Completed merge to current master

This commit is contained in:
Aidan Thompson
2021-07-14 13:47:55 -06:00
8 changed files with 1082 additions and 0 deletions

104
examples/snap/grid.py Executable file
View File

@ -0,0 +1,104 @@
#!/Users/athomps/miniconda3/bin/python3.7
#
# An example of SNAP grid from LAMMPS Python interface
#
# https://lammps.sandia.gov/doc/Python_library.html
from lammps import lammps
import lammps_utils
# define command line input variables
ngridx = 2
ngridy = 3
ngridz = 4
twojmax = 2
lmp_cmdargs = ["-echo","screen"]
lmp_cmdargs = lammps_utils.set_cmdlinevars(lmp_cmdargs,
{
"ngridx":ngridx,
"ngridy":ngridy,
"ngridz":ngridz,
"twojmax":twojmax
}
)
# launch LAMMPS instance
lmp = lammps(cmdargs=lmp_cmdargs)
# run LAMMPS input script
lmp.file("in.grid.python")
# get quantities from LAMMPS
num_atoms = lmp.get_natoms()
# set things not accessible from LAMMPS
# first 3 cols are x, y, z, coords
ncols0 = 3
# analytical relation
ncoeff = (twojmax+2)*(twojmax+3)*(twojmax+4)
ncoeff = ncoeff // 24 # integer division
ncols = ncols0+ncoeff
# get B_0 at position (0,0,0) in 4 different ways
# 1. from comute sna/atom
bptr = lmp.extract_compute("b", 1, 2) # 1 = per-atom data, 2 = array
print("b = ",bptr[0][0])
# 2. from compute sna/grid
bgridptr = lmp.extract_compute("bgrid", 0, 2) # 0 = style global, 2 = type array
print("bgrid = ",bgridptr[0][3])
# 3. from Numpy array pointing to sna/atom array
bptr_np = lammps_utils.extract_compute_np(lmp,"b",1,2,(num_atoms,ncoeff))
print("b_np = ",bptr_np[0][0])
# 4. from Numpy array pointing to sna/grid array
bgridptr_np = lammps_utils.extract_compute_np(lmp,"bgrid",0,2,(ngridz,ngridy,ngridx,ncols))
print("bgrid_np = ",bgridptr_np[0][0][0][ncols0+0])
# print out the LAMMPS array to a file
outfile = open("bgrid.dat",'w')
igrid = 0
for iz in range(ngridz):
for iy in range(ngridy):
for ix in range(ngridx):
outfile.write("x, y, z = %g %g %g\n" %
(bgridptr[igrid][0],
bgridptr[igrid][1],
bgridptr[igrid][2]))
for icoeff in range(ncoeff):
outfile.write("%g " % bgridptr[igrid][ncols0+icoeff])
outfile.write("\n")
igrid += 1
outfile.close()
# print out the Numpy array to a file
outfile = open("bgrid_np.dat",'w')
for iz in range(ngridz):
for iy in range(ngridy):
for ix in range(ngridx):
outfile.write("x, y, z = %g %g %g\n" %
(bgridptr_np[iz][iy][ix][0],
bgridptr_np[iz][iy][ix][1],
bgridptr_np[iz][iy][ix][2]))
for icoeff in range(ncoeff):
outfile.write("%g " % bgridptr_np[iz][iy][ix][ncols0+icoeff])
outfile.write("\n")
outfile.close()

83
examples/snap/in.grid Normal file
View File

@ -0,0 +1,83 @@
# Demonstrate bispectrum computes
# CORRECTNESS: thermo output for c_mygrid[*][1] and c_mygrid[*][8] should
# match the values in dump_b: 108.173 3.21778 0.712238 7.06634 1.04273
# Initialize simulation
variable nsteps index 0
variable nrep index 1
variable a index 3.316
variable ngrid index 2
units metal
# generate the box and atom positions using a BCC lattice
variable nx equal ${nrep}
variable ny equal ${nrep}
variable nz equal ${nrep}
boundary p p p
lattice custom $a &
a1 1 0 0 &
a2 0 1 0 &
a3 0 0 1 &
basis 0 0 0 &
basis 0.5 0.5 0.5 &
# origin 0.25 0.25 0.25
region box block 0 ${nx} 0 ${ny} 0 ${nz}
create_box 1 box
create_atoms 1 box
mass 1 180.88
# choose potential
include Ta06A.snap
# define grid compute and atom compute
group snapgroup type 1
variable twojmax equal 2
variable rcutfac equal 4.67637
variable rfac0 equal 0.99363
variable rmin0 equal 0
variable wj equal 1
variable radelem equal 0.5
variable bzero equal 0
variable quad equal 0
variable switch equal 1
compute b all sna/atom &
${rcutfac} ${rfac0} ${twojmax} ${radelem} &
${wj} rmin0 ${rmin0} bzeroflag ${bzero} &
quadraticflag ${quad} switchflag ${switch}
compute mygrid all sna/grid grid ${ngrid} ${ngrid} ${ngrid} &
${rcutfac} ${rfac0} ${twojmax} ${radelem} &
${wj} rmin0 ${rmin0} bzeroflag ${bzero} &
quadraticflag ${quad} switchflag ${switch}
# define output
# mygrid is ngrid by (3+nbis) = 8x8
thermo_style custom step temp ke pe vol &
c_mygrid[1][1] c_mygrid[2][1] c_mygrid[3][1] c_mygrid[4][1] c_mygrid[5][1] c_mygrid[6][1] c_mygrid[7][1] c_mygrid[8][1] &
c_mygrid[1][2] c_mygrid[2][2] c_mygrid[3][2] c_mygrid[4][2] c_mygrid[5][2] c_mygrid[6][2] c_mygrid[7][2] c_mygrid[8][2] &
c_mygrid[1][3] c_mygrid[2][3] c_mygrid[3][3] c_mygrid[4][3] c_mygrid[5][3] c_mygrid[6][3] c_mygrid[7][3] c_mygrid[8][3] &
c_mygrid[1][4] c_mygrid[2][4] c_mygrid[3][4] c_mygrid[4][4] c_mygrid[5][4] c_mygrid[6][4] c_mygrid[7][4] c_mygrid[8][4] &
c_mygrid[1][5] c_mygrid[2][5] c_mygrid[3][5] c_mygrid[4][5] c_mygrid[5][5] c_mygrid[6][5] c_mygrid[7][5] c_mygrid[8][5] &
c_mygrid[1][6] c_mygrid[2][6] c_mygrid[3][6] c_mygrid[4][6] c_mygrid[5][6] c_mygrid[6][6] c_mygrid[7][6] c_mygrid[8][6] &
c_mygrid[1][7] c_mygrid[2][7] c_mygrid[3][7] c_mygrid[4][7] c_mygrid[5][7] c_mygrid[6][7] c_mygrid[7][7] c_mygrid[8][7] &
c_mygrid[1][8] c_mygrid[2][8] c_mygrid[3][8] c_mygrid[4][8] c_mygrid[5][8] c_mygrid[6][8] c_mygrid[7][8] c_mygrid[8][8]
thermo_modify norm yes
dump mydump_b all custom 1000 dump_b id c_b[*]
# run
run 0

View File

@ -0,0 +1,61 @@
# Demonstrate bispectrum per-atom and grid computes
# Invoked from grid.py
# pass in values for ngridx, ngridy, ngridz, twojmax
# Initialize simulation
variable nsteps equal 0
variable nrep equal 1
variable a equal 3.316
units metal
# generate the box and atom positions using a BCC lattice
variable nx equal ${nrep}
variable ny equal ${nrep}
variable nz equal ${nrep}
boundary p p p
lattice custom ${a} a1 1 0 0 a2 0 1 0 a3 0 0 1 basis 0 0 0 basis 0.5 0.5 0.5
region box block 0 ${nx} 0 ${ny} 0 ${nz}
create_box 1 box
create_atoms 1 box
mass 1 180.88
# define grid compute and atom compute
group snapgroup type 1
variable rcutfac equal 4.67637
variable rfac0 equal 0.99363
variable rmin0 equal 0
variable wj equal 1
variable radelem equal 0.5
variable bzero equal 0
variable quad equal 0
variable switch equal 1
compute b all sna/atom ${rcutfac} ${rfac0} ${twojmax} ${radelem} ${wj} rmin0 ${rmin0} bzeroflag ${bzero} quadraticflag ${quad} switchflag ${switch}
compute bgrid all sna/grid grid ${ngridx} ${ngridy} ${ngridz} ${rcutfac} ${rfac0} ${twojmax} ${radelem} ${wj} rmin0 ${rmin0} bzeroflag ${bzero} quadraticflag ${quad} switchflag ${switch}
# create dummy potential for neighbor list
variable rcutneigh equal 2.0*${rcutfac}*${radelem}
pair_style zero ${rcutneigh}
pair_coeff * *
# define output
thermo_style custom step temp ke pe vol c_bgrid[1][1]
thermo_modify norm yes
dump mydump_b all custom 1000 dump_b id c_b[*]
# run
run 0

135
examples/snap/in.grid.tri Normal file
View File

@ -0,0 +1,135 @@
# Demonstrate bispectrum computes for triclinic cell
# This triclinic cell has 6 times the volume of the single
# unit cell used by in.grid
# and contains 12 atoms. It is a 3x2x1 supercell
# with each unit cell containing 2 atoms and the
# reduced lattice vectors are [1 0 0], [1 1 0], and [1 1 1].
# The grid is listed in x-fastest order
# CORRECTNESS: thermo output for c_mygrid[*][7] should contain
# the same 2 values that appear in c_mygrid[*][7] for in.grid,
# 7.0663376 and 13.808803, corresponding to atom and insterstitial sites,
# respectively, and with occurrences 12 and 36, respectively.
# Initialize simulation
variable nsteps index 0
variable nrep index 1
variable a index 3.316
variable ngrid index 4
variable ngridx equal 3*${ngrid}
variable ngridy equal 2*${ngrid}
variable ngridz equal 1*${ngrid}
variable nrepx equal 1*${nrep}
variable nrepy equal 1*${nrep}
variable nrepz equal 1*${nrep}
units metal
# generate the box and atom positions using a BCC lattice
variable nx equal ${nrepx}
variable ny equal ${nrepy}
variable nz equal ${nrepz}
boundary p p p
lattice custom $a &
a1 1 0 0 &
a2 1 1 0 &
a3 1 1 1 &
basis 0 0 0 &
basis 0.0 0.0 0.5 &
# origin 0.25 0.25 0.25
box tilt large
region box prism 0 ${nx} 0 ${ny} 0 ${nz} ${ny} ${nz} ${nz}
create_box 1 box
create_atoms 1 box
mass 1 180.88
# choose potential
include Ta06A.snap
# define grid compute and atom compute
group snapgroup type 1
variable twojmax equal 2
variable rcutfac equal 4.67637
variable rfac0 equal 0.99363
variable rmin0 equal 0
variable wj equal 1
variable radelem equal 0.5
variable bzero equal 0
variable quad equal 0
variable switch equal 1
compute b all sna/atom &
${rcutfac} ${rfac0} ${twojmax} ${radelem} &
${wj} rmin0 ${rmin0} bzeroflag ${bzero} &
quadraticflag ${quad} switchflag ${switch}
compute mygrid all sna/grid grid ${ngridx} ${ngridy} ${ngridz} &
${rcutfac} ${rfac0} ${twojmax} ${radelem} &
${wj} rmin0 ${rmin0} bzeroflag ${bzero} &
quadraticflag ${quad} switchflag ${switch}
# define output
# mygrid is ngrid by (3+nbis) = 384x8
thermo_style custom step temp ke pe vol &
c_mygrid[1][7] c_mygrid[2][7] c_mygrid[3][7] c_mygrid[4][7] c_mygrid[5][7] c_mygrid[6][7] c_mygrid[7][7] c_mygrid[8][7] c_mygrid[9][7] &
c_mygrid[10][7] c_mygrid[11][7] c_mygrid[12][7] c_mygrid[13][7] c_mygrid[14][7] c_mygrid[15][7] c_mygrid[16][7] c_mygrid[17][7] c_mygrid[18][7] c_mygrid[19][7] &
c_mygrid[20][7] c_mygrid[21][7] c_mygrid[22][7] c_mygrid[23][7] c_mygrid[24][7] c_mygrid[25][7] c_mygrid[26][7] c_mygrid[27][7] c_mygrid[28][7] c_mygrid[29][7] &
c_mygrid[30][7] c_mygrid[31][7] c_mygrid[32][7] c_mygrid[33][7] c_mygrid[34][7] c_mygrid[35][7] c_mygrid[36][7] c_mygrid[37][7] c_mygrid[38][7] c_mygrid[39][7] &
c_mygrid[40][7] c_mygrid[41][7] c_mygrid[42][7] c_mygrid[43][7] c_mygrid[44][7] c_mygrid[45][7] c_mygrid[46][7] c_mygrid[47][7] c_mygrid[48][7] c_mygrid[49][7] &
c_mygrid[50][7] c_mygrid[51][7] c_mygrid[52][7] c_mygrid[53][7] c_mygrid[54][7] c_mygrid[55][7] c_mygrid[56][7] c_mygrid[57][7] c_mygrid[58][7] c_mygrid[59][7] &
c_mygrid[60][7] c_mygrid[61][7] c_mygrid[62][7] c_mygrid[63][7] c_mygrid[64][7] c_mygrid[65][7] c_mygrid[66][7] c_mygrid[67][7] c_mygrid[68][7] c_mygrid[69][7] &
c_mygrid[70][7] c_mygrid[71][7] c_mygrid[72][7] c_mygrid[73][7] c_mygrid[74][7] c_mygrid[75][7] c_mygrid[76][7] c_mygrid[77][7] c_mygrid[78][7] c_mygrid[79][7] &
c_mygrid[80][7] c_mygrid[81][7] c_mygrid[82][7] c_mygrid[83][7] c_mygrid[84][7] c_mygrid[85][7] c_mygrid[86][7] c_mygrid[87][7] c_mygrid[88][7] c_mygrid[89][7] &
c_mygrid[90][7] c_mygrid[91][7] c_mygrid[92][7] c_mygrid[93][7] c_mygrid[94][7] c_mygrid[95][7] c_mygrid[96][7] c_mygrid[97][7] c_mygrid[98][7] c_mygrid[99][7] &
c_mygrid[100][7] c_mygrid[101][7] c_mygrid[102][7] c_mygrid[103][7] c_mygrid[104][7] c_mygrid[105][7] c_mygrid[106][7] c_mygrid[107][7] c_mygrid[108][7] c_mygrid[109][7] &
c_mygrid[110][7] c_mygrid[111][7] c_mygrid[112][7] c_mygrid[113][7] c_mygrid[114][7] c_mygrid[115][7] c_mygrid[116][7] c_mygrid[117][7] c_mygrid[118][7] c_mygrid[119][7] &
c_mygrid[120][7] c_mygrid[121][7] c_mygrid[122][7] c_mygrid[123][7] c_mygrid[124][7] c_mygrid[125][7] c_mygrid[126][7] c_mygrid[127][7] c_mygrid[128][7] c_mygrid[129][7] &
c_mygrid[130][7] c_mygrid[131][7] c_mygrid[132][7] c_mygrid[133][7] c_mygrid[134][7] c_mygrid[135][7] c_mygrid[136][7] c_mygrid[137][7] c_mygrid[138][7] c_mygrid[139][7] &
c_mygrid[140][7] c_mygrid[141][7] c_mygrid[142][7] c_mygrid[143][7] c_mygrid[144][7] c_mygrid[145][7] c_mygrid[146][7] c_mygrid[147][7] c_mygrid[148][7] c_mygrid[149][7] &
c_mygrid[150][7] c_mygrid[151][7] c_mygrid[152][7] c_mygrid[153][7] c_mygrid[154][7] c_mygrid[155][7] c_mygrid[156][7] c_mygrid[157][7] c_mygrid[158][7] c_mygrid[159][7] &
c_mygrid[160][7] c_mygrid[161][7] c_mygrid[162][7] c_mygrid[163][7] c_mygrid[164][7] c_mygrid[165][7] c_mygrid[166][7] c_mygrid[167][7] c_mygrid[168][7] c_mygrid[169][7] &
c_mygrid[170][7] c_mygrid[171][7] c_mygrid[172][7] c_mygrid[173][7] c_mygrid[174][7] c_mygrid[175][7] c_mygrid[176][7] c_mygrid[177][7] c_mygrid[178][7] c_mygrid[179][7] &
c_mygrid[180][7] c_mygrid[181][7] c_mygrid[182][7] c_mygrid[183][7] c_mygrid[184][7] c_mygrid[185][7] c_mygrid[186][7] c_mygrid[187][7] c_mygrid[188][7] c_mygrid[189][7] &
c_mygrid[190][7] c_mygrid[191][7] c_mygrid[192][7] c_mygrid[193][7] c_mygrid[194][7] c_mygrid[195][7] c_mygrid[196][7] c_mygrid[197][7] c_mygrid[198][7] c_mygrid[199][7] &
c_mygrid[200][7] c_mygrid[201][7] c_mygrid[202][7] c_mygrid[203][7] c_mygrid[204][7] c_mygrid[205][7] c_mygrid[206][7] c_mygrid[207][7] c_mygrid[208][7] c_mygrid[209][7] &
c_mygrid[210][7] c_mygrid[211][7] c_mygrid[212][7] c_mygrid[213][7] c_mygrid[214][7] c_mygrid[215][7] c_mygrid[216][7] c_mygrid[217][7] c_mygrid[218][7] c_mygrid[219][7] &
c_mygrid[220][7] c_mygrid[221][7] c_mygrid[222][7] c_mygrid[223][7] c_mygrid[224][7] c_mygrid[225][7] c_mygrid[226][7] c_mygrid[227][7] c_mygrid[228][7] c_mygrid[229][7] &
c_mygrid[230][7] c_mygrid[231][7] c_mygrid[232][7] c_mygrid[233][7] c_mygrid[234][7] c_mygrid[235][7] c_mygrid[236][7] c_mygrid[237][7] c_mygrid[238][7] c_mygrid[239][7] &
c_mygrid[240][7] c_mygrid[241][7] c_mygrid[242][7] c_mygrid[243][7] c_mygrid[244][7] c_mygrid[245][7] c_mygrid[246][7] c_mygrid[247][7] c_mygrid[248][7] c_mygrid[249][7] &
c_mygrid[250][7] c_mygrid[251][7] c_mygrid[252][7] c_mygrid[253][7] c_mygrid[254][7] c_mygrid[255][7] c_mygrid[256][7] c_mygrid[257][7] c_mygrid[258][7] c_mygrid[259][7] &
c_mygrid[260][7] c_mygrid[261][7] c_mygrid[262][7] c_mygrid[263][7] c_mygrid[264][7] c_mygrid[265][7] c_mygrid[266][7] c_mygrid[267][7] c_mygrid[268][7] c_mygrid[269][7] &
c_mygrid[270][7] c_mygrid[271][7] c_mygrid[272][7] c_mygrid[273][7] c_mygrid[274][7] c_mygrid[275][7] c_mygrid[276][7] c_mygrid[277][7] c_mygrid[278][7] c_mygrid[279][7] &
c_mygrid[280][7] c_mygrid[281][7] c_mygrid[282][7] c_mygrid[283][7] c_mygrid[284][7] c_mygrid[285][7] c_mygrid[286][7] c_mygrid[287][7] c_mygrid[288][7] c_mygrid[289][7] &
c_mygrid[290][7] c_mygrid[291][7] c_mygrid[292][7] c_mygrid[293][7] c_mygrid[294][7] c_mygrid[295][7] c_mygrid[296][7] c_mygrid[297][7] c_mygrid[298][7] c_mygrid[299][7] &
c_mygrid[300][7] c_mygrid[301][7] c_mygrid[302][7] c_mygrid[303][7] c_mygrid[304][7] c_mygrid[305][7] c_mygrid[306][7] c_mygrid[307][7] c_mygrid[308][7] c_mygrid[309][7] &
c_mygrid[310][7] c_mygrid[311][7] c_mygrid[312][7] c_mygrid[313][7] c_mygrid[314][7] c_mygrid[315][7] c_mygrid[316][7] c_mygrid[317][7] c_mygrid[318][7] c_mygrid[319][7] &
c_mygrid[320][7] c_mygrid[321][7] c_mygrid[322][7] c_mygrid[323][7] c_mygrid[324][7] c_mygrid[325][7] c_mygrid[326][7] c_mygrid[327][7] c_mygrid[328][7] c_mygrid[329][7] &
c_mygrid[330][7] c_mygrid[331][7] c_mygrid[332][7] c_mygrid[333][7] c_mygrid[334][7] c_mygrid[335][7] c_mygrid[336][7] c_mygrid[337][7] c_mygrid[338][7] c_mygrid[339][7] &
c_mygrid[340][7] c_mygrid[341][7] c_mygrid[342][7] c_mygrid[343][7] c_mygrid[344][7] c_mygrid[345][7] c_mygrid[346][7] c_mygrid[347][7] c_mygrid[348][7] c_mygrid[349][7] &
c_mygrid[350][7] c_mygrid[351][7] c_mygrid[352][7] c_mygrid[353][7] c_mygrid[354][7] c_mygrid[355][7] c_mygrid[356][7] c_mygrid[357][7] c_mygrid[358][7] c_mygrid[359][7] &
c_mygrid[360][7] c_mygrid[361][7] c_mygrid[362][7] c_mygrid[363][7] c_mygrid[364][7] c_mygrid[365][7] c_mygrid[366][7] c_mygrid[367][7] c_mygrid[368][7] c_mygrid[369][7] &
c_mygrid[370][7] c_mygrid[371][7] c_mygrid[372][7] c_mygrid[373][7] c_mygrid[374][7] c_mygrid[375][7] c_mygrid[376][7] c_mygrid[377][7] c_mygrid[378][7] c_mygrid[379][7] &
c_mygrid[380][7] c_mygrid[381][7] c_mygrid[382][7] c_mygrid[383][7] c_mygrid[384][7]
thermo_modify norm yes
dump mydump_b all custom 1000 dump_b id c_b[*]
# run
run 0

View File

@ -0,0 +1,264 @@
/* ----------------------------------------------------------------------
LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator
http://lammps.sandia.gov, Sandia National Laboratories
Steve Plimpton, sjplimp@sandia.gov
Copyright (2003) Sandia Corporation. Under the terms of Contract
DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains
certain rights in this software. This software is distributed under
the GNU General Public License.
See the README file in the top-level LAMMPS directory.
------------------------------------------------------------------------- */
#include "compute_grid.h"
#include "compute_sna_grid.h"
#include <cstring>
#include <cstdlib>
#include "sna.h"
#include "atom.h"
#include "update.h"
#include "modify.h"
#include "neighbor.h"
#include "neigh_list.h"
#include "neigh_request.h"
#include "force.h"
#include "pair.h"
#include "comm.h"
#include "memory.h"
#include "error.h"
using namespace LAMMPS_NS;
ComputeSNAGrid::ComputeSNAGrid(LAMMPS *lmp, int narg, char **arg) :
ComputeGrid(lmp, narg, arg), cutsq(NULL), sna(NULL),
radelem(NULL), wjelem(NULL)
{
double rmin0, rfac0;
int twojmax, switchflag, bzeroflag;
radelem = NULL;
wjelem = NULL;
// skip over arguments used by base class
// so that argument positions are identical to
// regular per-atom compute
arg += nargbase;
narg -= nargbase;
int ntypes = atom->ntypes;
int nargmin = 6+2*ntypes;
if (narg < nargmin) error->all(FLERR,"Illegal compute sna/grid command");
// default values
rmin0 = 0.0;
switchflag = 1;
bzeroflag = 1;
quadraticflag = 0;
// offset by 1 to match up with types
memory->create(radelem,ntypes+1,"sna/grid:radelem");
memory->create(wjelem,ntypes+1,"sna/grid:wjelem");
rcutfac = atof(arg[3]);
rfac0 = atof(arg[4]);
twojmax = atoi(arg[5]);
for(int i = 0; i < ntypes; i++)
radelem[i+1] = atof(arg[6+i]);
for(int i = 0; i < ntypes; i++)
wjelem[i+1] = atof(arg[6+ntypes+i]);
// construct cutsq
double cut;
cutmax = 0.0;
memory->create(cutsq,ntypes+1,ntypes+1,"sna/grid:cutsq");
for(int i = 1; i <= ntypes; i++) {
cut = 2.0*radelem[i]*rcutfac;
if (cut > cutmax) cutmax = cut;
cutsq[i][i] = cut*cut;
for(int j = i+1; j <= ntypes; j++) {
cut = (radelem[i]+radelem[j])*rcutfac;
cutsq[i][j] = cutsq[j][i] = cut*cut;
}
}
// process optional args
int iarg = nargmin;
while (iarg < narg) {
if (strcmp(arg[iarg],"rmin0") == 0) {
if (iarg+2 > narg)
error->all(FLERR,"Illegal compute sna/grid command");
rmin0 = atof(arg[iarg+1]);
iarg += 2;
} else if (strcmp(arg[iarg],"switchflag") == 0) {
if (iarg+2 > narg)
error->all(FLERR,"Illegal compute sna/grid command");
switchflag = atoi(arg[iarg+1]);
iarg += 2;
} else if (strcmp(arg[iarg],"bzeroflag") == 0) {
if (iarg+2 > narg)
error->all(FLERR,"Illegal compute sna/grid command");
bzeroflag = atoi(arg[iarg+1]);
iarg += 2;
} else if (strcmp(arg[iarg],"quadraticflag") == 0) {
if (iarg+2 > narg)
error->all(FLERR,"Illegal compute sna/grid command");
quadraticflag = atoi(arg[iarg+1]);
iarg += 2;
} else error->all(FLERR,"Illegal compute sna/grid command");
}
snaptr = new SNA(lmp,rfac0,twojmax,
rmin0,switchflag,bzeroflag);
ncoeff = snaptr->ncoeff;
nvalues = ncoeff;
if (quadraticflag) nvalues += (ncoeff*(ncoeff+1))/2;
size_array_cols = size_array_cols_base + nvalues;
array_flag = 1;
}
/* ---------------------------------------------------------------------- */
ComputeSNAGrid::~ComputeSNAGrid()
{
memory->destroy(sna);
memory->destroy(radelem);
memory->destroy(wjelem);
memory->destroy(cutsq);
delete snaptr;
}
/* ---------------------------------------------------------------------- */
void ComputeSNAGrid::init()
{
if (force->pair == NULL)
error->all(FLERR,"Compute sna/grid requires a pair style be defined");
if (cutmax > force->pair->cutforce)
error->all(FLERR,"Compute sna/grid cutoff is longer than pairwise cutoff");
// need an occasional full neighbor list
int irequest = neighbor->request(this,instance_me);
neighbor->requests[irequest]->pair = 0;
neighbor->requests[irequest]->compute = 1;
neighbor->requests[irequest]->half = 0;
neighbor->requests[irequest]->full = 1;
neighbor->requests[irequest]->occasional = 1;
int count = 0;
for (int i = 0; i < modify->ncompute; i++)
if (strcmp(modify->compute[i]->style,"sna/grid") == 0) count++;
if (count > 1 && comm->me == 0)
error->warning(FLERR,"More than one compute sna/grid");
snaptr->init();
}
/* ---------------------------------------------------------------------- */
void ComputeSNAGrid::compute_array()
{
invoked_array = update->ntimestep;
int * const type = atom->type;
// compute sna for each gridpoint
double** const x = atom->x;
const int* const mask = atom->mask;
const int ntotal = atom->nlocal + atom->nghost;
// insure rij, inside, and typej are of size jnum
snaptr->grow_rij(ntotal);
for (int iz = nzlo; iz <= nzhi; iz++)
for (int iy = nylo; iy <= nyhi; iy++)
for (int ix = nxlo; ix <= nxhi; ix++) {
const int igrid = iz*(nx*ny) + iy*nx + ix;
const double xtmp = grid[igrid][0];
const double ytmp = grid[igrid][1];
const double ztmp = grid[igrid][2];
// rij[][3] = displacements between atom I and those neighbors
// inside = indices of neighbors of I within cutoff
// typej = types of neighbors of I within cutoff
int ninside = 0;
for (int j = 0; j < ntotal; j++) {
// check that j is in compute group
if (!(mask[j] & groupbit)) continue;
const double delx = xtmp - x[j][0];
const double dely = ytmp - x[j][1];
const double delz = ztmp - x[j][2];
const double rsq = delx*delx + dely*dely + delz*delz;
int jtype = type[j];
if (rsq < cutsq[jtype][jtype] && rsq>1e-20) {
snaptr->rij[ninside][0] = delx;
snaptr->rij[ninside][1] = dely;
snaptr->rij[ninside][2] = delz;
snaptr->inside[ninside] = j;
snaptr->wj[ninside] = wjelem[jtype];
snaptr->rcutij[ninside] = 2.0*radelem[jtype]*rcutfac;
ninside++;
}
}
snaptr->compute_ui(ninside);
snaptr->compute_zi();
snaptr->compute_bi();
for (int icoeff = 0; icoeff < ncoeff; icoeff++)
gridlocal[size_array_cols_base+icoeff][iz][iy][ix] = snaptr->blist[icoeff];
if (quadraticflag) {
int ncount = ncoeff;
for (int icoeff = 0; icoeff < ncoeff; icoeff++) {
double bi = snaptr->blist[icoeff];
// diagonal element of quadratic matrix
gridlocal[size_array_cols_base+ncount++][iz][iy][ix] = 0.5*bi*bi;
// upper-triangular elements of quadratic matrix
for (int jcoeff = icoeff+1; jcoeff < ncoeff; jcoeff++)
gridlocal[size_array_cols_base+ncount++][iz][iy][ix] = bi*snaptr->blist[jcoeff];
}
}
}
for (int iz = nzlo; iz <= nzhi; iz++)
for (int iy = nylo; iy <= nyhi; iy++)
for (int ix = nxlo; ix <= nxhi; ix++) {
const int igrid = iz*(nx*ny) + iy*nx + ix;
for (int j = 0; j < nvalues; j++)
grid[igrid][size_array_cols_base + j] = gridlocal[size_array_cols_base + j][iz][iy][ix];
}
MPI_Allreduce(&grid[0][0],&gridall[0][0],ngrid*size_array_cols,MPI_DOUBLE,MPI_SUM,world);
}
/* ----------------------------------------------------------------------
memory usage
------------------------------------------------------------------------- */
double ComputeSNAGrid::memory_usage()
{
double nbytes = snaptr->memory_usage(); // SNA object
return nbytes;
}

View File

@ -0,0 +1,71 @@
/* -*- c++ -*- ----------------------------------------------------------
LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator
http://lammps.sandia.gov, Sandia National Laboratories
Steve Plimpton, sjplimp@sandia.gov
Copyright (2003) Sandia Corporation. Under the terms of Contract
DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains
certain rights in this software. This software is distributed under
the GNU General Public License.
See the README file in the top-level LAMMPS directory.
------------------------------------------------------------------------- */
#ifdef COMPUTE_CLASS
ComputeStyle(sna/grid,ComputeSNAGrid)
#else
#ifndef LMP_COMPUTE_SNA_GRID_H
#define LMP_COMPUTE_SNA_GRID_H
#include "compute_grid.h"
namespace LAMMPS_NS {
class ComputeSNAGrid : public ComputeGrid {
public:
ComputeSNAGrid(class LAMMPS *, int, char **);
~ComputeSNAGrid();
void init();
void compute_array();
double memory_usage();
private:
int ncoeff;
double **cutsq;
double **sna;
double rcutfac;
double *radelem;
double *wjelem;
class SNA* snaptr;
int quadraticflag;
};
}
#endif
#endif
/* ERROR/WARNING messages:
E: Illegal ... command
Self-explanatory. Check the input script syntax and compare to the
documentation for the command. You can use -echo screen as a
command-line option when running LAMMPS to see the offending line.
E: Compute sna/grid requires a pair style be defined
Self-explanatory.
E: Compute sna/grid cutoff is longer than pairwise cutoff
Self-explanatory.
W: More than one compute sna/grid
Self-explanatory.
*/

289
src/compute_grid.cpp Normal file
View File

@ -0,0 +1,289 @@
/* ----------------------------------------------------------------------
LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator
http://lammps.sandia.gov, Sandia National Laboratories
Steve Plimpton, sjplimp@sandia.gov
Copyright (2003) Sandia Corporation. Under the terms of Contract
DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains
certain rights in this software. This software is distributed under
the GNU General Public License.
See the README file in the top-level LAMMPS directory.
------------------------------------------------------------------------- */
#include "compute_grid.h"
#include <mpi.h>
#include <cstring>
#include "atom.h"
#include "update.h"
#include "modify.h"
#include "domain.h"
#include "force.h"
#include "memory.h"
#include "error.h"
#include "comm.h"
using namespace LAMMPS_NS;
/* ---------------------------------------------------------------------- */
ComputeGrid::ComputeGrid(LAMMPS *lmp, int narg, char **arg) :
Compute(lmp, narg, arg), grid(NULL), local_flags(NULL), gridlocal(NULL)
{
if (narg < 6) error->all(FLERR,"Illegal compute grid command");
array_flag = 1;
size_array_cols = 0;
size_array_rows = 0;
extarray = 0;
int iarg0 = 3;
int iarg = iarg0;
if (strcmp(arg[iarg],"grid") == 0) {
if (iarg+4 > narg) error->all(FLERR,"Illegal compute grid command");
nx = force->inumeric(FLERR,arg[iarg+1]);
ny = force->inumeric(FLERR,arg[iarg+2]);
nz = force->inumeric(FLERR,arg[iarg+3]);
if (nx <= 0 || ny <= 0 || nz <= 0)
error->all(FLERR,"All grid dimensions must be positive");
iarg += 4;
} else error->all(FLERR,"Illegal compute grid command");
nargbase = iarg - iarg0;
size_array_rows = ngrid = nx*ny*nz;
size_array_cols_base = 3;
gridlocal_allocated = 0;
}
/* ---------------------------------------------------------------------- */
ComputeGrid::~ComputeGrid()
{
memory->destroy(grid);
memory->destroy(local_flags);
if (gridlocal_allocated)
memory->destroy4d_offset(gridlocal,nzlo,nylo,nxlo);
}
/* ---------------------------------------------------------------------- */
void ComputeGrid::init()
{
}
/* ---------------------------------------------------------------------- */
void ComputeGrid::setup()
{
set_grid_global();
set_grid_local();
allocate();
assign_coords();
assign_local_flags();
}
/* ----------------------------------------------------------------------
convert global array index to box coords
------------------------------------------------------------------------- */
void ComputeGrid::grid2x(int igrid, double *x)
{
int iz = igrid / (nx*ny);
igrid -= iz * (nx*ny);
int iy = igrid / nx;
igrid -= iy * nx;
int ix = igrid;
x[0] = ix*delx;
x[1] = iy*dely;
x[2] = iz*delz;
if (triclinic) domain->lamda2x(x, x);
}
/* ----------------------------------------------------------------------
convert global array index to box coords
------------------------------------------------------------------------- */
void ComputeGrid::grid2ix(int igrid, int& ix, int& iy, int& iz)
{
iz = igrid / (nx*ny);
igrid -= iz * (nx*ny);
iy = igrid / nx;
igrid -= iy * nx;
ix = igrid;
}
// /* ----------------------------------------------------------------------
// check if grid point is local
// ------------------------------------------------------------------------- */
// int ComputeGrid::check_local(int igrid)
// {
// double x[3];
// int iz = igrid / (nx*ny);
// igrid -= iz * (nx*ny);
// int iy = igrid / nx;
// igrid -= iy * nx;
// int ix = igrid;
// x[0] = ix*delx;
// x[1] = iy*dely;
// x[2] = iz*delz;
// int islocal =
// x[0] >= sublo[0] && x[0] < subhi[0] &&
// x[1] >= sublo[1] && x[1] < subhi[1] &&
// x[2] >= sublo[2] && x[2] < subhi[2];
// return islocal;
// }
/* ----------------------------------------------------------------------
check if grid point is local
------------------------------------------------------------------------- */
int ComputeGrid::check_local(int igrid)
{
int ix, iy, iz;
grid2ix(igrid, ix, iy, iz);
int islocal =
ix >= nxlo && ix <= nxhi &&
iy >= nylo && iy <= nyhi &&
iz >= nzlo && iz <= nzhi;
return islocal;
}
/* ----------------------------------------------------------------------
copy coords to global array
------------------------------------------------------------------------- */
void ComputeGrid::assign_coords()
{
double x[3];
for (int igrid = 0; igrid < ngrid; igrid++) {
grid2x(igrid,x);
grid[igrid][0] = x[0];
grid[igrid][1] = x[1];
grid[igrid][2] = x[2];
}
}
/* ----------------------------------------------------------------------
copy coords to global array
------------------------------------------------------------------------- */
void ComputeGrid::assign_local_flags()
{
for (int igrid = 0; igrid < ngrid; igrid++) {
if (check_local(igrid))
local_flags[igrid] = 1;
else {
local_flags[igrid] = 0;
memset(grid[igrid],0,size_array_cols * sizeof(double));
}
}
}
/* ----------------------------------------------------------------------
free and reallocate arrays
------------------------------------------------------------------------- */
void ComputeGrid::allocate()
{
// allocate arrays
memory->destroy(grid);
memory->destroy(local_flags);
if (gridlocal_allocated)
memory->destroy4d_offset(gridlocal,nzlo,nylo,nxlo);
memory->create(grid,size_array_rows,size_array_cols,"grid:grid");
memory->create(gridall,size_array_rows,size_array_cols,"grid:gridall");
memory->create(local_flags,size_array_rows,"grid:local_flags");
if (nxlo <= nxhi && nylo <= nyhi && nzlo <= nzhi) {
gridlocal_allocated = 1;
memory->create4d_offset(gridlocal,size_array_cols,nzlo,nzhi,nylo,nyhi,
nxlo,nxhi,"grid:gridlocal");
}
array = gridall;
}
/* ----------------------------------------------------------------------
set global grid
------------------------------------------------------------------------- */
void ComputeGrid::set_grid_global()
{
// calculate grid layout
triclinic = domain->triclinic;
if (triclinic == 0) {
prd = domain->prd;
boxlo = domain->boxlo;
sublo = domain->sublo;
subhi = domain->subhi;
} else {
prd = domain->prd_lamda;
boxlo = domain->boxlo_lamda;
sublo = domain->sublo_lamda;
subhi = domain->subhi_lamda;
}
double xprd = prd[0];
double yprd = prd[1];
double zprd = prd[2];
delxinv = nx/xprd;
delyinv = ny/yprd;
delzinv = nz/zprd;
delx = 1.0/delxinv;
dely = 1.0/delyinv;
delz = 1.0/delzinv;
}
/* ----------------------------------------------------------------------
set local subset of grid that I own
n xyz lo/hi = 3d brick that I own (inclusive)
------------------------------------------------------------------------- */
void ComputeGrid::set_grid_local()
{
// global indices of grid range from 0 to N-1
// nlo,nhi = lower/upper limits of the 3d sub-brick of
// global grid that I own without ghost cells
nxlo = static_cast<int> (comm->xsplit[comm->myloc[0]] * nx);
nxhi = static_cast<int> (comm->xsplit[comm->myloc[0]+1] * nx) - 1;
nylo = static_cast<int> (comm->ysplit[comm->myloc[1]] * ny);
nyhi = static_cast<int> (comm->ysplit[comm->myloc[1]+1] * ny) - 1;
nzlo = static_cast<int> (comm->zsplit[comm->myloc[2]] * nz);
nzhi = static_cast<int> (comm->zsplit[comm->myloc[2]+1] * nz) - 1;
ngridlocal = (nxhi - nxlo + 1) * (nyhi - nylo + 1) * (nzhi - nzlo + 1);
printf("me = %d n = %d x %d %d y %d %d z %d %d \n", comm->me, ngridlocal, nxlo, nxhi, nylo, nyhi, nzlo, nzhi);
}
/* ----------------------------------------------------------------------
memory usage of local data
------------------------------------------------------------------------- */
double ComputeGrid::memory_usage()
{
double nbytes = size_array_rows*size_array_cols *
sizeof(double); // grid
nbytes += size_array_rows*sizeof(int); // local_flags
nbytes += size_array_cols*ngridlocal*sizeof(double); // gridlocal
return nbytes;
}

75
src/compute_grid.h Normal file
View File

@ -0,0 +1,75 @@
/* -*- c++ -*- ----------------------------------------------------------
LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator
http://lammps.sandia.gov, Sandia National Laboratories
Steve Plimpton, sjplimp@sandia.gov
Copyright (2003) Sandia Corporation. Under the terms of Contract
DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains
certain rights in this software. This software is distributed under
the GNU General Public License.
See the README file in the top-level LAMMPS directory.
------------------------------------------------------------------------- */
#ifndef LMP_COMPUTE_GRID_H
#define LMP_COMPUTE_GRID_H
#include "compute.h"
namespace LAMMPS_NS {
class ComputeGrid : public Compute {
public:
ComputeGrid(class LAMMPS *, int, char **);
virtual ~ComputeGrid();
void init();
void setup();
virtual void compute_array() = 0;
double memory_usage();
protected:
int nx, ny, nz; // global grid dimensions
int nxlo, nxhi, nylo, nyhi, nzlo, nzhi; // local grid bounds, inclusive
int ngrid; // number of global grid points
int ngridlocal; // number of local grid points
int nvalues; // number of values per grid point
double **grid; // global grid
double **gridall; // global grid summed over procs
double ****gridlocal; // local grid
int triclinic; // triclinic flag
double *boxlo, *prd; // box info (units real/ortho or reduced/tri)
double *sublo, *subhi; // subdomain info (units real/ortho or reduced/tri)
double delxinv,delyinv,delzinv; // inverse grid spacing
double delx,dely,delz; // grid spacing
int nargbase; // number of base class args
double cutmax; // largest cutoff distance
int size_array_cols_base; // number of columns used for coords, etc.
int *local_flags; // local flag for each grid point
int gridlocal_allocated; // shows if gridlocal allocated
void allocate();
void grid2x(int, double*); // convert grid point to coord
void grid2ix(int, int&, int&, int&); // convert grid point to ix, iy, iz
void assign_coords(); // assign coords for grid
void assign_local_flags(); // set local flag for each grid point
int check_local(int); // check if grid point is local
void set_grid_global(); // set global grid
void set_grid_local(); // set bounds for local grid
private:
};
}
#endif
/* ERROR/WARNING messages:
E: Illegal ... command
Self-explanatory. Check the input script syntax and compare to the
documentation for the command. You can use -echo screen as a
command-line option when running LAMMPS to see the offending line.
*/