Working on sph_lj kernels
This commit is contained in:
212
lib/gpu/lal_sph_lj.cpp
Normal file
212
lib/gpu/lal_sph_lj.cpp
Normal file
@ -0,0 +1,212 @@
|
||||
/***************************************************************************
|
||||
sph_lj.cpp
|
||||
-------------------
|
||||
Trung Dac Nguyen (U Chicago)
|
||||
|
||||
Class for acceleration of the sph_lj pair style.
|
||||
|
||||
__________________________________________________________________________
|
||||
This file is part of the LAMMPS Accelerator Library (LAMMPS_AL)
|
||||
__________________________________________________________________________
|
||||
|
||||
begin : September 2023
|
||||
email : ndactrung@gmail.com
|
||||
***************************************************************************/
|
||||
|
||||
#if defined(USE_OPENCL)
|
||||
#include "sph_lj_cl.h"
|
||||
#elif defined(USE_CUDART)
|
||||
const char *sph_lj=0;
|
||||
#else
|
||||
#include "sph_lj_cubin.h"
|
||||
#endif
|
||||
|
||||
#include "lal_sph_lj.h"
|
||||
#include <cassert>
|
||||
namespace LAMMPS_AL {
|
||||
#define SPHLJT SPHLJ<numtyp, acctyp>
|
||||
|
||||
extern Device<PRECISION,ACC_PRECISION> device;
|
||||
|
||||
template <class numtyp, class acctyp>
|
||||
SPHLJT::SPHLJ() : BaseDPD<numtyp,acctyp>(), _allocated(false) {
|
||||
_max_drhoE_size = 0;
|
||||
}
|
||||
|
||||
template <class numtyp, class acctyp>
|
||||
SPHLJT::~SPHLJ() {
|
||||
clear();
|
||||
}
|
||||
|
||||
template <class numtyp, class acctyp>
|
||||
int SPHLJT::bytes_per_atom(const int max_nbors) const {
|
||||
return this->bytes_per_atom_atomic(max_nbors);
|
||||
}
|
||||
|
||||
template <class numtyp, class acctyp>
|
||||
int SPHLJT::init(const int ntypes,
|
||||
double **host_cutsq, double **host_viscosity,
|
||||
double *host_special_lj,
|
||||
const int nlocal, const int nall,
|
||||
const int max_nbors, const int maxspecial,
|
||||
const double cell_size,
|
||||
const double gpu_split, FILE *_screen) {
|
||||
const int max_shared_types=this->device->max_shared_types();
|
||||
|
||||
int onetype=0;
|
||||
#ifdef USE_OPENCL
|
||||
if (maxspecial==0)
|
||||
for (int i=1; i<ntypes; i++)
|
||||
for (int j=i; j<ntypes; j++)
|
||||
if (host_cutsq[i][j]>0) {
|
||||
if (onetype>0)
|
||||
onetype=-1;
|
||||
else if (onetype==0)
|
||||
onetype=i*max_shared_types+j;
|
||||
}
|
||||
if (onetype<0) onetype=0;
|
||||
#endif
|
||||
|
||||
int success;
|
||||
int extra_fields = 4; // round up to accomodate quadruples of numtyp values
|
||||
// rho, cv, mass
|
||||
success=this->init_atomic(nlocal,nall,max_nbors,maxspecial,cell_size,
|
||||
gpu_split,_screen,sph_lj,"k_sph_lj",onetype,extra_fields);
|
||||
if (success!=0)
|
||||
return success;
|
||||
|
||||
// If atom type constants fit in shared memory use fast kernel
|
||||
int lj_types=ntypes;
|
||||
shared_types=false;
|
||||
if (lj_types<=max_shared_types && this->_block_size>=max_shared_types) {
|
||||
lj_types=max_shared_types;
|
||||
shared_types=true;
|
||||
}
|
||||
_lj_types=lj_types;
|
||||
|
||||
// Allocate a host write buffer for data initialization
|
||||
UCL_H_Vec<numtyp> host_write(lj_types*lj_types*32,*(this->ucl_device),
|
||||
UCL_WRITE_ONLY);
|
||||
|
||||
for (int i=0; i<lj_types*lj_types; i++)
|
||||
host_write[i]=0.0;
|
||||
|
||||
coeff.alloc(lj_types*lj_types,*(this->ucl_device),UCL_READ_ONLY);
|
||||
this->atom->type_pack2(ntypes,lj_types,coeff,host_write,host_viscosity,
|
||||
host_cutsq);
|
||||
|
||||
UCL_H_Vec<double> dview;
|
||||
sp_lj.alloc(4,*(this->ucl_device),UCL_READ_ONLY);
|
||||
dview.view(host_special_lj,4,*(this->ucl_device));
|
||||
ucl_copy(sp_lj,dview,false);
|
||||
|
||||
// allocate per-atom array Q
|
||||
|
||||
int ef_nall=nall;
|
||||
if (ef_nall==0)
|
||||
ef_nall=2000;
|
||||
|
||||
_max_drhoE_size=static_cast<int>(static_cast<double>(ef_nall)*1.10);
|
||||
drhoE.alloc(_max_drhoE_size,*(this->ucl_device),UCL_READ_WRITE,UCL_READ_WRITE);
|
||||
|
||||
_allocated=true;
|
||||
this->_max_bytes=coeff.row_bytes()+drhoE.row_bytes()+sp_lj.row_bytes();
|
||||
return 0;
|
||||
}
|
||||
|
||||
template <class numtyp, class acctyp>
|
||||
void SPHLJT::clear() {
|
||||
if (!_allocated)
|
||||
return;
|
||||
_allocated=false;
|
||||
|
||||
coeff.clear();
|
||||
drhoE.clear();
|
||||
sp_lj.clear();
|
||||
this->clear_atomic();
|
||||
}
|
||||
|
||||
template <class numtyp, class acctyp>
|
||||
double SPHLJT::host_memory_usage() const {
|
||||
return this->host_memory_usage_atomic()+sizeof(SPHLJ<numtyp,acctyp>);
|
||||
}
|
||||
|
||||
template <class numtyp, class acctyp>
|
||||
void SPHLJT::update_drhoE(void **drhoE_ptr) {
|
||||
*drhoE_ptr=drhoE.host.begin();
|
||||
drhoE.update_host(_max_drhoE_size,false);
|
||||
}
|
||||
|
||||
// ---------------------------------------------------------------------------
|
||||
// Calculate energies, forces, and torques
|
||||
// ---------------------------------------------------------------------------
|
||||
template <class numtyp, class acctyp>
|
||||
int SPHLJT::loop(const int eflag, const int vflag) {
|
||||
|
||||
int nall = this->atom->nall();
|
||||
|
||||
// Resize drhoE array if necessary
|
||||
if (nall > _max_drhoE_size) {
|
||||
_max_drhoE_size=static_cast<int>(static_cast<double>(nall)*1.10);
|
||||
drhoE.resize(_max_drhoE_size);
|
||||
}
|
||||
|
||||
// signal that we need to transfer extra data from the host
|
||||
|
||||
this->atom->extra_data_unavail();
|
||||
|
||||
numtyp4 *pextra=reinterpret_cast<numtyp4*>(&(this->atom->extra[0]));
|
||||
|
||||
int n = 0;
|
||||
int nstride = 1;
|
||||
for (int i = 0; i < nall; i++) {
|
||||
int idx = n+i*nstride;
|
||||
numtyp4 v;
|
||||
v.x = rho[i];
|
||||
v.y = cv[i];
|
||||
v.z = mass[i];
|
||||
v.w = 0;
|
||||
pextra[idx] = v;
|
||||
}
|
||||
this->atom->add_extra_data();
|
||||
|
||||
// Compute the block size and grid size to keep all cores busy
|
||||
const int BX=this->block_size();
|
||||
int GX=static_cast<int>(ceil(static_cast<double>(this->ans->inum())/
|
||||
(BX/this->_threads_per_atom)));
|
||||
|
||||
|
||||
int ainum=this->ans->inum();
|
||||
int nbor_pitch=this->nbor->nbor_pitch();
|
||||
this->time_pair.start();
|
||||
if (shared_types) {
|
||||
this->k_pair_sel->set_size(GX,BX);
|
||||
this->k_pair_sel->run(&this->atom->x, &this->atom->extra, &coeff, &sp_lj,
|
||||
&this->nbor->dev_nbor, &this->_nbor_data->begin(),
|
||||
&this->ans->force, &this->ans->engv, &drhoE, &eflag, &vflag,
|
||||
&ainum, &nbor_pitch, &this->atom->v, &this->_threads_per_atom);
|
||||
} else {
|
||||
this->k_pair.set_size(GX,BX);
|
||||
this->k_pair.run(&this->atom->x, &this->atom->extra, &coeff,
|
||||
&_lj_types, &sp_lj, &this->nbor->dev_nbor, &this->_nbor_data->begin(),
|
||||
&this->ans->force, &this->ans->engv, &drhoE, &eflag, &vflag,
|
||||
&ainum, &nbor_pitch, &this->atom->v, &this->_threads_per_atom);
|
||||
}
|
||||
|
||||
this->time_pair.stop();
|
||||
return GX;
|
||||
}
|
||||
|
||||
// ---------------------------------------------------------------------------
|
||||
// Get the extra data pointers from host
|
||||
// ---------------------------------------------------------------------------
|
||||
|
||||
template <class numtyp, class acctyp>
|
||||
void SPHLJT::get_extra_data(double *host_rho, double *host_cv, double* host_mass) {
|
||||
rho = host_rho;
|
||||
cv = host_cv;
|
||||
mass = host_mass;
|
||||
}
|
||||
|
||||
template class SPHLJ<PRECISION,ACC_PRECISION>;
|
||||
}
|
||||
432
lib/gpu/lal_sph_lj.cu
Normal file
432
lib/gpu/lal_sph_lj.cu
Normal file
@ -0,0 +1,432 @@
|
||||
// **************************************************************************
|
||||
// edpd.cu
|
||||
// -------------------
|
||||
// Trung Dac Nguyen (U Chicago)
|
||||
//
|
||||
// Device code for acceleration of the edpd pair style
|
||||
//
|
||||
// __________________________________________________________________________
|
||||
// This file is part of the LAMMPS Accelerator Library (LAMMPS_AL)
|
||||
// __________________________________________________________________________
|
||||
//
|
||||
// begin : September 2023
|
||||
// email : ndactrung@gmail.com
|
||||
// ***************************************************************************
|
||||
|
||||
#if defined(NV_KERNEL) || defined(USE_HIP)
|
||||
#include "lal_aux_fun1.h"
|
||||
#ifndef _DOUBLE_DOUBLE
|
||||
_texture( pos_tex,float4);
|
||||
_texture( vel_tex,float4);
|
||||
#else
|
||||
_texture_2d( pos_tex,int4);
|
||||
_texture_2d( vel_tex,int4);
|
||||
#endif
|
||||
#else
|
||||
#define pos_tex x_
|
||||
#define vel_tex v_
|
||||
#endif
|
||||
|
||||
#if (SHUFFLE_AVAIL == 0)
|
||||
|
||||
#define store_drhoE(drhoI, deltaE, ii, inum, tid, t_per_atom, offset, \
|
||||
drhoE) \
|
||||
if (t_per_atom>1) { \
|
||||
simdsync(); \
|
||||
simd_reduce_add2(t_per_atom, red_acc, offset, tid, rhoEi, deltaE); \
|
||||
} \
|
||||
if (offset==0 && ii<inum) { \
|
||||
drhoE[ii].x=drhoI; \
|
||||
drhoE[ii].y=deltaE; \
|
||||
}
|
||||
#else
|
||||
#define store_drhoE(drhoI, deltaE, ii, inum, tid, t_per_atom, offset, drhoE) \
|
||||
if (t_per_atom>1) { \
|
||||
simd_reduce_add2(t_per_atom,drhoI,deltaE); \
|
||||
} \
|
||||
if (offset==0 && ii<inum) { \
|
||||
drhoE[ii].x=drhoI; \
|
||||
drhoE[ii].y=deltaE; \
|
||||
}
|
||||
#endif
|
||||
|
||||
__kernel void k_sph_lj(const __global numtyp4 *restrict x_,
|
||||
const __global numtyp4 *restrict extra,
|
||||
const __global numtyp4 *restrict coeff,
|
||||
const int lj_types,
|
||||
const __global numtyp *restrict sp_lj,
|
||||
const __global int * dev_nbor,
|
||||
const __global int * dev_packed,
|
||||
__global acctyp3 *restrict ans,
|
||||
__global acctyp *restrict engv,
|
||||
__global acctyp *restrict drhoE,
|
||||
const int eflag, const int vflag,
|
||||
const int inum, const int nbor_pitch,
|
||||
const __global numtyp4 *restrict v_,
|
||||
const int t_per_atom) {
|
||||
int tid, ii, offset;
|
||||
atom_info(t_per_atom,ii,tid,offset);
|
||||
|
||||
int n_stride;
|
||||
local_allocate_store_pair();
|
||||
|
||||
acctyp3 f;
|
||||
f.x=(acctyp)0; f.y=(acctyp)0; f.z=(acctyp)0;
|
||||
acctyp energy, virial[6];
|
||||
if (EVFLAG) {
|
||||
energy=(acctyp)0;
|
||||
for (int i=0; i<6; i++) virial[i]=(acctyp)0;
|
||||
}
|
||||
acctyp Qi = (acctyp)0;
|
||||
|
||||
if (ii<inum) {
|
||||
int i, numj, nbor, nbor_end;
|
||||
nbor_info(dev_nbor,dev_packed,nbor_pitch,t_per_atom,ii,offset,i,numj,
|
||||
n_stride,nbor_end,nbor);
|
||||
|
||||
numtyp4 ix; fetch4(ix,i,pos_tex); //x_[i];
|
||||
int itype=ix.w;
|
||||
numtyp mass_itype = mass[itype];
|
||||
numtyp4 iv; fetch4(iv,i,vel_tex); //v_[i];
|
||||
int itag=iv.w;
|
||||
|
||||
const numtyp4 Tcvi = extra[i];
|
||||
numtyp Ti = Tcvi.x;
|
||||
numtyp cvi = Tcvi.y;
|
||||
|
||||
numtyp factor_dpd;
|
||||
for ( ; nbor<nbor_end; nbor+=n_stride) {
|
||||
ucl_prefetch(dev_packed+nbor+n_stride);
|
||||
|
||||
int j=dev_packed[nbor];
|
||||
factor_dpd = sp_lj[sbmask(j)];
|
||||
j &= NEIGHMASK;
|
||||
|
||||
numtyp4 jx; fetch4(jx,j,pos_tex); //x_[j];
|
||||
int jtype=jx.w;
|
||||
numtyp4 jv; fetch4(jv,j,vel_tex); //v_[j];
|
||||
int jtag=jv.w;
|
||||
|
||||
// Compute r12
|
||||
numtyp delx = ix.x-jx.x;
|
||||
numtyp dely = ix.y-jx.y;
|
||||
numtyp delz = ix.z-jx.z;
|
||||
numtyp rsq = delx*delx+dely*dely+delz*delz;
|
||||
|
||||
int mtype=itype*lj_types+jtype;
|
||||
if (rsq<cutsq[mtype]) {
|
||||
numtyp r=ucl_sqrt(rsq);
|
||||
if (r < EPSILON) continue;
|
||||
|
||||
numtyp rinv=ucl_recip(r);
|
||||
numtyp delvx = iv.x - jv.x;
|
||||
numtyp delvy = iv.y - jv.y;
|
||||
numtyp delvz = iv.z - jv.z;
|
||||
numtyp dot = delx*delvx + dely*delvy + delz*delvz;
|
||||
numtyp vijeij = dot*rinv;
|
||||
|
||||
const numtyp coeffx=coeff[mtype].x; // a0[itype][jtype]
|
||||
const numtyp coeffy=coeff[mtype].y; // gamma[itype][jtype]
|
||||
const numtyp coeffz=coeff[mtype].z; // cut[itype][jtype]
|
||||
|
||||
const numtyp4 Tcvj = extra[j];
|
||||
numtyp Tj = Tcvj.x;
|
||||
numtyp cvj = Tcvj.y;
|
||||
|
||||
unsigned int tag1=itag, tag2=jtag;
|
||||
if (tag1 > tag2) {
|
||||
tag1 = jtag; tag2 = itag;
|
||||
}
|
||||
|
||||
numtyp randnum = (numtyp)0.0;
|
||||
saru(tag1, tag2, seed, timestep, randnum);
|
||||
|
||||
numtyp T_ij=(numtyp)0.5*(Ti+Tj);
|
||||
numtyp4 T_pow;
|
||||
T_pow.x = T_ij - (numtyp)1.0;
|
||||
T_pow.y = T_pow.x*T_pow.x;
|
||||
T_pow.z = T_pow.x*T_pow.y;
|
||||
T_pow.w = T_pow.x*T_pow.z;
|
||||
|
||||
numtyp coeff2x = coeff2[mtype].x; //power[itype][jtype]
|
||||
numtyp coeff2y = coeff2[mtype].y; //kappa[itype][jtype]
|
||||
numtyp coeff2z = coeff2[mtype].z; //powerT[itype][jtype]
|
||||
numtyp coeff2w = coeff2[mtype].w; //cutT[itype][jtype]
|
||||
numtyp power_d = coeff2x;
|
||||
if (power_flag) {
|
||||
numtyp factor = (numtyp)1.0;
|
||||
factor += sc[mtype].x*T_pow.x + sc[mtype].y*T_pow.y +
|
||||
sc[mtype].z*T_pow.z + sc[mtype].w*T_pow.w;
|
||||
power_d *= factor;
|
||||
}
|
||||
|
||||
power_d = MAX((numtyp)0.01,power_d);
|
||||
numtyp wc = (numtyp)1.0 - r/coeffz; // cut[itype][jtype]
|
||||
wc = MAX((numtyp)0.0,MIN((numtyp)1.0,wc));
|
||||
numtyp wr = ucl_pow(wc, (numtyp)0.5*power_d);
|
||||
|
||||
numtyp kboltz = (numtyp)1.0;
|
||||
numtyp GammaIJ = coeffy; // gamma[itype][jtype]
|
||||
numtyp SigmaIJ = (numtyp)4.0*GammaIJ*kboltz*Ti*Tj/(Ti+Tj);
|
||||
SigmaIJ = ucl_sqrt(SigmaIJ);
|
||||
|
||||
numtyp force = coeffx*T_ij*wc; // a0[itype][jtype]
|
||||
force -= GammaIJ *wr*wr *dot*rinv;
|
||||
force += SigmaIJ * wr *randnum * dtinvsqrt;
|
||||
force *= factor_dpd*rinv;
|
||||
|
||||
f.x+=delx*force;
|
||||
f.y+=dely*force;
|
||||
f.z+=delz*force;
|
||||
|
||||
// heat transfer
|
||||
|
||||
if (r < coeff2w) {
|
||||
numtyp wrT = (numtyp)1.0 - r/coeff2w;
|
||||
wrT = MAX((numtyp)0.0,MIN((numtyp)1.0,wrT));
|
||||
wrT = ucl_pow(wrT, (numtyp)0.5*coeff2z); // powerT[itype][jtype]
|
||||
numtyp randnumT = (numtyp)0;
|
||||
saru(tag1, tag2, seed+tag1+tag2, timestep, randnumT); // randomT->gaussian();
|
||||
randnumT = MAX((numtyp)-5.0,MIN(randnum,(numtyp)5.0));
|
||||
|
||||
numtyp kappaT = coeff2y; // kappa[itype][jtype]
|
||||
if (kappa_flag) {
|
||||
numtyp factor = (numtyp)1.0;
|
||||
factor += kc[mtype].x*T_pow.x + kc[mtype].y*T_pow.y +
|
||||
kc[mtype].z*T_pow.z + kc[mtype].w*T_pow.w;
|
||||
kappaT *= factor;
|
||||
}
|
||||
|
||||
numtyp kij = cvi*cvj*kappaT * T_ij*T_ij;
|
||||
numtyp alphaij = ucl_sqrt((numtyp)2.0*kboltz*kij);
|
||||
|
||||
numtyp dQc = kij * wrT*wrT * (Tj - Ti)/(Ti*Tj);
|
||||
numtyp dQd = wr*wr*( GammaIJ * vijeij*vijeij - SigmaIJ*SigmaIJ/mass_itype ) - SigmaIJ * wr *vijeij *randnum;
|
||||
dQd /= (cvi+cvj);
|
||||
numtyp dQr = alphaij * wrT * dtinvsqrt * randnumT;
|
||||
Qi += (dQc + dQd + dQr );
|
||||
}
|
||||
|
||||
if (EVFLAG && eflag) {
|
||||
numtyp e = (numtyp)0.5*coeffx*T_ij*coeffz * wc*wc;
|
||||
energy+=factor_dpd*e;
|
||||
}
|
||||
if (EVFLAG && vflag) {
|
||||
virial[0] += delx*delx*force;
|
||||
virial[1] += dely*dely*force;
|
||||
virial[2] += delz*delz*force;
|
||||
virial[3] += delx*dely*force;
|
||||
virial[4] += delx*delz*force;
|
||||
virial[5] += dely*delz*force;
|
||||
}
|
||||
}
|
||||
} // for nbor
|
||||
} // if ii
|
||||
store_answers(f,energy,virial,ii,inum,tid,t_per_atom,offset,eflag,vflag,
|
||||
ans,engv);
|
||||
store_drhoE(Qi,ii,inum,tid,t_per_atom,offset,Q);
|
||||
}
|
||||
|
||||
__kernel void k_sph_lj_fast(const __global numtyp4 *restrict x_,
|
||||
const __global numtyp4 *restrict extra,
|
||||
const __global numtyp2 *restrict coeff_in,
|
||||
const __global numtyp *restrict sp_lj_in,
|
||||
const __global int * dev_nbor,
|
||||
const __global int * dev_packed,
|
||||
__global acctyp3 *restrict ans,
|
||||
__global acctyp *restrict engv,
|
||||
__global acctyp *restrict drhoE,
|
||||
const int eflag, const int vflag,
|
||||
const int inum, const int nbor_pitch,
|
||||
const __global numtyp4 *restrict v_,
|
||||
const int t_per_atom) {
|
||||
int tid, ii, offset;
|
||||
atom_info(t_per_atom,ii,tid,offset);
|
||||
|
||||
#ifndef ONETYPE
|
||||
__local numtyp4 coeff[MAX_SHARED_TYPES*MAX_SHARED_TYPES];
|
||||
__local numtyp sp_lj[4];
|
||||
if (tid<4) {
|
||||
sp_lj[tid]=sp_lj_in[tid];
|
||||
}
|
||||
if (tid<MAX_SHARED_TYPES*MAX_SHARED_TYPES) {
|
||||
coeff[tid]=coeff_in[tid];
|
||||
}
|
||||
__syncthreads();
|
||||
#else
|
||||
const numtyp coeffx=coeff_in[ONETYPE].x; // viscosity[itype][jtype]
|
||||
const numtyp coeffy=coeff_in[ONETYPE].y; // cutsq[itype][jtype]
|
||||
#endif
|
||||
|
||||
int n_stride;
|
||||
local_allocate_store_pair();
|
||||
|
||||
acctyp3 f;
|
||||
f.x=(acctyp)0; f.y=(acctyp)0; f.z=(acctyp)0;
|
||||
acctyp energy, virial[6];
|
||||
if (EVFLAG) {
|
||||
energy=(acctyp)0;
|
||||
for (int i=0; i<6; i++) virial[i]=(acctyp)0;
|
||||
}
|
||||
acctyp Qi = (acctyp)0;
|
||||
|
||||
if (ii<inum) {
|
||||
int i, numj, nbor, nbor_end;
|
||||
nbor_info(dev_nbor,dev_packed,nbor_pitch,t_per_atom,ii,offset,i,numj,
|
||||
n_stride,nbor_end,nbor);
|
||||
|
||||
numtyp4 ix; fetch4(ix,i,pos_tex); //x_[i];
|
||||
int iw=ix.w;
|
||||
numtyp mass_itype = mass[iw];
|
||||
#ifndef ONETYPE
|
||||
int itype=fast_mul((int)MAX_SHARED_TYPES,iw);
|
||||
#endif
|
||||
numtyp4 iv; fetch4(iv,i,vel_tex); //v_[i];
|
||||
int itag=iv.w;
|
||||
|
||||
const numtyp4 Tcvi = extra[i];
|
||||
numtyp Ti = Tcvi.x;
|
||||
numtyp cvi = Tcvi.y;
|
||||
|
||||
#ifndef ONETYPE
|
||||
numtyp factor_dpd;
|
||||
#endif
|
||||
for ( ; nbor<nbor_end; nbor+=n_stride) {
|
||||
ucl_prefetch(dev_packed+nbor+n_stride);
|
||||
|
||||
int j=dev_packed[nbor];
|
||||
#ifndef ONETYPE
|
||||
factor_dpd = sp_lj[sbmask(j)];
|
||||
j &= NEIGHMASK;
|
||||
#endif
|
||||
|
||||
numtyp4 jx; fetch4(jx,j,pos_tex); //x_[j];
|
||||
#ifndef ONETYPE
|
||||
int mtype=itype+jx.w;
|
||||
const numtyp cutsq_p=cutsq[mtype];
|
||||
#endif
|
||||
numtyp4 jv; fetch4(jv,j,vel_tex); //v_[j];
|
||||
int jtag=jv.w;
|
||||
|
||||
// Compute r12
|
||||
numtyp delx = ix.x-jx.x;
|
||||
numtyp dely = ix.y-jx.y;
|
||||
numtyp delz = ix.z-jx.z;
|
||||
numtyp rsq = delx*delx+dely*dely+delz*delz;
|
||||
|
||||
if (rsq<cutsq_p) {
|
||||
numtyp r=ucl_sqrt(rsq);
|
||||
if (r < EPSILON) continue;
|
||||
|
||||
numtyp rinv=ucl_recip(r);
|
||||
numtyp delvx = iv.x - jv.x;
|
||||
numtyp delvy = iv.y - jv.y;
|
||||
numtyp delvz = iv.z - jv.z;
|
||||
numtyp dot = delx*delvx + dely*delvy + delz*delvz;
|
||||
numtyp vijeij = dot*rinv;
|
||||
|
||||
#ifndef ONETYPE
|
||||
const numtyp coeffx=coeff[mtype].x; // a0[itype][jtype]
|
||||
const numtyp coeffy=coeff[mtype].y; // gamma[itype][jtype]
|
||||
#endif
|
||||
|
||||
const numtyp4 Tcvj = extra[j];
|
||||
numtyp Tj = Tcvj.x;
|
||||
numtyp cvj = Tcvj.y;
|
||||
|
||||
unsigned int tag1=itag, tag2=jtag;
|
||||
if (tag1 > tag2) {
|
||||
tag1 = jtag; tag2 = itag;
|
||||
}
|
||||
numtyp randnum = (numtyp)0.0;
|
||||
saru(tag1, tag2, seed, timestep, randnum);
|
||||
|
||||
numtyp T_ij=(numtyp)0.5*(Ti+Tj);
|
||||
numtyp4 T_pow;
|
||||
T_pow.x = T_ij - (numtyp)1.0;
|
||||
T_pow.y = T_pow.x*T_pow.x;
|
||||
T_pow.z = T_pow.x*T_pow.y;
|
||||
T_pow.w = T_pow.x*T_pow.z;
|
||||
|
||||
numtyp power_d = coeff2x; // power[itype][jtype]
|
||||
if (power_flag) {
|
||||
numtyp factor = (numtyp)1.0;
|
||||
factor += scx*T_pow.x + scy*T_pow.y + scz*T_pow.z + scw*T_pow.w;
|
||||
power_d *= factor;
|
||||
}
|
||||
|
||||
power_d = MAX((numtyp)0.01,power_d);
|
||||
numtyp wc = (numtyp)1.0 - r/coeffz; // cut[itype][jtype]
|
||||
wc = MAX((numtyp)0.0,MIN((numtyp)1.0,wc));
|
||||
numtyp wr = ucl_pow((numtyp)wc, (numtyp)0.5*power_d);
|
||||
|
||||
numtyp kboltz = (numtyp)1.0;
|
||||
numtyp GammaIJ = coeffy; // gamma[itype][jtype]
|
||||
numtyp SigmaIJ = (numtyp)4.0*GammaIJ*kboltz*Ti*Tj/(Ti+Tj);
|
||||
SigmaIJ = ucl_sqrt(SigmaIJ);
|
||||
|
||||
numtyp force = coeffx*T_ij*wc; // a0[itype][jtype]
|
||||
force -= GammaIJ *wr*wr *dot*rinv;
|
||||
force += SigmaIJ* wr *randnum * dtinvsqrt;
|
||||
#ifndef ONETYPE
|
||||
force *= factor_dpd*rinv;
|
||||
#else
|
||||
force *= rinv;
|
||||
#endif
|
||||
|
||||
f.x+=delx*force;
|
||||
f.y+=dely*force;
|
||||
f.z+=delz*force;
|
||||
|
||||
// heat transfer
|
||||
|
||||
if (r < coeff2w) {
|
||||
numtyp wrT = (numtyp)1.0 - r/coeff2w;
|
||||
wrT = MAX((numtyp)0.0,MIN((numtyp)1.0,wrT));
|
||||
wrT = ucl_pow(wrT, (numtyp)0.5*coeff2z); // powerT[itype][jtype]
|
||||
numtyp randnumT = (numtyp)0;
|
||||
saru(tag1, tag2, seed+tag1+tag2, timestep, randnumT); // randomT->gaussian();
|
||||
randnumT = MAX((numtyp)-5.0,MIN(randnum,(numtyp)5.0));
|
||||
|
||||
numtyp kappaT = coeff2y; // kappa[itype][jtype]
|
||||
if (kappa_flag) {
|
||||
numtyp factor = (numtyp)1.0;
|
||||
factor += kcx*T_pow.x + kcy*T_pow.y + kcz*T_pow.z + kcw*T_pow.w;
|
||||
kappaT *= factor;
|
||||
}
|
||||
|
||||
numtyp kij = cvi*cvj*kappaT * T_ij*T_ij;
|
||||
numtyp alphaij = ucl_sqrt((numtyp)2.0*kboltz*kij);
|
||||
|
||||
numtyp dQc = kij * wrT*wrT * (Tj - Ti )/(Ti*Tj);
|
||||
numtyp dQd = wr*wr*( GammaIJ * vijeij*vijeij - SigmaIJ*SigmaIJ/mass_itype ) - SigmaIJ * wr *vijeij *randnum;
|
||||
dQd /= (cvi+cvj);
|
||||
numtyp dQr = alphaij * wrT * dtinvsqrt * randnumT;
|
||||
Qi += (dQc + dQd + dQr );
|
||||
}
|
||||
|
||||
if (EVFLAG && eflag) {
|
||||
numtyp e = (numtyp)0.5*coeffx*T_ij*coeffz * wc*wc;
|
||||
#ifndef ONETYPE
|
||||
energy+=factor_dpd*e;
|
||||
#else
|
||||
energy+=e;
|
||||
#endif
|
||||
}
|
||||
if (EVFLAG && vflag) {
|
||||
virial[0] += delx*delx*force;
|
||||
virial[1] += dely*dely*force;
|
||||
virial[2] += delz*delz*force;
|
||||
virial[3] += delx*dely*force;
|
||||
virial[4] += delx*delz*force;
|
||||
virial[5] += dely*delz*force;
|
||||
}
|
||||
|
||||
}
|
||||
} // for nbor
|
||||
} // if ii
|
||||
|
||||
store_answers(f,energy,virial,ii,inum,tid,t_per_atom,offset,eflag,vflag, ans,engv);
|
||||
store_drhoE(Qi,ii,inum,tid,t_per_atom,offset,Q);
|
||||
}
|
||||
|
||||
88
lib/gpu/lal_sph_lj.h
Normal file
88
lib/gpu/lal_sph_lj.h
Normal file
@ -0,0 +1,88 @@
|
||||
/***************************************************************************
|
||||
sph_lj.h
|
||||
-------------------
|
||||
Trung Dac Nguyen (U Chicago)
|
||||
|
||||
Class for acceleration of the sph lj pair style.
|
||||
|
||||
__________________________________________________________________________
|
||||
This file is part of the LAMMPS Accelerator Library (LAMMPS_AL)
|
||||
__________________________________________________________________________
|
||||
|
||||
begin : December 2023
|
||||
email : ndactrung@gmail.com
|
||||
***************************************************************************/
|
||||
|
||||
#ifndef LAL_SPH_LJ_H
|
||||
#define LAL_SPH_LJ_H
|
||||
|
||||
#include "lal_base_dpd.h"
|
||||
|
||||
namespace LAMMPS_AL {
|
||||
|
||||
template <class numtyp, class acctyp>
|
||||
class SPHLJ : public BaseDPD<numtyp, acctyp> {
|
||||
public:
|
||||
SPHLJ();
|
||||
~SPHLJ();
|
||||
|
||||
/// Clear any previous data and set up for a new LAMMPS run
|
||||
/** \param max_nbors initial number of rows in the neighbor matrix
|
||||
* \param cell_size cutoff + skin
|
||||
* \param gpu_split fraction of particles handled by device
|
||||
*
|
||||
* Returns:
|
||||
* - 0 if successful
|
||||
* - -1 if fix gpu not found
|
||||
* - -3 if there is an out of memory error
|
||||
* - -4 if the GPU library was not compiled for GPU
|
||||
* - -5 Double precision is not supported on card **/
|
||||
int init(const int ntypes, double **host_cutsq, double **host_viscosity,
|
||||
double *host_special_lj, const int nlocal, const int nall, const int max_nbors,
|
||||
const int maxspecial, const double cell_size, const double gpu_split,
|
||||
FILE *screen);
|
||||
|
||||
/// Clear all host and device data
|
||||
/** \note This is called at the beginning of the init() routine **/
|
||||
void clear();
|
||||
|
||||
/// Returns memory usage on device per atom
|
||||
int bytes_per_atom(const int max_nbors) const;
|
||||
|
||||
/// Total host memory used by library for pair style
|
||||
double host_memory_usage() const;
|
||||
|
||||
void get_extra_data(double *host_rho, double *host_cv, double* host_mass);
|
||||
|
||||
/// copy drho and desph from device to host
|
||||
void update_drhoE(void **drhoE_ptr);
|
||||
|
||||
// --------------------------- TYPE DATA --------------------------
|
||||
|
||||
/// coeff.x = viscosity, coeff.y = cutsq
|
||||
UCL_D_Vec<numtyp2> coeff;
|
||||
|
||||
/// Special LJ values
|
||||
UCL_D_Vec<numtyp> sp_lj;
|
||||
|
||||
/// If atom type constants fit in shared memory, use fast kernels
|
||||
bool shared_types;
|
||||
|
||||
/// Number of atom types
|
||||
int _lj_types;
|
||||
|
||||
/// Per-atom arrays
|
||||
UCL_Vector<acctyp,acctyp> drhoE;
|
||||
int _max_drhoE_size;
|
||||
|
||||
/// pointer to host data
|
||||
double *rho, *cv, *mass;
|
||||
|
||||
private:
|
||||
bool _allocated;
|
||||
int loop(const int eflag, const int vflag);
|
||||
};
|
||||
|
||||
}
|
||||
|
||||
#endif
|
||||
132
lib/gpu/lal_sph_lj_ext.cpp
Normal file
132
lib/gpu/lal_sph_lj_ext.cpp
Normal file
@ -0,0 +1,132 @@
|
||||
/***************************************************************************
|
||||
sph_lj_ext.cpp
|
||||
-------------------
|
||||
Trung Dac Nguyen (U Chicago)
|
||||
|
||||
Functions for LAMMPS access to sph lj acceleration routines.
|
||||
|
||||
__________________________________________________________________________
|
||||
This file is part of the LAMMPS Accelerator Library (LAMMPS_AL)
|
||||
__________________________________________________________________________
|
||||
|
||||
begin : December 2023
|
||||
email : ndactrung@gmail.com
|
||||
***************************************************************************/
|
||||
|
||||
#include <iostream>
|
||||
#include <cassert>
|
||||
#include <cmath>
|
||||
|
||||
#include "lal_sph_lj.h"
|
||||
|
||||
using namespace std;
|
||||
using namespace LAMMPS_AL;
|
||||
|
||||
static SPHLJ<PRECISION,ACC_PRECISION> SPHLJMF;
|
||||
|
||||
// ---------------------------------------------------------------------------
|
||||
// Allocate memory on host and device and copy constants to device
|
||||
// ---------------------------------------------------------------------------
|
||||
int sph_lj_gpu_init(const int ntypes, double **cutsq, double **host_viscosity,
|
||||
double *special_lj, const int inum, const int nall,
|
||||
const int max_nbors, const int maxspecial,
|
||||
const double cell_size, int &gpu_mode, FILE *screen) {
|
||||
SPHLJMF.clear();
|
||||
gpu_mode=SPHLJMF.device->gpu_mode();
|
||||
double gpu_split=SPHLJMF.device->particle_split();
|
||||
int first_gpu=SPHLJMF.device->first_device();
|
||||
int last_gpu=SPHLJMF.device->last_device();
|
||||
int world_me=SPHLJMF.device->world_me();
|
||||
int gpu_rank=SPHLJMF.device->gpu_rank();
|
||||
int procs_per_gpu=SPHLJMF.device->procs_per_gpu();
|
||||
|
||||
SPHLJMF.device->init_message(screen,"sph_lj",first_gpu,last_gpu);
|
||||
|
||||
bool message=false;
|
||||
if (SPHLJMF.device->replica_me()==0 && screen)
|
||||
message=true;
|
||||
|
||||
if (message) {
|
||||
fprintf(screen,"Initializing Device and compiling on process 0...");
|
||||
fflush(screen);
|
||||
}
|
||||
|
||||
int init_ok=0;
|
||||
if (world_me==0)
|
||||
init_ok=SPHLJMF.init(ntypes, cutsq, host_viscosity, special_lj,
|
||||
inum, nall, max_nbors, maxspecial,
|
||||
cell_size, gpu_split, screen);
|
||||
|
||||
SPHLJMF.device->world_barrier();
|
||||
if (message)
|
||||
fprintf(screen,"Done.\n");
|
||||
|
||||
for (int i=0; i<procs_per_gpu; i++) {
|
||||
if (message) {
|
||||
if (last_gpu-first_gpu==0)
|
||||
fprintf(screen,"Initializing Device %d on core %d...",first_gpu,i);
|
||||
else
|
||||
fprintf(screen,"Initializing Devices %d-%d on core %d...",first_gpu,
|
||||
last_gpu,i);
|
||||
fflush(screen);
|
||||
}
|
||||
if (gpu_rank==i && world_me!=0)
|
||||
init_ok=SPHLJMF.init(ntypes, cutsq, host_viscosity, special_lj,
|
||||
inum, nall, max_nbors, maxspecial,
|
||||
cell_size, gpu_split, screen);
|
||||
|
||||
SPHLJMF.device->serialize_init();
|
||||
if (message)
|
||||
fprintf(screen,"Done.\n");
|
||||
}
|
||||
if (message)
|
||||
fprintf(screen,"\n");
|
||||
|
||||
if (init_ok==0)
|
||||
SPHLJMF.estimate_gpu_overhead();
|
||||
return init_ok;
|
||||
}
|
||||
|
||||
void sph_lj_gpu_clear() {
|
||||
SPHLJMF.clear();
|
||||
}
|
||||
|
||||
int ** sph_lj_gpu_compute_n(const int ago, const int inum_full, const int nall,
|
||||
double **host_x, int *host_type, double *sublo,
|
||||
double *subhi, tagint *tag, int **nspecial,
|
||||
tagint **special, const bool eflag, const bool vflag,
|
||||
const bool eatom, const bool vatom, int &host_start,
|
||||
int **ilist, int **jnum, const double cpu_time, bool &success,
|
||||
double **host_v, const double dtinvsqrt,
|
||||
const int seed, const int timestep,
|
||||
double *boxlo, double *prd) {
|
||||
return SPHLJMF.compute(ago, inum_full, nall, host_x, host_type, sublo,
|
||||
subhi, tag, nspecial, special, eflag, vflag, eatom,
|
||||
vatom, host_start, ilist, jnum, cpu_time, success,
|
||||
host_v, dtinvsqrt, seed, timestep, boxlo, prd);
|
||||
}
|
||||
|
||||
void sph_lj_gpu_compute(const int ago, const int inum_full, const int nall,
|
||||
double **host_x, int *host_type, int *ilist, int *numj,
|
||||
int **firstneigh, const bool eflag, const bool vflag,
|
||||
const bool eatom, const bool vatom, int &host_start,
|
||||
const double cpu_time, bool &success, tagint *tag,
|
||||
double **host_v, const double dtinvsqrt,
|
||||
const int seed, const int timestep,
|
||||
const int nlocal, double *boxlo, double *prd) {
|
||||
SPHLJMF.compute(ago, inum_full, nall, host_x, host_type, ilist, numj,
|
||||
firstneigh, eflag, vflag, eatom, vatom, host_start, cpu_time, success,
|
||||
tag, host_v, dtinvsqrt, seed, timestep, nlocal, boxlo, prd);
|
||||
}
|
||||
|
||||
void sph_lj_gpu_get_extra_data(double *host_rho, double *host_cv, double *host_mass) {
|
||||
SPHLJMF.get_extra_data(host_rho, host_cv, host_mass);
|
||||
}
|
||||
|
||||
void sph_lj_gpu_update_drhoE(void **drhoE_ptr) {
|
||||
SPHLJMF.update_drhoE(drhoE_ptr);
|
||||
}
|
||||
|
||||
double sph_lj_gpu_bytes() {
|
||||
return SPHLJMF.host_memory_usage();
|
||||
}
|
||||
Reference in New Issue
Block a user