Update MLIAP JAX example to use jax.grad

This commit is contained in:
Linux-cpp-lisp
2023-05-24 18:15:56 -07:00
parent b2e5f93d49
commit 29ba0e3f18

View File

@ -5,10 +5,30 @@ import jax.numpy as jnp
from jax import jit
from functools import partial
# /- ensure epsilon and sigma are treated as compile-time constants
@partial(jit, static_argnums=(0, 1))
def lj_potential(epsilon: float, sigma: float, rij):
# a pure function we can differentiate:
def _tot_e(rij):
r2inv = 1.0 / jnp.sum(rij ** 2, axis=1)
r6inv = r2inv * r2inv * r2inv
lj1 = 4.0 * epsilon * sigma**12
lj2 = 4.0 * epsilon * sigma**6
eij = r6inv * (lj1 * r6inv - lj2)
return jnp.sum(eij)
# /- construct a function computing _tot_e and its derivative
tot_e, fij = jax.value_and_grad(_tot_e)(rij)
return tot_e, fij
class MLIAPUnifiedJAX(MLIAPUnified):
"""Test implementation for MLIAPUnified."""
epsilon: float
sigma: float
def __init__(self, element_types, epsilon=1.0, sigma=1.0, rcutfac=1.25):
# ARGS: interface, element_types, ndescriptors, nparams, rcutfac
super().__init__(None, element_types, 1, 3, rcutfac)
@ -39,23 +59,7 @@ class MLIAPUnifiedJAX(MLIAPUnified):
# This might account for ~2-3x slowdown compared to original LJ.
rij = np.pad(rij, ((0,npad), (0,0)), 'constant')
eij, fij = self.compute_pair_ef(rij)
e_tot, fij = lj_potential(rij)
data.update_pair_energy(np.array(np.double(eij)))
data.update_pair_forces(np.array(np.double(fij)))
#@jax.jit # <-- This will error! See https://github.com/google/jax/issues/1251
# @partial takes a function (e.g. jax.jit) as an arg.
@partial(jax.jit, static_argnums=(0,))
def compute_pair_ef(self, rij):
r2inv = 1.0 / jnp.sum(rij ** 2, axis=1)
r6inv = r2inv * r2inv * r2inv
lj1 = 4.0 * self.epsilon * self.sigma**12
lj2 = 4.0 * self.epsilon * self.sigma**6
eij = r6inv * (lj1 * r6inv - lj2)
fij = r6inv * (3.0 * lj2 - 6.0 * lj2 * r6inv) * r2inv
fij = fij[:, jnp.newaxis] * rij
return eij, fij
data.energy = e_tot.item()
data.update_pair_forces(np.array(fij, dtype=np.float64))