git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@9989 f3b2605a-c512-4ea7-a41b-209d697bcdaa
This commit is contained in:
@ -1,9 +1,123 @@
|
||||
*> \brief \b DLANGE returns the value of the 1-norm, Frobenius norm, infinity-norm, or the largest absolute value of any element of a general rectangular matrix.
|
||||
*
|
||||
* =========== DOCUMENTATION ===========
|
||||
*
|
||||
* Online html documentation available at
|
||||
* http://www.netlib.org/lapack/explore-html/
|
||||
*
|
||||
*> \htmlonly
|
||||
*> Download DLANGE + dependencies
|
||||
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlange.f">
|
||||
*> [TGZ]</a>
|
||||
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlange.f">
|
||||
*> [ZIP]</a>
|
||||
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlange.f">
|
||||
*> [TXT]</a>
|
||||
*> \endhtmlonly
|
||||
*
|
||||
* Definition:
|
||||
* ===========
|
||||
*
|
||||
* DOUBLE PRECISION FUNCTION DLANGE( NORM, M, N, A, LDA, WORK )
|
||||
*
|
||||
* .. Scalar Arguments ..
|
||||
* CHARACTER NORM
|
||||
* INTEGER LDA, M, N
|
||||
* ..
|
||||
* .. Array Arguments ..
|
||||
* DOUBLE PRECISION A( LDA, * ), WORK( * )
|
||||
* ..
|
||||
*
|
||||
*
|
||||
*> \par Purpose:
|
||||
* =============
|
||||
*>
|
||||
*> \verbatim
|
||||
*>
|
||||
*> DLANGE returns the value of the one norm, or the Frobenius norm, or
|
||||
*> the infinity norm, or the element of largest absolute value of a
|
||||
*> real matrix A.
|
||||
*> \endverbatim
|
||||
*>
|
||||
*> \return DLANGE
|
||||
*> \verbatim
|
||||
*>
|
||||
*> DLANGE = ( max(abs(A(i,j))), NORM = 'M' or 'm'
|
||||
*> (
|
||||
*> ( norm1(A), NORM = '1', 'O' or 'o'
|
||||
*> (
|
||||
*> ( normI(A), NORM = 'I' or 'i'
|
||||
*> (
|
||||
*> ( normF(A), NORM = 'F', 'f', 'E' or 'e'
|
||||
*>
|
||||
*> where norm1 denotes the one norm of a matrix (maximum column sum),
|
||||
*> normI denotes the infinity norm of a matrix (maximum row sum) and
|
||||
*> normF denotes the Frobenius norm of a matrix (square root of sum of
|
||||
*> squares). Note that max(abs(A(i,j))) is not a consistent matrix norm.
|
||||
*> \endverbatim
|
||||
*
|
||||
* Arguments:
|
||||
* ==========
|
||||
*
|
||||
*> \param[in] NORM
|
||||
*> \verbatim
|
||||
*> NORM is CHARACTER*1
|
||||
*> Specifies the value to be returned in DLANGE as described
|
||||
*> above.
|
||||
*> \endverbatim
|
||||
*>
|
||||
*> \param[in] M
|
||||
*> \verbatim
|
||||
*> M is INTEGER
|
||||
*> The number of rows of the matrix A. M >= 0. When M = 0,
|
||||
*> DLANGE is set to zero.
|
||||
*> \endverbatim
|
||||
*>
|
||||
*> \param[in] N
|
||||
*> \verbatim
|
||||
*> N is INTEGER
|
||||
*> The number of columns of the matrix A. N >= 0. When N = 0,
|
||||
*> DLANGE is set to zero.
|
||||
*> \endverbatim
|
||||
*>
|
||||
*> \param[in] A
|
||||
*> \verbatim
|
||||
*> A is DOUBLE PRECISION array, dimension (LDA,N)
|
||||
*> The m by n matrix A.
|
||||
*> \endverbatim
|
||||
*>
|
||||
*> \param[in] LDA
|
||||
*> \verbatim
|
||||
*> LDA is INTEGER
|
||||
*> The leading dimension of the array A. LDA >= max(M,1).
|
||||
*> \endverbatim
|
||||
*>
|
||||
*> \param[out] WORK
|
||||
*> \verbatim
|
||||
*> WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK)),
|
||||
*> where LWORK >= M when NORM = 'I'; otherwise, WORK is not
|
||||
*> referenced.
|
||||
*> \endverbatim
|
||||
*
|
||||
* Authors:
|
||||
* ========
|
||||
*
|
||||
*> \author Univ. of Tennessee
|
||||
*> \author Univ. of California Berkeley
|
||||
*> \author Univ. of Colorado Denver
|
||||
*> \author NAG Ltd.
|
||||
*
|
||||
*> \date September 2012
|
||||
*
|
||||
*> \ingroup doubleGEauxiliary
|
||||
*
|
||||
* =====================================================================
|
||||
DOUBLE PRECISION FUNCTION DLANGE( NORM, M, N, A, LDA, WORK )
|
||||
*
|
||||
* -- LAPACK auxiliary routine (version 3.2) --
|
||||
* -- LAPACK auxiliary routine (version 3.4.2) --
|
||||
* -- LAPACK is a software package provided by Univ. of Tennessee, --
|
||||
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
|
||||
* November 2006
|
||||
* September 2012
|
||||
*
|
||||
* .. Scalar Arguments ..
|
||||
CHARACTER NORM
|
||||
@ -13,56 +127,6 @@
|
||||
DOUBLE PRECISION A( LDA, * ), WORK( * )
|
||||
* ..
|
||||
*
|
||||
* Purpose
|
||||
* =======
|
||||
*
|
||||
* DLANGE returns the value of the one norm, or the Frobenius norm, or
|
||||
* the infinity norm, or the element of largest absolute value of a
|
||||
* real matrix A.
|
||||
*
|
||||
* Description
|
||||
* ===========
|
||||
*
|
||||
* DLANGE returns the value
|
||||
*
|
||||
* DLANGE = ( max(abs(A(i,j))), NORM = 'M' or 'm'
|
||||
* (
|
||||
* ( norm1(A), NORM = '1', 'O' or 'o'
|
||||
* (
|
||||
* ( normI(A), NORM = 'I' or 'i'
|
||||
* (
|
||||
* ( normF(A), NORM = 'F', 'f', 'E' or 'e'
|
||||
*
|
||||
* where norm1 denotes the one norm of a matrix (maximum column sum),
|
||||
* normI denotes the infinity norm of a matrix (maximum row sum) and
|
||||
* normF denotes the Frobenius norm of a matrix (square root of sum of
|
||||
* squares). Note that max(abs(A(i,j))) is not a consistent matrix norm.
|
||||
*
|
||||
* Arguments
|
||||
* =========
|
||||
*
|
||||
* NORM (input) CHARACTER*1
|
||||
* Specifies the value to be returned in DLANGE as described
|
||||
* above.
|
||||
*
|
||||
* M (input) INTEGER
|
||||
* The number of rows of the matrix A. M >= 0. When M = 0,
|
||||
* DLANGE is set to zero.
|
||||
*
|
||||
* N (input) INTEGER
|
||||
* The number of columns of the matrix A. N >= 0. When N = 0,
|
||||
* DLANGE is set to zero.
|
||||
*
|
||||
* A (input) DOUBLE PRECISION array, dimension (LDA,N)
|
||||
* The m by n matrix A.
|
||||
*
|
||||
* LDA (input) INTEGER
|
||||
* The leading dimension of the array A. LDA >= max(M,1).
|
||||
*
|
||||
* WORK (workspace) DOUBLE PRECISION array, dimension (MAX(1,LWORK)),
|
||||
* where LWORK >= M when NORM = 'I'; otherwise, WORK is not
|
||||
* referenced.
|
||||
*
|
||||
* =====================================================================
|
||||
*
|
||||
* .. Parameters ..
|
||||
@ -71,17 +135,17 @@
|
||||
* ..
|
||||
* .. Local Scalars ..
|
||||
INTEGER I, J
|
||||
DOUBLE PRECISION SCALE, SUM, VALUE
|
||||
DOUBLE PRECISION SCALE, SUM, VALUE, TEMP
|
||||
* ..
|
||||
* .. External Subroutines ..
|
||||
EXTERNAL DLASSQ
|
||||
* ..
|
||||
* .. External Functions ..
|
||||
LOGICAL LSAME
|
||||
EXTERNAL LSAME
|
||||
LOGICAL LSAME, DISNAN
|
||||
EXTERNAL LSAME, DISNAN
|
||||
* ..
|
||||
* .. Intrinsic Functions ..
|
||||
INTRINSIC ABS, MAX, MIN, SQRT
|
||||
INTRINSIC ABS, MIN, SQRT
|
||||
* ..
|
||||
* .. Executable Statements ..
|
||||
*
|
||||
@ -94,7 +158,8 @@
|
||||
VALUE = ZERO
|
||||
DO 20 J = 1, N
|
||||
DO 10 I = 1, M
|
||||
VALUE = MAX( VALUE, ABS( A( I, J ) ) )
|
||||
TEMP = ABS( A( I, J ) )
|
||||
IF( VALUE.LT.TEMP .OR. DISNAN( TEMP ) ) VALUE = TEMP
|
||||
10 CONTINUE
|
||||
20 CONTINUE
|
||||
ELSE IF( ( LSAME( NORM, 'O' ) ) .OR. ( NORM.EQ.'1' ) ) THEN
|
||||
@ -107,7 +172,7 @@
|
||||
DO 30 I = 1, M
|
||||
SUM = SUM + ABS( A( I, J ) )
|
||||
30 CONTINUE
|
||||
VALUE = MAX( VALUE, SUM )
|
||||
IF( VALUE.LT.SUM .OR. DISNAN( SUM ) ) VALUE = SUM
|
||||
40 CONTINUE
|
||||
ELSE IF( LSAME( NORM, 'I' ) ) THEN
|
||||
*
|
||||
@ -123,7 +188,8 @@
|
||||
70 CONTINUE
|
||||
VALUE = ZERO
|
||||
DO 80 I = 1, M
|
||||
VALUE = MAX( VALUE, WORK( I ) )
|
||||
TEMP = WORK( I )
|
||||
IF( VALUE.LT.TEMP .OR. DISNAN( TEMP ) ) VALUE = TEMP
|
||||
80 CONTINUE
|
||||
ELSE IF( ( LSAME( NORM, 'F' ) ) .OR. ( LSAME( NORM, 'E' ) ) ) THEN
|
||||
*
|
||||
|
||||
Reference in New Issue
Block a user