git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@9989 f3b2605a-c512-4ea7-a41b-209d697bcdaa

This commit is contained in:
sjplimp
2013-05-31 15:35:54 +00:00
parent b1430e190f
commit 2a70442035
35 changed files with 4008 additions and 2059 deletions

View File

@ -1,12 +1,133 @@
*> \brief \b DGECON
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
*> \htmlonly
*> Download DGECON + dependencies
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dgecon.f">
*> [TGZ]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dgecon.f">
*> [ZIP]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dgecon.f">
*> [TXT]</a>
*> \endhtmlonly
*
* Definition:
* ===========
*
* SUBROUTINE DGECON( NORM, N, A, LDA, ANORM, RCOND, WORK, IWORK,
* INFO )
*
* .. Scalar Arguments ..
* CHARACTER NORM
* INTEGER INFO, LDA, N
* DOUBLE PRECISION ANORM, RCOND
* ..
* .. Array Arguments ..
* INTEGER IWORK( * )
* DOUBLE PRECISION A( LDA, * ), WORK( * )
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> DGECON estimates the reciprocal of the condition number of a general
*> real matrix A, in either the 1-norm or the infinity-norm, using
*> the LU factorization computed by DGETRF.
*>
*> An estimate is obtained for norm(inv(A)), and the reciprocal of the
*> condition number is computed as
*> RCOND = 1 / ( norm(A) * norm(inv(A)) ).
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] NORM
*> \verbatim
*> NORM is CHARACTER*1
*> Specifies whether the 1-norm condition number or the
*> infinity-norm condition number is required:
*> = '1' or 'O': 1-norm;
*> = 'I': Infinity-norm.
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*> N is INTEGER
*> The order of the matrix A. N >= 0.
*> \endverbatim
*>
*> \param[in] A
*> \verbatim
*> A is DOUBLE PRECISION array, dimension (LDA,N)
*> The factors L and U from the factorization A = P*L*U
*> as computed by DGETRF.
*> \endverbatim
*>
*> \param[in] LDA
*> \verbatim
*> LDA is INTEGER
*> The leading dimension of the array A. LDA >= max(1,N).
*> \endverbatim
*>
*> \param[in] ANORM
*> \verbatim
*> ANORM is DOUBLE PRECISION
*> If NORM = '1' or 'O', the 1-norm of the original matrix A.
*> If NORM = 'I', the infinity-norm of the original matrix A.
*> \endverbatim
*>
*> \param[out] RCOND
*> \verbatim
*> RCOND is DOUBLE PRECISION
*> The reciprocal of the condition number of the matrix A,
*> computed as RCOND = 1/(norm(A) * norm(inv(A))).
*> \endverbatim
*>
*> \param[out] WORK
*> \verbatim
*> WORK is DOUBLE PRECISION array, dimension (4*N)
*> \endverbatim
*>
*> \param[out] IWORK
*> \verbatim
*> IWORK is INTEGER array, dimension (N)
*> \endverbatim
*>
*> \param[out] INFO
*> \verbatim
*> INFO is INTEGER
*> = 0: successful exit
*> < 0: if INFO = -i, the i-th argument had an illegal value
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date November 2011
*
*> \ingroup doubleGEcomputational
*
* =====================================================================
SUBROUTINE DGECON( NORM, N, A, LDA, ANORM, RCOND, WORK, IWORK,
$ INFO )
*
* -- LAPACK routine (version 3.2) --
* -- LAPACK computational routine (version 3.4.0) --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* November 2006
*
* Modified to call DLACN2 in place of DLACON, 5 Feb 03, SJH.
* November 2011
*
* .. Scalar Arguments ..
CHARACTER NORM
@ -18,52 +139,6 @@
DOUBLE PRECISION A( LDA, * ), WORK( * )
* ..
*
* Purpose
* =======
*
* DGECON estimates the reciprocal of the condition number of a general
* real matrix A, in either the 1-norm or the infinity-norm, using
* the LU factorization computed by DGETRF.
*
* An estimate is obtained for norm(inv(A)), and the reciprocal of the
* condition number is computed as
* RCOND = 1 / ( norm(A) * norm(inv(A)) ).
*
* Arguments
* =========
*
* NORM (input) CHARACTER*1
* Specifies whether the 1-norm condition number or the
* infinity-norm condition number is required:
* = '1' or 'O': 1-norm;
* = 'I': Infinity-norm.
*
* N (input) INTEGER
* The order of the matrix A. N >= 0.
*
* A (input) DOUBLE PRECISION array, dimension (LDA,N)
* The factors L and U from the factorization A = P*L*U
* as computed by DGETRF.
*
* LDA (input) INTEGER
* The leading dimension of the array A. LDA >= max(1,N).
*
* ANORM (input) DOUBLE PRECISION
* If NORM = '1' or 'O', the 1-norm of the original matrix A.
* If NORM = 'I', the infinity-norm of the original matrix A.
*
* RCOND (output) DOUBLE PRECISION
* The reciprocal of the condition number of the matrix A,
* computed as RCOND = 1/(norm(A) * norm(inv(A))).
*
* WORK (workspace) DOUBLE PRECISION array, dimension (4*N)
*
* IWORK (workspace) INTEGER array, dimension (N)
*
* INFO (output) INTEGER
* = 0: successful exit
* < 0: if INFO = -i, the i-th argument had an illegal value
*
* =====================================================================
*
* .. Parameters ..
@ -149,12 +224,12 @@
$ A, LDA, WORK, SU, WORK( 3*N+1 ), INFO )
ELSE
*
* Multiply by inv(U').
* Multiply by inv(U**T).
*
CALL DLATRS( 'Upper', 'Transpose', 'Non-unit', NORMIN, N, A,
$ LDA, WORK, SU, WORK( 3*N+1 ), INFO )
*
* Multiply by inv(L').
* Multiply by inv(L**T).
*
CALL DLATRS( 'Lower', 'Transpose', 'Unit', NORMIN, N, A,
$ LDA, WORK, SL, WORK( 2*N+1 ), INFO )