diff --git a/doc/src/bond_none.rst b/doc/src/bond_none.rst index 3712ef08d5..63ca5c1985 100644 --- a/doc/src/bond_none.rst +++ b/doc/src/bond_none.rst @@ -13,7 +13,7 @@ Syntax Examples """""""" -.. code-blocK:: LAMMPS +.. code-block:: LAMMPS bond_style none diff --git a/doc/src/compute_saed.rst b/doc/src/compute_saed.rst index 7ee5b91dab..6e2f6a35cf 100644 --- a/doc/src/compute_saed.rst +++ b/doc/src/compute_saed.rst @@ -57,8 +57,8 @@ is computed from the structure factor F using the equations: .. math:: - I = & \frac{F^{*}F}{N} \\ - F(\mathbf{k}) = & \sum_{j=1}^{N}f_j(\theta)exp(2\pi i \mathbf{k} \cdot \mathbf{r}_j) + I = & \frac{F^{*}F}{N} \\ + F(\mathbf{k}) = & \sum_{j=1}^{N}f_j(\theta)exp(2\pi i \mathbf{k} \cdot \mathbf{r}_j) Here, K is the location of the reciprocal lattice node, :math:`r_j` is the position of each atom, :math:`f_j` are atomic scattering factors. @@ -116,8 +116,8 @@ The analytic approximation is computed using the formula .. math:: - f_j\left ( \frac{sin(\theta)}{\lambda} \right )=\sum_{i}^{5} - a_i exp\left ( -b_i \frac{sin^{2}(\theta)}{\lambda^{2}} \right ) + f_j\left ( \frac{sin(\theta)}{\lambda} \right )=\sum_{i}^{5} + a_i exp\left ( -b_i \frac{sin^{2}(\theta)}{\lambda^{2}} \right ) Coefficients parameterized by :ref:`(Fox) ` are assigned for each atom type designating the chemical symbol and charge of each atom diff --git a/doc/src/pair_meam_spline.rst b/doc/src/pair_meam_spline.rst index 33e658fec6..7b34957bb3 100644 --- a/doc/src/pair_meam_spline.rst +++ b/doc/src/pair_meam_spline.rst @@ -16,7 +16,7 @@ Syntax Examples """""""" -.. code:: LAMMPS +.. code-block:: LAMMPS pair_style meam/spline pair_coeff * * Ti.meam.spline Ti