :math:`j` chunk is therefore equal to the number of neighbors :math:`N_{neighs}[j]` within the SNAP
|
||||
potential cutoff radius of atom :math:`j`, times 3 for each Cartesian direction.
|
||||
The total number of rows for these descriptor gradients is therefore
|
||||
|
||||
.. math::
|
||||
|
||||
3 \sum_j^{N} N_{neighs}[j].
|
||||
|
||||
For *dgradflag=1*, the number of columns is equal to the number of bispectrum components,
|
||||
plus 3 additional columns representing the indices :math:`i`, :math:`j`, and :math:`a` which
|
||||
identify the atoms :math:`i` and :math:`j`, and Cartesian direction :math:`a` for which
|
||||
a particular gradient :math:`\frac{\partial {B_{i,k} }}{\partial {r}^a_j}` belongs to. The reference energy and forces are also located in different parts of the array.
|
||||
The last 3 columns of the first :math:`N` rows belong to the reference potential force components.
|
||||
The first column of the last row, after the first :math:`N + 3 \sum_j^{N} N_{neighs}[j]` rows,
|
||||
contains the reference potential energy. The virial components are not used with this option.
|
||||
|
||||
These values can be accessed by any command that uses per-atom values
|
||||
from a compute as input. See the :doc:`Howto output <Howto_output>` doc
|
||||
page for an overview of LAMMPS output options. To see how this command
|
||||
|
||||
@ -1,9 +1 @@
|
||||
See `compute_snap_dgrad.py` for a test that compares the dBi/dRj from compute snap (`dbirjflag=1`) to the sum of dBi/dRj from usual compute snap (`dbirjflag=0`).
|
||||
|
||||
The format of the global array from `dbirjflag=1` is as follows.
|
||||
|
||||
The first N rows belong to bispectrum components for each atom, if we use `bikflag=1`. The first `K` columns correspond to each bispectrum coefficient. The final 3 columns contain reference force components for each atom.
|
||||
|
||||
The rows after the first N rows contain dBi/dRj values for all pairs. These values are arranged in row chunks for each atom `j`, where all the rows in a chunk are associated with the neighbors `i` of `j`, as well as the self-terms where `i=j`. So for atom `j`, the number of rows is equal to the number of atoms within the SNAP cutoff, plus 1 for the `i=j` terms, times 3 for each Cartesian component. The total number of dBi/dRj rows is therefore equal to `N*(Nneigh+1)*3`, and `Nneigh` may be different for each atom. To facilitate with determining which row belong to which atom pair `ij`, the last 3 columns contain indices; the 3rd to last column contains global indices of atoms `i` (the neighbors), the 2nd to last column contains global indices of atoms `j`, and the last column contains an index 0,1,2 for the Cartesian component. Like the `bik` rows, the first `K` columns correspond to each bispectrum coefficient.
|
||||
|
||||
Finally, the first column of the last row contains the reference energy.
|
||||
See `compute_snap_dgrad.py` for a test that compares the dBi/dRj from compute snap (`dgradflag=1`) to the sum of dBi/dRj from usual compute snap (`dgradflag=0`).
|
||||
|
||||
@ -1,8 +1,8 @@
|
||||
"""
|
||||
compute_snap_dgrad.py
|
||||
Purpose: Demonstrate extraction of descriptor gradient (dB/dR) array from compute snap.
|
||||
Show that dBi/dRj components summed over neighbors i yields same output as regular compute snap with dbirjflag=0.
|
||||
This shows that the dBi/dRj components extracted with dbirjflag=1 are correct.
|
||||
Show that dBi/dRj components summed over neighbors i yields same output as regular compute snap with dgradflag=0.
|
||||
This shows that the dBi/dRj components extracted with dgradflag=1 are correct.
|
||||
Serial syntax:
|
||||
python compute_snap_dgrad.py
|
||||
Parallel syntax:
|
||||
@ -24,7 +24,7 @@ from lammps import lammps, LMP_TYPE_ARRAY, LMP_STYLE_GLOBAL
|
||||
cmds = ["-screen", "none", "-log", "none"]
|
||||
lmp = lammps(cmdargs=cmds)
|
||||
|
||||
def run_lammps(dbirjflag):
|
||||
def run_lammps(dgradflag):
|
||||
lmp.command("clear")
|
||||
lmp.command("units metal")
|
||||
lmp.command("boundary p p p")
|
||||
@ -36,7 +36,7 @@ def run_lammps(dbirjflag):
|
||||
lmp.command("mass * 180.88")
|
||||
lmp.command("displace_atoms all random 0.01 0.01 0.01 123456")
|
||||
# Pair style
|
||||
snap_options=f'{rcutfac} {rfac0} {twojmax} {radelem1} {radelem2} {wj1} {wj2} rmin0 {rmin0} quadraticflag {quadratic} bzeroflag {bzero} switchflag {switch} bikflag {bikflag} dbirjflag {dbirjflag}'
|
||||
snap_options=f'{rcutfac} {rfac0} {twojmax} {radelem1} {radelem2} {wj1} {wj2} rmin0 {rmin0} quadraticflag {quadratic} bzeroflag {bzero} switchflag {switch} bikflag {bikflag} dgradflag {dgradflag}'
|
||||
lmp.command(f"pair_style zero {rcutfac}")
|
||||
lmp.command(f"pair_coeff * *")
|
||||
lmp.command(f"pair_style zbl {zblcutinner} {zblcutouter}")
|
||||
@ -70,7 +70,7 @@ quadratic=0
|
||||
bzero=0
|
||||
switch=0
|
||||
bikflag=1
|
||||
dbirjflag=1
|
||||
dgradflag=1
|
||||
|
||||
# Declare reference potential variables
|
||||
zblcutinner=4.0
|
||||
@ -84,7 +84,8 @@ else:
|
||||
nd = int(m*(m+1)*(m+2)/3)
|
||||
print(f"Number of descriptors based on twojmax : {nd}")
|
||||
|
||||
# Run lammps with dbirjflag on
|
||||
# Run lammps with dgradflag on
|
||||
print("Running with dgradflag on")
|
||||
run_lammps(1)
|
||||
|
||||
# Get global snap array
|
||||
@ -93,12 +94,12 @@ lmp_snap = lmp.numpy.extract_compute("snap",0, 2)
|
||||
# Extract dBj/dRi (includes dBi/dRi)
|
||||
natoms = lmp.get_natoms()
|
||||
fref1 = lmp_snap[0:natoms,-3:].flatten()
|
||||
eref1 = lmp_snap[-6,0]
|
||||
dbdr_length = np.shape(lmp_snap)[0]-(natoms)-6 # Length of neighborlist pruned dbdr array
|
||||
eref1 = lmp_snap[-1,0] #lmp_snap[-6,0]
|
||||
dbdr_length = np.shape(lmp_snap)[0]-(natoms) - 1 #-6 # Length of neighborlist pruned dbdr array
|
||||
dBdR = lmp_snap[natoms:(natoms+dbdr_length),:]
|
||||
force_indices = lmp_snap[natoms:(natoms+dbdr_length),-3:].astype(np.int32)
|
||||
|
||||
# Sum over neighbors j for each atom i, like dbirjflag=0 does.
|
||||
# Sum over neighbors j for each atom i, like dgradflag=0 does.
|
||||
array1 = np.zeros((3*natoms,nd))
|
||||
a = 0
|
||||
for k in range(0,nd):
|
||||
@ -111,7 +112,8 @@ for k in range(0,nd):
|
||||
if (a>2):
|
||||
a=0
|
||||
|
||||
# Run lammps with dbirjflag off
|
||||
# Run lammps with dgradflag off
|
||||
print("Running with dgradflag off")
|
||||
run_lammps(0)
|
||||
|
||||
# Get global snap array
|
||||
@ -121,7 +123,7 @@ fref2 = lmp_snap[natoms:(natoms+3*natoms),-1]
|
||||
eref2 = lmp_snap[0,-1]
|
||||
array2 = lmp_snap[natoms:natoms+(3*natoms), nd:-1]
|
||||
|
||||
# Sum the arrays obtained from dbirjflag on and off.
|
||||
# Sum the arrays obtained from dgradflag on and off.
|
||||
summ = array1 + array2
|
||||
#np.savetxt("sum.dat", summ)
|
||||
|
||||
|
||||
@ -56,7 +56,7 @@ ComputeSnap::ComputeSnap(LAMMPS *lmp, int narg, char **arg) :
|
||||
bzeroflag = 1;
|
||||
quadraticflag = 0;
|
||||
bikflag = 0;
|
||||
dbirjflag = 0;
|
||||
dgradflag = 0;
|
||||
chemflag = 0;
|
||||
bnormflag = 0;
|
||||
wselfallflag = 0;
|
||||
@ -148,10 +148,10 @@ ComputeSnap::ComputeSnap(LAMMPS *lmp, int narg, char **arg) :
|
||||
error->all(FLERR,"Illegal compute snap command");
|
||||
bikflag = atoi(arg[iarg+1]);
|
||||
iarg += 2;
|
||||
} else if (strcmp(arg[iarg],"dbirjflag") == 0) {
|
||||
} else if (strcmp(arg[iarg],"dgradflag") == 0) {
|
||||
if (iarg+2 > narg)
|
||||
error->all(FLERR,"Illegal compute snap command");
|
||||
dbirjflag = atoi(arg[iarg+1]);
|
||||
dgradflag = atoi(arg[iarg+1]);
|
||||
iarg += 2;
|
||||
} else if (strcmp(arg[iarg],"switchinnerflag") == 0) {
|
||||
if (iarg+2 > narg)
|
||||
@ -185,6 +185,9 @@ ComputeSnap::ComputeSnap(LAMMPS *lmp, int narg, char **arg) :
|
||||
if (!switchinnerflag && (sinnerflag || dinnerflag))
|
||||
error->all(FLERR,"Illegal compute snap command: switchinnerflag = 0, unexpected sinner/dinner keyword");
|
||||
|
||||
if (dgradflag && !bikflag)
|
||||
error->all(FLERR,"Illegal compute snap command: dgradflag=1 requires bikflag=1");
|
||||
|
||||
snaptr = new SNA(lmp, rfac0, twojmax,
|
||||
rmin0, switchflag, bzeroflag,
|
||||
chemflag, bnormflag, wselfallflag,
|
||||
@ -200,9 +203,9 @@ ComputeSnap::ComputeSnap(LAMMPS *lmp, int narg, char **arg) :
|
||||
natoms = atom->natoms;
|
||||
bik_rows = 1;
|
||||
if (bikflag) bik_rows = natoms;
|
||||
dbirj_rows = ndims_force*natoms;
|
||||
size_array_rows = bik_rows+dbirj_rows+ndims_virial;
|
||||
if (dbirjflag) size_array_cols = nperdim+3; // plus 3 for tag[i], tag[j], and cartesian index
|
||||
dgrad_rows = ndims_force*natoms;
|
||||
size_array_rows = bik_rows+dgrad_rows+ndims_virial;
|
||||
if (dgradflag) size_array_cols = nperdim+3; // plus 3 for tag[i], tag[j], and cartesian index
|
||||
else size_array_cols = nperdim*atom->ntypes+1;
|
||||
lastcol = size_array_cols-1;
|
||||
|
||||
@ -230,8 +233,8 @@ ComputeSnap::~ComputeSnap()
|
||||
memory->destroy(sinnerelem);
|
||||
memory->destroy(dinnerelem);
|
||||
}
|
||||
if (dbirjflag){
|
||||
memory->destroy(dbirj);
|
||||
if (dgradflag){
|
||||
memory->destroy(dgrad);
|
||||
memory->destroy(nneighs);
|
||||
memory->destroy(neighsum);
|
||||
memory->destroy(icounter);
|
||||
@ -260,10 +263,19 @@ void ComputeSnap::init()
|
||||
|
||||
// allocate memory for global array
|
||||
|
||||
if (dgradflag){
|
||||
// Initially allocate natoms^2 rows, will prune with neighborlist later
|
||||
memory->create(snap,natoms*natoms,ncoeff+3,
|
||||
"snap:snap");
|
||||
memory->create(snapall,natoms*natoms,ncoeff+3,
|
||||
"snap:snapall");
|
||||
}
|
||||
else{
|
||||
memory->create(snap,size_array_rows,size_array_cols,
|
||||
"snap:snap");
|
||||
memory->create(snapall,size_array_rows,size_array_cols,
|
||||
"snap:snapall");
|
||||
}
|
||||
array = snapall;
|
||||
|
||||
// find compute for reference energy
|
||||
@ -299,8 +311,8 @@ void ComputeSnap::init_list(int /*id*/, NeighList *ptr)
|
||||
void ComputeSnap::compute_array()
|
||||
{
|
||||
|
||||
if (dbirjflag){
|
||||
get_dbirj_length();
|
||||
if (dgradflag){
|
||||
get_dgrad_length();
|
||||
}
|
||||
|
||||
int ntotal = atom->nlocal + atom->nghost;
|
||||
@ -345,7 +357,7 @@ void ComputeSnap::compute_array()
|
||||
const int* const mask = atom->mask;
|
||||
int ninside;
|
||||
int numneigh_sum = 0;
|
||||
int dbirj_row_indx;
|
||||
int dgrad_row_indx;
|
||||
for (int ii = 0; ii < inum; ii++) {
|
||||
int irow = 0;
|
||||
if (bikflag) irow = atom->tag[ilist[ii] & NEIGHMASK]-1;
|
||||
@ -416,8 +428,8 @@ void ComputeSnap::compute_array()
|
||||
for (int jj = 0; jj < ninside; jj++) {
|
||||
const int j = snaptr->inside[jj];
|
||||
|
||||
if (dbirjflag){
|
||||
dbirj_row_indx = 3*neighsum[atom->tag[j]-1] + 3*icounter[atom->tag[j]-1] ;
|
||||
if (dgradflag){
|
||||
dgrad_row_indx = 3*neighsum[atom->tag[j]-1] + 3*icounter[atom->tag[j]-1] ;
|
||||
icounter[atom->tag[j]-1] += 1;
|
||||
}
|
||||
|
||||
@ -440,20 +452,20 @@ void ComputeSnap::compute_array()
|
||||
snadj[icoeff+zoffset] -= snaptr->dblist[icoeff][2];
|
||||
|
||||
|
||||
if (dbirjflag){
|
||||
dbirj[dbirj_row_indx+0][icoeff] = snaptr->dblist[icoeff][0];
|
||||
dbirj[dbirj_row_indx+1][icoeff] = snaptr->dblist[icoeff][1];
|
||||
dbirj[dbirj_row_indx+2][icoeff] = snaptr->dblist[icoeff][2];
|
||||
if (dgradflag){
|
||||
dgrad[dgrad_row_indx+0][icoeff] = snaptr->dblist[icoeff][0];
|
||||
dgrad[dgrad_row_indx+1][icoeff] = snaptr->dblist[icoeff][1];
|
||||
dgrad[dgrad_row_indx+2][icoeff] = snaptr->dblist[icoeff][2];
|
||||
if (icoeff==(ncoeff-1)){
|
||||
dbirj[dbirj_row_indx+0][ncoeff] = atom->tag[i]-1;
|
||||
dbirj[dbirj_row_indx+0][ncoeff+1] = atom->tag[j]-1;
|
||||
dbirj[dbirj_row_indx+0][ncoeff+2] = 0;
|
||||
dbirj[dbirj_row_indx+1][ncoeff] = atom->tag[i]-1;
|
||||
dbirj[dbirj_row_indx+1][ncoeff+1] = atom->tag[j]-1;
|
||||
dbirj[dbirj_row_indx+1][ncoeff+2] = 1;
|
||||
dbirj[dbirj_row_indx+2][ncoeff] = atom->tag[i]-1;
|
||||
dbirj[dbirj_row_indx+2][ncoeff+1] = atom->tag[j]-1;
|
||||
dbirj[dbirj_row_indx+2][ncoeff+2] = 2;
|
||||
dgrad[dgrad_row_indx+0][ncoeff] = atom->tag[i]-1;
|
||||
dgrad[dgrad_row_indx+0][ncoeff+1] = atom->tag[j]-1;
|
||||
dgrad[dgrad_row_indx+0][ncoeff+2] = 0;
|
||||
dgrad[dgrad_row_indx+1][ncoeff] = atom->tag[i]-1;
|
||||
dgrad[dgrad_row_indx+1][ncoeff+1] = atom->tag[j]-1;
|
||||
dgrad[dgrad_row_indx+1][ncoeff+2] = 1;
|
||||
dgrad[dgrad_row_indx+2][ncoeff] = atom->tag[i]-1;
|
||||
dgrad[dgrad_row_indx+2][ncoeff+1] = atom->tag[j]-1;
|
||||
dgrad[dgrad_row_indx+2][ncoeff+2] = 2;
|
||||
}
|
||||
// Accumulate dBi/dRi = sum (-dBi/dRj) for neighbors j of if i
|
||||
dbiri[3*(atom->tag[i]-1)+0][icoeff] -= snaptr->dblist[icoeff][0];
|
||||
@ -530,7 +542,7 @@ void ComputeSnap::compute_array()
|
||||
|
||||
// linear contributions
|
||||
int k;
|
||||
if (dbirjflag) k = 0;
|
||||
if (dgradflag) k = 0;
|
||||
else k = typeoffset_global;
|
||||
for (int icoeff = 0; icoeff < ncoeff; icoeff++){
|
||||
snap[irow][k++] += snaptr->blist[icoeff];
|
||||
@ -555,7 +567,7 @@ void ComputeSnap::compute_array()
|
||||
|
||||
// Accumulate contributions to global array
|
||||
|
||||
if (dbirjflag){
|
||||
if (dgradflag){
|
||||
|
||||
int dbiri_indx;
|
||||
int irow;
|
||||
@ -568,34 +580,34 @@ void ComputeSnap::compute_array()
|
||||
|
||||
for (int jj=0; jj<nneighs[i]; jj++){
|
||||
|
||||
int dbirj_row_indx = 3*neighsum[atom->tag[i]-1] + 3*jj;
|
||||
int dgrad_row_indx = 3*neighsum[atom->tag[i]-1] + 3*jj;
|
||||
int snap_row_indx = 3*neighsum[atom->tag[i]-1] + 3*(atom->tag[i]-1) + 3*jj;
|
||||
irow = snap_row_indx + bik_rows;
|
||||
|
||||
// x-coordinate
|
||||
snap[irow][icoeff+typeoffset_global] += dbirj[dbirj_row_indx+0][icoeff];
|
||||
snap[irow][icoeff+typeoffset_global] += dgrad[dgrad_row_indx+0][icoeff];
|
||||
if (icoeff==(ncoeff-1)){
|
||||
snap[irow][ncoeff] += dbirj[dbirj_row_indx+0][ncoeff];
|
||||
snap[irow][ncoeff+1] += dbirj[dbirj_row_indx+0][ncoeff+1];
|
||||
snap[irow][ncoeff+2] += dbirj[dbirj_row_indx+0][ncoeff+2];
|
||||
snap[irow][ncoeff] += dgrad[dgrad_row_indx+0][ncoeff];
|
||||
snap[irow][ncoeff+1] += dgrad[dgrad_row_indx+0][ncoeff+1];
|
||||
snap[irow][ncoeff+2] += dgrad[dgrad_row_indx+0][ncoeff+2];
|
||||
}
|
||||
irow++;
|
||||
|
||||
// y-coordinate
|
||||
snap[irow][icoeff+typeoffset_global] += dbirj[dbirj_row_indx+1][icoeff];
|
||||
snap[irow][icoeff+typeoffset_global] += dgrad[dgrad_row_indx+1][icoeff];
|
||||
if (icoeff==(ncoeff-1)){
|
||||
snap[irow][ncoeff] += dbirj[dbirj_row_indx+1][ncoeff];
|
||||
snap[irow][ncoeff+1] += dbirj[dbirj_row_indx+1][ncoeff+1];
|
||||
snap[irow][ncoeff+2] += dbirj[dbirj_row_indx+1][ncoeff+2];
|
||||
snap[irow][ncoeff] += dgrad[dgrad_row_indx+1][ncoeff];
|
||||
snap[irow][ncoeff+1] += dgrad[dgrad_row_indx+1][ncoeff+1];
|
||||
snap[irow][ncoeff+2] += dgrad[dgrad_row_indx+1][ncoeff+2];
|
||||
}
|
||||
irow++;
|
||||
|
||||
// z-coordinate
|
||||
snap[irow][icoeff+typeoffset_global] += dbirj[dbirj_row_indx+2][icoeff];
|
||||
snap[irow][icoeff+typeoffset_global] += dgrad[dgrad_row_indx+2][icoeff];
|
||||
if (icoeff==(ncoeff-1)){
|
||||
snap[irow][ncoeff] += dbirj[dbirj_row_indx+2][ncoeff];
|
||||
snap[irow][ncoeff+1] += dbirj[dbirj_row_indx+2][ncoeff+1];
|
||||
snap[irow][ncoeff+2] += dbirj[dbirj_row_indx+2][ncoeff+2];
|
||||
snap[irow][ncoeff] += dgrad[dgrad_row_indx+2][ncoeff];
|
||||
snap[irow][ncoeff+1] += dgrad[dgrad_row_indx+2][ncoeff+1];
|
||||
snap[irow][ncoeff+2] += dgrad[dgrad_row_indx+2][ncoeff+2];
|
||||
}
|
||||
dbiri_indx = dbiri_indx+3;
|
||||
}
|
||||
@ -659,8 +671,8 @@ void ComputeSnap::compute_array()
|
||||
|
||||
// accumulate forces to global array
|
||||
|
||||
if (dbirjflag){
|
||||
// for dbirjflag=1, put forces at last 3 columns of bik rows
|
||||
if (dgradflag){
|
||||
// for dgradflag=1, put forces at last 3 columns of bik rows
|
||||
for (int i=0; i<atom->nlocal; i++){
|
||||
int iglobal = atom->tag[i];
|
||||
snap[iglobal-1][ncoeff+0] = atom->f[i][0];
|
||||
@ -681,8 +693,8 @@ void ComputeSnap::compute_array()
|
||||
|
||||
// accumulate bispectrum virial contributions to global array
|
||||
|
||||
if (dbirjflag){
|
||||
// no virial terms for dbirj yet
|
||||
if (dgradflag){
|
||||
// no virial terms for dgrad yet
|
||||
}
|
||||
else{
|
||||
dbdotr_compute();
|
||||
@ -691,10 +703,10 @@ void ComputeSnap::compute_array()
|
||||
// sum up over all processes
|
||||
MPI_Allreduce(&snap[0][0],&snapall[0][0],size_array_rows*size_array_cols,MPI_DOUBLE,MPI_SUM,world);
|
||||
// assign energy to last column
|
||||
if (dbirjflag){
|
||||
// Assign reference energy right after the dbirj rows, first column.
|
||||
if (dgradflag){
|
||||
// Assign reference energy right after the dgrad rows, first column.
|
||||
// Add 3N for the dBi/dRi rows.
|
||||
int irow = bik_rows + dbirj_rows + 3*natoms;
|
||||
int irow = bik_rows + dgrad_rows + 3*natoms;
|
||||
double reference_energy = c_pe->compute_scalar();
|
||||
snapall[irow][0] = reference_energy;
|
||||
}
|
||||
@ -709,10 +721,11 @@ void ComputeSnap::compute_array()
|
||||
// switch to Voigt notation
|
||||
|
||||
c_virial->compute_vector();
|
||||
if (dbirjflag){
|
||||
// no virial terms for dbirj yet
|
||||
if (dgradflag){
|
||||
// no virial terms for dgrad yet
|
||||
}
|
||||
else{
|
||||
c_virial->compute_vector();
|
||||
int irow = 3*natoms+bik_rows;
|
||||
snapall[irow++][lastcol] = c_virial->vector[0];
|
||||
snapall[irow++][lastcol] = c_virial->vector[1];
|
||||
@ -760,10 +773,10 @@ void ComputeSnap::dbdotr_compute()
|
||||
}
|
||||
|
||||
/* ----------------------------------------------------------------------
|
||||
compute dbirj length
|
||||
compute dgrad length
|
||||
------------------------------------------------------------------------- */
|
||||
|
||||
void ComputeSnap::get_dbirj_length()
|
||||
void ComputeSnap::get_dgrad_length()
|
||||
{
|
||||
|
||||
int rank = universe->me; // for MPI debugging
|
||||
@ -772,7 +785,7 @@ void ComputeSnap::get_dbirj_length()
|
||||
memory->destroy(snapall);
|
||||
// invoke full neighbor list
|
||||
neighbor->build_one(list);
|
||||
dbirj_rows = 0;
|
||||
dgrad_rows = 0;
|
||||
const int inum = list->inum;
|
||||
const int* const ilist = list->ilist;
|
||||
const int* const numneigh = list->numneigh;
|
||||
@ -791,7 +804,7 @@ void ComputeSnap::get_dbirj_length()
|
||||
memory->create(icounter, natoms, "snap:icounter");
|
||||
memory->create(dbiri, 3*natoms,ncoeff+3, "snap:dbiri");
|
||||
if (atom->nlocal != natoms){
|
||||
error->all(FLERR,"Compute snap dbirjflag=1 does not support parallelism.");
|
||||
error->all(FLERR,"Compute snap dgradflag=1 does not support parallelism.");
|
||||
}
|
||||
for (int ii=0; ii<3*natoms; ii++){
|
||||
for (int icoeff=0; icoeff<ncoeff; icoeff++){
|
||||
@ -822,7 +835,7 @@ void ComputeSnap::get_dbirj_length()
|
||||
int jtype = type[j];
|
||||
|
||||
if (rsq < cutsq[itype][jtype]&&rsq>1e-20) {
|
||||
dbirj_rows += 1; //jnum + 1;
|
||||
dgrad_rows += 1; //jnum + 1;
|
||||
jnum_cutoff += 1;
|
||||
nneighs[i]+=1;
|
||||
}
|
||||
@ -830,7 +843,7 @@ void ComputeSnap::get_dbirj_length()
|
||||
}
|
||||
}
|
||||
|
||||
dbirj_rows *= ndims_force;
|
||||
dgrad_rows *= ndims_force;
|
||||
|
||||
// Loop over all atoms again to calculate neighsum.
|
||||
for (int ii = 0; ii < inum; ii++) {
|
||||
@ -850,14 +863,15 @@ void ComputeSnap::get_dbirj_length()
|
||||
}
|
||||
}
|
||||
|
||||
memory->create(dbirj, dbirj_rows, ncoeff+3, "snap:dbirj");
|
||||
for (int i=0; i<dbirj_rows; i++){
|
||||
memory->create(dgrad, dgrad_rows, ncoeff+3, "snap:dgrad");
|
||||
for (int i=0; i<dgrad_rows; i++){
|
||||
for (int j=0; j<ncoeff+3; j++){
|
||||
dbirj[i][j]=0.0;
|
||||
dgrad[i][j]=0.0;
|
||||
}
|
||||
}
|
||||
// Set size array rows which now depends on dbirj_rows.
|
||||
size_array_rows = bik_rows+dbirj_rows+ndims_virial+3*atom->nlocal; // Add 3*N for dBi/dRi
|
||||
// Set size array rows which now depends on dgrad_rows.
|
||||
//size_array_rows = bik_rows+dgrad_rows+ndims_virial+3*atom->nlocal; // Add 3*N for dBi/dRi
|
||||
size_array_rows = bik_rows + dgrad_rows + 3*atom->nlocal + 1; // Add 3*N for dBi/dRi. and add 1 for reference energy
|
||||
|
||||
memory->create(snap,size_array_rows,size_array_cols, "snap:snap");
|
||||
memory->create(snapall,size_array_rows,size_array_cols, "snap:snapall");
|
||||
@ -871,7 +885,7 @@ void ComputeSnap::get_dbirj_length()
|
||||
|
||||
double ComputeSnap::compute_scalar()
|
||||
{
|
||||
if (dbirjflag) get_dbirj_length();
|
||||
if (dgradflag) get_dgrad_length();
|
||||
return size_array_rows;
|
||||
}
|
||||
|
||||
|
||||
@ -56,8 +56,8 @@ class ComputeSnap : public Compute {
|
||||
int quadraticflag;
|
||||
//int bikflag;
|
||||
//int bik_rows;
|
||||
int bikflag, bik_rows, dbirjflag, dbirj_rows;
|
||||
double **dbirj;
|
||||
int bikflag, bik_rows, dgradflag, dgrad_rows;
|
||||
double **dgrad;
|
||||
double **dbiri; // dBi/dRi = sum(-dBi/dRj) over neighbors j
|
||||
int *nneighs; // number of neighs inside the snap cutoff.
|
||||
int *neighsum;
|
||||
@ -67,7 +67,7 @@ class ComputeSnap : public Compute {
|
||||
Compute *c_virial;
|
||||
|
||||
void dbdotr_compute();
|
||||
void get_dbirj_length();
|
||||
void get_dgrad_length();
|
||||
};
|
||||
|
||||
} // namespace LAMMPS_NS
|
||||
|
||||
@ -1,563 +0,0 @@
|
||||
// clang-format off
|
||||
/* ----------------------------------------------------------------------
|
||||
LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator
|
||||
https://www.lammps.org/, Sandia National Laboratories
|
||||
Steve Plimpton, sjplimp@sandia.gov
|
||||
|
||||
Copyright (2003) Sandia Corporation. Under the terms of Contract
|
||||
DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains
|
||||
certain rights in this software. This software is distributed under
|
||||
the GNU General Public License.
|
||||
|
||||
See the README file in the top-level LAMMPS directory.
|
||||
------------------------------------------------------------------------- */
|
||||
|
||||
#include "compute_snapneigh.h"
|
||||
|
||||
#include "sna.h"
|
||||
#include "atom.h"
|
||||
#include "update.h"
|
||||
#include "modify.h"
|
||||
#include "neighbor.h"
|
||||
#include "neigh_list.h"
|
||||
#include "force.h"
|
||||
#include "pair.h"
|
||||
#include "comm.h"
|
||||
#include "memory.h"
|
||||
#include "error.h"
|
||||
|
||||
#include <cstring>
|
||||
|
||||
using namespace LAMMPS_NS;
|
||||
|
||||
enum{SCALAR,VECTOR,ARRAY};
|
||||
|
||||
ComputeSnapneigh::ComputeSnapneigh(LAMMPS *lmp, int narg, char **arg) :
|
||||
Compute(lmp, narg, arg), cutsq(nullptr), list(nullptr), radelem(nullptr), wjelem(nullptr),
|
||||
sinnerelem(nullptr), dinnerelem(nullptr)
|
||||
{
|
||||
|
||||
array_flag = 1;
|
||||
//vector_flag = 1;
|
||||
extarray = 0;
|
||||
|
||||
double rfac0, rmin0;
|
||||
int twojmax, switchflag, bzeroflag, bnormflag, wselfallflag;
|
||||
|
||||
int ntypes = atom->ntypes;
|
||||
int nargmin = 6+2*ntypes;
|
||||
|
||||
if (narg < nargmin) error->all(FLERR,"Illegal compute snap command");
|
||||
|
||||
// default values
|
||||
|
||||
rmin0 = 0.0;
|
||||
switchflag = 1;
|
||||
bzeroflag = 1;
|
||||
quadraticflag = 0;
|
||||
bikflag = 0;
|
||||
dbirjflag = 0;
|
||||
chemflag = 0;
|
||||
bnormflag = 0;
|
||||
wselfallflag = 0;
|
||||
switchinnerflag = 0;
|
||||
nelements = 1;
|
||||
|
||||
// process required arguments
|
||||
|
||||
memory->create(radelem,ntypes+1,"snapneigh:radelem"); // offset by 1 to match up with types
|
||||
memory->create(wjelem,ntypes+1,"snapneigh:wjelem");
|
||||
rcutfac = atof(arg[3]);
|
||||
rfac0 = atof(arg[4]);
|
||||
twojmax = atoi(arg[5]);
|
||||
for (int i = 0; i < ntypes; i++)
|
||||
radelem[i+1] = atof(arg[6+i]);
|
||||
for (int i = 0; i < ntypes; i++)
|
||||
wjelem[i+1] = atof(arg[6+ntypes+i]);
|
||||
|
||||
// construct cutsq
|
||||
|
||||
double cut;
|
||||
cutmax = 0.0;
|
||||
memory->create(cutsq,ntypes+1,ntypes+1,"snapneigh:cutsq");
|
||||
for (int i = 1; i <= ntypes; i++) {
|
||||
cut = 2.0*radelem[i]*rcutfac;
|
||||
//printf("cut: %f\n", cut);
|
||||
if (cut > cutmax) cutmax = cut;
|
||||
cutsq[i][i] = cut*cut;
|
||||
for (int j = i+1; j <= ntypes; j++) {
|
||||
cut = (radelem[i]+radelem[j])*rcutfac;
|
||||
cutsq[i][j] = cutsq[j][i] = cut*cut;
|
||||
}
|
||||
}
|
||||
|
||||
// set local input checks
|
||||
|
||||
int sinnerflag = 0;
|
||||
int dinnerflag = 0;
|
||||
|
||||
// process optional args
|
||||
|
||||
int iarg = nargmin;
|
||||
|
||||
while (iarg < narg) {
|
||||
if (strcmp(arg[iarg],"rmin0") == 0) {
|
||||
if (iarg+2 > narg)
|
||||
error->all(FLERR,"Illegal compute snap command");
|
||||
rmin0 = atof(arg[iarg+1]);
|
||||
iarg += 2;
|
||||
} else if (strcmp(arg[iarg],"bzeroflag") == 0) {
|
||||
if (iarg+2 > narg)
|
||||
error->all(FLERR,"Illegal compute snap command");
|
||||
bzeroflag = atoi(arg[iarg+1]);
|
||||
iarg += 2;
|
||||
} else if (strcmp(arg[iarg],"switchflag") == 0) {
|
||||
if (iarg+2 > narg)
|
||||
error->all(FLERR,"Illegal compute snap command");
|
||||
switchflag = atoi(arg[iarg+1]);
|
||||
iarg += 2;
|
||||
} else if (strcmp(arg[iarg],"quadraticflag") == 0) {
|
||||
if (iarg+2 > narg)
|
||||
error->all(FLERR,"Illegal compute snap command");
|
||||
quadraticflag = atoi(arg[iarg+1]);
|
||||
iarg += 2;
|
||||
} else if (strcmp(arg[iarg],"chem") == 0) {
|
||||
if (iarg+2+ntypes > narg)
|
||||
error->all(FLERR,"Illegal compute snap command");
|
||||
chemflag = 1;
|
||||
memory->create(map,ntypes+1,"compute_snapneigh:map");
|
||||
nelements = utils::inumeric(FLERR,arg[iarg+1],false,lmp);
|
||||
for (int i = 0; i < ntypes; i++) {
|
||||
int jelem = utils::inumeric(FLERR,arg[iarg+2+i],false,lmp);
|
||||
if (jelem < 0 || jelem >= nelements)
|
||||
error->all(FLERR,"Illegal compute snap command");
|
||||
map[i+1] = jelem;
|
||||
}
|
||||
iarg += 2+ntypes;
|
||||
} else if (strcmp(arg[iarg],"bnormflag") == 0) {
|
||||
if (iarg+2 > narg)
|
||||
error->all(FLERR,"Illegal compute snap command");
|
||||
bnormflag = atoi(arg[iarg+1]);
|
||||
iarg += 2;
|
||||
} else if (strcmp(arg[iarg],"wselfallflag") == 0) {
|
||||
if (iarg+2 > narg)
|
||||
error->all(FLERR,"Illegal compute snap command");
|
||||
wselfallflag = atoi(arg[iarg+1]);
|
||||
iarg += 2;
|
||||
} else if (strcmp(arg[iarg],"bikflag") == 0) {
|
||||
if (iarg+2 > narg)
|
||||
error->all(FLERR,"Illegal compute snap command");
|
||||
bikflag = atoi(arg[iarg+1]);
|
||||
iarg += 2;
|
||||
} else if (strcmp(arg[iarg],"dbirjflag") == 0) {
|
||||
if (iarg+2 > narg)
|
||||
error->all(FLERR,"Illegal compute snap command");
|
||||
dbirjflag = atoi(arg[iarg+1]);
|
||||
iarg += 2;
|
||||
} else if (strcmp(arg[iarg],"switchinnerflag") == 0) {
|
||||
if (iarg+2 > narg)
|
||||
error->all(FLERR,"Illegal compute snap command");
|
||||
switchinnerflag = atoi(arg[iarg+1]);
|
||||
iarg += 2;
|
||||
} else if (strcmp(arg[iarg],"sinner") == 0) {
|
||||
iarg++;
|
||||
if (iarg+ntypes > narg)
|
||||
error->all(FLERR,"Illegal compute snap command");
|
||||
memory->create(sinnerelem,ntypes+1,"snapneigh:sinnerelem");
|
||||
for (int i = 0; i < ntypes; i++)
|
||||
sinnerelem[i+1] = utils::numeric(FLERR,arg[iarg+i],false,lmp);
|
||||
sinnerflag = 1;
|
||||
iarg += ntypes;
|
||||
} else if (strcmp(arg[iarg],"dinner") == 0) {
|
||||
iarg++;
|
||||
if (iarg+ntypes > narg)
|
||||
error->all(FLERR,"Illegal compute snap command");
|
||||
memory->create(dinnerelem,ntypes+1,"snapneigh:dinnerelem");
|
||||
for (int i = 0; i < ntypes; i++)
|
||||
dinnerelem[i+1] = utils::numeric(FLERR,arg[iarg+i],false,lmp);
|
||||
dinnerflag = 1;
|
||||
iarg += ntypes;
|
||||
} else error->all(FLERR,"Illegal compute snap command");
|
||||
}
|
||||
|
||||
if (switchinnerflag && !(sinnerflag && dinnerflag))
|
||||
error->all(FLERR,"Illegal compute snap command: switchinnerflag = 1, missing sinner/dinner keyword");
|
||||
|
||||
if (!switchinnerflag && (sinnerflag || dinnerflag))
|
||||
error->all(FLERR,"Illegal compute snap command: switchinnerflag = 0, unexpected sinner/dinner keyword");
|
||||
|
||||
/*
|
||||
snaptr = new SNA(lmp, rfac0, twojmax,
|
||||
rmin0, switchflag, bzeroflag,
|
||||
chemflag, bnormflag, wselfallflag,
|
||||
nelements, switchinnerflag);
|
||||
*/
|
||||
|
||||
//ncoeff = snaptr->ncoeff;
|
||||
nperdim = ncoeff;
|
||||
if (quadraticflag) nperdim += (ncoeff*(ncoeff+1))/2;
|
||||
ndims_force = 3;
|
||||
ndims_virial = 6;
|
||||
yoffset = nperdim;
|
||||
zoffset = 2*nperdim;
|
||||
natoms = atom->natoms;
|
||||
bik_rows = 1;
|
||||
if (bikflag) bik_rows = natoms;
|
||||
//size_array_rows = bik_rows+ndims_force*natoms+ndims_virial;
|
||||
dbirj_rows = ndims_force*natoms;
|
||||
size_array_rows = bik_rows+dbirj_rows+ndims_virial;
|
||||
size_array_cols = nperdim*atom->ntypes+1;
|
||||
lastcol = size_array_cols-1;
|
||||
|
||||
ndims_peratom = ndims_force;
|
||||
size_peratom = ndims_peratom*nperdim*atom->ntypes;
|
||||
|
||||
nmax = 0;
|
||||
|
||||
}
|
||||
|
||||
/* ---------------------------------------------------------------------- */
|
||||
|
||||
ComputeSnapneigh::~ComputeSnapneigh()
|
||||
{
|
||||
|
||||
memory->destroy(neighs);
|
||||
memory->destroy(radelem);
|
||||
memory->destroy(wjelem);
|
||||
memory->destroy(cutsq);
|
||||
//delete snaptr;
|
||||
|
||||
if (chemflag) memory->destroy(map);
|
||||
|
||||
if (switchinnerflag) {
|
||||
memory->destroy(sinnerelem);
|
||||
memory->destroy(dinnerelem);
|
||||
}
|
||||
|
||||
if (dbirjflag){
|
||||
//printf("dbirj_rows: %d\n", dbirj_rows);
|
||||
//memory->destroy(dbirj);
|
||||
memory->destroy(nneighs);
|
||||
memory->destroy(neighsum);
|
||||
memory->destroy(icounter);
|
||||
//memory->destroy(dbiri);
|
||||
}
|
||||
}
|
||||
|
||||
/* ---------------------------------------------------------------------- */
|
||||
|
||||
void ComputeSnapneigh::init()
|
||||
{
|
||||
if (force->pair == nullptr)
|
||||
error->all(FLERR,"Compute snap requires a pair style be defined");
|
||||
|
||||
if (cutmax > force->pair->cutforce){
|
||||
//printf("----- cutmax cutforce: %f %f\n", cutmax, force->pair->cutforce);
|
||||
error->all(FLERR,"Compute snap cutoff is longer than pairwise cutoff");
|
||||
}
|
||||
|
||||
// need an occasional full neighbor list
|
||||
|
||||
neighbor->add_request(this, NeighConst::REQ_FULL | NeighConst::REQ_OCCASIONAL);
|
||||
|
||||
}
|
||||
|
||||
|
||||
/* ---------------------------------------------------------------------- */
|
||||
|
||||
void ComputeSnapneigh::init_list(int /*id*/, NeighList *ptr)
|
||||
{
|
||||
list = ptr;
|
||||
}
|
||||
|
||||
/* ---------------------------------------------------------------------- */
|
||||
|
||||
void ComputeSnapneigh::compute_array()
|
||||
{
|
||||
|
||||
if (dbirjflag){
|
||||
//printf("----- dbirjflag true.\n");
|
||||
get_dbirj_length();
|
||||
//printf("----- got dbirj_length\n");
|
||||
}
|
||||
|
||||
//printf("----- cutmax cutforce: %f %f\n", cutmax, force->pair->cutforce);
|
||||
//else{
|
||||
int ntotal = atom->nlocal + atom->nghost;
|
||||
|
||||
invoked_array = update->ntimestep;
|
||||
|
||||
// invoke full neighbor list (will copy or build if necessary)
|
||||
neighbor->build_one(list);
|
||||
|
||||
const int inum = list->inum;
|
||||
const int* const ilist = list->ilist;
|
||||
const int* const numneigh = list->numneigh;
|
||||
int** const firstneigh = list->firstneigh;
|
||||
int * const type = atom->type;
|
||||
|
||||
// compute sna derivatives for each atom in group
|
||||
// use full neighbor list to count atoms less than cutoff
|
||||
|
||||
double** const x = atom->x;
|
||||
const int* const mask = atom->mask;
|
||||
//printf("----- inum: %d\n", inum);
|
||||
//printf("----- NEIGHMASK: %d\n", NEIGHMASK);
|
||||
int ninside;
|
||||
int numneigh_sum = 0;
|
||||
int dbirj_row_indx;
|
||||
int dbiri_indx=0;
|
||||
for (int ii = 0; ii < inum; ii++) {
|
||||
int irow = 0;
|
||||
if (bikflag) irow = atom->tag[ilist[ii] & NEIGHMASK]-1;
|
||||
//printf("----- i, itag: %d %d\n", ilist[ii] & NEIGHMASK, atom->tag[ilist[ii]]);
|
||||
const int i = ilist[ii];
|
||||
//printf("----- ii, i: %d %d\n", ii, i);
|
||||
//printf("----- mask[i] groupbit: %d %d\n", mask[i], groupbit);
|
||||
if (mask[i] & groupbit) {
|
||||
|
||||
const double xtmp = x[i][0];
|
||||
const double ytmp = x[i][1];
|
||||
const double ztmp = x[i][2];
|
||||
const int itype = type[i];
|
||||
int ielem = 0;
|
||||
if (chemflag)
|
||||
ielem = map[itype];
|
||||
const double radi = radelem[itype];
|
||||
const int* const jlist = firstneigh[i];
|
||||
const int jnum = numneigh[i];
|
||||
const int typeoffset_local = ndims_peratom*nperdim*(itype-1);
|
||||
const int typeoffset_global = nperdim*(itype-1);
|
||||
|
||||
// insure rij, inside, and typej are of size jnum
|
||||
|
||||
//snaptr->grow_rij(jnum);
|
||||
|
||||
// rij[][3] = displacements between atom I and those neighbors
|
||||
// inside = indices of neighbors of I within cutoff
|
||||
// typej = types of neighbors of I within cutoff
|
||||
// note Rij sign convention => dU/dRij = dU/dRj = -dU/dRi
|
||||
|
||||
/*
|
||||
This loop assigns quantities in snaptr.
|
||||
snaptr is a SNA class instance, see sna.h
|
||||
|
||||
*/
|
||||
//int ninside = 0;
|
||||
ninside=0;
|
||||
for (int jj = 0; jj < jnum; jj++) {
|
||||
int j = jlist[jj];
|
||||
j &= NEIGHMASK;
|
||||
|
||||
const double delx = x[j][0] - xtmp;
|
||||
const double dely = x[j][1] - ytmp;
|
||||
const double delz = x[j][2] - ztmp;
|
||||
const double rsq = delx*delx + dely*dely + delz*delz;
|
||||
int jtype = type[j];
|
||||
int jelem = 0;
|
||||
if (chemflag)
|
||||
jelem = map[jtype];
|
||||
if (rsq < cutsq[itype][jtype]&&rsq>1e-20) {
|
||||
if (dbirjflag){
|
||||
//dbirj_row_indx = 3*neighsum[atom->tag[j]-1] + 3*icounter[atom->tag[j]-1] ; // THIS IS WRONG, SEE NEXT VAR.
|
||||
//dbirj_row_indx = 3*neighsum[atom->tag[i]-1] + 3*(atom->tag[i]-1) + 3*icounter[atom->tag[j]-1]; // 3*tagi is to leave space for dBi/dRi
|
||||
dbirj_row_indx = 3*neighsum[atom->tag[j]-1] + 3*icounter[atom->tag[j]-1] + 3*(atom->tag[j]-1); // THIS IS WRONG, SEE NEXT VAR.
|
||||
//printf("--- %d %d %d %d\n", dbirj_row_indx, 3*neighsum[atom->tag[i]-1], 3*(atom->tag[i]-1), jj);
|
||||
//printf("jtag, icounter, dbirj_row_indx: %d, %d, %d %d %d\n", atom->tag[j], icounter[atom->tag[j]-1], dbirj_row_indx+0, dbirj_row_indx+1, dbirj_row_indx+2);
|
||||
icounter[atom->tag[j]-1] += 1;
|
||||
|
||||
neighs[dbirj_row_indx+0][0] = atom->tag[i];
|
||||
neighs[dbirj_row_indx+1][0] = atom->tag[i];
|
||||
neighs[dbirj_row_indx+2][0] = atom->tag[i];
|
||||
|
||||
neighs[dbirj_row_indx+0][1] = atom->tag[j];
|
||||
neighs[dbirj_row_indx+1][1] = atom->tag[j];
|
||||
neighs[dbirj_row_indx+2][1] = atom->tag[j];
|
||||
|
||||
neighs[dbirj_row_indx+0][2] = 0;
|
||||
neighs[dbirj_row_indx+1][2] = 1;
|
||||
neighs[dbirj_row_indx+2][2] = 2;
|
||||
|
||||
dbiri_indx = dbiri_indx+3;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
//printf("--- dbiri_indx: %d\n", dbiri_indx);
|
||||
// Put dBi/dRi in
|
||||
|
||||
neighs[dbiri_indx+0][0] = atom->tag[i];
|
||||
neighs[dbiri_indx+1][0] = atom->tag[i];
|
||||
neighs[dbiri_indx+2][0] = atom->tag[i];
|
||||
|
||||
neighs[dbiri_indx+0][1] = atom->tag[i];
|
||||
neighs[dbiri_indx+1][1] = atom->tag[i];
|
||||
neighs[dbiri_indx+2][1] = atom->tag[i];
|
||||
|
||||
neighs[dbiri_indx+0][2] = 0;
|
||||
neighs[dbiri_indx+1][2] = 1;
|
||||
neighs[dbiri_indx+2][2] = 2;
|
||||
|
||||
dbiri_indx = dbiri_indx+3;
|
||||
}
|
||||
|
||||
numneigh_sum += ninside;
|
||||
} // for (int ii = 0; ii < inum; ii++)
|
||||
|
||||
|
||||
// Check icounter.
|
||||
/*
|
||||
for (int ii = 0; ii < inum; ii++) {
|
||||
const int i = ilist[ii];
|
||||
if (mask[i] & groupbit) {
|
||||
printf("icounter[i]: %d\n", icounter[i]);
|
||||
}
|
||||
}
|
||||
*/
|
||||
|
||||
|
||||
// sum up over all processes
|
||||
// I'll need to do something like this...
|
||||
/*
|
||||
MPI_Allreduce(&snap[0][0],&snapall[0][0],size_array_rows*size_array_cols,MPI_DOUBLE,MPI_SUM,world);
|
||||
// assign energy to last column
|
||||
for (int i = 0; i < bik_rows; i++) snapall[i][lastcol] = 0;
|
||||
int irow = 0;
|
||||
double reference_energy = c_pe->compute_scalar();
|
||||
snapall[irow][lastcol] = reference_energy;
|
||||
*/
|
||||
|
||||
/*
|
||||
for (int i=0; i<dbirj_rows; i++){
|
||||
printf("----- %d: %f %f\n", i, array[i][0], array[i][1]);
|
||||
}
|
||||
|
||||
//printf("vector[0]: %d\n", vector[0]);
|
||||
printf("----- End of compute snapneigh.\n");
|
||||
*/
|
||||
}
|
||||
|
||||
/* ----------------------------------------------------------------------
|
||||
compute dbirj length
|
||||
------------------------------------------------------------------------- */
|
||||
|
||||
void ComputeSnapneigh::get_dbirj_length()
|
||||
{
|
||||
// invoke full neighbor list (will copy or build if necessary)
|
||||
neighbor->build_one(list);
|
||||
dbirj_rows = 0;
|
||||
const int inum = list->inum;
|
||||
const int* const ilist = list->ilist;
|
||||
const int* const numneigh = list->numneigh;
|
||||
int** const firstneigh = list->firstneigh;
|
||||
int * const type = atom->type;
|
||||
const int* const mask = atom->mask;
|
||||
double** const x = atom->x;
|
||||
//printf("----- inum: %d\n", inum);
|
||||
memory->create(neighsum, atom->nlocal, "snapneigh:neighsum");
|
||||
memory->create(nneighs, atom->nlocal, "snapneigh:nneighs");
|
||||
memory->create(icounter, atom->nlocal, "snapneigh:icounter");
|
||||
//memory->create(dbiri, 3*inum,ncoeff, "snapneigh:dbiri");
|
||||
/*
|
||||
for (int ii=0; ii<inum; ii++){
|
||||
for (int icoeff=0; icoeff<ncoeff; icoeff++){
|
||||
dbiri[ii][icoeff]=0.0;
|
||||
}
|
||||
}
|
||||
*/
|
||||
for (int ii = 0; ii < inum; ii++) {
|
||||
const int i = ilist[ii];
|
||||
if (mask[i] & groupbit) {
|
||||
icounter[i]=0;
|
||||
neighsum[i] = 0;
|
||||
nneighs[i] = 0;
|
||||
const double xtmp = x[i][0];
|
||||
const double ytmp = x[i][1];
|
||||
const double ztmp = x[i][2];
|
||||
const int itype = type[i];
|
||||
const int* const jlist = firstneigh[i];
|
||||
const int jnum = numneigh[i];
|
||||
//printf("----- jnum: %d\n", jnum);
|
||||
int jnum_cutoff = 0;
|
||||
for (int jj = 0; jj < jnum; jj++) {
|
||||
int j = jlist[jj];
|
||||
j &= NEIGHMASK;
|
||||
|
||||
const double delx = x[j][0] - xtmp;
|
||||
const double dely = x[j][1] - ytmp;
|
||||
const double delz = x[j][2] - ztmp;
|
||||
const double rsq = delx*delx + dely*dely + delz*delz;
|
||||
int jtype = type[j];
|
||||
|
||||
if (rsq < cutsq[itype][jtype]&&rsq>1e-20) {
|
||||
dbirj_rows += 1; //jnum + 1;
|
||||
jnum_cutoff += 1;
|
||||
nneighs[i]+=1;
|
||||
}
|
||||
}
|
||||
//printf("----- jnum_cutoff: %d\n", jnum_cutoff);
|
||||
}
|
||||
}
|
||||
|
||||
dbirj_rows *= ndims_force;
|
||||
|
||||
// Loop over all atoms again to calculate neighsum.
|
||||
for (int ii = 0; ii < inum; ii++) {
|
||||
const int i = ilist[ii];
|
||||
if (mask[i] & groupbit) {
|
||||
//printf("nneighs[i]: %d\n", nneighs[i]);
|
||||
//neighsum[i] = 0;
|
||||
//printf("i nneighs[i]: %d %d\n", i, nneighs[i]);
|
||||
if (i==0){
|
||||
neighsum[i]=0;
|
||||
}
|
||||
else{
|
||||
for (int jj=0; jj < ii; jj++){
|
||||
const int j = ilist[jj];
|
||||
if (mask[j] & groupbit) {
|
||||
//printf(" j nneighs[j-1]: %d %d\n", j, nneighs[j]);
|
||||
neighsum[i] += nneighs[j];
|
||||
}
|
||||
}
|
||||
//neighsum[i] += 1; // Add 1 for the self term dBi/dRi
|
||||
}
|
||||
}
|
||||
//printf("%d\n", neighsum[i]);
|
||||
}
|
||||
|
||||
size_array_rows = dbirj_rows+(3*atom->nlocal);
|
||||
size_array_cols = 3;
|
||||
//memory->create(dbirj, dbirj_rows, ncoeff, "snapneigh:dbirj");
|
||||
memory->create(neighs, size_array_rows, size_array_cols, "snapneigh:neighs");
|
||||
|
||||
//vector = neighs;
|
||||
array = neighs;
|
||||
// Set size array rows which now depends on dbirj_rows.
|
||||
//size_array_rows = bik_rows+dbirj_rows+ndims_virial;
|
||||
//printf("----- dbirj_rows: %d\n", dbirj_rows);
|
||||
//printf("----- end of dbirj length.\n");
|
||||
|
||||
}
|
||||
|
||||
/* ----------------------------------------------------------------------
|
||||
compute array length
|
||||
------------------------------------------------------------------------- */
|
||||
|
||||
double ComputeSnapneigh::compute_scalar()
|
||||
{
|
||||
if (dbirjflag) get_dbirj_length();
|
||||
return size_array_rows;
|
||||
}
|
||||
|
||||
/* ----------------------------------------------------------------------
|
||||
memory usage
|
||||
------------------------------------------------------------------------- */
|
||||
|
||||
double ComputeSnapneigh::memory_usage()
|
||||
{
|
||||
|
||||
double bytes = (double)size_array_rows*size_array_cols *
|
||||
sizeof(double); // array
|
||||
|
||||
return bytes;
|
||||
}
|
||||
@ -1,73 +0,0 @@
|
||||
/* -*- c++ -*- ----------------------------------------------------------
|
||||
LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator
|
||||
https://www.lammps.org/, Sandia National Laboratories
|
||||
Steve Plimpton, sjplimp@sandia.gov
|
||||
|
||||
Copyright (2003) Sandia Corporation. Under the terms of Contract
|
||||
DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains
|
||||
certain rights in this software. This software is distributed under
|
||||
the GNU General Public License.
|
||||
|
||||
See the README file in the top-level LAMMPS directory.
|
||||
------------------------------------------------------------------------- */
|
||||
|
||||
#ifdef COMPUTE_CLASS
|
||||
// clang-format off
|
||||
ComputeStyle(snapneigh,ComputeSnapneigh);
|
||||
// clang-format on
|
||||
#else
|
||||
|
||||
#ifndef LMP_COMPUTE_SNAPNEIGH_H
|
||||
#define LMP_COMPUTE_SNAPNEIGH_H
|
||||
|
||||
#include "compute.h"
|
||||
|
||||
namespace LAMMPS_NS {
|
||||
|
||||
class ComputeSnapneigh : public Compute {
|
||||
public:
|
||||
ComputeSnapneigh(class LAMMPS *, int, char **);
|
||||
~ComputeSnapneigh() override;
|
||||
void init() override;
|
||||
void init_list(int, class NeighList *) override;
|
||||
void compute_array() override;
|
||||
double compute_scalar() override;
|
||||
double memory_usage() override;
|
||||
|
||||
private:
|
||||
FILE * fh_d;
|
||||
int natoms, nmax, size_peratom, lastcol;
|
||||
int ncoeff, nperdim, yoffset, zoffset;
|
||||
int ndims_peratom, ndims_force, ndims_virial;
|
||||
double **cutsq;
|
||||
class NeighList *list;
|
||||
double **snap, **snapall;
|
||||
double **snap_peratom;
|
||||
double rcutfac;
|
||||
double *radelem;
|
||||
double *wjelem;
|
||||
int *map; // map types to [0,nelements)
|
||||
int nelements, chemflag;
|
||||
int switchinnerflag;
|
||||
double *sinnerelem;
|
||||
double *dinnerelem;
|
||||
//class SNA *snaptr;
|
||||
double cutmax;
|
||||
int quadraticflag;
|
||||
//int bikflag;
|
||||
//int bik_rows;
|
||||
int bikflag, bik_rows, dbirjflag, dbirj_rows;
|
||||
double **dbirj;
|
||||
double **dbiri; // dBi/dRi = sum(-dBi/dRj) over neighbors j
|
||||
int *nneighs; // number of neighs inside the snap cutoff.
|
||||
int *neighsum;
|
||||
int *icounter; // counting atoms i for each j.
|
||||
double **neighs; // neighborlist for neural networks
|
||||
|
||||
void get_dbirj_length();
|
||||
};
|
||||
|
||||
} // namespace LAMMPS_NS
|
||||
|
||||
#endif
|
||||
#endif
|
||||
Reference in New Issue
Block a user