make computes rdf and adf error out multi cutoff neighbor lists if needed
This commit is contained in:
@ -176,22 +176,29 @@ also numbers :math:`\ge 0.0`.
|
||||
Restrictions
|
||||
""""""""""""
|
||||
|
||||
The RDF is not computed for distances longer than the force cutoff,
|
||||
since processors (in parallel) do not know about atom coordinates for
|
||||
atoms further away than that distance. If you want an RDF for larger
|
||||
distances, you can use the :doc:`rerun <rerun>` command to post-process
|
||||
a dump file and set the cutoff for the potential to be longer in the
|
||||
By default, the RDF is not computed for distances longer than the
|
||||
largest force cutoff, since the neighbor list creation will only contain
|
||||
pairs up to that distance (plus neighbor list skin). This distance can
|
||||
be increased using the *cutoff* keyword but this keyword is only valid
|
||||
with :doc:`neighbor styles 'bin' and 'nsq' <neighbor>`.
|
||||
|
||||
If you want an RDF for larger distances, you can also use the
|
||||
:doc:`rerun <rerun>` command to post-process a dump file, use :doc:`pair
|
||||
style zero <pair_zero>` and set the force cutoff to be longer in the
|
||||
rerun script. Note that in the rerun context, the force cutoff is
|
||||
arbitrary, since you are not running dynamics and thus are not changing
|
||||
your model. The definition of :math:`g(r)` used by LAMMPS is only appropriate
|
||||
for characterizing atoms that are uniformly distributed throughout the
|
||||
simulation cell. In such cases, the coordination number is still
|
||||
correct and meaningful. As an example, if a large simulation cell
|
||||
contains only one atom of type *itypeN* and one of *jtypeN*, then :math:`g(r)`
|
||||
will register an arbitrarily large spike at whatever distance they
|
||||
happen to be at, and zero everywhere else.
|
||||
The function :math:`\text{coord}(r)` will show a step
|
||||
change from zero to one at the location of the spike in :math:`g(r)`.
|
||||
arbitrary and with pair style zero you are not computing any forces, and
|
||||
you are not running dynamics you are not changing the model that
|
||||
generated the trajectory.
|
||||
|
||||
The definition of :math:`g(r)` used by LAMMPS is only appropriate for
|
||||
characterizing atoms that are uniformly distributed throughout the
|
||||
simulation cell. In such cases, the coordination number is still correct
|
||||
and meaningful. As an example, if a large simulation cell contains only
|
||||
one atom of type *itypeN* and one of *jtypeN*, then :math:`g(r)` will
|
||||
register an arbitrarily large spike at whatever distance they happen to
|
||||
be at, and zero everywhere else. The function :math:`\text{coord}(r)`
|
||||
will show a step change from zero to one at the location of the spike in
|
||||
:math:`g(r)`.
|
||||
|
||||
.. note::
|
||||
|
||||
|
||||
Reference in New Issue
Block a user