git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@14369 f3b2605a-c512-4ea7-a41b-209d697bcdaa

This commit is contained in:
sjplimp
2015-12-15 16:03:53 +00:00
parent 9f38620e13
commit 31f22919ab
57 changed files with 57717 additions and 0 deletions

View File

@ -0,0 +1,40 @@
This directory illustrates the usage of fix-phonon to calculate the dynamical
matrix as well as phonon dispersion curve for 1 dimensional monoatomic chain.
The files under this directory:
1) data.pos : LAMMPS input file
2) disp.dat : phonon dispersion data from phonon.bin.1500000
3) in.Ana : LAMMPS input file
4) in.disp : input file to get disp.dat by phana
5) log.lammps : LAMMPS log file
6) map.in : LAMMPS input file for fix-phonon
7) pdisp.eps : phonon dispersion for 1D monoatomic chain, generated by plot.disp
8) phonon.bin.2000000 : last output binary file by fix-phonon
9) phonon.log : log file for fix-phonon
10) plot.disp : script to generate phonon dispersion curve (manually created)
11) pdisp.gnuplot : script to generate phonon dispersion curve (auto generated)
12) README : this file
To run this example, simply:
-> lmp -in in.Ana -screen none
Once done, one can use the auxiliary analysing code "phana" to obtain "disp.dat" based on
data from phonon.bin.2000000:
-> phana phonon.bin.2000000 < in.disp
Note: do not worry about the content of in.disp, phana is driven by menu, one can get the
post-processing done by simply following the instructions.
And then use the gnuplot script file "plot.disp" to generate pdisp.eps:
-> gnuplot plot.disp
The resultant ``pdisp.eps'' compares the measured phonon dispersion to analytic solutions.
NOTE: the binary file provided here might be unreadable on some computers because of
incompatibility between different architectures.
The running of this example needs the molecule package included in lammps.
Author: Ling-Ti Kong, konglt@sjtu.edu.cn
Nov 2015

View File

@ -0,0 +1,57 @@
16x1x1 (001) layers of simple cubic lattice
16 atoms
16 bonds
1 atom types
1 bond types
0.00000000 16.00000000 xlo xhi
-1.00000000 1.00000000 ylo yhi
-0.00010000 0.00010000 zlo zhi
Atoms
1 1 1 0.00000000 0.00000000 0.00000000
2 1 1 1.00000000 0.00000000 0.00000000
3 1 1 2.00000000 0.00000000 0.00000000
4 1 1 3.00000000 0.00000000 0.00000000
5 1 1 4.00000000 0.00000000 0.00000000
6 1 1 5.00000000 0.00000000 0.00000000
7 1 1 6.00000000 0.00000000 0.00000000
8 1 1 7.00000000 0.00000000 0.00000000
9 1 1 8.00000000 0.00000000 0.00000000
10 1 1 9.00000000 0.00000000 0.00000000
11 1 1 10.00000000 0.00000000 0.00000000
12 1 1 11.00000000 0.00000000 0.00000000
13 1 1 12.00000000 0.00000000 0.00000000
14 1 1 13.00000000 0.00000000 0.00000000
15 1 1 14.00000000 0.00000000 0.00000000
16 1 1 15.00000000 0.00000000 0.00000000
Bonds
1 1 1 2
2 1 2 3
3 1 3 4
4 1 4 5
5 1 5 6
6 1 6 7
7 1 7 8
8 1 8 9
9 1 9 10
10 1 10 11
11 1 11 12
12 1 12 13
13 1 13 14
14 1 14 15
15 1 15 16
16 1 16 1
Bond Coeffs
1 0.5 1.0
Masses
1 1.0

View File

@ -0,0 +1,19 @@
# q qr freq
# 2pi/L 2pi/L sqrt(epsilon/(m.sigma^2))
-0.5 0 0 0 1.95502
-0.4375 0 0 0.0625 1.97181
-0.375 0 0 0.125 1.85313
-0.3125 0 0 0.1875 1.65209
-0.25 0 0 0.25 1.39765
-0.1875 0 0 0.3125 1.12275
-0.125 0 0 0.375 0.774579
-0.0625 0 0 0.4375 0.419786
0 0 0 0.5 0
0.0625 0 0 0.5625 0.419786
0.125 0 0 0.625 0.774579
0.1875 0 0 0.6875 1.12275
0.25 0 0 0.75 1.39765
0.3125 0 0 0.8125 1.65209
0.375 0 0 0.875 1.85313
0.4375 0 0 0.9375 1.97181
0.5 0 0 1 1.95502

View File

@ -0,0 +1,50 @@
# 3D simple cubic lattice simulation
dimension 2
boundary p f p
units lj
atom_style bond
atom_modify sort 0 1.
bond_style harmonic
pair_style none
communicate single cutoff 2.0
# geometry
read_data data.pos
#
neighbor 0.5 nsq
neigh_modify delay 0 check no
#Langevin random seed
variable r equal 571101
#Langevin Temperature
variable t equal 0.005
# Langevin Damping variable
variable d equal 0.5
# time step
timestep 0.005
# Create velocities and equilibrate
compute MyTemp all temp/partial 1 0 0
velocity all create $t 28711 mom yes rot yes dist gaussian temp MyTemp
velocity all set NULL 0.0 0.0 units box
#
fix 1 all langevin $t $t $d $r
fix_modify 1 temp MyTemp
fix 2 all setforce NULL 0. 0.
fix 3 all nve
fix 4 all phonon 10 50000 500000 map.in phonon sysdim 1
fix_modify 4 temp MyTemp
#
# 1 2 3 4
thermo_style custom step temp pe etotal
thermo_modify temp MyTemp
thermo 100
dump 4 all atom 50000 dump_LJ_ANA.lammpstrj
run 2000000

View File

@ -0,0 +1,10 @@
1
1
2
1
disp.dat
-0.5 0 0
0.5 0 0
17
q
0

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,18 @@
16 1 1 1
#l1 l2 l3 k atom_id
0 0 0 0 1
1 0 0 0 2
2 0 0 0 3
3 0 0 0 4
4 0 0 0 5
5 0 0 0 6
6 0 0 0 7
7 0 0 0 8
8 0 0 0 9
9 0 0 0 10
10 0 0 0 11
11 0 0 0 12
12 0 0 0 13
13 0 0 0 14
14 0 0 0 15
15 0 0 0 16

View File

@ -0,0 +1,801 @@
%!PS-Adobe-2.0
%%Title: pdisp.eps
%%Creator: gnuplot 4.6 patchlevel 4
%%CreationDate: Tue Nov 24 21:25:41 2015
%%DocumentFonts: (atend)
%%BoundingBox: 50 50 554 770
%%Orientation: Landscape
%%Pages: (atend)
%%EndComments
%%BeginProlog
/gnudict 256 dict def
gnudict begin
%
% The following true/false flags may be edited by hand if desired.
% The unit line width and grayscale image gamma correction may also be changed.
%
/Color true def
/Blacktext false def
/Solid false def
/Dashlength 1 def
/Landscape true def
/Level1 false def
/Rounded false def
/ClipToBoundingBox false def
/SuppressPDFMark false def
/TransparentPatterns false def
/gnulinewidth 5.000 def
/userlinewidth gnulinewidth def
/Gamma 1.0 def
/BackgroundColor {-1.000 -1.000 -1.000} def
%
/vshift -66 def
/dl1 {
10.0 Dashlength mul mul
Rounded { currentlinewidth 0.75 mul sub dup 0 le { pop 0.01 } if } if
} def
/dl2 {
10.0 Dashlength mul mul
Rounded { currentlinewidth 0.75 mul add } if
} def
/hpt_ 31.5 def
/vpt_ 31.5 def
/hpt hpt_ def
/vpt vpt_ def
/doclip {
ClipToBoundingBox {
newpath 50 50 moveto 554 50 lineto 554 770 lineto 50 770 lineto closepath
clip
} if
} def
%
% Gnuplot Prolog Version 4.6 (September 2012)
%
%/SuppressPDFMark true def
%
/M {moveto} bind def
/L {lineto} bind def
/R {rmoveto} bind def
/V {rlineto} bind def
/N {newpath moveto} bind def
/Z {closepath} bind def
/C {setrgbcolor} bind def
/f {rlineto fill} bind def
/g {setgray} bind def
/Gshow {show} def % May be redefined later in the file to support UTF-8
/vpt2 vpt 2 mul def
/hpt2 hpt 2 mul def
/Lshow {currentpoint stroke M 0 vshift R
Blacktext {gsave 0 setgray show grestore} {show} ifelse} def
/Rshow {currentpoint stroke M dup stringwidth pop neg vshift R
Blacktext {gsave 0 setgray show grestore} {show} ifelse} def
/Cshow {currentpoint stroke M dup stringwidth pop -2 div vshift R
Blacktext {gsave 0 setgray show grestore} {show} ifelse} def
/UP {dup vpt_ mul /vpt exch def hpt_ mul /hpt exch def
/hpt2 hpt 2 mul def /vpt2 vpt 2 mul def} def
/DL {Color {setrgbcolor Solid {pop []} if 0 setdash}
{pop pop pop 0 setgray Solid {pop []} if 0 setdash} ifelse} def
/BL {stroke userlinewidth 2 mul setlinewidth
Rounded {1 setlinejoin 1 setlinecap} if} def
/AL {stroke userlinewidth 2 div setlinewidth
Rounded {1 setlinejoin 1 setlinecap} if} def
/UL {dup gnulinewidth mul /userlinewidth exch def
dup 1 lt {pop 1} if 10 mul /udl exch def} def
/PL {stroke userlinewidth setlinewidth
Rounded {1 setlinejoin 1 setlinecap} if} def
3.8 setmiterlimit
% Default Line colors
/LCw {1 1 1} def
/LCb {0 0 0} def
/LCa {0 0 0} def
/LC0 {1 0 0} def
/LC1 {0 1 0} def
/LC2 {0 0 1} def
/LC3 {1 0 1} def
/LC4 {0 1 1} def
/LC5 {1 1 0} def
/LC6 {0 0 0} def
/LC7 {1 0.3 0} def
/LC8 {0.5 0.5 0.5} def
% Default Line Types
/LTw {PL [] 1 setgray} def
/LTb {BL [] LCb DL} def
/LTa {AL [1 udl mul 2 udl mul] 0 setdash LCa setrgbcolor} def
/LT0 {PL [] LC0 DL} def
/LT1 {PL [4 dl1 2 dl2] LC1 DL} def
/LT2 {PL [2 dl1 3 dl2] LC2 DL} def
/LT3 {PL [1 dl1 1.5 dl2] LC3 DL} def
/LT4 {PL [6 dl1 2 dl2 1 dl1 2 dl2] LC4 DL} def
/LT5 {PL [3 dl1 3 dl2 1 dl1 3 dl2] LC5 DL} def
/LT6 {PL [2 dl1 2 dl2 2 dl1 6 dl2] LC6 DL} def
/LT7 {PL [1 dl1 2 dl2 6 dl1 2 dl2 1 dl1 2 dl2] LC7 DL} def
/LT8 {PL [2 dl1 2 dl2 2 dl1 2 dl2 2 dl1 2 dl2 2 dl1 4 dl2] LC8 DL} def
/Pnt {stroke [] 0 setdash gsave 1 setlinecap M 0 0 V stroke grestore} def
/Dia {stroke [] 0 setdash 2 copy vpt add M
hpt neg vpt neg V hpt vpt neg V
hpt vpt V hpt neg vpt V closepath stroke
Pnt} def
/Pls {stroke [] 0 setdash vpt sub M 0 vpt2 V
currentpoint stroke M
hpt neg vpt neg R hpt2 0 V stroke
} def
/Box {stroke [] 0 setdash 2 copy exch hpt sub exch vpt add M
0 vpt2 neg V hpt2 0 V 0 vpt2 V
hpt2 neg 0 V closepath stroke
Pnt} def
/Crs {stroke [] 0 setdash exch hpt sub exch vpt add M
hpt2 vpt2 neg V currentpoint stroke M
hpt2 neg 0 R hpt2 vpt2 V stroke} def
/TriU {stroke [] 0 setdash 2 copy vpt 1.12 mul add M
hpt neg vpt -1.62 mul V
hpt 2 mul 0 V
hpt neg vpt 1.62 mul V closepath stroke
Pnt} def
/Star {2 copy Pls Crs} def
/BoxF {stroke [] 0 setdash exch hpt sub exch vpt add M
0 vpt2 neg V hpt2 0 V 0 vpt2 V
hpt2 neg 0 V closepath fill} def
/TriUF {stroke [] 0 setdash vpt 1.12 mul add M
hpt neg vpt -1.62 mul V
hpt 2 mul 0 V
hpt neg vpt 1.62 mul V closepath fill} def
/TriD {stroke [] 0 setdash 2 copy vpt 1.12 mul sub M
hpt neg vpt 1.62 mul V
hpt 2 mul 0 V
hpt neg vpt -1.62 mul V closepath stroke
Pnt} def
/TriDF {stroke [] 0 setdash vpt 1.12 mul sub M
hpt neg vpt 1.62 mul V
hpt 2 mul 0 V
hpt neg vpt -1.62 mul V closepath fill} def
/DiaF {stroke [] 0 setdash vpt add M
hpt neg vpt neg V hpt vpt neg V
hpt vpt V hpt neg vpt V closepath fill} def
/Pent {stroke [] 0 setdash 2 copy gsave
translate 0 hpt M 4 {72 rotate 0 hpt L} repeat
closepath stroke grestore Pnt} def
/PentF {stroke [] 0 setdash gsave
translate 0 hpt M 4 {72 rotate 0 hpt L} repeat
closepath fill grestore} def
/Circle {stroke [] 0 setdash 2 copy
hpt 0 360 arc stroke Pnt} def
/CircleF {stroke [] 0 setdash hpt 0 360 arc fill} def
/C0 {BL [] 0 setdash 2 copy moveto vpt 90 450 arc} bind def
/C1 {BL [] 0 setdash 2 copy moveto
2 copy vpt 0 90 arc closepath fill
vpt 0 360 arc closepath} bind def
/C2 {BL [] 0 setdash 2 copy moveto
2 copy vpt 90 180 arc closepath fill
vpt 0 360 arc closepath} bind def
/C3 {BL [] 0 setdash 2 copy moveto
2 copy vpt 0 180 arc closepath fill
vpt 0 360 arc closepath} bind def
/C4 {BL [] 0 setdash 2 copy moveto
2 copy vpt 180 270 arc closepath fill
vpt 0 360 arc closepath} bind def
/C5 {BL [] 0 setdash 2 copy moveto
2 copy vpt 0 90 arc
2 copy moveto
2 copy vpt 180 270 arc closepath fill
vpt 0 360 arc} bind def
/C6 {BL [] 0 setdash 2 copy moveto
2 copy vpt 90 270 arc closepath fill
vpt 0 360 arc closepath} bind def
/C7 {BL [] 0 setdash 2 copy moveto
2 copy vpt 0 270 arc closepath fill
vpt 0 360 arc closepath} bind def
/C8 {BL [] 0 setdash 2 copy moveto
2 copy vpt 270 360 arc closepath fill
vpt 0 360 arc closepath} bind def
/C9 {BL [] 0 setdash 2 copy moveto
2 copy vpt 270 450 arc closepath fill
vpt 0 360 arc closepath} bind def
/C10 {BL [] 0 setdash 2 copy 2 copy moveto vpt 270 360 arc closepath fill
2 copy moveto
2 copy vpt 90 180 arc closepath fill
vpt 0 360 arc closepath} bind def
/C11 {BL [] 0 setdash 2 copy moveto
2 copy vpt 0 180 arc closepath fill
2 copy moveto
2 copy vpt 270 360 arc closepath fill
vpt 0 360 arc closepath} bind def
/C12 {BL [] 0 setdash 2 copy moveto
2 copy vpt 180 360 arc closepath fill
vpt 0 360 arc closepath} bind def
/C13 {BL [] 0 setdash 2 copy moveto
2 copy vpt 0 90 arc closepath fill
2 copy moveto
2 copy vpt 180 360 arc closepath fill
vpt 0 360 arc closepath} bind def
/C14 {BL [] 0 setdash 2 copy moveto
2 copy vpt 90 360 arc closepath fill
vpt 0 360 arc} bind def
/C15 {BL [] 0 setdash 2 copy vpt 0 360 arc closepath fill
vpt 0 360 arc closepath} bind def
/Rec {newpath 4 2 roll moveto 1 index 0 rlineto 0 exch rlineto
neg 0 rlineto closepath} bind def
/Square {dup Rec} bind def
/Bsquare {vpt sub exch vpt sub exch vpt2 Square} bind def
/S0 {BL [] 0 setdash 2 copy moveto 0 vpt rlineto BL Bsquare} bind def
/S1 {BL [] 0 setdash 2 copy vpt Square fill Bsquare} bind def
/S2 {BL [] 0 setdash 2 copy exch vpt sub exch vpt Square fill Bsquare} bind def
/S3 {BL [] 0 setdash 2 copy exch vpt sub exch vpt2 vpt Rec fill Bsquare} bind def
/S4 {BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt Square fill Bsquare} bind def
/S5 {BL [] 0 setdash 2 copy 2 copy vpt Square fill
exch vpt sub exch vpt sub vpt Square fill Bsquare} bind def
/S6 {BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt vpt2 Rec fill Bsquare} bind def
/S7 {BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt vpt2 Rec fill
2 copy vpt Square fill Bsquare} bind def
/S8 {BL [] 0 setdash 2 copy vpt sub vpt Square fill Bsquare} bind def
/S9 {BL [] 0 setdash 2 copy vpt sub vpt vpt2 Rec fill Bsquare} bind def
/S10 {BL [] 0 setdash 2 copy vpt sub vpt Square fill 2 copy exch vpt sub exch vpt Square fill
Bsquare} bind def
/S11 {BL [] 0 setdash 2 copy vpt sub vpt Square fill 2 copy exch vpt sub exch vpt2 vpt Rec fill
Bsquare} bind def
/S12 {BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt2 vpt Rec fill Bsquare} bind def
/S13 {BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt2 vpt Rec fill
2 copy vpt Square fill Bsquare} bind def
/S14 {BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt2 vpt Rec fill
2 copy exch vpt sub exch vpt Square fill Bsquare} bind def
/S15 {BL [] 0 setdash 2 copy Bsquare fill Bsquare} bind def
/D0 {gsave translate 45 rotate 0 0 S0 stroke grestore} bind def
/D1 {gsave translate 45 rotate 0 0 S1 stroke grestore} bind def
/D2 {gsave translate 45 rotate 0 0 S2 stroke grestore} bind def
/D3 {gsave translate 45 rotate 0 0 S3 stroke grestore} bind def
/D4 {gsave translate 45 rotate 0 0 S4 stroke grestore} bind def
/D5 {gsave translate 45 rotate 0 0 S5 stroke grestore} bind def
/D6 {gsave translate 45 rotate 0 0 S6 stroke grestore} bind def
/D7 {gsave translate 45 rotate 0 0 S7 stroke grestore} bind def
/D8 {gsave translate 45 rotate 0 0 S8 stroke grestore} bind def
/D9 {gsave translate 45 rotate 0 0 S9 stroke grestore} bind def
/D10 {gsave translate 45 rotate 0 0 S10 stroke grestore} bind def
/D11 {gsave translate 45 rotate 0 0 S11 stroke grestore} bind def
/D12 {gsave translate 45 rotate 0 0 S12 stroke grestore} bind def
/D13 {gsave translate 45 rotate 0 0 S13 stroke grestore} bind def
/D14 {gsave translate 45 rotate 0 0 S14 stroke grestore} bind def
/D15 {gsave translate 45 rotate 0 0 S15 stroke grestore} bind def
/DiaE {stroke [] 0 setdash vpt add M
hpt neg vpt neg V hpt vpt neg V
hpt vpt V hpt neg vpt V closepath stroke} def
/BoxE {stroke [] 0 setdash exch hpt sub exch vpt add M
0 vpt2 neg V hpt2 0 V 0 vpt2 V
hpt2 neg 0 V closepath stroke} def
/TriUE {stroke [] 0 setdash vpt 1.12 mul add M
hpt neg vpt -1.62 mul V
hpt 2 mul 0 V
hpt neg vpt 1.62 mul V closepath stroke} def
/TriDE {stroke [] 0 setdash vpt 1.12 mul sub M
hpt neg vpt 1.62 mul V
hpt 2 mul 0 V
hpt neg vpt -1.62 mul V closepath stroke} def
/PentE {stroke [] 0 setdash gsave
translate 0 hpt M 4 {72 rotate 0 hpt L} repeat
closepath stroke grestore} def
/CircE {stroke [] 0 setdash
hpt 0 360 arc stroke} def
/Opaque {gsave closepath 1 setgray fill grestore 0 setgray closepath} def
/DiaW {stroke [] 0 setdash vpt add M
hpt neg vpt neg V hpt vpt neg V
hpt vpt V hpt neg vpt V Opaque stroke} def
/BoxW {stroke [] 0 setdash exch hpt sub exch vpt add M
0 vpt2 neg V hpt2 0 V 0 vpt2 V
hpt2 neg 0 V Opaque stroke} def
/TriUW {stroke [] 0 setdash vpt 1.12 mul add M
hpt neg vpt -1.62 mul V
hpt 2 mul 0 V
hpt neg vpt 1.62 mul V Opaque stroke} def
/TriDW {stroke [] 0 setdash vpt 1.12 mul sub M
hpt neg vpt 1.62 mul V
hpt 2 mul 0 V
hpt neg vpt -1.62 mul V Opaque stroke} def
/PentW {stroke [] 0 setdash gsave
translate 0 hpt M 4 {72 rotate 0 hpt L} repeat
Opaque stroke grestore} def
/CircW {stroke [] 0 setdash
hpt 0 360 arc Opaque stroke} def
/BoxFill {gsave Rec 1 setgray fill grestore} def
/Density {
/Fillden exch def
currentrgbcolor
/ColB exch def /ColG exch def /ColR exch def
/ColR ColR Fillden mul Fillden sub 1 add def
/ColG ColG Fillden mul Fillden sub 1 add def
/ColB ColB Fillden mul Fillden sub 1 add def
ColR ColG ColB setrgbcolor} def
/BoxColFill {gsave Rec PolyFill} def
/PolyFill {gsave Density fill grestore grestore} def
/h {rlineto rlineto rlineto gsave closepath fill grestore} bind def
%
% PostScript Level 1 Pattern Fill routine for rectangles
% Usage: x y w h s a XX PatternFill
% x,y = lower left corner of box to be filled
% w,h = width and height of box
% a = angle in degrees between lines and x-axis
% XX = 0/1 for no/yes cross-hatch
%
/PatternFill {gsave /PFa [ 9 2 roll ] def
PFa 0 get PFa 2 get 2 div add PFa 1 get PFa 3 get 2 div add translate
PFa 2 get -2 div PFa 3 get -2 div PFa 2 get PFa 3 get Rec
TransparentPatterns {} {gsave 1 setgray fill grestore} ifelse
clip
currentlinewidth 0.5 mul setlinewidth
/PFs PFa 2 get dup mul PFa 3 get dup mul add sqrt def
0 0 M PFa 5 get rotate PFs -2 div dup translate
0 1 PFs PFa 4 get div 1 add floor cvi
{PFa 4 get mul 0 M 0 PFs V} for
0 PFa 6 get ne {
0 1 PFs PFa 4 get div 1 add floor cvi
{PFa 4 get mul 0 2 1 roll M PFs 0 V} for
} if
stroke grestore} def
%
/languagelevel where
{pop languagelevel} {1} ifelse
2 lt
{/InterpretLevel1 true def}
{/InterpretLevel1 Level1 def}
ifelse
%
% PostScript level 2 pattern fill definitions
%
/Level2PatternFill {
/Tile8x8 {/PaintType 2 /PatternType 1 /TilingType 1 /BBox [0 0 8 8] /XStep 8 /YStep 8}
bind def
/KeepColor {currentrgbcolor [/Pattern /DeviceRGB] setcolorspace} bind def
<< Tile8x8
/PaintProc {0.5 setlinewidth pop 0 0 M 8 8 L 0 8 M 8 0 L stroke}
>> matrix makepattern
/Pat1 exch def
<< Tile8x8
/PaintProc {0.5 setlinewidth pop 0 0 M 8 8 L 0 8 M 8 0 L stroke
0 4 M 4 8 L 8 4 L 4 0 L 0 4 L stroke}
>> matrix makepattern
/Pat2 exch def
<< Tile8x8
/PaintProc {0.5 setlinewidth pop 0 0 M 0 8 L
8 8 L 8 0 L 0 0 L fill}
>> matrix makepattern
/Pat3 exch def
<< Tile8x8
/PaintProc {0.5 setlinewidth pop -4 8 M 8 -4 L
0 12 M 12 0 L stroke}
>> matrix makepattern
/Pat4 exch def
<< Tile8x8
/PaintProc {0.5 setlinewidth pop -4 0 M 8 12 L
0 -4 M 12 8 L stroke}
>> matrix makepattern
/Pat5 exch def
<< Tile8x8
/PaintProc {0.5 setlinewidth pop -2 8 M 4 -4 L
0 12 M 8 -4 L 4 12 M 10 0 L stroke}
>> matrix makepattern
/Pat6 exch def
<< Tile8x8
/PaintProc {0.5 setlinewidth pop -2 0 M 4 12 L
0 -4 M 8 12 L 4 -4 M 10 8 L stroke}
>> matrix makepattern
/Pat7 exch def
<< Tile8x8
/PaintProc {0.5 setlinewidth pop 8 -2 M -4 4 L
12 0 M -4 8 L 12 4 M 0 10 L stroke}
>> matrix makepattern
/Pat8 exch def
<< Tile8x8
/PaintProc {0.5 setlinewidth pop 0 -2 M 12 4 L
-4 0 M 12 8 L -4 4 M 8 10 L stroke}
>> matrix makepattern
/Pat9 exch def
/Pattern1 {PatternBgnd KeepColor Pat1 setpattern} bind def
/Pattern2 {PatternBgnd KeepColor Pat2 setpattern} bind def
/Pattern3 {PatternBgnd KeepColor Pat3 setpattern} bind def
/Pattern4 {PatternBgnd KeepColor Landscape {Pat5} {Pat4} ifelse setpattern} bind def
/Pattern5 {PatternBgnd KeepColor Landscape {Pat4} {Pat5} ifelse setpattern} bind def
/Pattern6 {PatternBgnd KeepColor Landscape {Pat9} {Pat6} ifelse setpattern} bind def
/Pattern7 {PatternBgnd KeepColor Landscape {Pat8} {Pat7} ifelse setpattern} bind def
} def
%
%
%End of PostScript Level 2 code
%
/PatternBgnd {
TransparentPatterns {} {gsave 1 setgray fill grestore} ifelse
} def
%
% Substitute for Level 2 pattern fill codes with
% grayscale if Level 2 support is not selected.
%
/Level1PatternFill {
/Pattern1 {0.250 Density} bind def
/Pattern2 {0.500 Density} bind def
/Pattern3 {0.750 Density} bind def
/Pattern4 {0.125 Density} bind def
/Pattern5 {0.375 Density} bind def
/Pattern6 {0.625 Density} bind def
/Pattern7 {0.875 Density} bind def
} def
%
% Now test for support of Level 2 code
%
Level1 {Level1PatternFill} {Level2PatternFill} ifelse
%
/Symbol-Oblique /Symbol findfont [1 0 .167 1 0 0] makefont
dup length dict begin {1 index /FID eq {pop pop} {def} ifelse} forall
currentdict end definefont pop
/MFshow {
{ dup 5 get 3 ge
{ 5 get 3 eq {gsave} {grestore} ifelse }
{dup dup 0 get findfont exch 1 get scalefont setfont
[ currentpoint ] exch dup 2 get 0 exch R dup 5 get 2 ne {dup dup 6
get exch 4 get {Gshow} {stringwidth pop 0 R} ifelse }if dup 5 get 0 eq
{dup 3 get {2 get neg 0 exch R pop} {pop aload pop M} ifelse} {dup 5
get 1 eq {dup 2 get exch dup 3 get exch 6 get stringwidth pop -2 div
dup 0 R} {dup 6 get stringwidth pop -2 div 0 R 6 get
show 2 index {aload pop M neg 3 -1 roll neg R pop pop} {pop pop pop
pop aload pop M} ifelse }ifelse }ifelse }
ifelse }
forall} def
/Gswidth {dup type /stringtype eq {stringwidth} {pop (n) stringwidth} ifelse} def
/MFwidth {0 exch { dup 5 get 3 ge { 5 get 3 eq { 0 } { pop } ifelse }
{dup 3 get{dup dup 0 get findfont exch 1 get scalefont setfont
6 get Gswidth pop add} {pop} ifelse} ifelse} forall} def
/MLshow { currentpoint stroke M
0 exch R
Blacktext {gsave 0 setgray MFshow grestore} {MFshow} ifelse } bind def
/MRshow { currentpoint stroke M
exch dup MFwidth neg 3 -1 roll R
Blacktext {gsave 0 setgray MFshow grestore} {MFshow} ifelse } bind def
/MCshow { currentpoint stroke M
exch dup MFwidth -2 div 3 -1 roll R
Blacktext {gsave 0 setgray MFshow grestore} {MFshow} ifelse } bind def
/XYsave { [( ) 1 2 true false 3 ()] } bind def
/XYrestore { [( ) 1 2 true false 4 ()] } bind def
Level1 SuppressPDFMark or
{} {
/SDict 10 dict def
systemdict /pdfmark known not {
userdict /pdfmark systemdict /cleartomark get put
} if
SDict begin [
/Title (pdisp.eps)
/Subject (gnuplot plot)
/Creator (gnuplot 4.6 patchlevel 4)
/Author (konglt)
% /Producer (gnuplot)
% /Keywords ()
/CreationDate (Tue Nov 24 21:25:41 2015)
/DOCINFO pdfmark
end
} ifelse
end
%%EndProlog
%%Page: 1 1
gnudict begin
gsave
doclip
50 50 translate
0.100 0.100 scale
90 rotate
0 -5040 translate
0 setgray
newpath
(Helvetica) findfont 200 scalefont setfont
BackgroundColor 0 lt 3 1 roll 0 lt exch 0 lt or or not {gsave BackgroundColor C clippath fill grestore} if
1.000 UL
LTb
LCb setrgbcolor
860 640 M
63 0 V
5916 0 R
-63 0 V
stroke
740 640 M
[ [(Helvetica) 200.0 0.0 true true 0 (0.0)]
] -66.7 MRshow
1.000 UL
LTb
LCb setrgbcolor
860 1472 M
63 0 V
5916 0 R
-63 0 V
stroke
740 1472 M
[ [(Helvetica) 200.0 0.0 true true 0 (0.5)]
] -66.7 MRshow
1.000 UL
LTb
LCb setrgbcolor
860 2304 M
63 0 V
5916 0 R
-63 0 V
stroke
740 2304 M
[ [(Helvetica) 200.0 0.0 true true 0 (1.0)]
] -66.7 MRshow
1.000 UL
LTb
LCb setrgbcolor
860 3135 M
63 0 V
5916 0 R
-63 0 V
stroke
740 3135 M
[ [(Helvetica) 200.0 0.0 true true 0 (1.5)]
] -66.7 MRshow
1.000 UL
LTb
LCb setrgbcolor
860 3967 M
63 0 V
5916 0 R
-63 0 V
stroke
740 3967 M
[ [(Helvetica) 200.0 0.0 true true 0 (2.0)]
] -66.7 MRshow
1.000 UL
LTb
LCb setrgbcolor
860 4799 M
63 0 V
5916 0 R
-63 0 V
stroke
740 4799 M
[ [(Helvetica) 200.0 0.0 true true 0 (2.5)]
] -66.7 MRshow
1.000 UL
LTb
LCb setrgbcolor
1.000 UL
LT8
LC8 setrgbcolor
860 640 M
0 4159 V
stroke
LTb
LCb setrgbcolor
860 640 M
0 63 V
0 4096 R
0 -63 V
stroke
860 440 M
[ [(Helvetica) 200.0 0.0 true true 0 (-)]
[(Symbol) 200.0 0.0 true true 0 (p)]
[(Helvetica) 200.0 0.0 true true 0 (/a)]
] -66.7 MCshow
1.000 UL
LTb
LCb setrgbcolor
1.000 UL
LT8
LC8 setrgbcolor
3850 640 M
0 4159 V
stroke
LTb
LCb setrgbcolor
3850 640 M
0 63 V
0 4096 R
0 -63 V
stroke
3850 440 M
[ [(Symbol) 200.0 0.0 true true 0 (G)]
] -66.7 MCshow
1.000 UL
LTb
LCb setrgbcolor
1.000 UL
LT8
LC8 setrgbcolor
6839 640 M
0 4159 V
stroke
LTb
LCb setrgbcolor
6839 640 M
0 63 V
0 4096 R
0 -63 V
stroke
6839 440 M
[ [(Symbol) 200.0 0.0 true true 0 (p)]
[(Helvetica) 200.0 0.0 true true 0 (/a)]
] -66.7 MCshow
1.000 UL
LTb
LCb setrgbcolor
1.000 UL
LTb
LCb setrgbcolor
860 4799 N
860 640 L
5979 0 V
0 4159 V
-5979 0 V
Z stroke
LCb setrgbcolor
160 2719 M
currentpoint gsave translate -270 rotate 0 0 moveto
[ [(Symbol) 200.0 0.0 true true 0 (w)]
] -66.7 MCshow
grestore
LTb
LCb setrgbcolor
3849 140 M
[ [(Helvetica) 200.0 0.0 true true 0 (q)]
] -66.7 MCshow
LTb
1.000 UP
1.000 UL
LTb
LCb setrgbcolor
% Begin plot #1
1.000 UL
LT0
LC2 setrgbcolor
LCb setrgbcolor
1700 4636 M
[ [(Helvetica) 200.0 0.0 true true 0 (Theory)]
] -66.7 MRshow
LT0
LC2 setrgbcolor
1820 4636 M
543 0 V
860 3967 M
60 -1 V
60 -5 V
59 -9 V
60 -11 V
60 -15 V
60 -18 V
60 -21 V
59 -24 V
60 -28 V
60 -31 V
60 -34 V
59 -36 V
60 -40 V
60 -43 V
60 -46 V
60 -49 V
59 -52 V
60 -55 V
60 -57 V
60 -60 V
60 -63 V
59 -65 V
60 -68 V
60 -71 V
60 -72 V
60 -75 V
59 -78 V
60 -79 V
60 -82 V
60 -83 V
59 -86 V
60 -87 V
60 -89 V
60 -91 V
60 -92 V
59 -94 V
60 -96 V
60 -96 V
60 -98 V
60 -99 V
59 -100 V
60 -101 V
60 -101 V
60 -103 V
60 -103 V
59 -103 V
60 -104 V
60 -104 V
60 -104 V
60 -105 V
59 105 V
60 104 V
60 104 V
60 104 V
59 103 V
60 103 V
60 103 V
60 101 V
60 101 V
59 100 V
60 99 V
60 98 V
60 96 V
60 96 V
59 94 V
60 92 V
60 91 V
60 89 V
60 87 V
59 86 V
60 83 V
60 82 V
60 79 V
59 78 V
60 75 V
60 72 V
60 71 V
60 68 V
59 65 V
60 63 V
60 60 V
60 57 V
60 55 V
59 52 V
60 49 V
60 46 V
60 43 V
60 40 V
59 36 V
60 34 V
60 31 V
60 28 V
59 24 V
60 21 V
60 18 V
60 15 V
60 11 V
59 9 V
60 5 V
60 1 V
% End plot #1
% Begin plot #2
1.000 UP
stroke
LT1
LC0 setrgbcolor
LCb setrgbcolor
1700 4436 M
[ [(Helvetica) 200.0 0.0 true true 0 (MD)]
] -66.7 MRshow
LT1
LC0 setrgbcolor
860 3892 CircleF
1234 3920 CircleF
1607 3723 CircleF
1981 3388 CircleF
2355 2965 CircleF
2728 2508 CircleF
3102 1929 CircleF
3476 1338 CircleF
3850 640 CircleF
4223 1338 CircleF
4597 1929 CircleF
4971 2508 CircleF
5344 2965 CircleF
5718 3388 CircleF
6092 3723 CircleF
6465 3920 CircleF
6839 3892 CircleF
2091 4436 CircleF
% End plot #2
1.000 UL
LTb
LCb setrgbcolor
860 4799 N
860 640 L
5979 0 V
0 4159 V
-5979 0 V
Z stroke
1.000 UP
1.000 UL
LTb
LCb setrgbcolor
stroke
grestore
end
showpage
%%Trailer
%%DocumentFonts: Symbol Helvetica
%%Pages: 1

View File

@ -0,0 +1,16 @@
set term post enha colo 20
set out "pdisp.eps"
set xlabel "q"
set ylabel "frequency (THz)"
set xrange [0:1]
set yrange [0:*]
set grid xtics
# {/Symbol G} will give you letter gamma in the label
set xtics ("" 0, "" 1)
unset key
plot "disp.dat" u 4:5 w l lt 1

Binary file not shown.

View File

@ -0,0 +1,110 @@
############################################################
# group name of the atoms under study : all
# total number of atoms in the group : 16
# dimension of the system : 1 D
# number of atoms per unit cell : 1
# dimension of the FFT mesh : 16 x 1 x 1
# number of wait steps before measurement : 500000
# frequency of GFC measurement : 10
# output result after this many measurement: 50000
# number of processors used by this run : 1
############################################################
# mapping information between lattice index and atom id
# nx ny nz nucell
16 1 1 1
# l1 l2 l3 k atom_id
0 0 0 0 1
1 0 0 0 2
2 0 0 0 3
3 0 0 0 4
4 0 0 0 5
5 0 0 0 6
6 0 0 0 7
7 0 0 0 8
8 0 0 0 9
9 0 0 0 10
10 0 0 0 11
11 0 0 0 12
12 0 0 0 13
13 0 0 0 14
14 0 0 0 15
15 0 0 0 16
############################################################
############################################################
# Current time step : 1000000
# Total number of measurements : 50000
# Average temperature of the measurement : 0.00997005
# Boltzmann constant under current units : 1
# basis vector A1 = [1 0 0]
# basis vector A2 = [0 2 0]
# basis vector A3 = [0 0 0.0002]
############################################################
# qx qy qz Phi(q)
0 0 0 0 0
0.0625 0 0 0.173892 0
0.125 0 0 0.618508 0
0.1875 0 0 1.3185 0
0.25 0 0 1.97829 0
0.3125 0 0 2.68007 0
0.375 0 0 3.48369 0
0.4375 0 0 3.7687 0
0.5 0 0 3.91763 0
0.5625 0 0 3.7687 0
0.625 0 0 3.48369 0
0.6875 0 0 2.68007 0
0.75 0 0 1.97829 0
0.8125 0 0 1.3185 0
0.875 0 0 0.618508 0
0.9375 0 0 0.173892 0
############################################################
# Current time step : 1500000
# Total number of measurements : 100000
# Average temperature of the measurement : 0.00998277
# Boltzmann constant under current units : 1
# basis vector A1 = [1 0 0]
# basis vector A2 = [0 2 0]
# basis vector A3 = [0 0 0.0002]
############################################################
# qx qy qz Phi(q)
0 0 0 0 0
0.0625 0 0 0.18131 0
0.125 0 0 0.590425 0
0.1875 0 0 1.26414 0
0.25 0 0 1.9715 0
0.3125 0 0 2.69751 0
0.375 0 0 3.38809 0
0.4375 0 0 3.89873 0
0.5 0 0 3.75589 0
0.5625 0 0 3.89873 0
0.625 0 0 3.38809 0
0.6875 0 0 2.69751 0
0.75 0 0 1.9715 0
0.8125 0 0 1.26414 0
0.875 0 0 0.590425 0
0.9375 0 0 0.18131 0
############################################################
# Current time step : 2000000
# Total number of measurements : 150000
# Average temperature of the measurement : 0.00999822
# Boltzmann constant under current units : 1
# basis vector A1 = [1 0 0]
# basis vector A2 = [0 2 0]
# basis vector A3 = [0 0 0.0002]
############################################################
# qx qy qz Phi(q)
0 0 0 0 0
0.0625 0 0 0.17622 0
0.125 0 0 0.599973 0
0.1875 0 0 1.26056 0
0.25 0 0 1.95344 0
0.3125 0 0 2.7294 0
0.375 0 0 3.43409 0
0.4375 0 0 3.88802 0
0.5 0 0 3.82208 0
0.5625 0 0 3.88802 0
0.625 0 0 3.43409 0
0.6875 0 0 2.7294 0
0.75 0 0 1.95344 0
0.8125 0 0 1.26056 0
0.875 0 0 0.599973 0
0.9375 0 0 0.17622 0

View File

@ -0,0 +1,20 @@
m = 1.
k = 1.
# analytic solution for 1D monoatomic chain
omega(x) = 2.*sqrt(k/m) * abs(sin(pi*x))
set xlabel 'q'
set ylabel '{/Symbol w}'
set xr [-0.5:0.5]
set yr [0:2.5]
set format y '%.1f'
set term post enha color 20
set out 'pdisp.eps'
set key top left
set xtics ("-{/Symbol p}/a" -0.5, "{/Symbol G}" 0.0, "{/Symbol p}/a" 0.5)
set samples 101
set grid xtics lt 9
plot omega(x) w l lt 1 lc 3 t 'Theory', 'disp.dat' u 1:5 w p pt 7 ps 1.0 lc 1 t 'MD'

View File

@ -0,0 +1,38 @@
This directory illustrates the usage of fix-phonon to calculate the dynamical
matrix as well as phonon dispersion curve for 1 dimensional diatomic chain.
The files under this directory:
1) data.pos : LAMMPS input file
2) disp.dat : phonon dispersion data from phonon.bin.2000000
3) in.Ana : LAMMPS input file
4) in.disp : input file to get disp.dat by phana
5) log.lammps : LAMMPS log file
6) map.in : LAMMPS input file for fix-phonon
7) pdisp.eps : phonon dispersion for 1D monoatomic chain, generated by plot.disp
8) phonon.bin.2000000 : last output binary file by fix-phonon
9) phonon.log : log file for fix-phonon
10) plot.disp : script to generate phonon dispersion curve (manually created)
11) pdisp.gnuplot : script to generate phonon dispersion curve (auto generated)
12) README : this file
To run this example, simply:
-> lmp -in in.Ana -screen none
Once done, one can use the auxiliary analysing code "phana" to obtain "disp.dat" based on
data from phonon.bin.2000000:
-> phana phonon.bin.2000000 < in.disp
And then use the gnuplot script file "plot.disp" to generate pdisp.eps:
-> gnuplot plot.disp
The resultant ``pdisp.eps'' compares the measured phonon dispersion to analytic solutions.
NOTE: the binary file provided here might be unreadable on some computers because of
incompatibility between different architectures.
The running of this example needs the molecule package included in lammps.
Author: Ling-Ti Kong, konglt@sjtu.edu.cn
Nov 2015

View File

@ -0,0 +1,154 @@
64x1x1 (001) layers of simple cubic lattice
64 atoms
64 bonds
2 atom types
1 bond types
0.00000000 64.00000000 xlo xhi
0.00000000 1.00000000 ylo yhi
0.00000000 1.00000000 zlo zhi
Atoms
1 1 1 0.00000000 0.00000000 0.00000000
2 1 2 1.00000000 0.00000000 0.00000000
3 1 1 2.00000000 0.00000000 0.00000000
4 1 2 3.00000000 0.00000000 0.00000000
5 1 1 4.00000000 0.00000000 0.00000000
6 1 2 5.00000000 0.00000000 0.00000000
7 1 1 6.00000000 0.00000000 0.00000000
8 1 2 7.00000000 0.00000000 0.00000000
9 1 1 8.00000000 0.00000000 0.00000000
10 1 2 9.00000000 0.00000000 0.00000000
11 1 1 10.00000000 0.00000000 0.00000000
12 1 2 11.00000000 0.00000000 0.00000000
13 1 1 12.00000000 0.00000000 0.00000000
14 1 2 13.00000000 0.00000000 0.00000000
15 1 1 14.00000000 0.00000000 0.00000000
16 1 2 15.00000000 0.00000000 0.00000000
17 1 1 16.00000000 0.00000000 0.00000000
18 1 2 17.00000000 0.00000000 0.00000000
19 1 1 18.00000000 0.00000000 0.00000000
20 1 2 19.00000000 0.00000000 0.00000000
21 1 1 20.00000000 0.00000000 0.00000000
22 1 2 21.00000000 0.00000000 0.00000000
23 1 1 22.00000000 0.00000000 0.00000000
24 1 2 23.00000000 0.00000000 0.00000000
25 1 1 24.00000000 0.00000000 0.00000000
26 1 2 25.00000000 0.00000000 0.00000000
27 1 1 26.00000000 0.00000000 0.00000000
28 1 2 27.00000000 0.00000000 0.00000000
29 1 1 28.00000000 0.00000000 0.00000000
30 1 2 29.00000000 0.00000000 0.00000000
31 1 1 30.00000000 0.00000000 0.00000000
32 1 2 31.00000000 0.00000000 0.00000000
33 1 1 32.00000000 0.00000000 0.00000000
34 1 2 33.00000000 0.00000000 0.00000000
35 1 1 34.00000000 0.00000000 0.00000000
36 1 2 35.00000000 0.00000000 0.00000000
37 1 1 36.00000000 0.00000000 0.00000000
38 1 2 37.00000000 0.00000000 0.00000000
39 1 1 38.00000000 0.00000000 0.00000000
40 1 2 39.00000000 0.00000000 0.00000000
41 1 1 40.00000000 0.00000000 0.00000000
42 1 2 41.00000000 0.00000000 0.00000000
43 1 1 42.00000000 0.00000000 0.00000000
44 1 2 43.00000000 0.00000000 0.00000000
45 1 1 44.00000000 0.00000000 0.00000000
46 1 2 45.00000000 0.00000000 0.00000000
47 1 1 46.00000000 0.00000000 0.00000000
48 1 2 47.00000000 0.00000000 0.00000000
49 1 1 48.00000000 0.00000000 0.00000000
50 1 2 49.00000000 0.00000000 0.00000000
51 1 1 50.00000000 0.00000000 0.00000000
52 1 2 51.00000000 0.00000000 0.00000000
53 1 1 52.00000000 0.00000000 0.00000000
54 1 2 53.00000000 0.00000000 0.00000000
55 1 1 54.00000000 0.00000000 0.00000000
56 1 2 55.00000000 0.00000000 0.00000000
57 1 1 56.00000000 0.00000000 0.00000000
58 1 2 57.00000000 0.00000000 0.00000000
59 1 1 58.00000000 0.00000000 0.00000000
60 1 2 59.00000000 0.00000000 0.00000000
61 1 1 60.00000000 0.00000000 0.00000000
62 1 2 61.00000000 0.00000000 0.00000000
63 1 1 62.00000000 0.00000000 0.00000000
64 1 2 63.00000000 0.00000000 0.00000000
Bonds
1 1 1 2
2 1 1 64
3 1 2 3
4 1 3 4
5 1 4 5
6 1 5 6
7 1 6 7
8 1 7 8
9 1 8 9
10 1 9 10
11 1 10 11
12 1 11 12
13 1 12 13
14 1 13 14
15 1 14 15
16 1 15 16
17 1 16 17
18 1 17 18
19 1 18 19
20 1 19 20
21 1 20 21
22 1 21 22
23 1 22 23
24 1 23 24
25 1 24 25
26 1 25 26
27 1 26 27
28 1 27 28
29 1 28 29
30 1 29 30
31 1 30 31
32 1 31 32
33 1 32 33
34 1 33 34
35 1 34 35
36 1 35 36
37 1 36 37
38 1 37 38
39 1 38 39
40 1 39 40
41 1 40 41
42 1 41 42
43 1 42 43
44 1 43 44
45 1 44 45
46 1 45 46
47 1 46 47
48 1 47 48
49 1 48 49
50 1 49 50
51 1 50 51
52 1 51 52
53 1 52 53
54 1 53 54
55 1 54 55
56 1 55 56
57 1 56 57
58 1 57 58
59 1 58 59
60 1 59 60
61 1 60 61
62 1 61 62
63 1 62 63
64 1 63 64
Bond Coeffs
1 0.5 1.0
Masses
1 1.0
2 2.0

View File

@ -0,0 +1,35 @@
# q qr freq
# 2pi/L 2pi/L sqrt(epsilon/(m.sigma^2))
-0.5 0 0 0 0.984716 1.41168
-0.46875 0 0 0.03125 1.00625 1.43003
-0.4375 0 0 0.0625 0.973905 1.43204
-0.40625 0 0 0.09375 0.943149 1.45641
-0.375 0 0 0.125 0.874757 1.49529
-0.34375 0 0 0.15625 0.813743 1.54195
-0.3125 0 0 0.1875 0.754837 1.55803
-0.28125 0 0 0.21875 0.68801 1.58621
-0.25 0 0 0.25 0.625141 1.60413
-0.21875 0 0 0.28125 0.533761 1.64847
-0.1875 0 0 0.3125 0.477876 1.6563
-0.15625 0 0 0.34375 0.396155 1.70947
-0.125 0 0 0.375 0.312932 1.69833
-0.09375 0 0 0.40625 0.231091 1.71695
-0.0625 0 0 0.4375 0.15755 1.72475
-0.03125 0 0 0.46875 0.0953207 1.74272
0 0 0 0.5 1.05367e-08 1.72979
0.03125 0 0 0.53125 0.0953207 1.74272
0.0625 0 0 0.5625 0.15755 1.72475
0.09375 0 0 0.59375 0.231091 1.71695
0.125 0 0 0.625 0.312932 1.69833
0.15625 0 0 0.65625 0.396155 1.70947
0.1875 0 0 0.6875 0.477876 1.6563
0.21875 0 0 0.71875 0.533761 1.64847
0.25 0 0 0.75 0.625141 1.60413
0.28125 0 0 0.78125 0.68801 1.58621
0.3125 0 0 0.8125 0.754837 1.55803
0.34375 0 0 0.84375 0.813743 1.54195
0.375 0 0 0.875 0.874757 1.49529
0.40625 0 0 0.90625 0.943149 1.45641
0.4375 0 0 0.9375 0.973905 1.43204
0.46875 0 0 0.96875 1.00625 1.43003
0.5 0 0 1 0.984716 1.41168

View File

@ -0,0 +1,46 @@
# 3D simple cubic lattice simulation
dimension 2
boundary p f p
units lj
atom_style bond
atom_modify sort 0 1.
bond_style harmonic
pair_style none
communicate single cutoff 2.0
# geometry
read_data data.pos
#
neighbor 1.0 nsq
neigh_modify delay 0 check no
#Langevin random seed
variable r equal 571101
#Langevin Temperature
variable t equal 0.005
# Langevin Damping variable
variable d equal 0.5
# Create velocities and equilibrate
compute MyTemp all temp/partial 1 0 0
velocity all create $t 28711 mom yes rot yes dist gaussian temp MyTemp
velocity all set NULL 0.0 0.0 units box
#
fix 1 all langevin $t $t $d $r
fix_modify 1 temp MyTemp
fix 2 all setforce NULL 0. 0.
fix 3 all nve
fix 4 all phonon 10 50000 500000 map.in phonon sysdim 1
fix_modify 4 temp MyTemp
# 1 2 3 4
thermo_style custom step temp pe etotal
thermo_modify temp MyTemp
thermo 100
#
run 2000000

View File

@ -0,0 +1,10 @@
10
1
2
1
disp.dat
-0.5 0 0
0.5 0 0
33
q
0

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,66 @@
32 1 1 2
#l1 l2 l3 k tag
0 0 0 0 1
0 0 0 1 2
1 0 0 0 3
1 0 0 1 4
2 0 0 0 5
2 0 0 1 6
3 0 0 0 7
3 0 0 1 8
4 0 0 0 9
4 0 0 1 10
5 0 0 0 11
5 0 0 1 12
6 0 0 0 13
6 0 0 1 14
7 0 0 0 15
7 0 0 1 16
8 0 0 0 17
8 0 0 1 18
9 0 0 0 19
9 0 0 1 20
10 0 0 0 21
10 0 0 1 22
11 0 0 0 23
11 0 0 1 24
12 0 0 0 25
12 0 0 1 26
13 0 0 0 27
13 0 0 1 28
14 0 0 0 29
14 0 0 1 30
15 0 0 0 31
15 0 0 1 32
16 0 0 0 33
16 0 0 1 34
17 0 0 0 35
17 0 0 1 36
18 0 0 0 37
18 0 0 1 38
19 0 0 0 39
19 0 0 1 40
20 0 0 0 41
20 0 0 1 42
21 0 0 0 43
21 0 0 1 44
22 0 0 0 45
22 0 0 1 46
23 0 0 0 47
23 0 0 1 48
24 0 0 0 49
24 0 0 1 50
25 0 0 0 51
25 0 0 1 52
26 0 0 0 53
26 0 0 1 54
27 0 0 0 55
27 0 0 1 56
28 0 0 0 57
28 0 0 1 58
29 0 0 0 59
29 0 0 1 60
30 0 0 0 61
30 0 0 1 62
31 0 0 0 63
31 0 0 1 64

View File

@ -0,0 +1,924 @@
%!PS-Adobe-2.0
%%Title: pdisp.eps
%%Creator: gnuplot 4.4 patchlevel 2
%%CreationDate: Sat Oct 12 14:36:15 2013
%%DocumentFonts: (atend)
%%BoundingBox: 50 50 554 770
%%Orientation: Landscape
%%Pages: (atend)
%%EndComments
%%BeginProlog
/gnudict 256 dict def
gnudict begin
%
% The following true/false flags may be edited by hand if desired.
% The unit line width and grayscale image gamma correction may also be changed.
%
/Color true def
/Blacktext false def
/Solid false def
/Dashlength 1 def
/Landscape true def
/Level1 false def
/Rounded false def
/ClipToBoundingBox false def
/TransparentPatterns false def
/gnulinewidth 5.000 def
/userlinewidth gnulinewidth def
/Gamma 1.0 def
%
/vshift -66 def
/dl1 {
10.0 Dashlength mul mul
Rounded { currentlinewidth 0.75 mul sub dup 0 le { pop 0.01 } if } if
} def
/dl2 {
10.0 Dashlength mul mul
Rounded { currentlinewidth 0.75 mul add } if
} def
/hpt_ 31.5 def
/vpt_ 31.5 def
/hpt hpt_ def
/vpt vpt_ def
Level1 {} {
/SDict 10 dict def
systemdict /pdfmark known not {
userdict /pdfmark systemdict /cleartomark get put
} if
SDict begin [
/Title (pdisp.eps)
/Subject (gnuplot plot)
/Creator (gnuplot 4.4 patchlevel 2)
/Author (konglt)
% /Producer (gnuplot)
% /Keywords ()
/CreationDate (Sat Oct 12 14:36:15 2013)
/DOCINFO pdfmark
end
} ifelse
/doclip {
ClipToBoundingBox {
newpath 50 50 moveto 554 50 lineto 554 770 lineto 50 770 lineto closepath
clip
} if
} def
%
% Gnuplot Prolog Version 4.4 (August 2010)
%
%/SuppressPDFMark true def
%
/M {moveto} bind def
/L {lineto} bind def
/R {rmoveto} bind def
/V {rlineto} bind def
/N {newpath moveto} bind def
/Z {closepath} bind def
/C {setrgbcolor} bind def
/f {rlineto fill} bind def
/g {setgray} bind def
/Gshow {show} def % May be redefined later in the file to support UTF-8
/vpt2 vpt 2 mul def
/hpt2 hpt 2 mul def
/Lshow {currentpoint stroke M 0 vshift R
Blacktext {gsave 0 setgray show grestore} {show} ifelse} def
/Rshow {currentpoint stroke M dup stringwidth pop neg vshift R
Blacktext {gsave 0 setgray show grestore} {show} ifelse} def
/Cshow {currentpoint stroke M dup stringwidth pop -2 div vshift R
Blacktext {gsave 0 setgray show grestore} {show} ifelse} def
/UP {dup vpt_ mul /vpt exch def hpt_ mul /hpt exch def
/hpt2 hpt 2 mul def /vpt2 vpt 2 mul def} def
/DL {Color {setrgbcolor Solid {pop []} if 0 setdash}
{pop pop pop 0 setgray Solid {pop []} if 0 setdash} ifelse} def
/BL {stroke userlinewidth 2 mul setlinewidth
Rounded {1 setlinejoin 1 setlinecap} if} def
/AL {stroke userlinewidth 2 div setlinewidth
Rounded {1 setlinejoin 1 setlinecap} if} def
/UL {dup gnulinewidth mul /userlinewidth exch def
dup 1 lt {pop 1} if 10 mul /udl exch def} def
/PL {stroke userlinewidth setlinewidth
Rounded {1 setlinejoin 1 setlinecap} if} def
3.8 setmiterlimit
% Default Line colors
/LCw {1 1 1} def
/LCb {0 0 0} def
/LCa {0 0 0} def
/LC0 {1 0 0} def
/LC1 {0 1 0} def
/LC2 {0 0 1} def
/LC3 {1 0 1} def
/LC4 {0 1 1} def
/LC5 {1 1 0} def
/LC6 {0 0 0} def
/LC7 {1 0.3 0} def
/LC8 {0.5 0.5 0.5} def
% Default Line Types
/LTw {PL [] 1 setgray} def
/LTb {BL [] LCb DL} def
/LTa {AL [1 udl mul 2 udl mul] 0 setdash LCa setrgbcolor} def
/LT0 {PL [] LC0 DL} def
/LT1 {PL [4 dl1 2 dl2] LC1 DL} def
/LT2 {PL [2 dl1 3 dl2] LC2 DL} def
/LT3 {PL [1 dl1 1.5 dl2] LC3 DL} def
/LT4 {PL [6 dl1 2 dl2 1 dl1 2 dl2] LC4 DL} def
/LT5 {PL [3 dl1 3 dl2 1 dl1 3 dl2] LC5 DL} def
/LT6 {PL [2 dl1 2 dl2 2 dl1 6 dl2] LC6 DL} def
/LT7 {PL [1 dl1 2 dl2 6 dl1 2 dl2 1 dl1 2 dl2] LC7 DL} def
/LT8 {PL [2 dl1 2 dl2 2 dl1 2 dl2 2 dl1 2 dl2 2 dl1 4 dl2] LC8 DL} def
/Pnt {stroke [] 0 setdash gsave 1 setlinecap M 0 0 V stroke grestore} def
/Dia {stroke [] 0 setdash 2 copy vpt add M
hpt neg vpt neg V hpt vpt neg V
hpt vpt V hpt neg vpt V closepath stroke
Pnt} def
/Pls {stroke [] 0 setdash vpt sub M 0 vpt2 V
currentpoint stroke M
hpt neg vpt neg R hpt2 0 V stroke
} def
/Box {stroke [] 0 setdash 2 copy exch hpt sub exch vpt add M
0 vpt2 neg V hpt2 0 V 0 vpt2 V
hpt2 neg 0 V closepath stroke
Pnt} def
/Crs {stroke [] 0 setdash exch hpt sub exch vpt add M
hpt2 vpt2 neg V currentpoint stroke M
hpt2 neg 0 R hpt2 vpt2 V stroke} def
/TriU {stroke [] 0 setdash 2 copy vpt 1.12 mul add M
hpt neg vpt -1.62 mul V
hpt 2 mul 0 V
hpt neg vpt 1.62 mul V closepath stroke
Pnt} def
/Star {2 copy Pls Crs} def
/BoxF {stroke [] 0 setdash exch hpt sub exch vpt add M
0 vpt2 neg V hpt2 0 V 0 vpt2 V
hpt2 neg 0 V closepath fill} def
/TriUF {stroke [] 0 setdash vpt 1.12 mul add M
hpt neg vpt -1.62 mul V
hpt 2 mul 0 V
hpt neg vpt 1.62 mul V closepath fill} def
/TriD {stroke [] 0 setdash 2 copy vpt 1.12 mul sub M
hpt neg vpt 1.62 mul V
hpt 2 mul 0 V
hpt neg vpt -1.62 mul V closepath stroke
Pnt} def
/TriDF {stroke [] 0 setdash vpt 1.12 mul sub M
hpt neg vpt 1.62 mul V
hpt 2 mul 0 V
hpt neg vpt -1.62 mul V closepath fill} def
/DiaF {stroke [] 0 setdash vpt add M
hpt neg vpt neg V hpt vpt neg V
hpt vpt V hpt neg vpt V closepath fill} def
/Pent {stroke [] 0 setdash 2 copy gsave
translate 0 hpt M 4 {72 rotate 0 hpt L} repeat
closepath stroke grestore Pnt} def
/PentF {stroke [] 0 setdash gsave
translate 0 hpt M 4 {72 rotate 0 hpt L} repeat
closepath fill grestore} def
/Circle {stroke [] 0 setdash 2 copy
hpt 0 360 arc stroke Pnt} def
/CircleF {stroke [] 0 setdash hpt 0 360 arc fill} def
/C0 {BL [] 0 setdash 2 copy moveto vpt 90 450 arc} bind def
/C1 {BL [] 0 setdash 2 copy moveto
2 copy vpt 0 90 arc closepath fill
vpt 0 360 arc closepath} bind def
/C2 {BL [] 0 setdash 2 copy moveto
2 copy vpt 90 180 arc closepath fill
vpt 0 360 arc closepath} bind def
/C3 {BL [] 0 setdash 2 copy moveto
2 copy vpt 0 180 arc closepath fill
vpt 0 360 arc closepath} bind def
/C4 {BL [] 0 setdash 2 copy moveto
2 copy vpt 180 270 arc closepath fill
vpt 0 360 arc closepath} bind def
/C5 {BL [] 0 setdash 2 copy moveto
2 copy vpt 0 90 arc
2 copy moveto
2 copy vpt 180 270 arc closepath fill
vpt 0 360 arc} bind def
/C6 {BL [] 0 setdash 2 copy moveto
2 copy vpt 90 270 arc closepath fill
vpt 0 360 arc closepath} bind def
/C7 {BL [] 0 setdash 2 copy moveto
2 copy vpt 0 270 arc closepath fill
vpt 0 360 arc closepath} bind def
/C8 {BL [] 0 setdash 2 copy moveto
2 copy vpt 270 360 arc closepath fill
vpt 0 360 arc closepath} bind def
/C9 {BL [] 0 setdash 2 copy moveto
2 copy vpt 270 450 arc closepath fill
vpt 0 360 arc closepath} bind def
/C10 {BL [] 0 setdash 2 copy 2 copy moveto vpt 270 360 arc closepath fill
2 copy moveto
2 copy vpt 90 180 arc closepath fill
vpt 0 360 arc closepath} bind def
/C11 {BL [] 0 setdash 2 copy moveto
2 copy vpt 0 180 arc closepath fill
2 copy moveto
2 copy vpt 270 360 arc closepath fill
vpt 0 360 arc closepath} bind def
/C12 {BL [] 0 setdash 2 copy moveto
2 copy vpt 180 360 arc closepath fill
vpt 0 360 arc closepath} bind def
/C13 {BL [] 0 setdash 2 copy moveto
2 copy vpt 0 90 arc closepath fill
2 copy moveto
2 copy vpt 180 360 arc closepath fill
vpt 0 360 arc closepath} bind def
/C14 {BL [] 0 setdash 2 copy moveto
2 copy vpt 90 360 arc closepath fill
vpt 0 360 arc} bind def
/C15 {BL [] 0 setdash 2 copy vpt 0 360 arc closepath fill
vpt 0 360 arc closepath} bind def
/Rec {newpath 4 2 roll moveto 1 index 0 rlineto 0 exch rlineto
neg 0 rlineto closepath} bind def
/Square {dup Rec} bind def
/Bsquare {vpt sub exch vpt sub exch vpt2 Square} bind def
/S0 {BL [] 0 setdash 2 copy moveto 0 vpt rlineto BL Bsquare} bind def
/S1 {BL [] 0 setdash 2 copy vpt Square fill Bsquare} bind def
/S2 {BL [] 0 setdash 2 copy exch vpt sub exch vpt Square fill Bsquare} bind def
/S3 {BL [] 0 setdash 2 copy exch vpt sub exch vpt2 vpt Rec fill Bsquare} bind def
/S4 {BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt Square fill Bsquare} bind def
/S5 {BL [] 0 setdash 2 copy 2 copy vpt Square fill
exch vpt sub exch vpt sub vpt Square fill Bsquare} bind def
/S6 {BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt vpt2 Rec fill Bsquare} bind def
/S7 {BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt vpt2 Rec fill
2 copy vpt Square fill Bsquare} bind def
/S8 {BL [] 0 setdash 2 copy vpt sub vpt Square fill Bsquare} bind def
/S9 {BL [] 0 setdash 2 copy vpt sub vpt vpt2 Rec fill Bsquare} bind def
/S10 {BL [] 0 setdash 2 copy vpt sub vpt Square fill 2 copy exch vpt sub exch vpt Square fill
Bsquare} bind def
/S11 {BL [] 0 setdash 2 copy vpt sub vpt Square fill 2 copy exch vpt sub exch vpt2 vpt Rec fill
Bsquare} bind def
/S12 {BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt2 vpt Rec fill Bsquare} bind def
/S13 {BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt2 vpt Rec fill
2 copy vpt Square fill Bsquare} bind def
/S14 {BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt2 vpt Rec fill
2 copy exch vpt sub exch vpt Square fill Bsquare} bind def
/S15 {BL [] 0 setdash 2 copy Bsquare fill Bsquare} bind def
/D0 {gsave translate 45 rotate 0 0 S0 stroke grestore} bind def
/D1 {gsave translate 45 rotate 0 0 S1 stroke grestore} bind def
/D2 {gsave translate 45 rotate 0 0 S2 stroke grestore} bind def
/D3 {gsave translate 45 rotate 0 0 S3 stroke grestore} bind def
/D4 {gsave translate 45 rotate 0 0 S4 stroke grestore} bind def
/D5 {gsave translate 45 rotate 0 0 S5 stroke grestore} bind def
/D6 {gsave translate 45 rotate 0 0 S6 stroke grestore} bind def
/D7 {gsave translate 45 rotate 0 0 S7 stroke grestore} bind def
/D8 {gsave translate 45 rotate 0 0 S8 stroke grestore} bind def
/D9 {gsave translate 45 rotate 0 0 S9 stroke grestore} bind def
/D10 {gsave translate 45 rotate 0 0 S10 stroke grestore} bind def
/D11 {gsave translate 45 rotate 0 0 S11 stroke grestore} bind def
/D12 {gsave translate 45 rotate 0 0 S12 stroke grestore} bind def
/D13 {gsave translate 45 rotate 0 0 S13 stroke grestore} bind def
/D14 {gsave translate 45 rotate 0 0 S14 stroke grestore} bind def
/D15 {gsave translate 45 rotate 0 0 S15 stroke grestore} bind def
/DiaE {stroke [] 0 setdash vpt add M
hpt neg vpt neg V hpt vpt neg V
hpt vpt V hpt neg vpt V closepath stroke} def
/BoxE {stroke [] 0 setdash exch hpt sub exch vpt add M
0 vpt2 neg V hpt2 0 V 0 vpt2 V
hpt2 neg 0 V closepath stroke} def
/TriUE {stroke [] 0 setdash vpt 1.12 mul add M
hpt neg vpt -1.62 mul V
hpt 2 mul 0 V
hpt neg vpt 1.62 mul V closepath stroke} def
/TriDE {stroke [] 0 setdash vpt 1.12 mul sub M
hpt neg vpt 1.62 mul V
hpt 2 mul 0 V
hpt neg vpt -1.62 mul V closepath stroke} def
/PentE {stroke [] 0 setdash gsave
translate 0 hpt M 4 {72 rotate 0 hpt L} repeat
closepath stroke grestore} def
/CircE {stroke [] 0 setdash
hpt 0 360 arc stroke} def
/Opaque {gsave closepath 1 setgray fill grestore 0 setgray closepath} def
/DiaW {stroke [] 0 setdash vpt add M
hpt neg vpt neg V hpt vpt neg V
hpt vpt V hpt neg vpt V Opaque stroke} def
/BoxW {stroke [] 0 setdash exch hpt sub exch vpt add M
0 vpt2 neg V hpt2 0 V 0 vpt2 V
hpt2 neg 0 V Opaque stroke} def
/TriUW {stroke [] 0 setdash vpt 1.12 mul add M
hpt neg vpt -1.62 mul V
hpt 2 mul 0 V
hpt neg vpt 1.62 mul V Opaque stroke} def
/TriDW {stroke [] 0 setdash vpt 1.12 mul sub M
hpt neg vpt 1.62 mul V
hpt 2 mul 0 V
hpt neg vpt -1.62 mul V Opaque stroke} def
/PentW {stroke [] 0 setdash gsave
translate 0 hpt M 4 {72 rotate 0 hpt L} repeat
Opaque stroke grestore} def
/CircW {stroke [] 0 setdash
hpt 0 360 arc Opaque stroke} def
/BoxFill {gsave Rec 1 setgray fill grestore} def
/Density {
/Fillden exch def
currentrgbcolor
/ColB exch def /ColG exch def /ColR exch def
/ColR ColR Fillden mul Fillden sub 1 add def
/ColG ColG Fillden mul Fillden sub 1 add def
/ColB ColB Fillden mul Fillden sub 1 add def
ColR ColG ColB setrgbcolor} def
/BoxColFill {gsave Rec PolyFill} def
/PolyFill {gsave Density fill grestore grestore} def
/h {rlineto rlineto rlineto gsave closepath fill grestore} bind def
%
% PostScript Level 1 Pattern Fill routine for rectangles
% Usage: x y w h s a XX PatternFill
% x,y = lower left corner of box to be filled
% w,h = width and height of box
% a = angle in degrees between lines and x-axis
% XX = 0/1 for no/yes cross-hatch
%
/PatternFill {gsave /PFa [ 9 2 roll ] def
PFa 0 get PFa 2 get 2 div add PFa 1 get PFa 3 get 2 div add translate
PFa 2 get -2 div PFa 3 get -2 div PFa 2 get PFa 3 get Rec
gsave 1 setgray fill grestore clip
currentlinewidth 0.5 mul setlinewidth
/PFs PFa 2 get dup mul PFa 3 get dup mul add sqrt def
0 0 M PFa 5 get rotate PFs -2 div dup translate
0 1 PFs PFa 4 get div 1 add floor cvi
{PFa 4 get mul 0 M 0 PFs V} for
0 PFa 6 get ne {
0 1 PFs PFa 4 get div 1 add floor cvi
{PFa 4 get mul 0 2 1 roll M PFs 0 V} for
} if
stroke grestore} def
%
/languagelevel where
{pop languagelevel} {1} ifelse
2 lt
{/InterpretLevel1 true def}
{/InterpretLevel1 Level1 def}
ifelse
%
% PostScript level 2 pattern fill definitions
%
/Level2PatternFill {
/Tile8x8 {/PaintType 2 /PatternType 1 /TilingType 1 /BBox [0 0 8 8] /XStep 8 /YStep 8}
bind def
/KeepColor {currentrgbcolor [/Pattern /DeviceRGB] setcolorspace} bind def
<< Tile8x8
/PaintProc {0.5 setlinewidth pop 0 0 M 8 8 L 0 8 M 8 0 L stroke}
>> matrix makepattern
/Pat1 exch def
<< Tile8x8
/PaintProc {0.5 setlinewidth pop 0 0 M 8 8 L 0 8 M 8 0 L stroke
0 4 M 4 8 L 8 4 L 4 0 L 0 4 L stroke}
>> matrix makepattern
/Pat2 exch def
<< Tile8x8
/PaintProc {0.5 setlinewidth pop 0 0 M 0 8 L
8 8 L 8 0 L 0 0 L fill}
>> matrix makepattern
/Pat3 exch def
<< Tile8x8
/PaintProc {0.5 setlinewidth pop -4 8 M 8 -4 L
0 12 M 12 0 L stroke}
>> matrix makepattern
/Pat4 exch def
<< Tile8x8
/PaintProc {0.5 setlinewidth pop -4 0 M 8 12 L
0 -4 M 12 8 L stroke}
>> matrix makepattern
/Pat5 exch def
<< Tile8x8
/PaintProc {0.5 setlinewidth pop -2 8 M 4 -4 L
0 12 M 8 -4 L 4 12 M 10 0 L stroke}
>> matrix makepattern
/Pat6 exch def
<< Tile8x8
/PaintProc {0.5 setlinewidth pop -2 0 M 4 12 L
0 -4 M 8 12 L 4 -4 M 10 8 L stroke}
>> matrix makepattern
/Pat7 exch def
<< Tile8x8
/PaintProc {0.5 setlinewidth pop 8 -2 M -4 4 L
12 0 M -4 8 L 12 4 M 0 10 L stroke}
>> matrix makepattern
/Pat8 exch def
<< Tile8x8
/PaintProc {0.5 setlinewidth pop 0 -2 M 12 4 L
-4 0 M 12 8 L -4 4 M 8 10 L stroke}
>> matrix makepattern
/Pat9 exch def
/Pattern1 {PatternBgnd KeepColor Pat1 setpattern} bind def
/Pattern2 {PatternBgnd KeepColor Pat2 setpattern} bind def
/Pattern3 {PatternBgnd KeepColor Pat3 setpattern} bind def
/Pattern4 {PatternBgnd KeepColor Landscape {Pat5} {Pat4} ifelse setpattern} bind def
/Pattern5 {PatternBgnd KeepColor Landscape {Pat4} {Pat5} ifelse setpattern} bind def
/Pattern6 {PatternBgnd KeepColor Landscape {Pat9} {Pat6} ifelse setpattern} bind def
/Pattern7 {PatternBgnd KeepColor Landscape {Pat8} {Pat7} ifelse setpattern} bind def
} def
%
%
%End of PostScript Level 2 code
%
/PatternBgnd {
TransparentPatterns {} {gsave 1 setgray fill grestore} ifelse
} def
%
% Substitute for Level 2 pattern fill codes with
% grayscale if Level 2 support is not selected.
%
/Level1PatternFill {
/Pattern1 {0.250 Density} bind def
/Pattern2 {0.500 Density} bind def
/Pattern3 {0.750 Density} bind def
/Pattern4 {0.125 Density} bind def
/Pattern5 {0.375 Density} bind def
/Pattern6 {0.625 Density} bind def
/Pattern7 {0.875 Density} bind def
} def
%
% Now test for support of Level 2 code
%
Level1 {Level1PatternFill} {Level2PatternFill} ifelse
%
/Symbol-Oblique /Symbol findfont [1 0 .167 1 0 0] makefont
dup length dict begin {1 index /FID eq {pop pop} {def} ifelse} forall
currentdict end definefont pop
/MFshow {
{ dup 5 get 3 ge
{ 5 get 3 eq {gsave} {grestore} ifelse }
{dup dup 0 get findfont exch 1 get scalefont setfont
[ currentpoint ] exch dup 2 get 0 exch R dup 5 get 2 ne {dup dup 6
get exch 4 get {Gshow} {stringwidth pop 0 R} ifelse }if dup 5 get 0 eq
{dup 3 get {2 get neg 0 exch R pop} {pop aload pop M} ifelse} {dup 5
get 1 eq {dup 2 get exch dup 3 get exch 6 get stringwidth pop -2 div
dup 0 R} {dup 6 get stringwidth pop -2 div 0 R 6 get
show 2 index {aload pop M neg 3 -1 roll neg R pop pop} {pop pop pop
pop aload pop M} ifelse }ifelse }ifelse }
ifelse }
forall} def
/Gswidth {dup type /stringtype eq {stringwidth} {pop (n) stringwidth} ifelse} def
/MFwidth {0 exch { dup 5 get 3 ge { 5 get 3 eq { 0 } { pop } ifelse }
{dup 3 get{dup dup 0 get findfont exch 1 get scalefont setfont
6 get Gswidth pop add} {pop} ifelse} ifelse} forall} def
/MLshow { currentpoint stroke M
0 exch R
Blacktext {gsave 0 setgray MFshow grestore} {MFshow} ifelse } bind def
/MRshow { currentpoint stroke M
exch dup MFwidth neg 3 -1 roll R
Blacktext {gsave 0 setgray MFshow grestore} {MFshow} ifelse } bind def
/MCshow { currentpoint stroke M
exch dup MFwidth -2 div 3 -1 roll R
Blacktext {gsave 0 setgray MFshow grestore} {MFshow} ifelse } bind def
/XYsave { [( ) 1 2 true false 3 ()] } bind def
/XYrestore { [( ) 1 2 true false 4 ()] } bind def
end
%%EndProlog
%%Page: 1 1
gnudict begin
gsave
doclip
50 50 translate
0.100 0.100 scale
90 rotate
0 -5040 translate
0 setgray
newpath
(Helvetica) findfont 200 scalefont setfont
1.000 UL
LTb
860 640 M
63 0 V
5916 0 R
-63 0 V
stroke
740 640 M
[ [(Helvetica) 200.0 0.0 true true 0 (0.0)]
] -66.7 MRshow
1.000 UL
LTb
860 1680 M
63 0 V
5916 0 R
-63 0 V
stroke
740 1680 M
[ [(Helvetica) 200.0 0.0 true true 0 (0.5)]
] -66.7 MRshow
1.000 UL
LTb
860 2720 M
63 0 V
5916 0 R
-63 0 V
stroke
740 2720 M
[ [(Helvetica) 200.0 0.0 true true 0 (1.0)]
] -66.7 MRshow
1.000 UL
LTb
860 3759 M
63 0 V
5916 0 R
-63 0 V
stroke
740 3759 M
[ [(Helvetica) 200.0 0.0 true true 0 (1.5)]
] -66.7 MRshow
1.000 UL
LTb
860 4799 M
63 0 V
5916 0 R
-63 0 V
stroke
740 4799 M
[ [(Helvetica) 200.0 0.0 true true 0 (2.0)]
] -66.7 MRshow
1.000 UL
LTb
1.000 UL
LT8
860 640 M
0 4159 V
stroke
LTb
860 640 M
0 63 V
0 4096 R
0 -63 V
stroke
860 440 M
[ [(Helvetica) 200.0 0.0 true true 0 (-)]
[(Symbol) 200.0 0.0 true true 0 (p)]
[(Helvetica) 200.0 0.0 true true 0 (/2a)]
] -66.7 MCshow
1.000 UL
LTb
1.000 UL
LT8
3850 640 M
0 4159 V
stroke
LTb
3850 640 M
0 63 V
0 4096 R
0 -63 V
stroke
3850 440 M
[ [(Symbol) 200.0 0.0 true true 0 (G)]
] -66.7 MCshow
1.000 UL
LTb
1.000 UL
LT8
6839 640 M
0 4159 V
stroke
LTb
6839 640 M
0 63 V
0 4096 R
0 -63 V
stroke
6839 440 M
[ [(Symbol) 200.0 0.0 true true 0 (p)]
[(Helvetica) 200.0 0.0 true true 0 (/2a)]
] -66.7 MCshow
1.000 UL
LTb
1.000 UL
LTb
860 4799 N
860 640 L
5979 0 V
0 4159 V
-5979 0 V
Z stroke
LCb setrgbcolor
160 2719 M
currentpoint gsave translate -270 rotate 0 0 moveto
[ [(Symbol) 200.0 0.0 true true 0 (w)]
] -66.7 MCshow
grestore
LTb
LCb setrgbcolor
3849 140 M
[ [(Helvetica) 200.0 0.0 true true 0 (q)]
] -66.7 MCshow
LTb
1.000 UP
1.000 UL
LTb
% Begin plot #1
1.000 UL
LT0
LC2 setrgbcolor
LCb setrgbcolor
1700 4636 M
[ [(Helvetica) 200.0 0.0 true true 0 (Theory)]
] -66.7 MRshow
LT0
LC2 setrgbcolor
1820 4636 M
543 0 V
860 3581 M
60 1 V
60 5 V
59 7 V
60 9 V
60 12 V
60 14 V
60 16 V
59 17 V
60 18 V
60 19 V
60 20 V
59 21 V
60 21 V
60 21 V
60 21 V
60 21 V
59 22 V
60 21 V
60 21 V
60 20 V
60 20 V
59 20 V
60 20 V
60 18 V
60 19 V
60 17 V
59 18 V
60 16 V
60 16 V
60 16 V
59 14 V
60 14 V
60 14 V
60 12 V
60 12 V
59 11 V
60 11 V
60 9 V
60 9 V
60 9 V
59 7 V
60 7 V
60 5 V
60 6 V
60 4 V
59 3 V
60 3 V
60 2 V
60 1 V
60 1 V
59 -1 V
60 -1 V
60 -2 V
60 -3 V
59 -3 V
60 -4 V
60 -6 V
60 -5 V
60 -7 V
59 -7 V
60 -9 V
60 -9 V
60 -9 V
60 -11 V
59 -11 V
60 -12 V
60 -12 V
60 -14 V
60 -14 V
59 -14 V
60 -16 V
60 -16 V
60 -16 V
59 -18 V
60 -17 V
60 -19 V
60 -18 V
60 -20 V
59 -20 V
60 -20 V
60 -20 V
60 -21 V
60 -21 V
59 -22 V
60 -21 V
60 -21 V
60 -21 V
60 -21 V
59 -21 V
60 -20 V
60 -19 V
60 -18 V
59 -17 V
60 -16 V
60 -14 V
60 -12 V
60 -9 V
59 -7 V
60 -5 V
60 -1 V
% End plot #1
% Begin plot #2
stroke
LT0
LC2 setrgbcolor
860 2719 M
60 -2 V
60 -6 V
59 -10 V
60 -13 V
60 -18 V
60 -20 V
60 -24 V
59 -26 V
60 -28 V
60 -31 V
60 -32 V
59 -35 V
60 -35 V
60 -38 V
60 -38 V
60 -40 V
59 -41 V
60 -42 V
60 -43 V
60 -43 V
60 -45 V
59 -45 V
60 -45 V
60 -47 V
60 -47 V
60 -47 V
59 -48 V
60 -49 V
60 -49 V
60 -49 V
59 -50 V
60 -50 V
60 -51 V
60 -51 V
60 -51 V
59 -51 V
60 -52 V
60 -52 V
60 -52 V
60 -53 V
59 -52 V
60 -53 V
60 -53 V
60 -53 V
60 -53 V
59 -53 V
60 -53 V
60 -53 V
60 -54 V
60 -53 V
59 53 V
60 54 V
60 53 V
60 53 V
59 53 V
60 53 V
60 53 V
60 53 V
60 53 V
59 52 V
60 53 V
60 52 V
60 52 V
60 52 V
59 51 V
60 51 V
60 51 V
60 51 V
60 50 V
59 50 V
60 49 V
60 49 V
60 49 V
59 48 V
60 47 V
60 47 V
60 47 V
60 45 V
59 45 V
60 45 V
60 43 V
60 43 V
60 42 V
59 41 V
60 40 V
60 38 V
60 38 V
60 35 V
59 35 V
60 32 V
60 31 V
60 28 V
59 26 V
60 24 V
60 20 V
60 18 V
60 13 V
59 10 V
60 6 V
60 2 V
% End plot #2
% Begin plot #3
1.000 UP
stroke
LT0
LCb setrgbcolor
1700 4436 M
[ [(Helvetica) 200.0 0.0 true true 0 (MD)]
] -66.7 MRshow
LT0
860 2688 CircleF
1047 2732 CircleF
1234 2665 CircleF
1421 2601 CircleF
1607 2459 CircleF
1794 2332 CircleF
1981 2210 CircleF
2168 2071 CircleF
2355 1940 CircleF
2542 1750 CircleF
2728 1634 CircleF
2915 1464 CircleF
3102 1291 CircleF
3289 1121 CircleF
3476 968 CircleF
3663 838 CircleF
3850 640 CircleF
4036 838 CircleF
4223 968 CircleF
4410 1121 CircleF
4597 1291 CircleF
4784 1464 CircleF
4971 1634 CircleF
5157 1750 CircleF
5344 1940 CircleF
5531 2071 CircleF
5718 2210 CircleF
5905 2332 CircleF
6092 2459 CircleF
6278 2601 CircleF
6465 2665 CircleF
6652 2732 CircleF
6839 2688 CircleF
2091 4436 CircleF
% End plot #3
% Begin plot #4
1.000 UP
1.000 UL
LT0
860 3576 CircleF
1047 3614 CircleF
1234 3618 CircleF
1421 3669 CircleF
1607 3749 CircleF
1794 3846 CircleF
1981 3880 CircleF
2168 3939 CircleF
2355 3976 CircleF
2542 4068 CircleF
2728 4084 CircleF
2915 4195 CircleF
3102 4172 CircleF
3289 4210 CircleF
3476 4227 CircleF
3663 4264 CircleF
3850 4237 CircleF
4036 4264 CircleF
4223 4227 CircleF
4410 4210 CircleF
4597 4172 CircleF
4784 4195 CircleF
4971 4084 CircleF
5157 4068 CircleF
5344 3976 CircleF
5531 3939 CircleF
5718 3880 CircleF
5905 3846 CircleF
6092 3749 CircleF
6278 3669 CircleF
6465 3618 CircleF
6652 3614 CircleF
6839 3576 CircleF
% End plot #4
1.000 UL
LTb
860 4799 N
860 640 L
5979 0 V
0 4159 V
-5979 0 V
Z stroke
1.000 UP
1.000 UL
LTb
stroke
grestore
end
showpage
%%Trailer
%%DocumentFonts: Symbol Helvetica
%%Pages: 1

View File

@ -0,0 +1,17 @@
set term post enha colo 20
set out "pdisp.eps"
set xlabel "q"
set ylabel "frequency (THz)"
set xrange [0:1]
set yrange [0:*]
set grid xtics
# {/Symbol G} will give you letter gamma in the label
set xtics ("" 0, "" 1)
unset key
plot "disp.dat" u 4:5 w l lt 1,\
"" u 4:6 w l lt 1

Binary file not shown.

View File

@ -0,0 +1,206 @@
############################################################
# group name of the atoms under study : all
# total number of atoms in the group : 64
# dimension of the system : 1 D
# number of atoms per unit cell : 2
# dimension of the FFT mesh : 32 x 1 x 1
# number of wait steps before measurement : 500000
# frequency of the measurement : 10
# output result after this many measurement: 50000
# number of processors used by this run : 1
############################################################
# mapping information between lattice index and atom id
# nx ny nz nucell
32 1 1 2
# l1 l2 l3 k atom_id
0 0 0 0 1
0 0 0 1 2
1 0 0 0 3
1 0 0 1 4
2 0 0 0 5
2 0 0 1 6
3 0 0 0 7
3 0 0 1 8
4 0 0 0 9
4 0 0 1 10
5 0 0 0 11
5 0 0 1 12
6 0 0 0 13
6 0 0 1 14
7 0 0 0 15
7 0 0 1 16
8 0 0 0 17
8 0 0 1 18
9 0 0 0 19
9 0 0 1 20
10 0 0 0 21
10 0 0 1 22
11 0 0 0 23
11 0 0 1 24
12 0 0 0 25
12 0 0 1 26
13 0 0 0 27
13 0 0 1 28
14 0 0 0 29
14 0 0 1 30
15 0 0 0 31
15 0 0 1 32
16 0 0 0 33
16 0 0 1 34
17 0 0 0 35
17 0 0 1 36
18 0 0 0 37
18 0 0 1 38
19 0 0 0 39
19 0 0 1 40
20 0 0 0 41
20 0 0 1 42
21 0 0 0 43
21 0 0 1 44
22 0 0 0 45
22 0 0 1 46
23 0 0 0 47
23 0 0 1 48
24 0 0 0 49
24 0 0 1 50
25 0 0 0 51
25 0 0 1 52
26 0 0 0 53
26 0 0 1 54
27 0 0 0 55
27 0 0 1 56
28 0 0 0 57
28 0 0 1 58
29 0 0 0 59
29 0 0 1 60
30 0 0 0 61
30 0 0 1 62
31 0 0 0 63
31 0 0 1 64
############################################################
############################################################
# Current time step : 1000000
# Total number of measurements : 50000
# Average temperature of the measurement : 0.00499889
# Boltzmann constant under current units : 1
# basis vector A1 = [2 0 0]
# basis vector A2 = [0 1 0]
# basis vector A3 = [0 0 1]
############################################################
# qx qy qz Phi(q)
0 0 0 2.0269 0 -1.43323 0 -1.43323 0 1.01345 0
0.03125 0 0 2.06958 0 -1.44367 0.144297 -1.44367 -0.144297 1.03745 0
0.0625 0 0 2.00734 -7.10386e-17 -1.36818 0.273607 -1.36818 -0.273607 1.02097 0
0.09375 0 0 2.06033 7.36546e-16 -1.32894 0.389454 -1.32894 -0.389454 1.00889 3.19674e-16
0.125 0 0 2.04516 7.25738e-16 -1.20961 0.516478 -1.20961 -0.516478 1.0073 2.84154e-16
0.15625 0 0 2.05756 0 -1.12954 0.615757 -1.12954 -0.615757 1.02862 0
0.1875 0 0 2.01319 0 -0.970491 0.627631 -0.970491 -0.627631 0.998014 0
0.21875 0 0 1.92269 1.42077e-16 -0.863486 0.66779 -0.863486 -0.66779 1.00343 8.73509e-17
0.25 0 0 1.99044 1.71855e-16 -0.671658 0.661397 -0.671658 -0.661397 0.956893 7.10386e-17
0.28125 0 0 1.96341 -7.10386e-17 -0.556809 0.66713 -0.556809 -0.66713 0.987126 4.2268e-17
0.3125 0 0 2.04354 0 -0.442943 0.661601 -0.442943 -0.661601 0.961726 1.77596e-17
0.34375 0 0 1.98412 0 -0.313464 0.632666 -0.313464 -0.632666 1.01134 -2.21836e-17
0.375 0 0 2.00509 2.17993e-17 -0.187554 0.499349 -0.187554 -0.499349 0.953607 -8.87982e-18
0.40625 0 0 1.91679 0 -0.0962947 0.408121 -0.0962947 -0.408121 1.02919 0
0.4375 0 0 1.98963 0 -0.0137565 0.277826 -0.0137565 -0.277826 1.01624 0
0.46875 0 0 2.08228 0 -0.0312083 0.0872272 -0.0312083 -0.0872272 0.991567 0
0.5 0 0 1.95481 0 0.0542224 0 0.0542224 0 1.00583 0
0.53125 0 0 2.08228 0 -0.0312083 -0.0872272 -0.0312083 0.0872272 0.991567 0
0.5625 0 0 1.98963 0 -0.0137565 -0.277826 -0.0137565 0.277826 1.01624 0
0.59375 0 0 1.91679 0 -0.0962947 -0.408121 -0.0962947 0.408121 1.02919 0
0.625 0 0 2.00509 -2.17993e-17 -0.187554 -0.499349 -0.187554 0.499349 0.953607 8.87982e-18
0.65625 0 0 1.98412 0 -0.313464 -0.632666 -0.313464 0.632666 1.01134 2.21836e-17
0.6875 0 0 2.04354 0 -0.442943 -0.661601 -0.442943 0.661601 0.961726 -1.77596e-17
0.71875 0 0 1.96341 7.10386e-17 -0.556809 -0.66713 -0.556809 0.66713 0.987126 -4.2268e-17
0.75 0 0 1.99044 -1.71855e-16 -0.671658 -0.661397 -0.671658 0.661397 0.956893 -7.10386e-17
0.78125 0 0 1.92269 -1.42077e-16 -0.863486 -0.66779 -0.863486 0.66779 1.00343 -8.73509e-17
0.8125 0 0 2.01319 0 -0.970491 -0.627631 -0.970491 0.627631 0.998014 0
0.84375 0 0 2.05756 0 -1.12954 -0.615757 -1.12954 0.615757 1.02862 0
0.875 0 0 2.04516 -7.25738e-16 -1.20961 -0.516478 -1.20961 0.516478 1.0073 -2.84154e-16
0.90625 0 0 2.06033 -7.36546e-16 -1.32894 -0.389454 -1.32894 0.389454 1.00889 -3.19674e-16
0.9375 0 0 2.00734 7.10386e-17 -1.36818 -0.273607 -1.36818 0.273607 1.02097 0
0.96875 0 0 2.06958 0 -1.44367 -0.144297 -1.44367 0.144297 1.03745 0
############################################################
# Current time step : 1500000
# Total number of measurements : 100000
# Average temperature of the measurement : 0.00499969
# Boltzmann constant under current units : 1
# basis vector A1 = [2 0 0]
# basis vector A2 = [0 1 0]
# basis vector A3 = [0 0 1]
############################################################
# qx qy qz Phi(q)
0 0 0 2.00227 0 -1.41582 0 -1.41582 0 1.00114 0
0.03125 0 0 2.06839 -2.94857e-15 -1.44775 0.141336 -1.44775 -0.141336 1.03568 -1.48867e-15
0.0625 0 0 1.99449 0 -1.35985 0.267438 -1.35985 -0.267438 0.997747 0
0.09375 0 0 2.01906 7.07225e-16 -1.30258 0.390432 -1.30258 -0.390432 1.00279 3.55249e-16
0.125 0 0 2.0047 0 -1.19787 0.503497 -1.19787 -0.503497 1.00067 -3.55249e-17
0.15625 0 0 2.05042 4.26299e-16 -1.12849 0.613659 -1.12849 -0.613659 1.03457 1.85685e-16
0.1875 0 0 1.99151 0 -0.971684 0.625667 -0.971684 -0.625667 0.990665 0
0.21875 0 0 1.96519 -7.10498e-17 -0.861495 0.687109 -0.861495 -0.687109 1.0008 0
0.25 0 0 2.01865 0 -0.687312 0.684014 -0.687312 -0.684014 0.977055 0
0.28125 0 0 1.9933 0 -0.560168 0.698726 -0.560168 -0.698726 1.00805 -4.40715e-17
0.3125 0 0 2.01323 0 -0.446505 0.648764 -0.446505 -0.648764 1.00283 -1.77625e-17
0.34375 0 0 2.00398 0 -0.313827 0.630741 -0.313827 -0.630741 0.996834 0
0.375 0 0 2.0191 0 -0.216211 0.499651 -0.216211 -0.499651 0.978322 0
0.40625 0 0 1.97734 -4.44061e-18 -0.102328 0.398954 -0.102328 -0.398954 1.03793 0
0.4375 0 0 1.99332 -2.22031e-18 -0.0639782 0.238226 -0.0639782 -0.238226 1.00811 -1.3774e-18
0.46875 0 0 2.02854 0 -0.0151203 0.0911116 -0.0151203 -0.0911116 1.00593 0
0.5 0 0 1.99466 0 0.0671755 0 0.0671755 0 0.967275 0
0.53125 0 0 2.02854 0 -0.0151203 -0.0911116 -0.0151203 0.0911116 1.00593 0
0.5625 0 0 1.99332 2.22031e-18 -0.0639782 -0.238226 -0.0639782 0.238226 1.00811 1.3774e-18
0.59375 0 0 1.97734 4.44061e-18 -0.102328 -0.398954 -0.102328 0.398954 1.03793 0
0.625 0 0 2.0191 0 -0.216211 -0.499651 -0.216211 0.499651 0.978322 0
0.65625 0 0 2.00398 0 -0.313827 -0.630741 -0.313827 0.630741 0.996834 0
0.6875 0 0 2.01323 0 -0.446505 -0.648764 -0.446505 0.648764 1.00283 1.77625e-17
0.71875 0 0 1.9933 0 -0.560168 -0.698726 -0.560168 0.698726 1.00805 4.40715e-17
0.75 0 0 2.01865 0 -0.687312 -0.684014 -0.687312 0.684014 0.977055 0
0.78125 0 0 1.96519 7.10498e-17 -0.861495 -0.687109 -0.861495 0.687109 1.0008 0
0.8125 0 0 1.99151 0 -0.971684 -0.625667 -0.971684 0.625667 0.990665 0
0.84375 0 0 2.05042 -4.26299e-16 -1.12849 -0.613659 -1.12849 0.613659 1.03457 -1.85685e-16
0.875 0 0 2.0047 0 -1.19787 -0.503497 -1.19787 0.503497 1.00067 3.55249e-17
0.90625 0 0 2.01906 -7.07225e-16 -1.30258 -0.390432 -1.30258 0.390432 1.00279 -3.55249e-16
0.9375 0 0 1.99449 0 -1.35985 -0.267438 -1.35985 0.267438 0.997747 0
0.96875 0 0 2.06839 2.94857e-15 -1.44775 -0.141336 -1.44775 0.141336 1.03568 1.48867e-15
############################################################
# Current time step : 2000000
# Total number of measurements : 150000
# Average temperature of the measurement : 0.00499897
# Boltzmann constant under current units : 1
# basis vector A1 = [2 0 0]
# basis vector A2 = [0 1 0]
# basis vector A3 = [0 0 1]
############################################################
# qx qy qz Phi(q)
0 0 0 1.99479 0 -1.41053 0 -1.41053 0 0.997396 0
0.03125 0 0 2.03068 0 -1.41965 0.138345 -1.41965 -0.138345 1.0155 0
0.0625 0 0 1.99892 7.10396e-17 -1.36162 0.269053 -1.36162 -0.269053 1.00066 0
0.09375 0 0 2.00599 0 -1.29893 0.389829 -1.29893 -0.389829 0.995323 0
0.125 0 0 1.991 6.87803e-16 -1.20232 0.495552 -1.20232 -0.495552 0.991252 2.84159e-16
0.15625 0 0 2.05187 1.42079e-16 -1.12612 0.617447 -1.12612 -0.617447 1.02736 0
0.1875 0 0 1.97476 7.10396e-17 -0.972012 0.630423 -0.972012 -0.630423 0.996946 0
0.21875 0 0 2.00314 0 -0.862555 0.695244 -0.862555 -0.695244 0.999215 0
0.25 0 0 1.9755 0 -0.69573 0.680591 -0.69573 -0.680591 0.988546 0
0.28125 0 0 1.99393 0 -0.560979 0.692292 -0.560979 -0.692292 0.995507 -3.55198e-17
0.3125 0 0 2.00817 0 -0.436753 0.642127 -0.436753 -0.642127 0.989051 0
0.34375 0 0 2.02348 0 -0.310766 0.620888 -0.310766 -0.620888 1.01631 0
0.375 0 0 2.01177 0 -0.213987 0.483325 -0.213987 -0.483325 0.98933 0
0.40625 0 0 1.97394 0 -0.116509 0.382146 -0.116509 -0.382146 1.03672 0
0.4375 0 0 1.98656 0 -0.0609164 0.250798 -0.0609164 -0.250798 1.01266 1.39007e-18
0.46875 0 0 2.03013 0 -0.0242785 0.120597 -0.0242785 -0.120597 1.02741 1.78858e-19
0.5 0 0 1.98872 0 0.0648313 0 0.0648313 0 0.973791 0
0.53125 0 0 2.03013 0 -0.0242785 -0.120597 -0.0242785 0.120597 1.02741 -1.78858e-19
0.5625 0 0 1.98656 0 -0.0609164 -0.250798 -0.0609164 0.250798 1.01266 -1.39007e-18
0.59375 0 0 1.97394 0 -0.116509 -0.382146 -0.116509 0.382146 1.03672 0
0.625 0 0 2.01177 0 -0.213987 -0.483325 -0.213987 0.483325 0.98933 0
0.65625 0 0 2.02348 0 -0.310766 -0.620888 -0.310766 0.620888 1.01631 0
0.6875 0 0 2.00817 0 -0.436753 -0.642127 -0.436753 0.642127 0.989051 0
0.71875 0 0 1.99393 0 -0.560979 -0.692292 -0.560979 0.692292 0.995507 3.55198e-17
0.75 0 0 1.9755 0 -0.69573 -0.680591 -0.69573 0.680591 0.988546 0
0.78125 0 0 2.00314 0 -0.862555 -0.695244 -0.862555 0.695244 0.999215 0
0.8125 0 0 1.97476 -7.10396e-17 -0.972012 -0.630423 -0.972012 0.630423 0.996946 0
0.84375 0 0 2.05187 -1.42079e-16 -1.12612 -0.617447 -1.12612 0.617447 1.02736 0
0.875 0 0 1.991 -6.87803e-16 -1.20232 -0.495552 -1.20232 0.495552 0.991252 -2.84159e-16
0.90625 0 0 2.00599 0 -1.29893 -0.389829 -1.29893 0.389829 0.995323 0
0.9375 0 0 1.99892 -7.10396e-17 -1.36162 -0.269053 -1.36162 0.269053 1.00066 0
0.96875 0 0 2.03068 0 -1.41965 -0.138345 -1.41965 0.138345 1.0155 0

View File

@ -0,0 +1,25 @@
m = 1.
M = 2.
k = 1.
omp(x) = sqrt( k*(m+M)/(m*M)*(1. + (1.-4*m*M/(m+M)**2*(sin(pi*x))**2)**0.5))
omm(x) = sqrt( k*(m+M)/(m*M)*(1. - (1.-4*m*M/(m+M)**2*(sin(pi*x))**2)**0.5))
set xlabel 'q'
set ylabel '{/Symbol w}'
set xr [-0.5:0.5]
set yr [0:2.0]
set format y '%.1f'
set term post enha color 20
set out 'pdisp.eps'
set key top left
set xtics ("-{/Symbol p}/2a" -0.5, "{/Symbol G}" 0.0, "{/Symbol p}/2a" 0.5)
set samples 101
set grid xtics lt 9
plot omp(x) w l lt 1 lc 3 t 'Theory',\
omm(x) w l lt 1 lc 3 t '',\
'disp.dat' u 1:5 w p pt 7 ps 1.0 lt 1 t 'MD',\
'' u 1:6 w p pt 7 ps 1.0 lt 1 t ''

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,52 @@
This directory illustrates the usage of fix-phonon to calculate the dynamical
matrix as well as phonon dispersion curve for FCC Cu based on EAM potentail.
The files under this directory:
1) CuPhonon.bin.6500000 : last output binary file by fix-phonon
2) CuPhonon.log : log file for fix-phonon
3) cuu3.eam : EAM potential file for Cu
4) data.pos : LAMMPS input file
5) disp.dat : phonon dispersion data from CuPhonon.bin.6500000
6) disp-expr.dat : experimental phonon dispersion data for Cu
7) disp-ld.dat : phonon dispersion data by lattice dynamics based on EAM
8) dos.dat : phonon DOS data from CuPhonon.bin.6500000
9) dos-expr.dat : experimental PDOS for Cu
10) dos-ld.dat : PDOS by LD based on EAM
11) in.disp/in.disp2 : input file to get disp.dat by phana
12) in.dos : input file to get dos.dat by phana
13) in.EAM3D : LAMMPS input file
14) log.lammps : LAMMPS log file
15) map.in : LAMMPS input file for fix-phonon
16) pdisp.eps : figure of phonon dispersion curves
17) pdos.eps : figure of phonon density of states
18) plot.disp : gnuplot script to generate pdisp.eps
19) plot.dos : gnuplot script to generate pdos.eps
20) pdisp.gnuplot : gnuplot script to generate pdisp.eps (auto generated)
21) README : this file
To run this example, simply invoke:
-> lmp -in in.EAM3D -screen none
Once done, one can use the auxiliary analysing code "phana" to obtain "disp.dat" and
"dos.dat" based on data from CuPhonon.bin.6500000:
-> phana CuPhonon.bin.6500000 < in.disp
-> phana CuPhonon.bin.6500000 < in.dos
And then use the gnuplot script file "plot.disp"/"plot.dos" to generate pdisp.eps/pdos.eps:
-> gnuplot plot.pdisp
-> gnuplot plot.pdos
The resultant ``pdisp.eps/pdos.eps'' compares the measured phonon dispersion to
experimental data and those by traditional lattice dynamics.
Alternatively, one can also use:
-> phana CuPhonon.bin.6500000 < in.disp2
-> gnuplot pdisp.gnuplot
to generate the phonon dispersion automatically.
NOTE: the binary file provided here might be unreadable on some computers because of
incompatibility between different architectures.
Author: Ling-Ti Kong, konglt@sjtu.edu.cn
Nov 2015

View File

@ -0,0 +1,305 @@
Cu functions (universal 3)
29 63.550 3.6150 FCC
500 5.0100200400801306e-04 500 1.0000000000000009e-02 4.9499999999999886e+00
0. -3.1561636903424350e-01 -5.2324876182494506e-01 -6.9740831416804383e-01 -8.5202525457518519e-01
-9.9329216586042435e-01 -1.1246331970890324e+00 -1.2481882647347859e+00 -1.3654054700363645e+00 -1.4773214276236644e+00
-1.5847099936904741e+00 -1.6865851873526410e+00 -1.7843534091637920e+00 -1.8790616476576076e+00 -1.9710188604521761e+00
-2.0604838665854572e+00 -2.1476762477372944e+00 -2.2327843595560068e+00 -2.3159713409697673e+00 -2.3973797031286352e+00
-2.4771348895887826e+00 -2.5553480773272810e+00 -2.6321184083774227e+00 -2.7075347880408458e+00 -2.7816773487592030e+00
-2.8546186529652005e+00 -2.9264246898861899e+00 -2.9971557080624507e+00 -3.0668669157065978e+00 -3.1356090736776849e+00
-3.2034290008357829e+00 -3.2703700069757247e+00 -3.3364722658277230e+00 -3.4017731379735778e+00 -3.4663074517059016e+00
-3.5301077484029122e+00 -3.5932044977085980e+00 -3.6556262870729199e+00 -3.7173999892229403e+00 -3.7785509106421671e+00
-3.8391029237823773e+00 -3.8990785849196925e+00 -3.9584992397079333e+00 -4.0173851179270912e+00 -4.0744518500210916e+00
-4.1306733564032641e+00 -4.1864034067843932e+00 -4.2416582335814326e+00 -4.2964533268445280e+00 -4.3508034838872618e+00
-4.4047228547107977e+00 -4.4582249835318351e+00 -4.5113228468570128e+00 -4.5640288884490872e+00 -4.6163550514904443e+00
-4.6683128082199232e+00 -4.7199131872767452e+00 -4.7711667990036801e+00 -4.8220838587683374e+00 -4.8726742087289665e+00
-4.9229473379113813e+00 -4.9729124009208192e+00 -5.0225782353423369e+00 -5.0719533779533492e+00 -5.1210460798461668e+00
-5.1698643205481289e+00 -5.2184158212228908e+00 -5.2667080570261362e+00 -5.3147482686812282e+00 -5.3625434733324937e+00
-5.4101004747367369e+00 -5.4574258728391953e+00 -5.5045260727784751e+00 -5.5514072933650311e+00 -5.5980755750691458e+00
-5.6445367875538750e+00 -5.6907966367860183e+00 -5.7368606717507191e+00 -5.7827342908000219e+00 -5.8284227476608805e+00
-5.8739311571204382e+00 -5.9192645004390272e+00 -5.9644276303605182e+00 -6.0094252761103064e+00 -6.0542620478988169e+00
-6.0989424413057520e+00 -6.1434708414539330e+00 -6.1878515269578429e+00 -6.2320886736884802e+00 -6.2761863583589275e+00
-6.3201485619430571e+00 -6.3639791729330000e+00 -6.4076819904493902e+00 -6.4512607272098990e+00 -6.4947190123648113e+00
-6.5380603942065250e+00 -6.5812883427622069e+00 -6.6243939095620874e+00 -6.6670830925929181e+00 -6.7096660473058591e+00
-6.7521459135001862e+00 -6.7945257643836499e+00 -6.8368086085521611e+00 -6.8789973918942735e+00 -6.9210949994162263e+00
-6.9631042569970703e+00 -7.0050279330721992e+00 -7.0468687402560874e+00 -7.0886293368973554e+00 -7.1303123285804020e+00
-7.1719202695651916e+00 -7.2134556641788095e+00 -7.2549209681507421e+00 -7.2963185899023415e+00 -7.3376508917899628e+00
-7.3789201913012903e+00 -7.4201287622117036e+00 -7.4612788356982946e+00 -7.5023726014152032e+00 -7.5434122085331978e+00
-7.5843997667427345e+00 -7.6253373472216595e+00 -7.6662269835740062e+00 -7.7070706727342895e+00 -7.7478703758424388e+00
-7.7886280190928119e+00 -7.8293454945503811e+00 -7.8700246609474789e+00 -7.9106673444489104e+00 -7.9512753393968865e+00
-7.9918504090315139e+00 -8.0323942861870705e+00 -8.0729086739704030e+00 -8.1133952464140293e+00 -8.1538556491162808e+00
-8.1942914998523975e+00 -8.2347043891773524e+00 -8.2750958810033808e+00 -8.3154675131659701e+00 -8.3558207979692725e+00
-8.3961572227176475e+00 -8.4364782502312892e+00 -8.4767853193496308e+00 -8.5170798454139458e+00 -8.5573632207473906e+00
-8.5976368151087286e+00 -8.6379019761436666e+00 -8.6781600298199919e+00 -8.7184122808490656e+00 -8.7586600130993020e+00
-8.7989044899963460e+00 -8.8391469549140993e+00 -8.8793886315543773e+00 -8.9196307243150841e+00 -8.9598744186541239e+00
-9.0001208814363167e+00 -9.0403712612778122e+00 -9.0806266888772029e+00 -9.1208882773446476e+00 -9.1611571225108719e+00
-9.2014343032440138e+00 -9.2417208817437881e+00 -9.2820179038447463e+00 -9.3223263992829857e+00 -9.3626473819958278e+00
-9.4029818503831279e+00 -9.4433307875392529e+00 -9.4836951616705960e+00 -9.5237840547885071e+00 -9.5637918926951784e+00
-9.6038142178817338e+00 -9.6438519061474608e+00 -9.6839058194810832e+00 -9.7239768064614509e+00 -9.7640657024289226e+00
-9.8041733297054634e+00 -9.8443004978059889e+00 -9.8844480036373170e+00 -9.9246166317080906e+00 -9.9648071543198853e+00
-1.0005020331762637e+01 -1.0045256912501884e+01 -1.0085517633366123e+01 -1.0125803219723423e+01 -1.0166114385662183e+01
-1.0206451834160134e+01 -1.0246816257258331e+01 -1.0287208336224353e+01 -1.0327628741713852e+01 -1.0368078133934148e+01
-1.0408557162795717e+01 -1.0449066468066974e+01 -1.0489606679525650e+01 -1.0530178417100558e+01 -1.0570782291022510e+01
-1.0611418901960292e+01 -1.0652088841158786e+01 -1.0692792690577562e+01 -1.0733531023022920e+01 -1.0774304402276016e+01
-1.0815113383222808e+01 -1.0855958511980305e+01 -1.0896840326017184e+01 -1.0937759354276295e+01 -1.0978716117290730e+01
-1.1019711127305925e+01 -1.1060744888386239e+01 -1.1101817896531486e+01 -1.1142930639787664e+01 -1.1184083598352004e+01
-1.1225277244679319e+01 -1.1266512043589387e+01 -1.1307788452364719e+01 -1.1349106920870327e+01 -1.1390467891550486e+01
-1.1431871799781504e+01 -1.1473319073642074e+01 -1.1514810134213008e+01 -1.1556345395619132e+01 -1.1597925265115521e+01
-1.1639550143177303e+01 -1.1681220423591583e+01 -1.1722936493536452e+01 -1.1764698733669888e+01 -1.1806507518187232e+01
-1.1848363215029394e+01 -1.1890266185706139e+01 -1.1932216785634637e+01 -1.1974215364086319e+01 -1.2016262264291129e+01
-1.2058357823507606e+01 -1.2100502373105996e+01 -1.2142696238631970e+01 -1.2184939739884385e+01 -1.2227233190982815e+01
-1.2269576900438324e+01 -1.2311971171220080e+01 -1.2354416300827552e+01 -1.2396912581348374e+01 -1.2439460299532641e+01
-1.2482059736851909e+01 -1.2524711169562636e+01 -1.2567414868772744e+01 -1.2610171100495961e+01 -1.2652980125719694e+01
-1.2695842200459083e+01 -1.2738757575819193e+01 -1.2781726498053729e+01 -1.2824749208615117e+01 -1.2867825944219817e+01
-1.2910956936899197e+01 -1.2954142414054047e+01 -1.2997382598508125e+01 -1.3040677708563408e+01 -1.3084027958052218e+01
-1.3127433556386677e+01 -1.3170894708610035e+01 -1.3214411615448739e+01 -1.3257984473359954e+01 -1.3301613474583519e+01
-1.3345298807190659e+01 -1.3389040655121903e+01 -1.3432839198243016e+01 -1.3476694612386723e+01 -1.3520607069407617e+01
-1.3564576737214225e+01 -1.3608603779754390e+01 -1.3652688357330362e+01 -1.3696830626228689e+01 -1.3741030739041094e+01
-1.3785288844633044e+01 -1.3829605088192579e+01 -1.3873979611263849e+01 -1.3918412551792358e+01 -1.3962904044165157e+01
-1.4007454219246995e+01 -1.4052063204422609e+01 -1.4096731123636516e+01 -1.4141458097424390e+01 -1.4186244242962175e+01
-1.4231089674089560e+01 -1.4275994501358696e+01 -1.4320958832063411e+01 -1.4365982770278379e+01 -1.4411066416893846e+01
-1.4456209869649911e+01 -1.4501413223171539e+01 -1.4546676569005058e+01 -1.4591999995647598e+01 -1.4637383588581656e+01
-1.4682827430315228e+01 -1.4728331600403862e+01 -1.4773896175488971e+01 -1.4819521229330235e+01 -1.4865206832833337e+01
-1.4910953054084985e+01 -1.4956759958383259e+01 -1.5002627608264334e+01 -1.5048556063539081e+01 -1.5094545381317744e+01
-1.5140595616041765e+01 -1.5186706819511983e+01 -1.5232879040916600e+01 -1.5279112326867676e+01 -1.5325406721414765e+01
-1.5371762266086876e+01 -1.5418178999911675e+01 -1.5464656959446415e+01 -1.5511196178805903e+01 -1.5557796689685119e+01
-1.5604458521389688e+01 -1.5651181700861002e+01 -1.5697966252703509e+01 -1.5744812199205967e+01 -1.5791719560374304e+01
-1.5838688353945599e+01 -1.5885718595428898e+01 -1.5932810298111235e+01 -1.5979963473102316e+01 -1.6027178129340314e+01
-1.6074454273625634e+01 -1.6121791910645470e+01 -1.6169191042992907e+01 -1.6216651671189425e+01 -1.6264173793714576e+01
-1.6311757407021901e+01 -1.6359402505566209e+01 -1.6407109081822910e+01 -1.6454877126310635e+01 -1.6502706627614998e+01
-1.6550597572407241e+01 -1.6598549945469813e+01 -1.6646563729715353e+01 -1.6694638906205682e+01 -1.6742775454176012e+01
-1.6790973351056778e+01 -1.6839232572488413e+01 -1.6887553092348412e+01 -1.6935934882766333e+01 -1.6984377914146876e+01
-1.7032882155186826e+01 -1.7081447572897673e+01 -1.7130074132623690e+01 -1.7178761798061373e+01 -1.7227510531275698e+01
-1.7276320292724563e+01 -1.7325191041271864e+01 -1.7374122734215121e+01 -1.7423115327299456e+01 -1.7472168774711918e+01
-1.7521283029136725e+01 -1.7570458041655343e+01 -1.7619693762170868e+01 -1.7668990138814479e+01 -1.7718347118374936e+01
-1.7767764646209685e+01 -1.7817242666259403e+01 -1.7866781121071881e+01 -1.7916379951810882e+01 -1.7966039098283659e+01
-1.8015758498943796e+01 -1.8065538090918608e+01 -1.8115377810021755e+01 -1.8165277590764617e+01 -1.8215237366381530e+01
-1.8265257068836149e+01 -1.8315336628844307e+01 -1.8365475975885602e+01 -1.8415675038220570e+01 -1.8465933742903644e+01
-1.8516252015799409e+01 -1.8566629781600568e+01 -1.8617066963838965e+01 -1.8667563484898778e+01 -1.8718119266039025e+01
-1.8768734227397317e+01 -1.8819408288014415e+01 -1.8870141365839345e+01 -1.8920933377750998e+01 -1.8971784239569388e+01
-1.9022693866067016e+01 -1.9073662170983084e+01 -1.9124689067045438e+01 -1.9175774465969539e+01 -1.9226918278483254e+01
-1.9278120414338218e+01 -1.9329380782317116e+01 -1.9380699290257098e+01 -1.9432075845048644e+01 -1.9483510352663075e+01
-1.9535002718153464e+01 -1.9586552845676124e+01 -1.9638160638497766e+01 -1.9689825999008235e+01 -1.9741548828738019e+01
-1.9793329028359494e+01 -1.9845166497711489e+01 -1.9897061135804051e+01 -1.9949012840833348e+01 -2.0001021510188707e+01
-2.0053087040468540e+01 -2.0105209327494322e+01 -2.0157388266314911e+01 -2.0209623751249865e+01 -2.0261915675825890e+01
-2.0314263932714312e+01 -2.0366668414255741e+01 -2.0419129011700647e+01 -2.0471645615726288e+01 -2.0524218116314501e+01
-2.0576846402769888e+01 -2.0629530363722893e+01 -2.0682269887147754e+01 -2.0735064860369221e+01 -2.0787915170073120e+01
-2.0840820702317274e+01 -2.0893781342541502e+01 -2.0946796975575580e+01 -2.0999867485656864e+01 -2.1052992756428125e+01
-2.1106172670961428e+01 -2.1159407111702421e+01 -2.1212695960751944e+01 -2.1266039099329419e+01 -2.1319436408360275e+01
-2.1372887768154328e+01 -2.1426393058473991e+01 -2.1479952158748461e+01 -2.1533564947619766e+01 -2.1587231303431395e+01
-2.1640951103995235e+01 -2.1694724226644553e+01 -2.1748550548245930e+01 -2.1802429945213817e+01 -2.1856362293508028e+01
-2.1910347468648524e+01 -2.1964385345728829e+01 -2.2018475799410339e+01 -2.2072618703948137e+01 -2.2126813933181779e+01
-2.2181061360561898e+01 -2.2235360859143157e+01 -2.2289712301596296e+01 -2.2344115560361388e+01 -2.2398570507087584e+01
-2.2453077013515781e+01 -2.2507634950890292e+01 -2.2562244190064348e+01 -2.2616904601590250e+01 -2.2671616055687764e+01
-2.2726378422261405e+01 -2.2781191570901910e+01 -2.2836055370890790e+01 -2.2890969691219198e+01 -2.2945934400583837e+01
-2.3000949367399926e+01 -2.3056014459808921e+01 -2.3111129545678523e+01 -2.3166294492618363e+01 -2.3221509167983868e+01
-2.3276773438880355e+01 -2.3332087172173260e+01 -2.3387450234495873e+01 -2.3442862492249787e+01 -2.3498323811618320e+01
-2.3553834058571510e+01 -2.3609393098863848e+01 -2.3665000798062465e+01 -2.3720657021526677e+01 -2.3776361634436626e+01
-2.3832114501780552e+01 -2.3887915488378439e+01 -2.3943764458878377e+01 -2.3999661277761106e+01 -2.4055605809352301e+01
-2.4111597917826657e+01 -2.4167637467209488e+01 -2.4223724321393092e+01 -2.4279858344124932e+01 -2.4336039399030597e+01
-2.4392267349614485e+01 -2.4448542059257761e+01 -2.4504863391234494e+01 -2.4561231208711206e+01 -2.4617645374753693e+01
-2.4674105752332935e+01 -2.4730612204329191e+01 -2.4787164593538137e+01 -2.4843762782677913e+01 -2.4900406634392539e+01
-2.4957096011252133e+01 -2.5013830775771112e+01 -2.5070610790396586e+01 -2.5127435917366029e+01 -2.5184306019355063e+01
-2.5241220958503845e+01 -2.5298180597080318e+01 -2.5355184797285347e+01 -2.5412233421340488e+01 -2.5469326331427965e+01
1.0000000000000000e+01 1.0801534951171448e+01 1.0617375158244670e+01 1.0436688151228793e+01 1.0259403283230313e+01
1.0085451405601304e+01 9.9147648356938589e+00 9.7472773253084029e+00 9.5829240298195373e+00 9.4216414779654656e+00
9.2633675422888473e+00 9.1080414102110012e+00 8.9556035557302494e+00 8.8059957117284853e+00 8.6591608428743143e+00
8.5150431191084976e+00 8.3735878897014118e+00 8.2347416578681987e+00 8.0984520559319435e+00 7.9646678210201571e+00
7.8333387712866624e+00 7.7044157826449009e+00 7.5778507660022569e+00 7.4535966449878401e+00 7.3316073341564731e+00
7.2118377176659578e+00 7.0942436284134374e+00 6.9787818276207929e+00 6.8654099848621115e+00 6.7540866585212882e+00
6.6447712766712357e+00 6.5374241183666584e+00 6.4320062953403578e+00 6.3284797340946000e+00 6.2268071583795574e+00
6.1269520720505000e+00 6.0288787422946655e+00 5.9325521832211621e+00 5.8379381398054591e+00 5.7450030721804524e+00
5.6537141402680220e+00 5.5640391887418730e+00 5.4759467323160322e+00 5.3894059413519244e+00 5.3043866277758980e+00
5.2208592313018016e+00 5.1387948059520454e+00 5.0581650068698707e+00 4.9789420774166615e+00 4.9010988365496075e+00
4.8246086664712777e+00 4.7494455005478358e+00 4.6755838114879396e+00 4.6029985997776066e+00 4.5316653823665547e+00
4.4615601815980312e+00 4.3926595143797726e+00 4.3249403815888456e+00 4.2583802577058805e+00 4.1929570806747449e+00
4.1286492419807814e+00 4.0654355769448500e+00 4.0032953552278059e+00 3.9422082715398403e+00 3.8821544365521561e+00
3.8231143680053350e+00 3.7650689820101348e+00 3.7079995845373759e+00 3.6518878630917868e+00 3.5967158785670392e+00
3.5424660572764992e+00 3.4891211831576925e+00 3.4366643901451397e+00 3.3850791547089756e+00 3.3343492885547761e+00
3.2844589314827459e+00 3.2353925444006251e+00 3.1871349024889781e+00 3.1396710885139782e+00 3.0929864862859660e+00
3.0470667742591075e+00 3.0018979192706325e+00 2.9574661704151453e+00 2.9137580530522627e+00 2.8707603629438552e+00
2.8284601605189152e+00 2.7868447652620318e+00 2.7459017502243626e+00 2.7056189366531243e+00 2.6659843887374848e+00
2.6269864084689516e+00 2.5886135306124487e+00 2.5508545177868598e+00 2.5136983556521244e+00 2.4771342482006986e+00
2.4411516131510069e+00 2.4057400774406830e+00 2.3708894728175807e+00 2.3365898315265383e+00 2.3028313820887689e+00
2.2696045451740474e+00 2.2368999295609058e+00 2.2047083281853901e+00 2.1730207142748128e+00 2.1418282375653348e+00
2.1111222206016862e+00 2.0808941551166384e+00 2.0511356984892615e+00 2.0218386702793651e+00 1.9929950488372441e+00
1.9645969679867363e+00 1.9366367137799969e+00 1.9091067213223525e+00 1.8819995716660998e+00 1.8553079887710169e+00
1.8290248365311754e+00 1.8031431158652609e+00 1.7776559618705363e+00 1.7525566410377422e+00 1.7278385485262007e+00
1.7034952054980579e+00 1.6795202565098251e+00 1.6559074669601728e+00 1.6326507205929630e+00 1.6097440170540054e+00
1.5871814695006066e+00 1.5649573022624637e+00 1.5430658485530984e+00 1.5215015482308161e+00 1.5002589456071576e+00
1.4793326873036463e+00 1.4587175201534635e+00 1.4384082891492156e+00 1.4183999354343300e+00 1.3986874943378140e+00
1.3792660934511431e+00 1.3601309507466510e+00 1.3412773727360872e+00 1.3227007526689576e+00 1.3043965687692420e+00
1.2863603825102174e+00 1.2685878369261090e+00 1.2510746549598935e+00 1.2338166378466084e+00 1.2168096635312082e+00
1.2000496851203266e+00 1.1835327293670588e+00 1.1672548951882362e+00 1.1512123522134416e+00 1.1354013393647548e+00
1.1198181634671940e+00 1.1044591978884952e+00 1.0893208812080033e+00 1.0743997159140335e+00 1.0596922671287743e+00
1.0451951613605601e+00 1.0309050852825337e+00 1.0168187845373140e+00 1.0029330625671378e+00 9.8924477946872713e-01
9.7575085087259694e-01 9.6244824684604424e-01 9.4933399081931213e-01 9.3640515853477169e-01 9.2365887701803118e-01
9.1109232357100112e-01 8.9870272478628266e-01 8.8648735558209424e-01 8.7444353825798160e-01 8.6256864157006774e-01
8.5086007982605949e-01 8.3931531199913678e-01 8.2793184086057892e-01 8.1670721213066955e-01 8.0563901364725510e-01
7.9472487455206675e-01 7.8396246449372953e-01 7.7334949284779597e-01 7.6288370795296245e-01 7.5256289636327622e-01
7.4238488211596021e-01 7.3234752601463171e-01 7.2244872492728618e-01 7.1268641109915265e-01 7.0305855147956464e-01
6.9356314706317335e-01 6.8419823224459719e-01 6.7496187418651843e-01 6.6585217220099224e-01 6.5686725714346750e-01
6.4800529081937697e-01 6.3926446540306614e-01 6.3064300286859520e-01 6.2213915443241774e-01 6.1375120000748140e-01
6.0547744766850542e-01 5.9731623312840654e-01 5.8926591922531912e-01 5.8132489542033028e-01 5.7349157730523359e-01
5.6576440612064971e-01 5.5814184828379609e-01 5.5062239492602316e-01 5.4320456143964790e-01 5.3588688703414888e-01
5.2866793430138515e-01 5.2154628878946241e-01 5.1452055858552015e-01 5.0758937390678227e-01 5.0075138669987496e-01
4.9400527024841523e-01 4.8734971878830358e-01 4.8078344713093557e-01 4.7430519029390972e-01 4.6791370313911962e-01
4.6160776001828552e-01 4.5538615442535857e-01 4.4924769865602876e-01 4.4319122347399365e-01 4.3721557778390086e-01
4.3131962831075654e-01 4.2550225928575891e-01 4.1976237213834899e-01 4.1409888519439697e-01 4.0851073338028954e-01
4.0299686793291478e-01 3.9755625611540779e-01 3.9218788093843493e-01 3.8689074088692443e-01 3.8166384965228239e-01
3.7650623586976018e-01 3.7141694286095728e-01 3.6639502838144544e-01 3.6143956437320846e-01 3.5654963672189943e-01
3.5172434501901328e-01 3.4696280232829579e-01 3.4226413495707497e-01 3.3762748223177219e-01 3.3305199627774762e-01
3.2853684180349596e-01 3.2408119588894380e-01 3.1968424777773841e-01 3.1534519867361155e-01 3.1106326154055530e-01
3.0683766090688813e-01 3.0266763267296426e-01 2.9855242392259740e-01 2.9449129273803010e-01 2.9048350801842027e-01
2.8652834930171167e-01 2.8262510658997009e-01 2.7877308017785829e-01 2.7497158048439907e-01 2.7121992788793392e-01
2.6751745256412462e-01 2.6386349432690004e-01 2.6025740247248841e-01 2.5669853562631850e-01 2.5318626159266877e-01
2.4971995720718354e-01 2.4629900819206618e-01 2.4292280901402563e-01 2.3959076274464408e-01 2.3630228092351846e-01
2.3305678342376535e-01 2.2985369832002167e-01 2.2669246175884616e-01 2.2357251783148069e-01 2.2049331844890929e-01
2.1745432321916880e-01 2.1445499932688783e-01 2.1149482141498144e-01 2.0857327146848004e-01 2.0568983870040114e-01
2.0284401943976604e-01 2.0003531702142130e-01 1.9726324167804599e-01 1.9452731043391402e-01 1.9182704700056608e-01
1.8916198167437770e-01 1.8653165123588344e-01 1.8393559885088084e-01 1.8137337397327791e-01 1.7884453224959973e-01
1.7634863542523593e-01 1.7388525125224241e-01 1.7145395339876757e-01 1.6905432136008169e-01 1.6668594037109052e-01
1.6434840132036665e-01 1.6204130066570688e-01 1.5976424035106618e-01 1.5751682772493769e-01 1.5529867546015819e-01
1.5310940147503249e-01 1.5094862885580707e-01 1.4881598578045718e-01 1.4671110544379484e-01 1.4463362598375351e-01
1.4258319040899092e-01 1.4055944652768915e-01 1.3856204687748974e-01 1.3659064865666881e-01 1.3464491365640630e-01
1.3272450819420012e-01 1.3082910304837103e-01 1.2895837339364213e-01 1.2711199873781265e-01 1.2528966285941134e-01
1.2349105374641756e-01 1.2171586353596986e-01 1.1996378845505173e-01 1.1823452876211782e-01 1.1652778868972380e-01
1.1484327638801961e-01 1.1318070386919254e-01 1.1153978695277944e-01 1.0992024521187505e-01 1.0832180192018548e-01
1.0674418399992769e-01 1.0518712197055757e-01 1.0365034989832456e-01 1.0213360534659532e-01 1.0063662932698936e-01
9.9159166251264974e-02 9.7700963883974534e-02 9.6261773295835962e-02 9.4841348817873428e-02 9.3439447996227276e-02
9.2055831547688260e-02 9.0690263315935660e-02 8.9342510228411331e-02 8.8012342253891429e-02 8.6699532360706044e-02
8.5403856475584128e-02 8.4125093443141896e-02 8.2863024985984080e-02 8.1617435665412685e-02 8.0388112842733062e-02
7.9174846641143493e-02 7.7977429908209661e-02 7.6795658178889781e-02 7.5629329639115728e-02 7.4478245089953710e-02
7.3342207912248103e-02 7.2221024031827064e-02 7.1114501885225945e-02 7.0022452385910761e-02 6.8944688890991479e-02
6.7881027168450458e-02 6.6831285364849169e-02 6.5795283973477225e-02 6.4772845803028556e-02 6.3763795946680801e-02
6.2767961751651669e-02 6.1785172789201148e-02 6.0815260825057393e-02 5.9858059790287577e-02 5.8913405752569759e-02
5.7981136887894191e-02 5.7061093452682510e-02 5.6153117756271964e-02 5.5257054133826422e-02 5.4372748919636837e-02
5.3500050420772105e-02 5.2638808891131372e-02 5.1788876505864945e-02 5.0950107336147354e-02 5.0122357324306366e-02
4.9305484259319243e-02 4.8499347752635869e-02 4.7703809214351578e-02 4.6918731829721727e-02 4.6143980535982010e-02
4.5379421999521163e-02 4.4624924593352100e-02 4.3880358374905226e-02 4.3145595064128850e-02 4.2420508021892900e-02
4.1704972228691739e-02 4.0998864263647405e-02 4.0302062283785300e-02 3.9614446003616965e-02 3.8935896674993531e-02
3.8266297067221844e-02 3.7605531447481688e-02 3.6953485561492139e-02 3.6310046614435487e-02 3.5675103252157392e-02
3.5048545542616605e-02 3.4430264957581835e-02 3.3820154354582632e-02 3.3218107959093635e-02 3.2624021346983278e-02
3.2037791427166340e-02 3.1459316424514716e-02 3.0888495862994469e-02 3.0325230549015147e-02 2.9769422555015357e-02
2.9220975203265720e-02 2.8679793049885216e-02 2.8145781869070463e-02 2.7618848637539717e-02 2.7098901519172047e-02
2.6585849849867671e-02 2.6079604122596356e-02 2.5580075972643668e-02 2.5087178163056167e-02 2.4600824570288671e-02
2.4120930170012267e-02 2.3647411023137499e-02 2.3180184262011627e-02 2.2719168076792418e-02 2.2264281702001121e-02
2.1815445403263078e-02 2.1372580464206647e-02 2.0935609173537761e-02 2.0504454812290795e-02 2.0079041641240414e-02
1.9659294888467183e-02 1.9245140737102040e-02 1.8836506313223755e-02 1.8433319673904158e-02 1.8035509795416238e-02
1.7643006561603891e-02 1.7255740752380899e-02 1.6873644032391555e-02 1.6496648939823388e-02 1.6124688875347792e-02
1.5757698091213634e-02 1.5395611680482646e-02 1.5038365566394485e-02 1.4685896491875350e-02 1.4338142009180710e-02
1.3995040469664266e-02 1.3656531013687800e-02 1.3322553560652262e-02 1.2993048799157525e-02 1.2667958177290606e-02
1.2347223893038994e-02 1.2030788884814458e-02 1.1718596822117511e-02 1.1410592096299910e-02 1.1106719811460941e-02
1.0806925775450060e-02 1.0511156490982998e-02 1.0219359146882878e-02 9.9314816094114855e-03 9.6474724137328716e-03
9.3672807554677773e-03 9.0908564823645177e-03 8.8181500860711193e-03 8.5491126940134832e-03 8.2836960613733579e-03
8.0218525631707838e-03 7.7635351864465685e-03 7.5086975225370223e-03 7.2572937594544973e-03 7.0092786743605195e-03
6.7646076261301813e-03 6.5232365480138998e-03 6.2851219403949887e-03 6.0502208636273869e-03 5.8184909309735300e-03
5.5898903016277091e-03 5.3643776738254711e-03 5.1419122780385074e-03 4.9224538702609122e-03 4.7059627253757674e-03
4.4923996305976099e-03 4.2817258790122659e-03 4.0739032631877392e-03 3.8688940688609841e-03 3.6666610687164924e-03
3.4671675162341598e-03 3.2703771396105918e-03 3.0762541357672313e-03 2.8847631644254856e-03 2.6958693422570179e-03
2.5095382371091990e-03 2.3257358623008373e-03 2.1444286709895732e-03 1.9655835506104946e-03 1.7891678173820869e-03
1.6151492108847365e-03 1.4434958887007410e-03 1.2741764211267048e-03 1.1071597859496629e-03 9.4241536328815156e-04
7.7991293049733956e-04 6.1962265713921827e-04 4.6151510001329887e-04 3.0556119825198014e-04 1.5173226847375876e-04
0. 0. 0. 0. 0.
0. 5.4383329664155645e-05 9.3944898415945083e-04 4.3251847212615047e-03 1.2334244035325348e-02
2.7137722173468548e-02 5.0697119791449641e-02 8.4607638668976470e-02 1.3001641279549414e-01 1.8759487452762702e-01
2.5754900895683441e-01 3.3965493779430744e-01 4.3331024634064264e-01 5.3759384878832961e-01 6.5132908316254046e-01
7.7314622535699939e-01 9.0154178511424377e-01 1.0349328562818201e+00 1.1717054897399350e+00 1.3102565818166738e+00
1.4490291582473986e+00 1.5865412121263560e+00 1.7214084470448441e+00 1.8523614026473965e+00 1.9782575145276269e+00
2.0980886961566938e+00 2.2109850373516764e+00 2.3162151996095730e+00 2.4131840597491703e+00 2.5014281146549706e+00
2.5806091153285706e+00 2.6505063508648590e+00 2.7110079545661563e+00 2.7621015568249447e+00 2.8038645637913220e+00
2.8364542979766156e+00 2.8600981973448825e+00 2.8750842333755031e+00 2.8817516761559574e+00 2.8804823057701157e+00
2.8716921439699092e+00 2.8558237581894161e+00 2.8333391711552594e+00 2.8047133934346959e+00 2.7704285829676252e+00
2.7309688247181469e+00 2.6868155147671331e+00 2.6384433262347358e+00 2.5863167291097398e+00 2.5308870321738226e+00
2.4725899125317596e+00 2.4118433966060167e+00 2.3490462556752334e+00 2.2845767789603002e+00 2.2187918877813502e+00
2.1520265552815943e+00 2.0845934975626363e+00 2.0167831036919637e+00 1.9488635738636404e+00 1.8810812369508270e+00
1.8136610207193371e+00 1.7468070500507196e+00 1.6807033505858371e+00 1.6155146372447149e+00 1.5513871690559142e+00
1.4884496536383409e+00 1.4268141864958608e+00 1.3665772120042590e+00 1.3078204945836447e+00 1.2506120900523854e+00
1.1950073085502879e+00 1.1410496616995687e+00 1.0887717878420631e+00 1.0381963502565981e+00 9.8933690422003551e-01
9.4219872964247031e-01 8.9677962677415124e-01 8.5307067316958651e-01 8.1105694069385592e-01 7.7071817188505065e-01
7.3202941544290212e-01 6.9496162100761794e-01 6.5948219372701189e-01 6.2555550939233484e-01 5.9314339115629977e-01
5.6220554903693554e-01 5.3269998356387660e-01 5.0458335504023211e-01 4.7781131998032222e-01 4.5233883634534777e-01
4.2812043923464138e-01 4.0511048870905242e-01 3.8326339142174781e-01 3.6253379771729577e-01 3.4287677583286325e-01
3.2424796479760154e-01 3.0660370758054967e-01 2.8990116598452254e-01 2.7409841872609064e-01 2.5915454407883409e-01
2.4502968839369110e-01 2.3168512174254197e-01 2.1908328186436687e-01 2.0718780752542632e-01 1.9596356233750800e-01
1.8537665001230508e-01 1.7539442196444632e-01 1.6598547811304609e-01 1.5711966166996927e-01 1.4876804864444715e-01
1.4090293273673637e-01 1.3349780623990259e-01 1.2652733751724909e-01 1.1996734557434463e-01 1.1379477219856060e-01
1.0798765209582406e-01 1.0252508141368288e-01 9.7387185001678311e-02 9.2555082724584015e-02 8.8010855111109620e-02
8.3737508589961873e-02 7.9718940536826377e-02 7.5939904329596963e-02 7.2385974585237101e-02 6.9043512729294765e-02
6.5899633029043336e-02 6.2942169202580001e-02 6.0159641699440547e-02 5.7541225732930634e-02 5.5076720130546430e-02
5.2756517056398833e-02 5.0571572648238083e-02 4.8513378601664936e-02 4.6573934725081756e-02 4.4745722480991068e-02
4.3021679522073253e-02 4.1395175224364866e-02 3.9859987214311721e-02 3.8410278881708670e-02 3.7040577866510604e-02
3.5745755503880039e-02 3.4521007208912380e-02 3.3361833779917971e-02 3.2264023597108116e-02 3.1223635691821294e-02
3.0236983660070216e-02 2.9300620393215571e-02 2.8411323597772320e-02 2.7566082075896281e-02 2.6762082737777249e-02
2.5996698317105604e-02 2.5267475760840985e-02 2.4572125264713973e-02 2.3908509926274246e-02 2.3274635987705516e-02
2.2668643641204911e-02 2.2088798370316409e-02 2.1533482801290083e-02 2.1001189039288493e-02 2.0490511464994254e-02
2.0000139967999431e-02 1.9528853594166895e-02 1.9075514584991349e-02 1.8639062787818239e-02 1.8218510416650235e-02
1.7812937144080498e-02 1.7421485505751177e-02 1.7043356599549031e-02 1.6677806062561751e-02 1.6324140309613155e-02
1.5981713017976018e-02 1.5649921843605585e-02 1.5328205354974755e-02 1.5016040171312250e-02 1.4712938292708366e-02
1.4418444610242331e-02 1.4132134584901757e-02 1.3853612084676337e-02 1.3582507369821917e-02 1.3318475216818060e-02
1.3061193172097418e-02 1.2810359927147186e-02 1.2565693807050415e-02 1.2326931365025051e-02 1.2093826075940506e-02
1.1866147122233661e-02 1.1643678266026136e-02 1.1426216801644407e-02 1.1213572583084475e-02 1.1005567121320226e-02
1.0802032746662471e-02 1.0602811831688208e-02 1.0407756070544782e-02 1.0216725810699157e-02 1.0029589433467268e-02
9.8462227798860602e-03 9.6665086187306404e-03 9.4903361536790021e-03 9.3176005668363371e-03 9.1482025960089031e-03
8.9820481433065535e-03 8.8190479128032462e-03 8.6591170751522117e-03 8.5021749571883021e-03 8.3481447546937537e-03
8.1969532666261724e-03 8.0485306492223962e-03 7.9028101885199598e-03 7.7597280899136256e-03 7.6192232834934315e-03
7.4812372439735375e-03 7.3457138241272979e-03 7.2125991007052359e-03 7.0818412319012813e-03 6.9533903254870300e-03
6.8271983168139705e-03 6.7032188559211503e-03 6.5814072030662141e-03 6.4617201320263939e-03 6.3441158405819764e-03
6.2285538676237207e-03 6.1149950163802147e-03 6.0034012832899109e-03 5.8937357920846312e-03 5.7859627326801166e-03
5.6800473044990030e-03 5.5759556638887986e-03 5.4736548753111791e-03 5.3731128660109428e-03 5.2742983838981461e-03
5.1771809583849582e-03 5.0817308639591330e-03 4.9879190862693046e-03 4.8957172905357560e-03 4.8050977921015592e-03
4.7160335289582467e-03 4.6284980360953021e-03 4.5424654215287241e-03 4.4579103438822931e-03 4.3748079913988880e-03
4.2931340622749670e-03 4.2128647462132407e-03 4.1339767071033873e-03 4.0564470667446839e-03 3.9802533895282599e-03
3.9053736680121076e-03 3.8317863093158128e-03 3.7594701222811860e-03 3.6884043053326127e-03 3.6185684349951674e-03
3.5499424550168301e-03 3.4825066660512660e-03 3.4162417158645347e-03 3.3511285900229004e-03 3.2871486030347646e-03
3.2242833899080170e-03 3.1625148980992668e-03 3.1018253798278661e-03 3.0421973847258310e-03 2.9836137528083811e-03
2.9260576077371064e-03 2.8695123503632708e-03 2.8139616525287708e-03 2.7593894511106498e-03 2.7057799422959966e-03
2.6531175760685227e-03 2.6013870509009052e-03 2.5505733086344240e-03 2.5006615295404683e-03 2.4516371275501436e-03
2.4034857456453340e-03 2.3561932514012535e-03 2.3097457326723414e-03 2.2641294934160616e-03 2.2193310496436136e-03
2.1753371254977782e-03 2.1321346494441173e-03 2.0897107505768314e-03 2.0480527550303662e-03 2.0071481824917164e-03
1.9669847428123305e-03 1.9275503327108034e-03 1.8888330325659355e-03 1.8508211032951805e-03 1.8135029833145980e-03
1.7768672855772646e-03 1.7409027946878666e-03 1.7055984640891586e-03 1.6709434133182904e-03 1.6369269253308227e-03
1.6035384438881917e-03 1.5707675710093030e-03 1.5386040644797400e-03 1.5070378354209296e-03 1.4760589459142243e-03
1.4456576066784674e-03 1.4158241748004133e-03 1.3865491515145517e-03 1.3578231800324136e-03 1.3296370434173130e-03
1.3019816625059188e-03 1.2748480938728074e-03 1.2482275278369870e-03 1.2221112865106742e-03 1.1964908218862064e-03
1.1713577139624703e-03 1.1467036689077198e-03 1.1225205172586891e-03 1.0988002121543120e-03 1.0755348276031765e-03
1.0527165567835728e-03 1.0303377103750150e-03 1.0083907149206553e-03 9.8686811121878604e-04 9.6576255274356815e-04
9.4506680409354657e-04 9.2477373946662708e-04 9.0487634116191706e-04 8.8536769810608137e-04 8.6624100440530968e-04
8.4748955791986991e-04 8.2910675886310736e-04 8.1108610842155551e-04 7.9342120739794852e-04 7.7610575487466887e-04
7.5913354689786591e-04 7.4249847518158968e-04 7.2619452583109687e-04 7.1021577808524222e-04 6.9455640307671332e-04
6.7921066261025093e-04 6.6417290795844214e-04 6.4943757867335500e-04 6.3499920141575628e-04 6.2085238879914031e-04
6.0699183824991856e-04 5.9341233088238896e-04 5.8010873038847818e-04 5.6707598194186137e-04 5.5430911111587280e-04
5.4180322281523891e-04 5.2955350022104025e-04 5.1755520374872563e-04 5.0580367001857793e-04 4.9429431083891986e-04
4.8302261220136561e-04 4.7198413328763435e-04 4.6117450548847222e-04 4.5058943143359842e-04 4.4022468403297037e-04
4.3007610552883886e-04 4.2013960655883260e-04 4.1041116522908330e-04 4.0088682619821882e-04 3.9156269977118005e-04
3.8243496100300207e-04 3.7349984881274514e-04 3.6475366510662147e-04 3.5619277391102898e-04 3.4781360051482253e-04
3.3961263062063513e-04 3.3158640950565685e-04 3.2373154119109092e-04 3.1604468762060252e-04 3.0852256784754707e-04
3.0116195723081836e-04 2.9395968663908575e-04 2.8691264166377101e-04 2.8001776184017647e-04 2.7327203987681688e-04
2.6667252089326854e-04 2.6021630166557681e-04 2.5390052988028163e-04 2.4772240339593181e-04 2.4167916951265550e-04
2.3576812424967210e-04 2.2998661163024531e-04 2.2433202297460642e-04 2.1880179620031078e-04 2.1339341513026532e-04
2.0810440880823181e-04 2.0293235082175821e-04 1.9787485863260665e-04 1.9292959291436311e-04 1.8809425689761319e-04
1.8336659572205580e-04 1.7874439579616125e-04 1.7422548416372047e-04 1.6980772787763936e-04 1.6548903338088530e-04
1.6126734589430591e-04 1.5714064881157744e-04 1.5310696310104604e-04 1.4916434671449329e-04 1.4531089400280153e-04
1.4154473513841234e-04 1.3786403554466153e-04 1.3426699533172857e-04 1.3075184873951283e-04 1.2731686358694039e-04
1.2396034072819674e-04 1.2068061351527565e-04 1.1747604726729168e-04 1.1434503874632306e-04 1.1128601563955686e-04
1.0829743604811193e-04 1.0537778798212988e-04 1.0252558886227753e-04 9.9739385027582898e-05 9.7017751249615057e-05
9.4359290252773662e-05 9.1762632240957511e-05 8.9226434430383569e-05 8.6749380588361721e-05 8.4330180578390864e-05
8.1967569911181246e-05 7.9660309301724484e-05 7.7407184232279429e-05 7.5207004521348451e-05 7.3058603898526649e-05
7.0960839585107720e-05 6.8912591880629977e-05 6.6912763755002085e-05 6.4960280446513426e-05 6.3054089065330086e-05
6.1193158202771814e-05 5.9376477546041213e-05 5.7603057498502742e-05 5.5871928805544500e-05 5.4182142185708361e-05
5.2532767967318744e-05 5.0922895730446966e-05 4.9351633954125953e-05 4.7818109668823321e-05 4.6321468114150300e-05
4.4860872401664663e-05 4.3435503182825573e-05 4.2044558321957873e-05 4.0687252574273750e-05 3.9362817268785450e-05
3.8070499996214428e-05 3.6809564301621984e-05 3.5579289382025496e-05 3.4378969788611451e-05 3.3207915133769052e-05
3.2065449802711312e-05 3.0950912669766876e-05 2.9863656819185611e-05 2.8803049270468119e-05 2.7768470708167169e-05
2.6759315216115260e-05 2.5774990015931323e-05 2.4814915209964844e-05 2.3878523528387922e-05 2.2965260080560611e-05
2.2074582110528148e-05 2.1205958756658535e-05 2.0358870815317476e-05 1.9532810508535560e-05 1.8727281255713447e-05
1.7941797449145505e-05 1.7175884233475961e-05 1.6429077288930018e-05 1.5700922618341645e-05 1.4990976337865471e-05
1.4298804471386687e-05 1.3623982748522034e-05 1.2966096406226424e-05 1.2324739993882115e-05 1.1699517181902770e-05
1.1090040573734860e-05 1.0495931521266495e-05 9.9168199435395021e-06 9.3523441487842465e-06 8.8021506596591475e-06
8.2658940417265321e-06 7.7432367350197678e-06 7.2338488887770244e-06 6.7374081991923703e-06 6.2535997501888662e-06
5.7821158571569505e-06 5.3226559136389283e-06 4.8749262408651290e-06 4.4386399401326240e-06 4.0135167480073166e-06
3.5992828942305738e-06 3.1956709623667747e-06 2.8024197531120341e-06 2.4192741502208947e-06 2.0459849890155880e-06
1.6823089274468580e-06 1.3280083196495871e-06 9.8285109196557868e-07 6.4661062138351467e-07 3.1906561636122974e-07
0. 0. 0. 0. 0.

View File

@ -0,0 +1,524 @@
FCC(001) cell with dimension 8 x 8 x 8
512 atoms
1 atom types
0.00000000 20.44952811 xlo xhi
0.00000000 17.70981084 ylo yhi
0.00000000 16.69696978 zlo zhi
10.22476405 10.22476405 5.90327028 xy xz yz
Atoms
1 1 0.00000000 0.00000000 0.00000000
2 1 2.55619101 0.00000000 0.00000000
3 1 5.11238203 0.00000000 0.00000000
4 1 7.66857304 0.00000000 0.00000000
5 1 10.22476406 0.00000000 0.00000000
6 1 12.78095507 0.00000000 0.00000000
7 1 15.33714608 0.00000000 0.00000000
8 1 17.89333710 0.00000000 0.00000000
9 1 1.27809551 2.21372636 0.00000000
10 1 3.83428652 2.21372636 0.00000000
11 1 6.39047753 2.21372636 0.00000000
12 1 8.94666855 2.21372636 0.00000000
13 1 11.50285956 2.21372636 0.00000000
14 1 14.05905058 2.21372636 0.00000000
15 1 16.61524159 2.21372636 0.00000000
16 1 19.17143260 2.21372636 0.00000000
17 1 2.55619101 4.42745271 0.00000000
18 1 5.11238203 4.42745271 0.00000000
19 1 7.66857304 4.42745271 0.00000000
20 1 10.22476406 4.42745271 0.00000000
21 1 12.78095507 4.42745271 0.00000000
22 1 15.33714608 4.42745271 0.00000000
23 1 17.89333710 4.42745271 0.00000000
24 1 20.44952811 4.42745271 0.00000000
25 1 3.83428652 6.64117907 0.00000000
26 1 6.39047753 6.64117907 0.00000000
27 1 8.94666855 6.64117907 0.00000000
28 1 11.50285956 6.64117907 0.00000000
29 1 14.05905058 6.64117907 0.00000000
30 1 16.61524159 6.64117907 0.00000000
31 1 19.17143260 6.64117907 0.00000000
32 1 21.72762362 6.64117907 0.00000000
33 1 5.11238203 8.85490542 0.00000000
34 1 7.66857304 8.85490542 0.00000000
35 1 10.22476406 8.85490542 0.00000000
36 1 12.78095507 8.85490542 0.00000000
37 1 15.33714608 8.85490542 0.00000000
38 1 17.89333710 8.85490542 0.00000000
39 1 20.44952811 8.85490542 0.00000000
40 1 23.00571913 8.85490542 0.00000000
41 1 6.39047753 11.06863178 0.00000000
42 1 8.94666855 11.06863178 0.00000000
43 1 11.50285956 11.06863178 0.00000000
44 1 14.05905058 11.06863178 0.00000000
45 1 16.61524159 11.06863178 0.00000000
46 1 19.17143260 11.06863178 0.00000000
47 1 21.72762362 11.06863178 0.00000000
48 1 24.28381463 11.06863178 0.00000000
49 1 7.66857304 13.28235813 0.00000000
50 1 10.22476406 13.28235813 0.00000000
51 1 12.78095507 13.28235813 0.00000000
52 1 15.33714608 13.28235813 0.00000000
53 1 17.89333710 13.28235813 0.00000000
54 1 20.44952811 13.28235813 0.00000000
55 1 23.00571913 13.28235813 0.00000000
56 1 25.56191014 13.28235813 0.00000000
57 1 8.94666855 15.49608449 0.00000000
58 1 11.50285956 15.49608449 0.00000000
59 1 14.05905058 15.49608449 0.00000000
60 1 16.61524159 15.49608449 0.00000000
61 1 19.17143260 15.49608449 0.00000000
62 1 21.72762362 15.49608449 0.00000000
63 1 24.28381463 15.49608449 0.00000000
64 1 26.84000565 15.49608449 0.00000000
65 1 1.27809551 0.73790879 2.08712122
66 1 3.83428652 0.73790879 2.08712122
67 1 6.39047753 0.73790879 2.08712122
68 1 8.94666855 0.73790879 2.08712122
69 1 11.50285956 0.73790879 2.08712122
70 1 14.05905058 0.73790879 2.08712122
71 1 16.61524159 0.73790879 2.08712122
72 1 19.17143260 0.73790879 2.08712122
73 1 2.55619101 2.95163514 2.08712122
74 1 5.11238203 2.95163514 2.08712122
75 1 7.66857304 2.95163514 2.08712122
76 1 10.22476406 2.95163514 2.08712122
77 1 12.78095507 2.95163514 2.08712122
78 1 15.33714608 2.95163514 2.08712122
79 1 17.89333710 2.95163514 2.08712122
80 1 20.44952811 2.95163514 2.08712122
81 1 3.83428652 5.16536150 2.08712122
82 1 6.39047753 5.16536150 2.08712122
83 1 8.94666855 5.16536150 2.08712122
84 1 11.50285956 5.16536150 2.08712122
85 1 14.05905058 5.16536150 2.08712122
86 1 16.61524159 5.16536150 2.08712122
87 1 19.17143260 5.16536150 2.08712122
88 1 21.72762362 5.16536150 2.08712122
89 1 5.11238203 7.37908785 2.08712122
90 1 7.66857304 7.37908785 2.08712122
91 1 10.22476406 7.37908785 2.08712122
92 1 12.78095507 7.37908785 2.08712122
93 1 15.33714608 7.37908785 2.08712122
94 1 17.89333710 7.37908785 2.08712122
95 1 20.44952811 7.37908785 2.08712122
96 1 23.00571913 7.37908785 2.08712122
97 1 6.39047753 9.59281421 2.08712122
98 1 8.94666855 9.59281421 2.08712122
99 1 11.50285956 9.59281421 2.08712122
100 1 14.05905058 9.59281421 2.08712122
101 1 16.61524159 9.59281421 2.08712122
102 1 19.17143260 9.59281421 2.08712122
103 1 21.72762362 9.59281421 2.08712122
104 1 24.28381463 9.59281421 2.08712122
105 1 7.66857304 11.80654056 2.08712122
106 1 10.22476406 11.80654056 2.08712122
107 1 12.78095507 11.80654056 2.08712122
108 1 15.33714608 11.80654056 2.08712122
109 1 17.89333710 11.80654056 2.08712122
110 1 20.44952811 11.80654056 2.08712122
111 1 23.00571913 11.80654056 2.08712122
112 1 25.56191014 11.80654056 2.08712122
113 1 8.94666855 14.02026692 2.08712122
114 1 11.50285956 14.02026692 2.08712122
115 1 14.05905058 14.02026692 2.08712122
116 1 16.61524159 14.02026692 2.08712122
117 1 19.17143260 14.02026692 2.08712122
118 1 21.72762362 14.02026692 2.08712122
119 1 24.28381463 14.02026692 2.08712122
120 1 26.84000565 14.02026692 2.08712122
121 1 10.22476406 16.23399327 2.08712122
122 1 12.78095507 16.23399327 2.08712122
123 1 15.33714608 16.23399327 2.08712122
124 1 17.89333710 16.23399327 2.08712122
125 1 20.44952811 16.23399327 2.08712122
126 1 23.00571913 16.23399327 2.08712122
127 1 25.56191014 16.23399327 2.08712122
128 1 28.11810115 16.23399327 2.08712122
129 1 2.55619101 1.47581757 4.17424245
130 1 5.11238203 1.47581757 4.17424245
131 1 7.66857304 1.47581757 4.17424245
132 1 10.22476406 1.47581757 4.17424245
133 1 12.78095507 1.47581757 4.17424245
134 1 15.33714608 1.47581757 4.17424245
135 1 17.89333710 1.47581757 4.17424245
136 1 20.44952811 1.47581757 4.17424245
137 1 3.83428652 3.68954393 4.17424245
138 1 6.39047753 3.68954393 4.17424245
139 1 8.94666855 3.68954393 4.17424245
140 1 11.50285956 3.68954393 4.17424245
141 1 14.05905058 3.68954393 4.17424245
142 1 16.61524159 3.68954393 4.17424245
143 1 19.17143260 3.68954393 4.17424245
144 1 21.72762362 3.68954393 4.17424245
145 1 5.11238203 5.90327028 4.17424245
146 1 7.66857304 5.90327028 4.17424245
147 1 10.22476406 5.90327028 4.17424245
148 1 12.78095507 5.90327028 4.17424245
149 1 15.33714608 5.90327028 4.17424245
150 1 17.89333710 5.90327028 4.17424245
151 1 20.44952811 5.90327028 4.17424245
152 1 23.00571913 5.90327028 4.17424245
153 1 6.39047753 8.11699664 4.17424245
154 1 8.94666855 8.11699664 4.17424245
155 1 11.50285956 8.11699664 4.17424245
156 1 14.05905058 8.11699664 4.17424245
157 1 16.61524159 8.11699664 4.17424245
158 1 19.17143260 8.11699664 4.17424245
159 1 21.72762362 8.11699664 4.17424245
160 1 24.28381463 8.11699664 4.17424245
161 1 7.66857304 10.33072299 4.17424245
162 1 10.22476406 10.33072299 4.17424245
163 1 12.78095507 10.33072299 4.17424245
164 1 15.33714608 10.33072299 4.17424245
165 1 17.89333710 10.33072299 4.17424245
166 1 20.44952811 10.33072299 4.17424245
167 1 23.00571913 10.33072299 4.17424245
168 1 25.56191014 10.33072299 4.17424245
169 1 8.94666855 12.54444935 4.17424245
170 1 11.50285956 12.54444935 4.17424245
171 1 14.05905058 12.54444935 4.17424245
172 1 16.61524159 12.54444935 4.17424245
173 1 19.17143260 12.54444935 4.17424245
174 1 21.72762362 12.54444935 4.17424245
175 1 24.28381463 12.54444935 4.17424245
176 1 26.84000565 12.54444935 4.17424245
177 1 10.22476406 14.75817570 4.17424245
178 1 12.78095507 14.75817570 4.17424245
179 1 15.33714608 14.75817570 4.17424245
180 1 17.89333710 14.75817570 4.17424245
181 1 20.44952811 14.75817570 4.17424245
182 1 23.00571913 14.75817570 4.17424245
183 1 25.56191014 14.75817570 4.17424245
184 1 28.11810115 14.75817570 4.17424245
185 1 11.50285956 16.97190206 4.17424245
186 1 14.05905058 16.97190206 4.17424245
187 1 16.61524159 16.97190206 4.17424245
188 1 19.17143260 16.97190206 4.17424245
189 1 21.72762362 16.97190206 4.17424245
190 1 24.28381463 16.97190206 4.17424245
191 1 26.84000565 16.97190206 4.17424245
192 1 29.39619666 16.97190206 4.17424245
193 1 3.83428652 2.21372636 6.26136367
194 1 6.39047753 2.21372636 6.26136367
195 1 8.94666855 2.21372636 6.26136367
196 1 11.50285956 2.21372636 6.26136367
197 1 14.05905058 2.21372636 6.26136367
198 1 16.61524159 2.21372636 6.26136367
199 1 19.17143260 2.21372636 6.26136367
200 1 21.72762362 2.21372636 6.26136367
201 1 5.11238203 4.42745271 6.26136367
202 1 7.66857304 4.42745271 6.26136367
203 1 10.22476406 4.42745271 6.26136367
204 1 12.78095507 4.42745271 6.26136367
205 1 15.33714608 4.42745271 6.26136367
206 1 17.89333710 4.42745271 6.26136367
207 1 20.44952811 4.42745271 6.26136367
208 1 23.00571913 4.42745271 6.26136367
209 1 6.39047753 6.64117907 6.26136367
210 1 8.94666855 6.64117907 6.26136367
211 1 11.50285956 6.64117907 6.26136367
212 1 14.05905058 6.64117907 6.26136367
213 1 16.61524159 6.64117907 6.26136367
214 1 19.17143260 6.64117907 6.26136367
215 1 21.72762362 6.64117907 6.26136367
216 1 24.28381463 6.64117907 6.26136367
217 1 7.66857304 8.85490542 6.26136367
218 1 10.22476406 8.85490542 6.26136367
219 1 12.78095507 8.85490542 6.26136367
220 1 15.33714608 8.85490542 6.26136367
221 1 17.89333710 8.85490542 6.26136367
222 1 20.44952811 8.85490542 6.26136367
223 1 23.00571913 8.85490542 6.26136367
224 1 25.56191014 8.85490542 6.26136367
225 1 8.94666855 11.06863178 6.26136367
226 1 11.50285956 11.06863178 6.26136367
227 1 14.05905058 11.06863178 6.26136367
228 1 16.61524159 11.06863178 6.26136367
229 1 19.17143260 11.06863178 6.26136367
230 1 21.72762362 11.06863178 6.26136367
231 1 24.28381463 11.06863178 6.26136367
232 1 26.84000565 11.06863178 6.26136367
233 1 10.22476406 13.28235813 6.26136367
234 1 12.78095507 13.28235813 6.26136367
235 1 15.33714608 13.28235813 6.26136367
236 1 17.89333710 13.28235813 6.26136367
237 1 20.44952811 13.28235813 6.26136367
238 1 23.00571913 13.28235813 6.26136367
239 1 25.56191014 13.28235813 6.26136367
240 1 28.11810115 13.28235813 6.26136367
241 1 11.50285956 15.49608449 6.26136367
242 1 14.05905058 15.49608449 6.26136367
243 1 16.61524159 15.49608449 6.26136367
244 1 19.17143260 15.49608449 6.26136367
245 1 21.72762362 15.49608449 6.26136367
246 1 24.28381463 15.49608449 6.26136367
247 1 26.84000565 15.49608449 6.26136367
248 1 29.39619666 15.49608449 6.26136367
249 1 12.78095507 17.70981084 6.26136367
250 1 15.33714608 17.70981084 6.26136367
251 1 17.89333710 17.70981084 6.26136367
252 1 20.44952811 17.70981084 6.26136367
253 1 23.00571913 17.70981084 6.26136367
254 1 25.56191014 17.70981084 6.26136367
255 1 28.11810115 17.70981084 6.26136367
256 1 30.67429217 17.70981084 6.26136367
257 1 5.11238203 2.95163514 8.34848489
258 1 7.66857304 2.95163514 8.34848489
259 1 10.22476406 2.95163514 8.34848489
260 1 12.78095507 2.95163514 8.34848489
261 1 15.33714608 2.95163514 8.34848489
262 1 17.89333710 2.95163514 8.34848489
263 1 20.44952811 2.95163514 8.34848489
264 1 23.00571913 2.95163514 8.34848489
265 1 6.39047753 5.16536150 8.34848489
266 1 8.94666855 5.16536150 8.34848489
267 1 11.50285956 5.16536150 8.34848489
268 1 14.05905058 5.16536150 8.34848489
269 1 16.61524159 5.16536150 8.34848489
270 1 19.17143260 5.16536150 8.34848489
271 1 21.72762362 5.16536150 8.34848489
272 1 24.28381463 5.16536150 8.34848489
273 1 7.66857304 7.37908785 8.34848489
274 1 10.22476406 7.37908785 8.34848489
275 1 12.78095507 7.37908785 8.34848489
276 1 15.33714608 7.37908785 8.34848489
277 1 17.89333710 7.37908785 8.34848489
278 1 20.44952811 7.37908785 8.34848489
279 1 23.00571913 7.37908785 8.34848489
280 1 25.56191014 7.37908785 8.34848489
281 1 8.94666855 9.59281421 8.34848489
282 1 11.50285956 9.59281421 8.34848489
283 1 14.05905058 9.59281421 8.34848489
284 1 16.61524159 9.59281421 8.34848489
285 1 19.17143260 9.59281421 8.34848489
286 1 21.72762362 9.59281421 8.34848489
287 1 24.28381463 9.59281421 8.34848489
288 1 26.84000565 9.59281421 8.34848489
289 1 10.22476406 11.80654056 8.34848489
290 1 12.78095507 11.80654056 8.34848489
291 1 15.33714608 11.80654056 8.34848489
292 1 17.89333710 11.80654056 8.34848489
293 1 20.44952811 11.80654056 8.34848489
294 1 23.00571913 11.80654056 8.34848489
295 1 25.56191014 11.80654056 8.34848489
296 1 28.11810115 11.80654056 8.34848489
297 1 11.50285956 14.02026692 8.34848489
298 1 14.05905058 14.02026692 8.34848489
299 1 16.61524159 14.02026692 8.34848489
300 1 19.17143260 14.02026692 8.34848489
301 1 21.72762362 14.02026692 8.34848489
302 1 24.28381463 14.02026692 8.34848489
303 1 26.84000565 14.02026692 8.34848489
304 1 29.39619666 14.02026692 8.34848489
305 1 12.78095507 16.23399327 8.34848489
306 1 15.33714608 16.23399327 8.34848489
307 1 17.89333710 16.23399327 8.34848489
308 1 20.44952811 16.23399327 8.34848489
309 1 23.00571913 16.23399327 8.34848489
310 1 25.56191014 16.23399327 8.34848489
311 1 28.11810115 16.23399327 8.34848489
312 1 30.67429217 16.23399327 8.34848489
313 1 14.05905058 18.44771963 8.34848489
314 1 16.61524159 18.44771963 8.34848489
315 1 19.17143260 18.44771963 8.34848489
316 1 21.72762362 18.44771963 8.34848489
317 1 24.28381463 18.44771963 8.34848489
318 1 26.84000565 18.44771963 8.34848489
319 1 29.39619666 18.44771963 8.34848489
320 1 31.95238767 18.44771963 8.34848489
321 1 6.39047753 3.68954393 10.43560612
322 1 8.94666855 3.68954393 10.43560612
323 1 11.50285956 3.68954393 10.43560612
324 1 14.05905058 3.68954393 10.43560612
325 1 16.61524159 3.68954393 10.43560612
326 1 19.17143260 3.68954393 10.43560612
327 1 21.72762362 3.68954393 10.43560612
328 1 24.28381463 3.68954393 10.43560612
329 1 7.66857304 5.90327028 10.43560612
330 1 10.22476406 5.90327028 10.43560612
331 1 12.78095507 5.90327028 10.43560612
332 1 15.33714608 5.90327028 10.43560612
333 1 17.89333710 5.90327028 10.43560612
334 1 20.44952811 5.90327028 10.43560612
335 1 23.00571913 5.90327028 10.43560612
336 1 25.56191014 5.90327028 10.43560612
337 1 8.94666855 8.11699664 10.43560612
338 1 11.50285956 8.11699664 10.43560612
339 1 14.05905058 8.11699664 10.43560612
340 1 16.61524159 8.11699664 10.43560612
341 1 19.17143260 8.11699664 10.43560612
342 1 21.72762362 8.11699664 10.43560612
343 1 24.28381463 8.11699664 10.43560612
344 1 26.84000565 8.11699664 10.43560612
345 1 10.22476406 10.33072299 10.43560612
346 1 12.78095507 10.33072299 10.43560612
347 1 15.33714608 10.33072299 10.43560612
348 1 17.89333710 10.33072299 10.43560612
349 1 20.44952811 10.33072299 10.43560612
350 1 23.00571913 10.33072299 10.43560612
351 1 25.56191014 10.33072299 10.43560612
352 1 28.11810115 10.33072299 10.43560612
353 1 11.50285956 12.54444935 10.43560612
354 1 14.05905058 12.54444935 10.43560612
355 1 16.61524159 12.54444935 10.43560612
356 1 19.17143260 12.54444935 10.43560612
357 1 21.72762362 12.54444935 10.43560612
358 1 24.28381463 12.54444935 10.43560612
359 1 26.84000565 12.54444935 10.43560612
360 1 29.39619666 12.54444935 10.43560612
361 1 12.78095507 14.75817570 10.43560612
362 1 15.33714608 14.75817570 10.43560612
363 1 17.89333710 14.75817570 10.43560612
364 1 20.44952811 14.75817570 10.43560612
365 1 23.00571913 14.75817570 10.43560612
366 1 25.56191014 14.75817570 10.43560612
367 1 28.11810115 14.75817570 10.43560612
368 1 30.67429217 14.75817570 10.43560612
369 1 14.05905058 16.97190206 10.43560612
370 1 16.61524159 16.97190206 10.43560612
371 1 19.17143260 16.97190206 10.43560612
372 1 21.72762362 16.97190206 10.43560612
373 1 24.28381463 16.97190206 10.43560612
374 1 26.84000565 16.97190206 10.43560612
375 1 29.39619666 16.97190206 10.43560612
376 1 31.95238767 16.97190206 10.43560612
377 1 15.33714608 19.18562841 10.43560612
378 1 17.89333710 19.18562841 10.43560612
379 1 20.44952811 19.18562841 10.43560612
380 1 23.00571913 19.18562841 10.43560612
381 1 25.56191014 19.18562841 10.43560612
382 1 28.11810115 19.18562841 10.43560612
383 1 30.67429217 19.18562841 10.43560612
384 1 33.23048318 19.18562841 10.43560612
385 1 7.66857304 4.42745271 12.52272734
386 1 10.22476406 4.42745271 12.52272734
387 1 12.78095507 4.42745271 12.52272734
388 1 15.33714608 4.42745271 12.52272734
389 1 17.89333710 4.42745271 12.52272734
390 1 20.44952811 4.42745271 12.52272734
391 1 23.00571913 4.42745271 12.52272734
392 1 25.56191014 4.42745271 12.52272734
393 1 8.94666855 6.64117907 12.52272734
394 1 11.50285956 6.64117907 12.52272734
395 1 14.05905058 6.64117907 12.52272734
396 1 16.61524159 6.64117907 12.52272734
397 1 19.17143260 6.64117907 12.52272734
398 1 21.72762362 6.64117907 12.52272734
399 1 24.28381463 6.64117907 12.52272734
400 1 26.84000565 6.64117907 12.52272734
401 1 10.22476406 8.85490542 12.52272734
402 1 12.78095507 8.85490542 12.52272734
403 1 15.33714608 8.85490542 12.52272734
404 1 17.89333710 8.85490542 12.52272734
405 1 20.44952811 8.85490542 12.52272734
406 1 23.00571913 8.85490542 12.52272734
407 1 25.56191014 8.85490542 12.52272734
408 1 28.11810115 8.85490542 12.52272734
409 1 11.50285956 11.06863178 12.52272734
410 1 14.05905058 11.06863178 12.52272734
411 1 16.61524159 11.06863178 12.52272734
412 1 19.17143260 11.06863178 12.52272734
413 1 21.72762362 11.06863178 12.52272734
414 1 24.28381463 11.06863178 12.52272734
415 1 26.84000565 11.06863178 12.52272734
416 1 29.39619666 11.06863178 12.52272734
417 1 12.78095507 13.28235813 12.52272734
418 1 15.33714608 13.28235813 12.52272734
419 1 17.89333710 13.28235813 12.52272734
420 1 20.44952811 13.28235813 12.52272734
421 1 23.00571913 13.28235813 12.52272734
422 1 25.56191014 13.28235813 12.52272734
423 1 28.11810115 13.28235813 12.52272734
424 1 30.67429217 13.28235813 12.52272734
425 1 14.05905058 15.49608449 12.52272734
426 1 16.61524159 15.49608449 12.52272734
427 1 19.17143260 15.49608449 12.52272734
428 1 21.72762362 15.49608449 12.52272734
429 1 24.28381463 15.49608449 12.52272734
430 1 26.84000565 15.49608449 12.52272734
431 1 29.39619666 15.49608449 12.52272734
432 1 31.95238767 15.49608449 12.52272734
433 1 15.33714608 17.70981084 12.52272734
434 1 17.89333710 17.70981084 12.52272734
435 1 20.44952811 17.70981084 12.52272734
436 1 23.00571913 17.70981084 12.52272734
437 1 25.56191014 17.70981084 12.52272734
438 1 28.11810115 17.70981084 12.52272734
439 1 30.67429217 17.70981084 12.52272734
440 1 33.23048318 17.70981084 12.52272734
441 1 16.61524159 19.92353720 12.52272734
442 1 19.17143260 19.92353720 12.52272734
443 1 21.72762362 19.92353720 12.52272734
444 1 24.28381463 19.92353720 12.52272734
445 1 26.84000565 19.92353720 12.52272734
446 1 29.39619666 19.92353720 12.52272734
447 1 31.95238767 19.92353720 12.52272734
448 1 34.50857869 19.92353720 12.52272734
449 1 8.94666855 5.16536150 14.60984856
450 1 11.50285956 5.16536150 14.60984856
451 1 14.05905058 5.16536150 14.60984856
452 1 16.61524159 5.16536150 14.60984856
453 1 19.17143260 5.16536150 14.60984856
454 1 21.72762362 5.16536150 14.60984856
455 1 24.28381463 5.16536150 14.60984856
456 1 26.84000565 5.16536150 14.60984856
457 1 10.22476406 7.37908785 14.60984856
458 1 12.78095507 7.37908785 14.60984856
459 1 15.33714608 7.37908785 14.60984856
460 1 17.89333710 7.37908785 14.60984856
461 1 20.44952811 7.37908785 14.60984856
462 1 23.00571913 7.37908785 14.60984856
463 1 25.56191014 7.37908785 14.60984856
464 1 28.11810115 7.37908785 14.60984856
465 1 11.50285956 9.59281421 14.60984856
466 1 14.05905058 9.59281421 14.60984856
467 1 16.61524159 9.59281421 14.60984856
468 1 19.17143260 9.59281421 14.60984856
469 1 21.72762362 9.59281421 14.60984856
470 1 24.28381463 9.59281421 14.60984856
471 1 26.84000565 9.59281421 14.60984856
472 1 29.39619666 9.59281421 14.60984856
473 1 12.78095507 11.80654056 14.60984856
474 1 15.33714608 11.80654056 14.60984856
475 1 17.89333710 11.80654056 14.60984856
476 1 20.44952811 11.80654056 14.60984856
477 1 23.00571913 11.80654056 14.60984856
478 1 25.56191014 11.80654056 14.60984856
479 1 28.11810115 11.80654056 14.60984856
480 1 30.67429217 11.80654056 14.60984856
481 1 14.05905058 14.02026692 14.60984856
482 1 16.61524159 14.02026692 14.60984856
483 1 19.17143260 14.02026692 14.60984856
484 1 21.72762362 14.02026692 14.60984856
485 1 24.28381463 14.02026692 14.60984856
486 1 26.84000565 14.02026692 14.60984856
487 1 29.39619666 14.02026692 14.60984856
488 1 31.95238767 14.02026692 14.60984856
489 1 15.33714608 16.23399327 14.60984856
490 1 17.89333710 16.23399327 14.60984856
491 1 20.44952811 16.23399327 14.60984856
492 1 23.00571913 16.23399327 14.60984856
493 1 25.56191014 16.23399327 14.60984856
494 1 28.11810115 16.23399327 14.60984856
495 1 30.67429217 16.23399327 14.60984856
496 1 33.23048318 16.23399327 14.60984856
497 1 16.61524159 18.44771963 14.60984856
498 1 19.17143260 18.44771963 14.60984856
499 1 21.72762362 18.44771963 14.60984856
500 1 24.28381463 18.44771963 14.60984856
501 1 26.84000565 18.44771963 14.60984856
502 1 29.39619666 18.44771963 14.60984856
503 1 31.95238767 18.44771963 14.60984856
504 1 34.50857869 18.44771963 14.60984856
505 1 17.89333710 20.66144598 14.60984856
506 1 20.44952811 20.66144598 14.60984856
507 1 23.00571913 20.66144598 14.60984856
508 1 25.56191014 20.66144598 14.60984856
509 1 28.11810115 20.66144598 14.60984856
510 1 30.67429217 20.66144598 14.60984856
511 1 33.23048318 20.66144598 14.60984856
512 1 35.78667420 20.66144598 14.60984856

View File

@ -0,0 +1,83 @@
#phonon dispersion for Cu at 298K
# from Phys Rev 164, 922 (1967).
# x v_298 v_49 dv qr
#
#00x from G (0,0,0) to X (0.5, 0, 0.5)
0.20 2.440 2.43 0.040 0.141421
0.30 3.560 3.56 0.040 0.212132
0.40 4.500 4.56 0.050 0.282843
0.50 5.420 5.44 0.070 0.353553
0.60 6.140 6.15 0.100 0.424264
0.70 6.660 6.66 0.100 0.494975
0.80 6.900 6.90 0.150 0.565685
0.90 7.150 7.18 0.170 0.636396
1.00 7.200 7.25 0.200 0.707107
#00x
0.20 1.600 1.65 0.020 0.141421
0.30 2.350 2.40 0.020 0.212132
0.40 3.050 3.09 0.020 0.282843
0.50 3.670 3.69 0.030 0.353553
0.60 4.170 4.22 0.030 0.424264
0.70 4.590 4.64 0.000 0.494975
0.80 4.880 4.94 0.100 0.565685
0.90 5.070 5.08 0.100 0.636396
1.00 5.090 5.13 0.150 0.707107
#xx0 from (0.5,1.0,0.5) to (0,0,0)
0.10 1.960 2.01 0.02 2.51648
0.20 3.670 3.73 0.03 2.39401
0.30 5.030 5.1O 0.07 2.27153
0.40 6.000 6.05 0.10 2.14906
0.50 6.350 6.42 0.15 2.02659
0.60 6.350 6.39 0.15 1.90411
0.70 6.140 6.18 0.10 1.78164
0.80 5.710 5.80 0.15 1.65916
1.00 5.090 5.13 0.15 1.41421
#xx0
0.10 1.120 1.21 0.015 2.51648
0.20 2.345 2.385 0.020 2.39401
0.30 3.410 3.46 0.030 2.27153
0.40 4.330 4.39 0.030 2.14906
0.50 5.120 5.16 0.060 2.02659
0.60 5.760 5.85 0.070 1.90411
0.70 6.390 6.40 0.120 1.78164
0.80 6.790 6.84 0.150 1.65916
0.90 7.080 7.05 0.200 1.53669
1.00 7.200 7.25 0.200 1.41421
#xx0
0.25 1.730 1.79 0.03 2.33277
0.30 2.070 2.12 0.04 2.27153
0.40 2.730 2.79 0.03 2.14906
0.50 3.390 3.43 0.04 2.02659
0.60 3.850 3.93 0.07 1.90411
0.70 4.330 4.40 0.00 1.78164
0.80 4.700 4.80 0.06 1.65916
0.90 4.930 5.07 0.10 1.53669
1.00 5.090 5.13 0.15 1.41421
#xxx from (0,0,0) to (0.5, 0.5, 0.5)
0.05 1.220 1.22 0.03 2.72556
0.10 2.490 2.49 0.05 2.81216
0.15 3.590 3.59 0.00 2.89877
0.20 4.570 4.61 0.05 2.98537
0.25 5.460 5.51 0.10 3.07197
0.30 6.180 6.21 0.10 3.15857
0.35 6.710 6.80 0.15 3.24518
0.40 7.010 7.12 0.15 3.33178
0.45 7.160 7.27 0.20 3.41838
0.50 7.290 7.30 0.20 3.50498
#xxx
0.10 0.980 1.05 0.06 2.81216
0.15 1.440 1.53 0.06 2.89877
0.20 1.890 1.90 0.06 2.98537
0.25 2.300 2.35 0.04 3.07197
0.30 2.690 2.72 0.05 3.15857
0.35 2.980 3.03 0.06 3.24518
0.40 3.210 3.24 0.07 3.33178
0.45 3.370 3.39 0.08 3.41838
0.50 3.410 3.42 0.10 3.50498
#10x from (0.5,0,0.5) via (0.5, 0.25, 0.75) then back to ( 0.5, 0., 0.5)
0.50 4.890 4.95 0.09 1.06066
0.60 4.970 4.96 0.09 1.13137
0.70 5.000 4.98 0.10 1.20208
0.80 5.020 5.08 0.10 1.27279
0.90 5.050 5.11 0.10 1.3435
1.00 5.090 5.13 0.15 1.41421

View File

@ -0,0 +1,86 @@
# index qr qx qy qz 3-frequencies
1 0 0 0 0 0 0 0
2 0.0294628 0.0208333 0 0.0208333 0.347321 0.347321 0.439772
3 0.0589256 0.0416667 0 0.0416667 0.69303 0.69303 0.879729
4 0.0883883 0.0625 0 0.0625 1.03553 1.03553 1.31996
5 0.117851 0.0833333 0 0.0833333 1.37323 1.37323 1.76037
6 0.147314 0.104167 0 0.104167 1.70461 1.70461 2.20059
7 0.176777 0.125 0 0.125 2.02815 2.02815 2.63994
8 0.206239 0.145833 0 0.145833 2.34242 2.34242 3.07736
9 0.235702 0.166667 0 0.166667 2.64603 2.64603 3.51142
10 0.265165 0.1875 0 0.1875 2.93767 2.93767 3.94028
11 0.294628 0.208333 0 0.208333 3.21609 3.21609 4.36173
12 0.324091 0.229167 0 0.229167 3.48015 3.48015 4.77325
13 0.353553 0.25 0 0.25 3.72877 3.72877 5.17202
14 0.383016 0.270833 0 0.270833 3.96096 3.96096 5.555
15 0.412479 0.291667 0 0.291667 4.17583 4.17583 5.91902
16 0.441942 0.3125 0 0.3125 4.37257 4.37257 6.26082
17 0.471405 0.333333 0 0.333333 4.55046 4.55046 6.57717
18 0.500867 0.354167 0 0.354167 4.70886 4.70886 6.86491
19 0.53033 0.375 0 0.375 4.84722 4.84722 7.12106
20 0.559793 0.395833 0 0.395833 4.96506 4.96506 7.34288
21 0.589256 0.416667 0 0.416667 5.06201 5.06201 7.52792
22 0.618718 0.4375 0 0.4375 5.13773 5.13773 7.67409
23 0.648181 0.458333 0 0.458333 5.19199 5.19199 7.77973
24 0.677644 0.479167 0 0.479167 5.22461 5.22461 7.84362
25 0.707107 0.5 0 0.5 5.2355 5.2355 7.86499
26 0.707107 0.5 0 0.5 5.2355 5.2355 7.86499
27 0.795495 0.5 0.0625 0.5625 5.22438 5.36797 7.78721
28 0.883883 0.5 0.125 0.625 5.19745 5.72491 7.55862
29 0.972272 0.5 0.1875 0.6875 5.17037 6.21195 7.19519
30 1.06066 0.5 0.25 0.75 5.15912 6.72853 6.72853
31 1.06066 0.5 0.25 0.75 5.15912 6.72853 6.72853
32 1.14905 0.5 0.1875 0.6875 5.17037 6.21195 7.19519
33 1.23744 0.5 0.125 0.625 5.19745 5.72491 7.55862
34 1.32583 0.5 0.0625 0.5625 5.22438 5.36797 7.78721
35 1.41421 0.5 0 0.5 5.2355 5.2355 7.86499
36 1.41421 0.5 1 0.5 5.2355 5.2355 7.86499
37 1.46524 0.479167 0.958333 0.479167 5.21956 5.2786 7.84763
38 1.51628 0.458333 0.916667 0.458333 5.172 5.40182 7.79557
39 1.56731 0.4375 0.875 0.4375 5.09349 5.58857 7.70898
40 1.61834 0.416667 0.833333 0.416667 4.98517 5.81577 7.5881
41 1.66937 0.395833 0.791667 0.395833 4.8486 6.0582 7.43334
42 1.7204 0.375 0.75 0.375 4.68568 6.29175 7.24527
43 1.77143 0.354167 0.708333 0.354167 4.49867 6.49527 7.02466
44 1.82246 0.333333 0.666667 0.333333 4.29007 6.65135 6.77253
45 1.87349 0.3125 0.625 0.3125 4.06259 6.49014 6.74643
46 1.92452 0.291667 0.583333 0.291667 3.81906 6.17901 6.77065
47 1.97555 0.270833 0.541667 0.270833 3.56237 5.84092 6.71753
48 2.02659 0.25 0.5 0.25 3.29539 5.47787 6.58361
49 2.07762 0.229167 0.458333 0.229167 3.02087 5.09207 6.36811
50 2.12865 0.208333 0.416667 0.208333 2.74139 4.68588 6.07251
51 2.17968 0.1875 0.375 0.1875 2.45928 4.26171 5.70023
52 2.23071 0.166667 0.333333 0.166667 2.17654 3.82203 5.25624
53 2.28174 0.145833 0.291667 0.145833 1.89481 3.36921 4.74676
54 2.33277 0.125 0.25 0.125 1.6153 2.90555 4.17889
55 2.3838 0.104167 0.208333 0.104167 1.33881 2.43315 3.56039
56 2.43483 0.0833333 0.166667 0.0833333 1.06568 1.95394 2.89942
57 2.48587 0.0625 0.125 0.0625 0.795832 1.4696 2.20438
58 2.5369 0.0416667 0.0833333 0.0416667 0.528811 0.981646 1.48378
59 2.58793 0.0208333 0.0416667 0.0208333 0.26386 0.491382 0.746146
60 2.63896 0 0 0 0 0 0
61 2.63896 0 0 0 0 0 0
62 2.67504 0.0208333 0.0208333 0.0208333 0.217972 0.217972 0.480503
63 2.71113 0.0416667 0.0416667 0.0416667 0.434931 0.434931 0.959746
64 2.74721 0.0625 0.0625 0.0625 0.649869 0.649869 1.43644
65 2.7833 0.0833333 0.0833333 0.0833333 0.861796 0.861796 1.90925
66 2.81938 0.104167 0.104167 0.104167 1.06974 1.06974 2.37675
67 2.85546 0.125 0.125 0.125 1.27276 1.27276 2.83745
68 2.89155 0.145833 0.145833 0.145833 1.46995 1.46995 3.2897
69 2.92763 0.166667 0.166667 0.166667 1.66044 1.66044 3.7318
70 2.96372 0.1875 0.1875 0.1875 1.84341 1.84341 4.1619
71 2.9998 0.208333 0.208333 0.208333 2.01808 2.01808 4.57805
72 3.03589 0.229167 0.229167 0.229167 2.18372 2.18372 4.97822
73 3.07197 0.25 0.25 0.25 2.33966 2.33966 5.36031
74 3.10806 0.270833 0.270833 0.270833 2.48529 2.48529 5.72215
75 3.14414 0.291667 0.291667 0.291667 2.62004 2.62004 6.0616
76 3.18022 0.3125 0.3125 0.3125 2.74342 2.74342 6.37651
77 3.21631 0.333333 0.333333 0.333333 2.85496 2.85496 6.6648
78 3.25239 0.354167 0.354167 0.354167 2.95427 2.95427 6.92447
79 3.28848 0.375 0.375 0.375 3.04102 3.04102 7.15367
80 3.32456 0.395833 0.395833 0.395833 3.1149 3.1149 7.3507
81 3.36065 0.416667 0.416667 0.416667 3.17567 3.17567 7.51406
82 3.39673 0.4375 0.4375 0.4375 3.22314 3.22314 7.64248
83 3.43282 0.458333 0.458333 0.458333 3.25715 3.25715 7.73495
84 3.4689 0.479167 0.479167 0.479167 3.2776 3.2776 7.79074
85 3.50498 0.5 0.5 0.5 3.28442 3.28442 7.80938

View File

@ -0,0 +1,225 @@
# q qr freq
# 2pi/L 2pi/L THz
0 0 0 0 0 0 0
0.0147059 0 0.0147059 0.0207973 0.238861 0.335587 0.373368
0.0294118 0 0.0294118 0.0415945 0.475494 0.628208 0.735585
0.0441176 0 0.0441176 0.0623918 0.707212 0.878394 1.08724
0.0588235 0 0.0588235 0.083189 0.933519 1.09018 1.42759
0.0735294 0 0.0735294 0.103986 1.15381 1.27132 1.75587
0.0882353 0 0.0882353 0.124784 1.36741 1.43317 2.07124
0.102941 0 0.102941 0.145581 1.57255 1.59089 2.37273
0.117647 0 0.117647 0.166378 1.75284 1.77498 2.6592
0.132353 0 0.132353 0.187175 1.94367 1.96777 2.93394
0.147059 0 0.147059 0.207973 2.16515 2.17238 3.2186
0.161765 0 0.161765 0.22877 2.3773 2.40091 3.50716
0.176471 0 0.176471 0.249567 2.58477 2.62613 3.7923
0.191176 0 0.191176 0.270364 2.78656 2.83603 4.06963
0.205882 0 0.205882 0.291162 2.97851 3.0282 4.33681
0.220588 0 0.220588 0.311959 3.15689 3.20423 4.5927
0.235294 0 0.235294 0.332756 3.32001 3.36668 4.83648
0.25 0 0.25 0.353553 3.47014 3.51611 5.06694
0.264706 0 0.264706 0.374351 3.61807 3.66265 5.29618
0.279412 0 0.279412 0.395148 3.76247 3.81536 5.53025
0.294118 0 0.294118 0.415945 3.89461 3.96979 5.75909
0.308824 0 0.308824 0.436742 4.01338 4.11824 5.97512
0.323529 0 0.323529 0.45754 4.11953 4.25524 6.17372
0.338235 0 0.338235 0.478337 4.21502 4.37766 6.35302
0.352941 0 0.352941 0.499134 4.30314 4.48371 6.51322
0.367647 0 0.367647 0.519931 4.38775 4.57247 6.65552
0.382353 0 0.382353 0.540729 4.47338 4.645 6.78254
0.397059 0 0.397059 0.561526 4.56645 4.70724 6.90415
0.411765 0 0.411765 0.582323 4.65844 4.7583 7.01847
0.426471 0 0.426471 0.60312 4.73886 4.79826 7.12127
0.441176 0 0.441176 0.623918 4.796 4.83261 7.20883
0.455882 0 0.455882 0.644715 4.82152 4.86836 7.27842
0.470588 0 0.470588 0.665512 4.82941 4.89477 7.32847
0.485294 0 0.485294 0.68631 4.83001 4.90845 7.35847
0.5 0 0.5 0.707107 4.82901 4.91234 7.36845
0.5 0 0.5 0.707107 4.82901 4.91234 7.36845
0.5 0.0147059 0.514706 0.727904 4.83425 4.91613 7.36377
0.5 0.0294118 0.529412 0.748701 4.8487 4.92928 7.35104
0.5 0.0441176 0.544118 0.769499 4.86839 4.95588 7.33161
0.5 0.0588235 0.558824 0.790296 4.88914 4.99881 7.30617
0.5 0.0735294 0.573529 0.811093 4.90902 5.05697 7.27477
0.5 0.0882353 0.588235 0.83189 4.92642 5.12714 7.23696
0.5 0.102941 0.602941 0.852688 4.93842 5.20603 7.19184
0.5 0.117647 0.617647 0.873485 4.94121 5.29059 7.13827
0.5 0.132353 0.632353 0.894282 4.93145 5.37952 7.07407
0.5 0.147059 0.647059 0.915079 4.9101 5.48026 6.99498
0.5 0.161765 0.661765 0.935877 4.88174 5.59269 6.90531
0.5 0.176471 0.676471 0.956674 4.85153 5.71417 6.81002
0.5 0.191176 0.691176 0.977471 4.82403 5.8412 6.71288
0.5 0.205882 0.705882 0.998268 4.80238 5.96952 6.61612
0.5 0.220588 0.720588 1.01907 4.78786 6.09437 6.52022
0.5 0.235294 0.735294 1.03986 4.77997 6.21069 6.42428
0.5 0.25 0.75 1.06066 4.77701 6.3069 6.33315
0.5 0.25 0.75 1.06066 4.77701 6.3069 6.33315
0.484375 0.265625 0.75 1.08276 4.76729 6.21651 6.41786
0.46875 0.28125 0.75 1.10485 4.73467 6.11041 6.50846
0.453125 0.296875 0.75 1.12695 4.67733 6.0208 6.58741
0.4375 0.3125 0.75 1.14905 4.59986 5.95735 6.65382
0.421875 0.328125 0.75 1.17115 4.51449 5.92059 6.70704
0.40625 0.34375 0.75 1.19324 4.43756 5.90405 6.74648
0.390625 0.359375 0.75 1.21534 4.384 5.89865 6.77136
0.375 0.375 0.75 1.23744 4.3634 5.89601 6.78042
0.375 0.375 0.75 1.23744 4.3634 5.89601 6.78042
0.366667 0.366667 0.733333 1.25785 4.29866 5.9635 6.70283
0.358333 0.358333 0.716667 1.27826 4.22582 6.02898 6.61352
0.35 0.35 0.7 1.29867 4.14604 6.09232 6.51592
0.341667 0.341667 0.683333 1.31909 4.0608 6.15218 6.41376
0.333333 0.333333 0.666667 1.3395 3.97191 6.20381 6.31292
0.325 0.325 0.65 1.35991 3.88153 6.18766 6.27276
0.316667 0.316667 0.633333 1.38032 3.79231 6.08946 6.30608
0.308333 0.308333 0.616667 1.40074 3.70579 5.98385 6.33421
0.3 0.3 0.6 1.42115 3.61511 5.864 6.35411
0.291667 0.291667 0.583333 1.44156 3.52083 5.73139 6.36643
0.283333 0.283333 0.566667 1.46197 3.42466 5.58918 6.37223
0.275 0.275 0.55 1.48239 3.32787 5.44101 6.37165
0.266667 0.266667 0.533333 1.5028 3.23148 5.29134 6.36311
0.258333 0.258333 0.516667 1.52321 3.13676 5.14555 6.34336
0.25 0.25 0.5 1.54362 3.04574 5.00965 6.30833
0.241667 0.241667 0.483333 1.56404 2.95521 4.87875 6.25233
0.233333 0.233333 0.466667 1.58445 2.85988 4.74437 6.17508
0.225 0.225 0.45 1.60486 2.76023 4.60715 6.08148
0.216667 0.216667 0.433333 1.62527 2.65746 4.46757 5.97646
0.208333 0.208333 0.416667 1.64569 2.55343 4.32628 5.86409
0.2 0.2 0.4 1.6661 2.45048 4.18435 5.74703
0.191667 0.191667 0.383333 1.68651 2.35133 4.04353 5.62644
0.183333 0.183333 0.366667 1.70692 2.25703 3.90363 5.49988
0.175 0.175 0.35 1.72733 2.15804 3.75072 5.35199
0.166667 0.166667 0.333333 1.74775 2.05162 3.584 5.18102
0.158333 0.158333 0.316667 1.76816 1.93729 3.40619 4.98927
0.15 0.15 0.3 1.78857 1.81602 3.22107 4.78099
0.141667 0.141667 0.283333 1.80898 1.6912 3.03384 4.56267
0.133333 0.133333 0.266667 1.8294 1.56981 2.85167 4.34296
0.125 0.125 0.25 1.84981 1.46349 2.68425 4.13235
0.116667 0.116667 0.233333 1.87022 1.37741 2.5279 3.92412
0.108333 0.108333 0.216667 1.89063 1.30419 2.36935 3.70345
0.1 0.1 0.2 1.91105 1.23972 2.20613 3.46941
0.0916667 0.0916667 0.183333 1.93146 1.17966 2.03673 3.22166
0.0833333 0.0833333 0.166667 1.95187 1.12033 1.86162 2.96165
0.075 0.075 0.15 1.97228 1.05948 1.68451 2.69378
0.0666667 0.0666667 0.133333 1.9927 0.996976 1.51413 2.42696
0.0583333 0.0583333 0.116667 2.01311 0.934149 1.36148 2.17153
0.05 0.05 0.1 2.03352 0.863187 1.2118 1.90834
0.0416667 0.0416667 0.0833333 2.05393 0.777134 1.05432 1.63285
0.0333333 0.0333333 0.0666667 2.07435 0.671126 0.882353 1.34414
0.025 0.025 0.05 2.09476 0.541648 0.691525 1.04006
0.0166667 0.0166667 0.0333333 2.11517 0.386514 0.480224 0.717314
0.00833333 0.00833333 0.0166667 2.13558 0.204579 0.249652 0.371976
-3.08781e-16 -3.08781e-16 -6.17562e-16 2.156 -1.12135e-07 -6.97162e-08 3.21051e-07
0 0 0 2.156 0 0 0
0.0119048 0.0119048 0.0119048 2.17662 0.241878 0.256734 0.305307
0.0238095 0.0238095 0.0238095 2.19723 0.447792 0.475067 0.605691
0.0357143 0.0357143 0.0357143 2.21785 0.615671 0.652262 0.903468
0.047619 0.047619 0.047619 2.23847 0.748773 0.788691 1.19751
0.0595238 0.0595238 0.0595238 2.25909 0.851283 0.887777 1.48663
0.0714286 0.0714286 0.0714286 2.27971 0.928004 0.956284 1.76927
0.0833333 0.0833333 0.0833333 2.30033 0.983048 1.00546 2.04349
0.0952381 0.0952381 0.0952381 2.32095 1.02161 1.04943 2.30718
0.107143 0.107143 0.107143 2.34157 1.05898 1.09666 2.55826
0.119048 0.119048 0.119048 2.36219 1.11378 1.15671 2.79515
0.130952 0.130952 0.130952 2.38281 1.20308 1.24387 3.02002
0.142857 0.142857 0.142857 2.40343 1.32597 1.36104 3.24929
0.154762 0.154762 0.154762 2.42405 1.45925 1.49063 3.48355
0.166667 0.166667 0.166667 2.44467 1.58837 1.6191 3.72076
0.178571 0.178571 0.178571 2.46529 1.70583 1.73718 3.95861
0.190476 0.190476 0.190476 2.48591 1.80718 1.83987 4.19443
0.202381 0.202381 0.202381 2.50653 1.89037 1.9258 4.42539
0.214286 0.214286 0.214286 2.52715 1.95668 1.99645 4.64875
0.22619 0.22619 0.22619 2.54777 2.0113 2.05605 4.86207
0.238095 0.238095 0.238095 2.56839 2.06311 2.11155 5.06312
0.25 0.25 0.25 2.58901 2.12356 2.17215 5.24962
0.261905 0.261905 0.261905 2.60963 2.20396 2.24732 5.42909
0.27381 0.27381 0.27381 2.63025 2.29802 2.33229 5.60768
0.285714 0.285714 0.285714 2.65087 2.39382 2.41787 5.78121
0.297619 0.297619 0.297619 2.67149 2.483 2.49767 5.94647
0.309524 0.309524 0.309524 2.69211 2.55905 2.56943 6.10154
0.321429 0.321429 0.321429 2.71273 2.61756 2.63396 6.2458
0.333333 0.333333 0.333333 2.73335 2.66219 2.68834 6.37965
0.345238 0.345238 0.345238 2.75397 2.69729 2.73261 6.504
0.357143 0.357143 0.357143 2.77459 2.72764 2.7695 6.61956
0.369048 0.369048 0.369048 2.7952 2.75912 2.80339 6.72607
0.380952 0.380952 0.380952 2.81582 2.79878 2.84057 6.82314
0.392857 0.392857 0.392857 2.83644 2.84912 2.88478 6.91572
0.404762 0.404762 0.404762 2.85706 2.9018 2.93029 7.0019
0.416667 0.416667 0.416667 2.87768 2.94935 2.97195 7.08047
0.428571 0.428571 0.428571 2.8983 2.98619 3.00667 7.15288
0.440476 0.440476 0.440476 2.91892 3.00886 3.03322 7.22214
0.452381 0.452381 0.452381 2.93954 3.01687 3.05103 7.29054
0.464286 0.464286 0.464286 2.96016 3.01224 3.06053 7.35729
0.47619 0.47619 0.47619 2.98078 2.99928 3.06321 7.41714
0.488095 0.488095 0.488095 3.0014 2.98485 3.06161 7.46081
0.5 0.5 0.5 3.02202 2.97787 3.05978 7.47749
0.5 0.5 0.5 3.02202 2.97787 3.05978 7.47749
0.508929 0.482143 0.508929 3.04389 3.03025 3.07727 7.45846
0.517857 0.464286 0.517857 3.06576 3.1233 3.18403 7.40844
0.526786 0.446429 0.526786 3.08763 3.19962 3.41292 7.33943
0.535714 0.428571 0.535714 3.1095 3.29592 3.696 7.26237
0.544643 0.410714 0.544643 3.13137 3.40515 4.00911 7.18461
0.553571 0.392857 0.553571 3.15324 3.51967 4.33212 7.1091
0.5625 0.375 0.5625 3.17511 3.63286 4.64858 7.0352
0.571429 0.357143 0.571429 3.19698 3.74801 4.95945 6.95739
0.580357 0.339286 0.580357 3.21885 3.86923 5.26204 6.87302
0.589286 0.321429 0.589286 3.24073 3.99308 5.53543 6.78961
0.598214 0.303571 0.598214 3.2626 4.11558 5.75301 6.72491
0.607143 0.285714 0.607143 3.28447 4.23129 5.88031 6.7077
0.616071 0.267857 0.616071 3.30634 4.33341 5.8991 6.75246
0.625 0.25 0.625 3.32821 4.41474 5.83748 6.82859
0.625 0.25 0.625 3.32821 4.41474 5.83748 6.82859
0.609375 0.25 0.640625 3.3503 4.42696 5.83998 6.8139
0.59375 0.25 0.65625 3.3724 4.4641 5.85558 6.78001
0.578125 0.25 0.671875 3.3945 4.52297 5.88639 6.73103
0.5625 0.25 0.6875 3.4166 4.59487 5.93528 6.6702
0.546875 0.25 0.703125 3.43869 4.66683 6.00519 6.59942
0.53125 0.25 0.71875 3.46079 4.72566 6.09643 6.51909
0.515625 0.25 0.734375 3.48289 4.76291 6.20333 6.42848
0.5 0.25 0.75 3.50498 4.77701 6.3069 6.33315
0.5 0.25 0.75 3.50498 4.77701 6.3069 6.33315
0.5 0.264706 0.735294 3.52578 4.75403 6.29018 6.34397
0.5 0.279412 0.720588 3.54658 4.68953 6.22987 6.37885
0.5 0.294118 0.705882 3.56738 4.58708 6.12698 6.43837
0.5 0.308824 0.691176 3.58817 4.45582 5.9851 6.51699
0.5 0.323529 0.676471 3.60897 4.30685 5.80825 6.60746
0.5 0.338235 0.661765 3.62977 4.15068 5.60129 6.7024
0.5 0.352941 0.647059 3.65056 3.99619 5.37009 6.79516
0.5 0.367647 0.632353 3.67136 3.8507 5.12206 6.88036
0.5 0.382353 0.617647 3.69216 3.71895 4.86224 6.95545
0.5 0.397059 0.602941 3.71296 3.59434 4.57488 7.02691
0.5 0.411765 0.588235 3.73375 3.47598 4.26761 7.09982
0.5 0.426471 0.573529 3.75455 3.36516 3.95519 7.17701
0.5 0.441176 0.558824 3.77535 3.26415 3.65531 7.25794
0.5 0.455882 0.544118 3.79615 3.17602 3.38884 7.3379
0.5 0.470588 0.529412 3.81694 3.10167 3.18162 7.40842
0.5 0.485294 0.514706 3.83774 3.02029 3.08065 7.45864
0.5 0.5 0.5 3.85854 2.97787 3.05978 7.47749
0.5 0.5 0.5 3.85854 2.97787 3.05978 7.47749
0.491071 0.491071 0.517857 3.88041 3.00826 3.09736 7.45607
0.482143 0.482143 0.535714 3.90228 3.07723 3.22413 7.39951
0.473214 0.473214 0.553571 3.92415 3.16633 3.43639 7.32149
0.464286 0.464286 0.571429 3.94602 3.27179 3.70802 7.23526
0.455357 0.455357 0.589286 3.96789 3.38778 4.01365 7.15063
0.446429 0.446429 0.607143 3.98976 3.50782 4.33136 7.07235
0.4375 0.4375 0.625 4.01163 3.62602 4.64313 7.00027
0.428571 0.428571 0.642857 4.0335 3.74478 4.94868 6.92719
0.419643 0.419643 0.660714 4.05537 3.86647 5.24677 6.84831
0.410714 0.410714 0.678571 4.07724 3.98613 5.52068 6.76837
0.401786 0.401786 0.696429 4.09911 4.09941 5.74892 6.70074
0.392857 0.392857 0.714286 4.12098 4.20235 5.89929 6.67159
0.383929 0.383929 0.732143 4.14285 4.29137 5.94296 6.70487
0.375 0.375 0.75 4.16472 4.3634 5.89601 6.78042
0.625 0.25 0.625 4.16472 4.41474 5.83748 6.82859
0.616071 0.232143 0.616071 4.18659 4.48162 5.74727 6.90373
0.607143 0.214286 0.607143 4.20846 4.54461 5.64929 6.97253
0.598214 0.196429 0.598214 4.23033 4.60467 5.54801 7.03596
0.589286 0.178571 0.589286 4.25221 4.66158 5.44761 7.09461
0.580357 0.160714 0.580357 4.27408 4.71354 5.35226 7.14848
0.571429 0.142857 0.571429 4.29595 4.75768 5.26603 7.19685
0.5625 0.125 0.5625 4.31782 4.79101 5.19271 7.238
0.553571 0.107143 0.553571 4.33969 4.81364 5.12883 7.27155
0.544643 0.0892857 0.544643 4.36156 4.82774 5.0698 7.29992
0.535714 0.0714286 0.535714 4.38343 4.83433 5.01751 7.32374
0.526786 0.0535714 0.526786 4.4053 4.83521 4.97386 7.34281
0.517857 0.0357143 0.517857 4.42717 4.83294 4.94063 7.35678
0.508929 0.0178571 0.508929 4.44904 4.8302 4.91958 7.36542
0.5 8.32667e-17 0.5 4.47091 4.82901 4.91234 7.36845

View File

@ -0,0 +1,164 @@
# PDOS of Copper at 298 K
# Phys Rev 164, 922 (1967)
1.56e-05 0
0.135081 0
0.176624 0
0.342828 0.00136913
0.498642 0.00268108
0.602476 0.00355536
0.685609 0.0043255
0.846586 0.0058168
0.893293 0.0062495
0.966005 0.00756643
1.16845 0.011233
1.16849 0.0112341
1.3346 0.0149823
1.49028 0.0184952
1.51628 0.0193117
1.65121 0.023548
1.82764 0.0290878
1.83795 0.0294116
2.00924 0.0363333
2.16478 0.0426182
2.16487 0.0426233
2.19837 0.044404
2.28419 0.0489662
2.38775 0.0544708
2.40344 0.0555066
2.48119 0.0606386
2.5849 0.067484
2.65727 0.0722606
2.65742 0.072273
2.74553 0.0792169
2.81801 0.0849288
2.85414 0.0877762
2.89571 0.092199
2.98889 0.102111
3.03012 0.106496
3.08722 0.114907
3.1492 0.124036
3.16968 0.127053
3.19567 0.133012
3.27821 0.151939
3.31916 0.161328
3.32972 0.167405
3.35535 0.182152
3.39619 0.205652
3.40576 0.211163
3.416 0.215734
3.4162 0.215743
3.4525 0.217337
3.55622 0.221892
3.57161 0.222568
3.76349 0.232139
3.95538 0.241252
3.97112 0.241997
4.15765 0.250822
4.27712 0.255917
4.52076 0.266309
4.55723 0.267772
4.70233 0.273595
4.80105 0.27687
4.89432 0.279965
4.91012 0.273559
4.91039 0.265784
4.9526 0.246569
4.95669 0.245298
4.96723 0.242016
4.978 0.238665
4.98351 0.236951
4.98936 0.23513
5.00986 0.230982
5.04667 0.223531
5.07305 0.218194
5.09904 0.214018
5.13574 0.208122
5.14099 0.207805
5.16213 0.20653
5.17791 0.205579
5.23464 0.202159
5.2714 0.200491
5.41674 0.193896
5.43771 0.192787
5.54685 0.187014
5.57811 0.183809
5.67196 0.174186
5.70825 0.169617
5.79196 0.159074
5.81762 0.153984
5.87041 0.143511
5.91157 0.133554
5.93851 0.127035
5.99619 0.111476
6.00561 0.107735
6.03305 0.0968351
6.07381 0.0851029
6.08552 0.081734
6.11661 0.0840154
6.12114 0.0851131
6.1683 0.0965218
6.17328 0.0977261
6.19356 0.112357
6.20465 0.118323
6.21906 0.126072
6.23551 0.135326
6.27513 0.157619
6.28117 0.160817
6.33125 0.187336
6.34205 0.196676
6.38226 0.231463
6.38675 0.235347
6.41686 0.266441
6.41712 0.267067
6.43609 0.311714
6.43642 0.312105
6.45106 0.329547
6.48165 0.346463
6.49783 0.35179
6.53302 0.363376
6.54883 0.368721
6.58438 0.380746
6.62041 0.394307
6.63053 0.398117
6.67676 0.413658
6.71769 0.422835
6.72301 0.427471
6.74978 0.432286
6.75437 0.431902
6.7556 0.432212
6.75904 0.437883
6.76896 0.451602
6.77181 0.368366
6.77242 0.350529
6.77414 0.347671
6.78061 0.336938
6.78344 0.332234
6.79445 0.313938
6.80243 0.307449
6.81382 0.298185
6.81583 0.296556
6.82681 0.279176
6.84107 0.268177
6.84815 0.262708
6.86435 0.244869
6.87361 0.238652
6.89093 0.227029
6.90577 0.218282
6.92274 0.208272
6.93259 0.203523
6.95972 0.19043
6.98014 0.180328
6.99671 0.17213
7.03292 0.15711
7.04413 0.152457
7.07066 0.136445
7.0859 0.12832
7.1024 0.119518
7.17116 0.0838345
7.1968 0.060699
7.20868 0.0499852
7.25556 0.0359078
7.25592 0.0357998
7.28826 0.0222715
7.31389 0.0115511
7.32466 0.000573158

View File

@ -0,0 +1,101 @@
# nu DOS
0.040404 2.93333e-05
0.121212 0.000156444
0.20202 0.000234667
0.282828 0.00088
0.363636 0.001056
0.444444 0.00179911
0.525253 0.00291378
0.606061 0.00348089
0.686869 0.00391111
0.767677 0.005632
0.848485 0.00561244
0.929293 0.008448
1.0101 0.00973867
1.09091 0.0101884
1.17172 0.0127893
1.25253 0.0149013
1.33333 0.0149404
1.41414 0.0194187
1.49495 0.0219413
1.57576 0.0215111
1.65657 0.02728
1.73737 0.0290204
1.81818 0.028864
1.89899 0.037664
1.9798 0.0355324
2.06061 0.0420444
2.14141 0.0466987
2.22222 0.0479307
2.30303 0.0548338
2.38384 0.0589404
2.46465 0.0652373
2.54545 0.0690898
2.62626 0.0741938
2.70707 0.0810773
2.78788 0.0897404
2.86869 0.0975431
2.94949 0.102628
3.0303 0.117568
3.11111 0.129908
3.19192 0.142443
3.27273 0.173301
3.35354 0.192955
3.43434 0.185973
3.51515 0.199115
3.59596 0.196729
3.67677 0.2068
3.75758 0.2024
3.83838 0.20858
3.91919 0.210789
4 0.210027
4.08081 0.217419
4.16162 0.214857
4.24242 0.230795
4.32323 0.225515
4.40404 0.225476
4.48485 0.231792
4.56566 0.231381
4.64646 0.236857
4.72727 0.23848
4.80808 0.240885
4.88889 0.249294
4.9697 0.242704
5.05051 0.259541
5.13131 0.247886
5.21212 0.176763
5.29293 0.149717
5.37374 0.15003
5.45455 0.156229
5.53535 0.144085
5.61616 0.15402
5.69697 0.149541
5.77778 0.148192
5.85859 0.149678
5.93939 0.149893
6.0202 0.146901
6.10101 0.14475
6.18182 0.153296
6.26263 0.139588
6.34343 0.135109
6.42424 0.135403
6.50505 0.131609
6.58586 0.115867
6.66667 0.109433
6.74747 0.143792
6.82828 0.192036
6.90909 0.220293
6.9899 0.257038
7.07071 0.273093
7.15152 0.311246
7.23232 0.337705
7.31313 0.291808
7.39394 0.222132
7.47475 0.183529
7.55556 0.151145
7.63636 0.118761
7.71717 0.0815271
7.79798 0.0323058
7.87879 0.00111467
7.9596 0
8.0404 0

View File

@ -0,0 +1,102 @@
# frequency DOS
#THz number
0.0375 0.000106667
0.1125 0
0.1875 0.000426667
0.2625 0.000213333
0.3375 0.000213333
0.4125 0.00163556
0.4875 0.00163556
0.5625 0.00206222
0.6375 0.00256
0.7125 0.00348444
0.7875 0.00483556
0.8625 0.00704
0.9375 0.00945778
1.0125 0.0103822
1.0875 0.0137244
1.1625 0.0140089
1.2375 0.0184889
1.3125 0.0178489
1.3875 0.0243911
1.4625 0.0233244
1.5375 0.0264533
1.6125 0.0302933
1.6875 0.0323556
1.7625 0.0359822
1.8375 0.0397511
1.9125 0.0412444
1.9875 0.0511289
2.0625 0.0514844
2.1375 0.0559644
2.2125 0.0649956
2.2875 0.0666311
2.3625 0.0734578
2.4375 0.0812089
2.5125 0.08448
2.5875 0.0991289
2.6625 0.0979911
2.7375 0.111289
2.8125 0.124089
2.8875 0.13376
2.9625 0.160036
3.0375 0.181796
3.1125 0.188373
3.1875 0.211911
3.2625 0.212836
3.3375 0.205653
3.4125 0.212196
3.4875 0.2208
3.5625 0.219164
3.6375 0.228124
3.7125 0.222933
3.7875 0.232036
3.8625 0.234809
3.9375 0.234098
4.0125 0.242133
4.0875 0.237582
4.1625 0.242631
4.2375 0.251093
4.3125 0.245049
4.3875 0.253511
4.4625 0.251662
4.5375 0.254933
4.6125 0.257991
4.6875 0.253653
4.7625 0.251947
4.8375 0.197156
4.9125 0.166258
4.9875 0.162311
5.0625 0.159218
5.1375 0.156373
5.2125 0.160996
5.2875 0.152107
5.3625 0.160213
5.4375 0.151253
5.5125 0.155449
5.5875 0.1536
5.6625 0.152178
5.7375 0.152249
5.8125 0.14848
5.8875 0.146702
5.9625 0.141298
6.0375 0.13312
6.1125 0.123662
6.1875 0.115698
6.2625 0.112142
6.3375 0.160142
6.4125 0.21696
6.4875 0.250098
6.5625 0.273209
6.6375 0.306489
6.7125 0.337493
6.7875 0.363804
6.8625 0.329884
6.9375 0.253582
7.0125 0.207431
7.0875 0.173724
7.1625 0.144142
7.2375 0.111253
7.3125 0.0369422
7.3875 0.00323556
7.4625 0

View File

@ -0,0 +1,40 @@
# 3D copper block simulation
boundary p p p
units metal
atom_style atomic
# geometry
read_data data.pos
# EAM potential
pair_style eam/opt
pair_coeff * * cuu3.eam
neighbor 0.5 nsq
neigh_modify every 1 delay 0 check yes
#Langevin random seed
variable r equal 57085
variable t equal 300
variable d equal 1
# initialize
velocity all create $t 28459 rot yes dist gaussian mom yes
reset_timestep 0
# fixes
fix 1 all npt temp $t $t $d iso 1. 1. 1. pchain 8 drag 1.0
fix 2 all phonon 10 50000 500000 map.in CuPhonon
#
timestep 2e-3
# output
# 1 2 3 4 5 6 7 8 9 10 11 12
thermo_style custom step temp pe ke press vol lx ly lz xy xz yz
thermo 100
restart 2000000 restart.one restart.two
# execution
run 6500000
write_restart Restart.final

View File

@ -0,0 +1,22 @@
1
1
2
1
disp.dat
0 0 0 ! Gamma
0.5 0 0.5 ! X
10
0.5 0 0.5 ! X
0.5 0.25 0.75 ! W
5
0.5 0.25 0.75 ! W
0.5 0 0.5 ! X
5
0.5 1. 0.5 ! X'
0 0 0 ! Gamma
15
0 0 0 ! Gamma
0.5 0.5 0.5 ! L
10
q
0

View File

@ -0,0 +1,6 @@
1
1
2
2
disp.dat
0

View File

@ -0,0 +1,11 @@
1
1
1
80 80 80
2
y
0 7.5
100
n
dosnew.dat
0

View File

@ -0,0 +1,514 @@
8 8 8 1
#l1 l2 l3 k atom_id
0 0 0 0 1
1 0 0 0 2
2 0 0 0 3
3 0 0 0 4
4 0 0 0 5
5 0 0 0 6
6 0 0 0 7
7 0 0 0 8
0 1 0 0 9
1 1 0 0 10
2 1 0 0 11
3 1 0 0 12
4 1 0 0 13
5 1 0 0 14
6 1 0 0 15
7 1 0 0 16
0 2 0 0 17
1 2 0 0 18
2 2 0 0 19
3 2 0 0 20
4 2 0 0 21
5 2 0 0 22
6 2 0 0 23
7 2 0 0 24
0 3 0 0 25
1 3 0 0 26
2 3 0 0 27
3 3 0 0 28
4 3 0 0 29
5 3 0 0 30
6 3 0 0 31
7 3 0 0 32
0 4 0 0 33
1 4 0 0 34
2 4 0 0 35
3 4 0 0 36
4 4 0 0 37
5 4 0 0 38
6 4 0 0 39
7 4 0 0 40
0 5 0 0 41
1 5 0 0 42
2 5 0 0 43
3 5 0 0 44
4 5 0 0 45
5 5 0 0 46
6 5 0 0 47
7 5 0 0 48
0 6 0 0 49
1 6 0 0 50
2 6 0 0 51
3 6 0 0 52
4 6 0 0 53
5 6 0 0 54
6 6 0 0 55
7 6 0 0 56
0 7 0 0 57
1 7 0 0 58
2 7 0 0 59
3 7 0 0 60
4 7 0 0 61
5 7 0 0 62
6 7 0 0 63
7 7 0 0 64
0 0 1 0 65
1 0 1 0 66
2 0 1 0 67
3 0 1 0 68
4 0 1 0 69
5 0 1 0 70
6 0 1 0 71
7 0 1 0 72
0 1 1 0 73
1 1 1 0 74
2 1 1 0 75
3 1 1 0 76
4 1 1 0 77
5 1 1 0 78
6 1 1 0 79
7 1 1 0 80
0 2 1 0 81
1 2 1 0 82
2 2 1 0 83
3 2 1 0 84
4 2 1 0 85
5 2 1 0 86
6 2 1 0 87
7 2 1 0 88
0 3 1 0 89
1 3 1 0 90
2 3 1 0 91
3 3 1 0 92
4 3 1 0 93
5 3 1 0 94
6 3 1 0 95
7 3 1 0 96
0 4 1 0 97
1 4 1 0 98
2 4 1 0 99
3 4 1 0 100
4 4 1 0 101
5 4 1 0 102
6 4 1 0 103
7 4 1 0 104
0 5 1 0 105
1 5 1 0 106
2 5 1 0 107
3 5 1 0 108
4 5 1 0 109
5 5 1 0 110
6 5 1 0 111
7 5 1 0 112
0 6 1 0 113
1 6 1 0 114
2 6 1 0 115
3 6 1 0 116
4 6 1 0 117
5 6 1 0 118
6 6 1 0 119
7 6 1 0 120
0 7 1 0 121
1 7 1 0 122
2 7 1 0 123
3 7 1 0 124
4 7 1 0 125
5 7 1 0 126
6 7 1 0 127
7 7 1 0 128
0 0 2 0 129
1 0 2 0 130
2 0 2 0 131
3 0 2 0 132
4 0 2 0 133
5 0 2 0 134
6 0 2 0 135
7 0 2 0 136
0 1 2 0 137
1 1 2 0 138
2 1 2 0 139
3 1 2 0 140
4 1 2 0 141
5 1 2 0 142
6 1 2 0 143
7 1 2 0 144
0 2 2 0 145
1 2 2 0 146
2 2 2 0 147
3 2 2 0 148
4 2 2 0 149
5 2 2 0 150
6 2 2 0 151
7 2 2 0 152
0 3 2 0 153
1 3 2 0 154
2 3 2 0 155
3 3 2 0 156
4 3 2 0 157
5 3 2 0 158
6 3 2 0 159
7 3 2 0 160
0 4 2 0 161
1 4 2 0 162
2 4 2 0 163
3 4 2 0 164
4 4 2 0 165
5 4 2 0 166
6 4 2 0 167
7 4 2 0 168
0 5 2 0 169
1 5 2 0 170
2 5 2 0 171
3 5 2 0 172
4 5 2 0 173
5 5 2 0 174
6 5 2 0 175
7 5 2 0 176
0 6 2 0 177
1 6 2 0 178
2 6 2 0 179
3 6 2 0 180
4 6 2 0 181
5 6 2 0 182
6 6 2 0 183
7 6 2 0 184
0 7 2 0 185
1 7 2 0 186
2 7 2 0 187
3 7 2 0 188
4 7 2 0 189
5 7 2 0 190
6 7 2 0 191
7 7 2 0 192
0 0 3 0 193
1 0 3 0 194
2 0 3 0 195
3 0 3 0 196
4 0 3 0 197
5 0 3 0 198
6 0 3 0 199
7 0 3 0 200
0 1 3 0 201
1 1 3 0 202
2 1 3 0 203
3 1 3 0 204
4 1 3 0 205
5 1 3 0 206
6 1 3 0 207
7 1 3 0 208
0 2 3 0 209
1 2 3 0 210
2 2 3 0 211
3 2 3 0 212
4 2 3 0 213
5 2 3 0 214
6 2 3 0 215
7 2 3 0 216
0 3 3 0 217
1 3 3 0 218
2 3 3 0 219
3 3 3 0 220
4 3 3 0 221
5 3 3 0 222
6 3 3 0 223
7 3 3 0 224
0 4 3 0 225
1 4 3 0 226
2 4 3 0 227
3 4 3 0 228
4 4 3 0 229
5 4 3 0 230
6 4 3 0 231
7 4 3 0 232
0 5 3 0 233
1 5 3 0 234
2 5 3 0 235
3 5 3 0 236
4 5 3 0 237
5 5 3 0 238
6 5 3 0 239
7 5 3 0 240
0 6 3 0 241
1 6 3 0 242
2 6 3 0 243
3 6 3 0 244
4 6 3 0 245
5 6 3 0 246
6 6 3 0 247
7 6 3 0 248
0 7 3 0 249
1 7 3 0 250
2 7 3 0 251
3 7 3 0 252
4 7 3 0 253
5 7 3 0 254
6 7 3 0 255
7 7 3 0 256
0 0 4 0 257
1 0 4 0 258
2 0 4 0 259
3 0 4 0 260
4 0 4 0 261
5 0 4 0 262
6 0 4 0 263
7 0 4 0 264
0 1 4 0 265
1 1 4 0 266
2 1 4 0 267
3 1 4 0 268
4 1 4 0 269
5 1 4 0 270
6 1 4 0 271
7 1 4 0 272
0 2 4 0 273
1 2 4 0 274
2 2 4 0 275
3 2 4 0 276
4 2 4 0 277
5 2 4 0 278
6 2 4 0 279
7 2 4 0 280
0 3 4 0 281
1 3 4 0 282
2 3 4 0 283
3 3 4 0 284
4 3 4 0 285
5 3 4 0 286
6 3 4 0 287
7 3 4 0 288
0 4 4 0 289
1 4 4 0 290
2 4 4 0 291
3 4 4 0 292
4 4 4 0 293
5 4 4 0 294
6 4 4 0 295
7 4 4 0 296
0 5 4 0 297
1 5 4 0 298
2 5 4 0 299
3 5 4 0 300
4 5 4 0 301
5 5 4 0 302
6 5 4 0 303
7 5 4 0 304
0 6 4 0 305
1 6 4 0 306
2 6 4 0 307
3 6 4 0 308
4 6 4 0 309
5 6 4 0 310
6 6 4 0 311
7 6 4 0 312
0 7 4 0 313
1 7 4 0 314
2 7 4 0 315
3 7 4 0 316
4 7 4 0 317
5 7 4 0 318
6 7 4 0 319
7 7 4 0 320
0 0 5 0 321
1 0 5 0 322
2 0 5 0 323
3 0 5 0 324
4 0 5 0 325
5 0 5 0 326
6 0 5 0 327
7 0 5 0 328
0 1 5 0 329
1 1 5 0 330
2 1 5 0 331
3 1 5 0 332
4 1 5 0 333
5 1 5 0 334
6 1 5 0 335
7 1 5 0 336
0 2 5 0 337
1 2 5 0 338
2 2 5 0 339
3 2 5 0 340
4 2 5 0 341
5 2 5 0 342
6 2 5 0 343
7 2 5 0 344
0 3 5 0 345
1 3 5 0 346
2 3 5 0 347
3 3 5 0 348
4 3 5 0 349
5 3 5 0 350
6 3 5 0 351
7 3 5 0 352
0 4 5 0 353
1 4 5 0 354
2 4 5 0 355
3 4 5 0 356
4 4 5 0 357
5 4 5 0 358
6 4 5 0 359
7 4 5 0 360
0 5 5 0 361
1 5 5 0 362
2 5 5 0 363
3 5 5 0 364
4 5 5 0 365
5 5 5 0 366
6 5 5 0 367
7 5 5 0 368
0 6 5 0 369
1 6 5 0 370
2 6 5 0 371
3 6 5 0 372
4 6 5 0 373
5 6 5 0 374
6 6 5 0 375
7 6 5 0 376
0 7 5 0 377
1 7 5 0 378
2 7 5 0 379
3 7 5 0 380
4 7 5 0 381
5 7 5 0 382
6 7 5 0 383
7 7 5 0 384
0 0 6 0 385
1 0 6 0 386
2 0 6 0 387
3 0 6 0 388
4 0 6 0 389
5 0 6 0 390
6 0 6 0 391
7 0 6 0 392
0 1 6 0 393
1 1 6 0 394
2 1 6 0 395
3 1 6 0 396
4 1 6 0 397
5 1 6 0 398
6 1 6 0 399
7 1 6 0 400
0 2 6 0 401
1 2 6 0 402
2 2 6 0 403
3 2 6 0 404
4 2 6 0 405
5 2 6 0 406
6 2 6 0 407
7 2 6 0 408
0 3 6 0 409
1 3 6 0 410
2 3 6 0 411
3 3 6 0 412
4 3 6 0 413
5 3 6 0 414
6 3 6 0 415
7 3 6 0 416
0 4 6 0 417
1 4 6 0 418
2 4 6 0 419
3 4 6 0 420
4 4 6 0 421
5 4 6 0 422
6 4 6 0 423
7 4 6 0 424
0 5 6 0 425
1 5 6 0 426
2 5 6 0 427
3 5 6 0 428
4 5 6 0 429
5 5 6 0 430
6 5 6 0 431
7 5 6 0 432
0 6 6 0 433
1 6 6 0 434
2 6 6 0 435
3 6 6 0 436
4 6 6 0 437
5 6 6 0 438
6 6 6 0 439
7 6 6 0 440
0 7 6 0 441
1 7 6 0 442
2 7 6 0 443
3 7 6 0 444
4 7 6 0 445
5 7 6 0 446
6 7 6 0 447
7 7 6 0 448
0 0 7 0 449
1 0 7 0 450
2 0 7 0 451
3 0 7 0 452
4 0 7 0 453
5 0 7 0 454
6 0 7 0 455
7 0 7 0 456
0 1 7 0 457
1 1 7 0 458
2 1 7 0 459
3 1 7 0 460
4 1 7 0 461
5 1 7 0 462
6 1 7 0 463
7 1 7 0 464
0 2 7 0 465
1 2 7 0 466
2 2 7 0 467
3 2 7 0 468
4 2 7 0 469
5 2 7 0 470
6 2 7 0 471
7 2 7 0 472
0 3 7 0 473
1 3 7 0 474
2 3 7 0 475
3 3 7 0 476
4 3 7 0 477
5 3 7 0 478
6 3 7 0 479
7 3 7 0 480
0 4 7 0 481
1 4 7 0 482
2 4 7 0 483
3 4 7 0 484
4 4 7 0 485
5 4 7 0 486
6 4 7 0 487
7 4 7 0 488
0 5 7 0 489
1 5 7 0 490
2 5 7 0 491
3 5 7 0 492
4 5 7 0 493
5 5 7 0 494
6 5 7 0 495
7 5 7 0 496
0 6 7 0 497
1 6 7 0 498
2 6 7 0 499
3 6 7 0 500
4 6 7 0 501
5 6 7 0 502
6 6 7 0 503
7 6 7 0 504
0 7 7 0 505
1 7 7 0 506
2 7 7 0 507
3 7 7 0 508
4 7 7 0 509
5 7 7 0 510
6 7 7 0 511
7 7 7 0 512

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,18 @@
set term post enha colo 20
set out "pdisp.eps"
set xlabel "q"
set ylabel "frequency (THz)"
set xrange [0:4.47091]
set yrange [0:*]
set grid xtics
# {/Symbol G} will give you letter gamma in the label
set xtics ("{/Symbol G}" 0, "X" 0.707107, "W" 1.06066, "K" 1.23744, "{/Symbol G}" 2.156, "L" 3.02202, "U" 3.32821, "W" 3.50498, "L" 3.85854, "K/U" 4.16472, "X" 4.47091)
unset key
plot "disp.dat" u 4:5 w l lt 1,\
"" u 4:6 w l lt 1,\
"" u 4:7 w l lt 1

View File

@ -0,0 +1,985 @@
%!PS-Adobe-2.0
%%Title: pdos.eps
%%Creator: gnuplot 4.2 patchlevel 4
%%CreationDate: Mon Aug 2 22:48:59 2010
%%DocumentFonts: (atend)
%%BoundingBox: 50 50 554 770
%%Orientation: Landscape
%%Pages: (atend)
%%EndComments
%%BeginProlog
/gnudict 256 dict def
gnudict begin
%
% The following 6 true/false flags may be edited by hand if required
% The unit line width may also be changed
%
/Color true def
/Blacktext false def
/Solid false def
/Dashlength 1 def
/Landscape true def
/Level1 false def
/Rounded false def
/TransparentPatterns false def
/gnulinewidth 5.000 def
/userlinewidth gnulinewidth def
%
/vshift -66 def
/dl1 {
10.0 Dashlength mul mul
Rounded { currentlinewidth 0.75 mul sub dup 0 le { pop 0.01 } if } if
} def
/dl2 {
10.0 Dashlength mul mul
Rounded { currentlinewidth 0.75 mul add } if
} def
/hpt_ 31.5 def
/vpt_ 31.5 def
/hpt hpt_ def
/vpt vpt_ def
Level1 {} {
/SDict 10 dict def
systemdict /pdfmark known not {
userdict /pdfmark systemdict /cleartomark get put
} if
SDict begin [
/Title (pdos.eps)
/Subject (gnuplot plot)
/Creator (gnuplot 4.2 patchlevel 4 )
/Author (L.T. Kong,,,)
% /Producer (gnuplot)
% /Keywords ()
/CreationDate (Mon Aug 2 22:48:59 2010)
/DOCINFO pdfmark
end
} ifelse
%
% Gnuplot Prolog Version 4.2 (August 2006)
%
/M {moveto} bind def
/L {lineto} bind def
/R {rmoveto} bind def
/V {rlineto} bind def
/N {newpath moveto} bind def
/Z {closepath} bind def
/C {setrgbcolor} bind def
/f {rlineto fill} bind def
/vpt2 vpt 2 mul def
/hpt2 hpt 2 mul def
/Lshow {currentpoint stroke M 0 vshift R
Blacktext {gsave 0 setgray show grestore} {show} ifelse} def
/Rshow {currentpoint stroke M dup stringwidth pop neg vshift R
Blacktext {gsave 0 setgray show grestore} {show} ifelse} def
/Cshow {currentpoint stroke M dup stringwidth pop -2 div vshift R
Blacktext {gsave 0 setgray show grestore} {show} ifelse} def
/UP {dup vpt_ mul /vpt exch def hpt_ mul /hpt exch def
/hpt2 hpt 2 mul def /vpt2 vpt 2 mul def} def
/DL {Color {setrgbcolor Solid {pop []} if 0 setdash}
{pop pop pop 0 setgray Solid {pop []} if 0 setdash} ifelse} def
/BL {stroke userlinewidth 2 mul setlinewidth
Rounded {1 setlinejoin 1 setlinecap} if} def
/AL {stroke userlinewidth 2 div setlinewidth
Rounded {1 setlinejoin 1 setlinecap} if} def
/UL {dup gnulinewidth mul /userlinewidth exch def
dup 1 lt {pop 1} if 10 mul /udl exch def} def
/PL {stroke userlinewidth setlinewidth
Rounded {1 setlinejoin 1 setlinecap} if} def
% Default Line colors
/LCw {1 1 1} def
/LCb {0 0 0} def
/LCa {0 0 0} def
/LC0 {1 0 0} def
/LC1 {0 1 0} def
/LC2 {0 0 1} def
/LC3 {1 0 1} def
/LC4 {0 1 1} def
/LC5 {1 1 0} def
/LC6 {0 0 0} def
/LC7 {1 0.3 0} def
/LC8 {0.5 0.5 0.5} def
% Default Line Types
/LTw {PL [] 1 setgray} def
/LTb {BL [] LCb DL} def
/LTa {AL [1 udl mul 2 udl mul] 0 setdash LCa setrgbcolor} def
/LT0 {PL [] LC0 DL} def
/LT1 {PL [4 dl1 2 dl2] LC1 DL} def
/LT2 {PL [2 dl1 3 dl2] LC2 DL} def
/LT3 {PL [1 dl1 1.5 dl2] LC3 DL} def
/LT4 {PL [6 dl1 2 dl2 1 dl1 2 dl2] LC4 DL} def
/LT5 {PL [3 dl1 3 dl2 1 dl1 3 dl2] LC5 DL} def
/LT6 {PL [2 dl1 2 dl2 2 dl1 6 dl2] LC6 DL} def
/LT7 {PL [1 dl1 2 dl2 6 dl1 2 dl2 1 dl1 2 dl2] LC7 DL} def
/LT8 {PL [2 dl1 2 dl2 2 dl1 2 dl2 2 dl1 2 dl2 2 dl1 4 dl2] LC8 DL} def
/Pnt {stroke [] 0 setdash gsave 1 setlinecap M 0 0 V stroke grestore} def
/Dia {stroke [] 0 setdash 2 copy vpt add M
hpt neg vpt neg V hpt vpt neg V
hpt vpt V hpt neg vpt V closepath stroke
Pnt} def
/Pls {stroke [] 0 setdash vpt sub M 0 vpt2 V
currentpoint stroke M
hpt neg vpt neg R hpt2 0 V stroke
} def
/Box {stroke [] 0 setdash 2 copy exch hpt sub exch vpt add M
0 vpt2 neg V hpt2 0 V 0 vpt2 V
hpt2 neg 0 V closepath stroke
Pnt} def
/Crs {stroke [] 0 setdash exch hpt sub exch vpt add M
hpt2 vpt2 neg V currentpoint stroke M
hpt2 neg 0 R hpt2 vpt2 V stroke} def
/TriU {stroke [] 0 setdash 2 copy vpt 1.12 mul add M
hpt neg vpt -1.62 mul V
hpt 2 mul 0 V
hpt neg vpt 1.62 mul V closepath stroke
Pnt} def
/Star {2 copy Pls Crs} def
/BoxF {stroke [] 0 setdash exch hpt sub exch vpt add M
0 vpt2 neg V hpt2 0 V 0 vpt2 V
hpt2 neg 0 V closepath fill} def
/TriUF {stroke [] 0 setdash vpt 1.12 mul add M
hpt neg vpt -1.62 mul V
hpt 2 mul 0 V
hpt neg vpt 1.62 mul V closepath fill} def
/TriD {stroke [] 0 setdash 2 copy vpt 1.12 mul sub M
hpt neg vpt 1.62 mul V
hpt 2 mul 0 V
hpt neg vpt -1.62 mul V closepath stroke
Pnt} def
/TriDF {stroke [] 0 setdash vpt 1.12 mul sub M
hpt neg vpt 1.62 mul V
hpt 2 mul 0 V
hpt neg vpt -1.62 mul V closepath fill} def
/DiaF {stroke [] 0 setdash vpt add M
hpt neg vpt neg V hpt vpt neg V
hpt vpt V hpt neg vpt V closepath fill} def
/Pent {stroke [] 0 setdash 2 copy gsave
translate 0 hpt M 4 {72 rotate 0 hpt L} repeat
closepath stroke grestore Pnt} def
/PentF {stroke [] 0 setdash gsave
translate 0 hpt M 4 {72 rotate 0 hpt L} repeat
closepath fill grestore} def
/Circle {stroke [] 0 setdash 2 copy
hpt 0 360 arc stroke Pnt} def
/CircleF {stroke [] 0 setdash hpt 0 360 arc fill} def
/C0 {BL [] 0 setdash 2 copy moveto vpt 90 450 arc} bind def
/C1 {BL [] 0 setdash 2 copy moveto
2 copy vpt 0 90 arc closepath fill
vpt 0 360 arc closepath} bind def
/C2 {BL [] 0 setdash 2 copy moveto
2 copy vpt 90 180 arc closepath fill
vpt 0 360 arc closepath} bind def
/C3 {BL [] 0 setdash 2 copy moveto
2 copy vpt 0 180 arc closepath fill
vpt 0 360 arc closepath} bind def
/C4 {BL [] 0 setdash 2 copy moveto
2 copy vpt 180 270 arc closepath fill
vpt 0 360 arc closepath} bind def
/C5 {BL [] 0 setdash 2 copy moveto
2 copy vpt 0 90 arc
2 copy moveto
2 copy vpt 180 270 arc closepath fill
vpt 0 360 arc} bind def
/C6 {BL [] 0 setdash 2 copy moveto
2 copy vpt 90 270 arc closepath fill
vpt 0 360 arc closepath} bind def
/C7 {BL [] 0 setdash 2 copy moveto
2 copy vpt 0 270 arc closepath fill
vpt 0 360 arc closepath} bind def
/C8 {BL [] 0 setdash 2 copy moveto
2 copy vpt 270 360 arc closepath fill
vpt 0 360 arc closepath} bind def
/C9 {BL [] 0 setdash 2 copy moveto
2 copy vpt 270 450 arc closepath fill
vpt 0 360 arc closepath} bind def
/C10 {BL [] 0 setdash 2 copy 2 copy moveto vpt 270 360 arc closepath fill
2 copy moveto
2 copy vpt 90 180 arc closepath fill
vpt 0 360 arc closepath} bind def
/C11 {BL [] 0 setdash 2 copy moveto
2 copy vpt 0 180 arc closepath fill
2 copy moveto
2 copy vpt 270 360 arc closepath fill
vpt 0 360 arc closepath} bind def
/C12 {BL [] 0 setdash 2 copy moveto
2 copy vpt 180 360 arc closepath fill
vpt 0 360 arc closepath} bind def
/C13 {BL [] 0 setdash 2 copy moveto
2 copy vpt 0 90 arc closepath fill
2 copy moveto
2 copy vpt 180 360 arc closepath fill
vpt 0 360 arc closepath} bind def
/C14 {BL [] 0 setdash 2 copy moveto
2 copy vpt 90 360 arc closepath fill
vpt 0 360 arc} bind def
/C15 {BL [] 0 setdash 2 copy vpt 0 360 arc closepath fill
vpt 0 360 arc closepath} bind def
/Rec {newpath 4 2 roll moveto 1 index 0 rlineto 0 exch rlineto
neg 0 rlineto closepath} bind def
/Square {dup Rec} bind def
/Bsquare {vpt sub exch vpt sub exch vpt2 Square} bind def
/S0 {BL [] 0 setdash 2 copy moveto 0 vpt rlineto BL Bsquare} bind def
/S1 {BL [] 0 setdash 2 copy vpt Square fill Bsquare} bind def
/S2 {BL [] 0 setdash 2 copy exch vpt sub exch vpt Square fill Bsquare} bind def
/S3 {BL [] 0 setdash 2 copy exch vpt sub exch vpt2 vpt Rec fill Bsquare} bind def
/S4 {BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt Square fill Bsquare} bind def
/S5 {BL [] 0 setdash 2 copy 2 copy vpt Square fill
exch vpt sub exch vpt sub vpt Square fill Bsquare} bind def
/S6 {BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt vpt2 Rec fill Bsquare} bind def
/S7 {BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt vpt2 Rec fill
2 copy vpt Square fill Bsquare} bind def
/S8 {BL [] 0 setdash 2 copy vpt sub vpt Square fill Bsquare} bind def
/S9 {BL [] 0 setdash 2 copy vpt sub vpt vpt2 Rec fill Bsquare} bind def
/S10 {BL [] 0 setdash 2 copy vpt sub vpt Square fill 2 copy exch vpt sub exch vpt Square fill
Bsquare} bind def
/S11 {BL [] 0 setdash 2 copy vpt sub vpt Square fill 2 copy exch vpt sub exch vpt2 vpt Rec fill
Bsquare} bind def
/S12 {BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt2 vpt Rec fill Bsquare} bind def
/S13 {BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt2 vpt Rec fill
2 copy vpt Square fill Bsquare} bind def
/S14 {BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt2 vpt Rec fill
2 copy exch vpt sub exch vpt Square fill Bsquare} bind def
/S15 {BL [] 0 setdash 2 copy Bsquare fill Bsquare} bind def
/D0 {gsave translate 45 rotate 0 0 S0 stroke grestore} bind def
/D1 {gsave translate 45 rotate 0 0 S1 stroke grestore} bind def
/D2 {gsave translate 45 rotate 0 0 S2 stroke grestore} bind def
/D3 {gsave translate 45 rotate 0 0 S3 stroke grestore} bind def
/D4 {gsave translate 45 rotate 0 0 S4 stroke grestore} bind def
/D5 {gsave translate 45 rotate 0 0 S5 stroke grestore} bind def
/D6 {gsave translate 45 rotate 0 0 S6 stroke grestore} bind def
/D7 {gsave translate 45 rotate 0 0 S7 stroke grestore} bind def
/D8 {gsave translate 45 rotate 0 0 S8 stroke grestore} bind def
/D9 {gsave translate 45 rotate 0 0 S9 stroke grestore} bind def
/D10 {gsave translate 45 rotate 0 0 S10 stroke grestore} bind def
/D11 {gsave translate 45 rotate 0 0 S11 stroke grestore} bind def
/D12 {gsave translate 45 rotate 0 0 S12 stroke grestore} bind def
/D13 {gsave translate 45 rotate 0 0 S13 stroke grestore} bind def
/D14 {gsave translate 45 rotate 0 0 S14 stroke grestore} bind def
/D15 {gsave translate 45 rotate 0 0 S15 stroke grestore} bind def
/DiaE {stroke [] 0 setdash vpt add M
hpt neg vpt neg V hpt vpt neg V
hpt vpt V hpt neg vpt V closepath stroke} def
/BoxE {stroke [] 0 setdash exch hpt sub exch vpt add M
0 vpt2 neg V hpt2 0 V 0 vpt2 V
hpt2 neg 0 V closepath stroke} def
/TriUE {stroke [] 0 setdash vpt 1.12 mul add M
hpt neg vpt -1.62 mul V
hpt 2 mul 0 V
hpt neg vpt 1.62 mul V closepath stroke} def
/TriDE {stroke [] 0 setdash vpt 1.12 mul sub M
hpt neg vpt 1.62 mul V
hpt 2 mul 0 V
hpt neg vpt -1.62 mul V closepath stroke} def
/PentE {stroke [] 0 setdash gsave
translate 0 hpt M 4 {72 rotate 0 hpt L} repeat
closepath stroke grestore} def
/CircE {stroke [] 0 setdash
hpt 0 360 arc stroke} def
/Opaque {gsave closepath 1 setgray fill grestore 0 setgray closepath} def
/DiaW {stroke [] 0 setdash vpt add M
hpt neg vpt neg V hpt vpt neg V
hpt vpt V hpt neg vpt V Opaque stroke} def
/BoxW {stroke [] 0 setdash exch hpt sub exch vpt add M
0 vpt2 neg V hpt2 0 V 0 vpt2 V
hpt2 neg 0 V Opaque stroke} def
/TriUW {stroke [] 0 setdash vpt 1.12 mul add M
hpt neg vpt -1.62 mul V
hpt 2 mul 0 V
hpt neg vpt 1.62 mul V Opaque stroke} def
/TriDW {stroke [] 0 setdash vpt 1.12 mul sub M
hpt neg vpt 1.62 mul V
hpt 2 mul 0 V
hpt neg vpt -1.62 mul V Opaque stroke} def
/PentW {stroke [] 0 setdash gsave
translate 0 hpt M 4 {72 rotate 0 hpt L} repeat
Opaque stroke grestore} def
/CircW {stroke [] 0 setdash
hpt 0 360 arc Opaque stroke} def
/BoxFill {gsave Rec 1 setgray fill grestore} def
/Density {
/Fillden exch def
currentrgbcolor
/ColB exch def /ColG exch def /ColR exch def
/ColR ColR Fillden mul Fillden sub 1 add def
/ColG ColG Fillden mul Fillden sub 1 add def
/ColB ColB Fillden mul Fillden sub 1 add def
ColR ColG ColB setrgbcolor} def
/BoxColFill {gsave Rec PolyFill} def
/PolyFill {gsave Density fill grestore grestore} def
/h {rlineto rlineto rlineto gsave closepath fill grestore} bind def
%
% PostScript Level 1 Pattern Fill routine for rectangles
% Usage: x y w h s a XX PatternFill
% x,y = lower left corner of box to be filled
% w,h = width and height of box
% a = angle in degrees between lines and x-axis
% XX = 0/1 for no/yes cross-hatch
%
/PatternFill {gsave /PFa [ 9 2 roll ] def
PFa 0 get PFa 2 get 2 div add PFa 1 get PFa 3 get 2 div add translate
PFa 2 get -2 div PFa 3 get -2 div PFa 2 get PFa 3 get Rec
gsave 1 setgray fill grestore clip
currentlinewidth 0.5 mul setlinewidth
/PFs PFa 2 get dup mul PFa 3 get dup mul add sqrt def
0 0 M PFa 5 get rotate PFs -2 div dup translate
0 1 PFs PFa 4 get div 1 add floor cvi
{PFa 4 get mul 0 M 0 PFs V} for
0 PFa 6 get ne {
0 1 PFs PFa 4 get div 1 add floor cvi
{PFa 4 get mul 0 2 1 roll M PFs 0 V} for
} if
stroke grestore} def
%
/languagelevel where
{pop languagelevel} {1} ifelse
2 lt
{/InterpretLevel1 true def}
{/InterpretLevel1 Level1 def}
ifelse
%
% PostScript level 2 pattern fill definitions
%
/Level2PatternFill {
/Tile8x8 {/PaintType 2 /PatternType 1 /TilingType 1 /BBox [0 0 8 8] /XStep 8 /YStep 8}
bind def
/KeepColor {currentrgbcolor [/Pattern /DeviceRGB] setcolorspace} bind def
<< Tile8x8
/PaintProc {0.5 setlinewidth pop 0 0 M 8 8 L 0 8 M 8 0 L stroke}
>> matrix makepattern
/Pat1 exch def
<< Tile8x8
/PaintProc {0.5 setlinewidth pop 0 0 M 8 8 L 0 8 M 8 0 L stroke
0 4 M 4 8 L 8 4 L 4 0 L 0 4 L stroke}
>> matrix makepattern
/Pat2 exch def
<< Tile8x8
/PaintProc {0.5 setlinewidth pop 0 0 M 0 8 L
8 8 L 8 0 L 0 0 L fill}
>> matrix makepattern
/Pat3 exch def
<< Tile8x8
/PaintProc {0.5 setlinewidth pop -4 8 M 8 -4 L
0 12 M 12 0 L stroke}
>> matrix makepattern
/Pat4 exch def
<< Tile8x8
/PaintProc {0.5 setlinewidth pop -4 0 M 8 12 L
0 -4 M 12 8 L stroke}
>> matrix makepattern
/Pat5 exch def
<< Tile8x8
/PaintProc {0.5 setlinewidth pop -2 8 M 4 -4 L
0 12 M 8 -4 L 4 12 M 10 0 L stroke}
>> matrix makepattern
/Pat6 exch def
<< Tile8x8
/PaintProc {0.5 setlinewidth pop -2 0 M 4 12 L
0 -4 M 8 12 L 4 -4 M 10 8 L stroke}
>> matrix makepattern
/Pat7 exch def
<< Tile8x8
/PaintProc {0.5 setlinewidth pop 8 -2 M -4 4 L
12 0 M -4 8 L 12 4 M 0 10 L stroke}
>> matrix makepattern
/Pat8 exch def
<< Tile8x8
/PaintProc {0.5 setlinewidth pop 0 -2 M 12 4 L
-4 0 M 12 8 L -4 4 M 8 10 L stroke}
>> matrix makepattern
/Pat9 exch def
/Pattern1 {PatternBgnd KeepColor Pat1 setpattern} bind def
/Pattern2 {PatternBgnd KeepColor Pat2 setpattern} bind def
/Pattern3 {PatternBgnd KeepColor Pat3 setpattern} bind def
/Pattern4 {PatternBgnd KeepColor Landscape {Pat5} {Pat4} ifelse setpattern} bind def
/Pattern5 {PatternBgnd KeepColor Landscape {Pat4} {Pat5} ifelse setpattern} bind def
/Pattern6 {PatternBgnd KeepColor Landscape {Pat9} {Pat6} ifelse setpattern} bind def
/Pattern7 {PatternBgnd KeepColor Landscape {Pat8} {Pat7} ifelse setpattern} bind def
} def
%
%
%End of PostScript Level 2 code
%
/PatternBgnd {
TransparentPatterns {} {gsave 1 setgray fill grestore} ifelse
} def
%
% Substitute for Level 2 pattern fill codes with
% grayscale if Level 2 support is not selected.
%
/Level1PatternFill {
/Pattern1 {0.250 Density} bind def
/Pattern2 {0.500 Density} bind def
/Pattern3 {0.750 Density} bind def
/Pattern4 {0.125 Density} bind def
/Pattern5 {0.375 Density} bind def
/Pattern6 {0.625 Density} bind def
/Pattern7 {0.875 Density} bind def
} def
%
% Now test for support of Level 2 code
%
Level1 {Level1PatternFill} {Level2PatternFill} ifelse
%
/Symbol-Oblique /Symbol findfont [1 0 .167 1 0 0] makefont
dup length dict begin {1 index /FID eq {pop pop} {def} ifelse} forall
currentdict end definefont pop
/MFshow {
{ dup 5 get 3 ge
{ 5 get 3 eq {gsave} {grestore} ifelse }
{dup dup 0 get findfont exch 1 get scalefont setfont
[ currentpoint ] exch dup 2 get 0 exch R dup 5 get 2 ne {dup dup 6
get exch 4 get {show} {stringwidth pop 0 R} ifelse }if dup 5 get 0 eq
{dup 3 get {2 get neg 0 exch R pop} {pop aload pop M} ifelse} {dup 5
get 1 eq {dup 2 get exch dup 3 get exch 6 get stringwidth pop -2 div
dup 0 R} {dup 6 get stringwidth pop -2 div 0 R 6 get
show 2 index {aload pop M neg 3 -1 roll neg R pop pop} {pop pop pop
pop aload pop M} ifelse }ifelse }ifelse }
ifelse }
forall} bind def
/MFwidth {0 exch { dup 5 get 3 ge { 5 get 3 eq { 0 } { pop } ifelse }
{dup 3 get{dup dup 0 get findfont exch 1 get scalefont setfont
6 get stringwidth pop add} {pop} ifelse} ifelse} forall} bind def
/MLshow { currentpoint stroke M
0 exch R
Blacktext {gsave 0 setgray MFshow grestore} {MFshow} ifelse } bind def
/MRshow { currentpoint stroke M
exch dup MFwidth neg 3 -1 roll R
Blacktext {gsave 0 setgray MFshow grestore} {MFshow} ifelse } bind def
/MCshow { currentpoint stroke M
exch dup MFwidth -2 div 3 -1 roll R
Blacktext {gsave 0 setgray MFshow grestore} {MFshow} ifelse } bind def
/XYsave { [( ) 1 2 true false 3 ()] } bind def
/XYrestore { [( ) 1 2 true false 4 ()] } bind def
end
%%EndProlog
%%Page: 1 1
gnudict begin
gsave
50 50 translate
0.100 0.100 scale
90 rotate
0 -5040 translate
0 setgray
newpath
(Helvetica) findfont 200 scalefont setfont
1.000 UL
LTb
640 640 M
0 63 V
0 4097 R
0 -63 V
stroke
640 440 M
[ [(Helvetica) 200.0 0.0 true true 0 ( 0)]
] -66.7 MCshow
1.000 UL
LTb
1433 640 M
0 63 V
0 4097 R
0 -63 V
stroke
1433 440 M
[ [(Helvetica) 200.0 0.0 true true 0 ( 1)]
] -66.7 MCshow
1.000 UL
LTb
2225 640 M
0 63 V
0 4097 R
0 -63 V
stroke
2225 440 M
[ [(Helvetica) 200.0 0.0 true true 0 ( 2)]
] -66.7 MCshow
1.000 UL
LTb
3018 640 M
0 63 V
0 4097 R
0 -63 V
stroke
3018 440 M
[ [(Helvetica) 200.0 0.0 true true 0 ( 3)]
] -66.7 MCshow
1.000 UL
LTb
3810 640 M
0 63 V
0 4097 R
0 -63 V
stroke
3810 440 M
[ [(Helvetica) 200.0 0.0 true true 0 ( 4)]
] -66.7 MCshow
1.000 UL
LTb
4603 640 M
0 63 V
0 4097 R
0 -63 V
stroke
4603 440 M
[ [(Helvetica) 200.0 0.0 true true 0 ( 5)]
] -66.7 MCshow
1.000 UL
LTb
5395 640 M
0 63 V
0 4097 R
0 -63 V
stroke
5395 440 M
[ [(Helvetica) 200.0 0.0 true true 0 ( 6)]
] -66.7 MCshow
1.000 UL
LTb
6188 640 M
0 63 V
0 4097 R
0 -63 V
stroke
6188 440 M
[ [(Helvetica) 200.0 0.0 true true 0 ( 7)]
] -66.7 MCshow
1.000 UL
LTb
6980 640 M
0 63 V
0 4097 R
0 -63 V
stroke
6980 440 M
[ [(Helvetica) 200.0 0.0 true true 0 ( 8)]
] -66.7 MCshow
1.000 UL
LTb
1.000 UL
LTb
640 4800 N
640 640 L
6340 0 V
0 4160 V
-6340 0 V
Z stroke
LCb setrgbcolor
440 2720 M
currentpoint gsave translate 90 rotate 0 0 moveto
[ [(Helvetica) 200.0 0.0 true true 0 (g\()]
[(Symbol) 200.0 0.0 true true 0 (n)]
[(Helvetica) 200.0 0.0 true true 0 (\))]
] -66.7 MCshow
grestore
LTb
LCb setrgbcolor
3810 140 M
[ [(Symbol) 200.0 0.0 true true 0 (n)]
[(Helvetica) 200.0 0.0 true true 0 ( \(THz\))]
] -66.7 MCshow
LTb
1.000 UP
1.000 UL
LTb
1.000 UL
LTb
1240 4637 M
[ [(Helvetica) 200.0 0.0 true true 0 (LD)]
] -66.7 MRshow
1360 4637 M
543 0 V
672 640 M
64 1 V
64 1 V
64 5 V
64 2 V
64 6 V
64 9 V
64 5 V
64 4 V
64 14 V
64 0 V
64 23 V
65 11 V
64 4 V
64 21 V
64 18 V
64 0 V
64 38 V
64 21 V
64 -4 V
64 48 V
64 14 V
64 -1 V
64 73 V
64 -17 V
64 54 V
64 39 V
64 10 V
64 57 V
64 34 V
64 53 V
64 32 V
64 42 V
64 58 V
64 72 V
64 65 V
64 42 V
65 124 V
64 103 V
64 104 V
64 257 V
64 163 V
64 -58 V
64 110 V
64 -20 V
64 84 V
64 -37 V
64 51 V
64 19 V
64 -7 V
64 62 V
64 -21 V
64 132 V
64 -44 V
64 0 V
64 53 V
64 -4 V
64 46 V
64 13 V
64 20 V
64 70 V
64 -55 V
65 140 V
64 -97 V
64 -591 V
64 -225 V
64 2 V
64 52 V
64 -101 V
64 82 V
64 -37 V
64 -11 V
64 12 V
64 2 V
64 -25 V
64 -18 V
64 71 V
64 -114 V
64 -37 V
64 3 V
64 -32 V
64 -131 V
64 -54 V
64 286 V
64 402 V
64 235 V
64 306 V
65 133 V
64 318 V
64 220 V
64 -382 V
64 -580 V
64 -321 V
64 -269 V
64 -270 V
64 -310 V
64 -409 V
64 -260 V
64 -9 V
32 0 V
stroke
2.000 UL
LT1
LTb
1240 4437 M
[ [(Helvetica) 200.0 0.0 true true 0 (MD)]
] -66.7 MRshow
LT1
1360 4437 M
543 0 V
670 641 M
59 -1 V
60 4 V
59 -2 V
59 0 V
60 12 V
59 0 V
60 3 V
59 4 V
60 8 V
59 11 V
60 19 V
59 20 V
59 7 V
60 28 V
59 3 V
60 37 V
59 -5 V
60 54 V
59 -9 V
59 26 V
60 32 V
59 17 V
60 30 V
59 32 V
60 12 V
59 82 V
60 3 V
59 38 V
59 75 V
60 13 V
59 57 V
60 65 V
59 27 V
60 122 V
59 -10 V
59 111 V
60 106 V
59 81 V
60 218 V
59 182 V
60 54 V
59 196 V
60 8 V
59 -60 V
59 54 V
60 72 V
59 -14 V
60 75 V
59 -43 V
60 76 V
59 23 V
59 -6 V
60 67 V
59 -38 V
60 42 V
59 70 V
60 -50 V
59 70 V
60 -15 V
59 27 V
59 25 V
60 -36 V
59 -14 V
60 -456 V
59 -257 V
60 -33 V
59 -25 V
59 -24 V
60 38 V
59 -73 V
60 67 V
59 -75 V
60 35 V
59 -15 V
60 -12 V
59 1 V
59 -32 V
60 -14 V
59 -45 V
60 -68 V
59 -79 V
60 -66 V
59 -30 V
59 399 V
60 473 V
59 276 V
60 192 V
59 277 V
60 258 V
59 219 V
60 -282 V
59 -635 V
59 -384 V
60 -281 V
59 -246 V
60 -273 V
59 -619 V
60 -280 V
59 -27 V
stroke
LT2
LTb
1240 4237 M
[ [(Helvetica) 200.0 0.0 true true 0 (expr)]
] -66.7 MRshow
LT2
1360 4237 M
543 0 V
640 640 M
107 0 V
33 0 V
132 11 V
123 11 V
82 8 V
66 6 V
128 12 V
37 4 V
58 11 V
160 30 V
132 32 V
123 29 V
21 7 V
107 35 V
139 46 V
9 3 V
135 57 V
124 53 V
26 14 V
68 38 V
82 46 V
13 9 V
61 43 V
83 56 V
57 40 V
70 58 V
57 48 V
29 23 V
33 37 V
74 83 V
32 36 V
46 70 V
49 76 V
16 25 V
21 50 V
65 157 V
32 78 V
9 51 V
20 123 V
32 195 V
8 46 V
8 38 V
29 13 V
82 38 V
13 6 V
152 79 V
152 76 V
12 6 V
148 74 V
95 42 V
193 87 V
29 12 V
115 48 V
78 28 V
74 25 V
12 -53 V
0 -65 V
34 -160 V
3 -10 V
9 -27 V
8 -28 V
4 -15 V
5 -15 V
16 -34 V
29 -62 V
21 -45 V
21 -34 V
29 -49 V
4 -3 V
17 -11 V
12 -8 V
45 -28 V
30 -14 V
115 -55 V
16 -9 V
87 -48 V
25 -27 V
74 -80 V
29 -38 V
66 -88 V
20 -42 V
42 -87 V
33 -83 V
21 -54 V
46 -130 V
7 -31 V
22 -90 V
32 -98 V
10 -28 V
24 19 V
4 9 V
37 95 V
4 10 V
16 122 V
9 49 V
12 65 V
13 77 V
31 185 V
5 27 V
40 221 V
8 77 V
32 290 V
stroke 5698 2566 M
3 32 V
24 259 V
1 5 V
15 371 V
0 4 V
11 145 V
25 141 V
13 44 V
27 96 V
13 45 V
28 100 V
29 113 V
8 31 V
36 130 V
33 76 V
4 39 V
21 40 V
4 -4 V
1 3 V
3 47 V
7 114 V
3 -692 V
0 -149 V
2 -23 V
5 -90 V
2 -39 V
9 -152 V
6 -54 V
9 -77 V
2 -14 V
8 -144 V
12 -92 V
5 -45 V
13 -149 V
7 -51 V
14 -97 V
12 -73 V
13 -83 V
8 -40 V
22 -109 V
16 -84 V
13 -68 V
29 -125 V
8 -39 V
21 -133 V
13 -67 V
13 -74 V
54 -296 V
20 -193 V
10 -89 V
37 -117 V
0 -1 V
26 -113 V
20 -89 V
9 -91 V
stroke
1.000 UL
LTb
640 4800 N
640 640 L
6340 0 V
0 4160 V
-6340 0 V
Z stroke
1.000 UP
1.000 UL
LTb
stroke
grestore
end
showpage
%%Trailer
%%DocumentFonts: Symbol Helvetica
%%Pages: 1

View File

@ -0,0 +1,18 @@
set term post enha colo 20
set out 'pdisp.eps'
set xlabel 'q'
set ylabel '{/Symbol n} (THz)'
set xtics ("{/Symbol G}" 0., "X" 0.7071, "W" 1.06066, "X'" 1.41421, "{/Symbol G}" 2.63896, "L" 3.50498)
set xr [0:3.50498]
set yr [0:8.5]
set key at 3.0,8.2
set grid xtics lt 9
plot './disp-ld.dat' u 2:6 w l lt -1 t 'LD',\
'' u 2:7 w l lt -1 t '', \
'' u 2:8 w l lt -1 t '',\
'./disp.dat' u 4:5 w p pt 7 lt 1 t 'MD',\
'' u 4:6 w p pt 7 lt 1 t '',\
'' u 4:7 w p pt 7 lt 1 t '', \
'disp-expr.dat' u 5:2 w p pt 5 lt 3 t 'expr'

View File

@ -0,0 +1,13 @@
set term post enha colo 20
set out 'pdos.eps'
set xlabel '{/Symbol n} (THz)'
set ylabel 'g({/Symbol n})'
set xr [0:8]
set yr [0:0.5]
set key top left
unset ytics
plot 'dos-ld.dat' u 1:2 w l lt -1 t 'LD',\
'dos.dat' u 1:2 w l lt 2 lw 2 t 'MD',\
'dos-expr.dat' u 1:2 w l lt 3 lw 2 t 'expr'

Binary file not shown.

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,35 @@
This directory illustrates the usage of fix-phonon to calculate the dynamical
matrix as well as phonon dispersion curve for Graphene based on a Tersoff potentail.
The files under this directory:
1) Graphene.bin.6000000 : last output binary file by fix-phonon
2) Graphene.log : log file for fix-phonon
3) SiC.tersoff : Tersoff potential file for SiC
4) data.pos : LAMMPS input file
5) pdisp.dat : phonon dispersion data from Graphene.bin.6000000
6) in.disp : input file to get disp.dat by phana
7) in.graphene : LAMMPS input file
8) log.lammps : LAMMPS log file
9) map.in : LAMMPS input file for fix-phonon
10) pdisp.eps : figure of phonon dispersion curves
11) plot.disp : gnuplot script to generate pdisp.eps
12) pdisp.gnuplot : gnuplot script to generate pdisp.eps (auto generated)
13) README : this file
To run this example, simply invoke:
-> lmp -in in.graphene -screen none
Once done, one can use the auxiliary analysing code "phana" to obtain "pdisp.dat"
-> phana Graphene.bin.6000000 < in.disp
And then use the gnuplot script file "plot.disp" to generate pdisp.eps:
-> gnuplot plot.pdisp
The resultant ``pdisp.eps'' shows the measured phonon dispersion.
NOTE: the binary file provided here might be unreadable on some computers because of
incompatibility between different architectures.
Author: Ling-Ti Kong, konglt@sjtu.edu.cn
Nov 2015

View File

@ -0,0 +1,39 @@
# Si and C mixture, parameterized for Tersoff potential
# this file is from Rutuparna.Narulkar @ okstate.edu
# values are from Phys Rev B, 39, 5566-5568 (1989)
# and errata (PRB 41, 3248)
# Tersoff parameters for various elements and mixtures
# multiple entries can be added to this file, LAMMPS reads the ones it needs
# these entries are in LAMMPS "metal" units:
# A,B = eV; lambda1,lambda2,lambda3 = 1/Angstroms; R,D = Angstroms
# other quantities are unitless
# format of a single entry (one or more lines):
# element 1, element 2, element 3,
# m, gamma, lambda3, c, d, costheta0, n,
# beta, lambda2, B, R, D, lambda1, A
C C C 3.0 1.0 0.0 38049 4.3484 -.57058 .72751
0.00000015724 2.2119 346.7 1.95 0.15 3.4879 1393.6
Si Si Si 3.0 1.0 0.0 100390 16.217 -.59825 .78734
0.0000011 1.73222 471.18 2.85 0.15 2.4799 1830.8
Si Si C 3.0 1.0 0.0 100390 16.217 -.59825 0.0
0.0 0.0 0.0 2.36 0.15 0.0 0.0
Si C C 3.0 1.0 0.0 100390 16.217 -.59825 .787340
0.0000011 1.97205 395.126 2.36 0.15 2.9839 1597.3111
C Si Si 3.0 1.0 0.0 38049 4.3484 -.57058 .72751
0.00000015724 1.97205 395.126 2.36 0.15 2.9839 1597.3111
C Si C 3.0 1.0 0.0 38049 4.3484 -.57058 0.0
0.0 0.0 0.0 1.95 0.15 0.0 0.0
C C Si 3.0 1.0 0.0 38049 4.3484 -.57058 0.0
0.0 0.0 0.0 2.36 0.15 0.0 0.0
Si C Si 3.0 1.0 0.0 100390 16.217 -.59825 0.0
0.0 0.0 0.0 2.85 0.15 0.0 0.0

View File

@ -0,0 +1,211 @@
# Graphene cell with dimension 10 x 10 x 1 and a = 2.522
200 atoms
1 atom types
0. 25.22000000000000 xlo xhi
0. 21.84116068344354 ylo yhi
-10. 10.00000000000000 zlo zhi
12.61000000000000 0.00000000000000 0.00000000000000 xy xz yz
Atoms
1 1 0.00000000000000 0.00000000000000 0.00000000000000
2 1 1.26100000000000 0.72803868944812 0.00000000000000
3 1 2.52200000000000 0.00000000000000 0.00000000000000
4 1 3.78300000000000 0.72803868944812 0.00000000000000
5 1 5.04400000000000 0.00000000000000 0.00000000000000
6 1 6.30500000000000 0.72803868944812 0.00000000000000
7 1 7.56600000000000 0.00000000000000 0.00000000000000
8 1 8.82700000000000 0.72803868944812 0.00000000000000
9 1 10.08800000000000 0.00000000000000 0.00000000000000
10 1 11.34900000000000 0.72803868944812 0.00000000000000
11 1 12.61000000000000 0.00000000000000 0.00000000000000
12 1 13.87100000000000 0.72803868944812 0.00000000000000
13 1 15.13200000000000 0.00000000000000 0.00000000000000
14 1 16.39300000000000 0.72803868944812 0.00000000000000
15 1 17.65400000000000 0.00000000000000 0.00000000000000
16 1 18.91500000000000 0.72803868944812 0.00000000000000
17 1 20.17600000000000 0.00000000000000 0.00000000000000
18 1 21.43700000000000 0.72803868944812 0.00000000000000
19 1 22.69800000000000 0.00000000000000 0.00000000000000
20 1 23.95900000000000 0.72803868944812 0.00000000000000
21 1 1.26100000000000 2.18411606834435 0.00000000000000
22 1 2.52200000000000 2.91215475779247 0.00000000000000
23 1 3.78300000000000 2.18411606834435 0.00000000000000
24 1 5.04400000000000 2.91215475779247 0.00000000000000
25 1 6.30500000000000 2.18411606834435 0.00000000000000
26 1 7.56600000000000 2.91215475779247 0.00000000000000
27 1 8.82700000000000 2.18411606834435 0.00000000000000
28 1 10.08800000000000 2.91215475779247 0.00000000000000
29 1 11.34900000000000 2.18411606834435 0.00000000000000
30 1 12.61000000000000 2.91215475779247 0.00000000000000
31 1 13.87100000000000 2.18411606834435 0.00000000000000
32 1 15.13200000000000 2.91215475779247 0.00000000000000
33 1 16.39300000000000 2.18411606834435 0.00000000000000
34 1 17.65400000000000 2.91215475779247 0.00000000000000
35 1 18.91500000000000 2.18411606834435 0.00000000000000
36 1 20.17600000000000 2.91215475779247 0.00000000000000
37 1 21.43700000000000 2.18411606834435 0.00000000000000
38 1 22.69800000000000 2.91215475779247 0.00000000000000
39 1 23.95900000000000 2.18411606834435 0.00000000000000
40 1 25.22000000000000 2.91215475779247 0.00000000000000
41 1 2.52200000000000 4.36823213668871 0.00000000000000
42 1 3.78300000000000 5.09627082613683 0.00000000000000
43 1 5.04400000000000 4.36823213668871 0.00000000000000
44 1 6.30500000000000 5.09627082613683 0.00000000000000
45 1 7.56600000000000 4.36823213668871 0.00000000000000
46 1 8.82700000000000 5.09627082613683 0.00000000000000
47 1 10.08800000000000 4.36823213668871 0.00000000000000
48 1 11.34900000000000 5.09627082613683 0.00000000000000
49 1 12.61000000000000 4.36823213668871 0.00000000000000
50 1 13.87100000000000 5.09627082613683 0.00000000000000
51 1 15.13200000000000 4.36823213668871 0.00000000000000
52 1 16.39300000000000 5.09627082613683 0.00000000000000
53 1 17.65400000000000 4.36823213668871 0.00000000000000
54 1 18.91500000000000 5.09627082613683 0.00000000000000
55 1 20.17600000000000 4.36823213668871 0.00000000000000
56 1 21.43700000000000 5.09627082613683 0.00000000000000
57 1 22.69800000000000 4.36823213668871 0.00000000000000
58 1 23.95900000000000 5.09627082613683 0.00000000000000
59 1 25.22000000000000 4.36823213668871 0.00000000000000
60 1 26.48100000000000 5.09627082613683 0.00000000000000
61 1 3.78300000000000 6.55234820503306 0.00000000000000
62 1 5.04400000000000 7.28038689448118 0.00000000000000
63 1 6.30500000000000 6.55234820503306 0.00000000000000
64 1 7.56600000000000 7.28038689448118 0.00000000000000
65 1 8.82700000000000 6.55234820503306 0.00000000000000
66 1 10.08800000000000 7.28038689448118 0.00000000000000
67 1 11.34900000000000 6.55234820503306 0.00000000000000
68 1 12.61000000000000 7.28038689448118 0.00000000000000
69 1 13.87100000000000 6.55234820503306 0.00000000000000
70 1 15.13200000000000 7.28038689448118 0.00000000000000
71 1 16.39300000000000 6.55234820503306 0.00000000000000
72 1 17.65400000000000 7.28038689448118 0.00000000000000
73 1 18.91500000000000 6.55234820503306 0.00000000000000
74 1 20.17600000000000 7.28038689448118 0.00000000000000
75 1 21.43700000000000 6.55234820503306 0.00000000000000
76 1 22.69800000000000 7.28038689448118 0.00000000000000
77 1 23.95900000000000 6.55234820503306 0.00000000000000
78 1 25.22000000000000 7.28038689448118 0.00000000000000
79 1 26.48099999999999 6.55234820503306 0.00000000000000
80 1 27.74200000000000 7.28038689448118 0.00000000000000
81 1 5.04400000000000 8.73646427337742 0.00000000000000
82 1 6.30500000000000 9.46450296282553 0.00000000000000
83 1 7.56600000000000 8.73646427337742 0.00000000000000
84 1 8.82700000000000 9.46450296282553 0.00000000000000
85 1 10.08800000000000 8.73646427337742 0.00000000000000
86 1 11.34900000000000 9.46450296282553 0.00000000000000
87 1 12.61000000000000 8.73646427337742 0.00000000000000
88 1 13.87100000000000 9.46450296282553 0.00000000000000
89 1 15.13200000000000 8.73646427337742 0.00000000000000
90 1 16.39300000000000 9.46450296282553 0.00000000000000
91 1 17.65400000000000 8.73646427337742 0.00000000000000
92 1 18.91500000000000 9.46450296282553 0.00000000000000
93 1 20.17600000000000 8.73646427337742 0.00000000000000
94 1 21.43700000000000 9.46450296282553 0.00000000000000
95 1 22.69800000000000 8.73646427337742 0.00000000000000
96 1 23.95900000000000 9.46450296282553 0.00000000000000
97 1 25.22000000000000 8.73646427337742 0.00000000000000
98 1 26.48100000000000 9.46450296282553 0.00000000000000
99 1 27.74200000000000 8.73646427337742 0.00000000000000
100 1 29.00300000000000 9.46450296282553 0.00000000000000
101 1 6.30500000000000 10.92058034172177 0.00000000000000
102 1 7.56600000000000 11.64861903116989 0.00000000000000
103 1 8.82700000000000 10.92058034172177 0.00000000000000
104 1 10.08800000000000 11.64861903116989 0.00000000000000
105 1 11.34900000000000 10.92058034172177 0.00000000000000
106 1 12.61000000000000 11.64861903116989 0.00000000000000
107 1 13.87100000000000 10.92058034172177 0.00000000000000
108 1 15.13200000000000 11.64861903116989 0.00000000000000
109 1 16.39300000000000 10.92058034172177 0.00000000000000
110 1 17.65400000000000 11.64861903116989 0.00000000000000
111 1 18.91500000000000 10.92058034172177 0.00000000000000
112 1 20.17600000000000 11.64861903116989 0.00000000000000
113 1 21.43700000000000 10.92058034172177 0.00000000000000
114 1 22.69800000000000 11.64861903116989 0.00000000000000
115 1 23.95900000000000 10.92058034172177 0.00000000000000
116 1 25.22000000000000 11.64861903116989 0.00000000000000
117 1 26.48100000000000 10.92058034172177 0.00000000000000
118 1 27.74200000000000 11.64861903116989 0.00000000000000
119 1 29.00300000000000 10.92058034172177 0.00000000000000
120 1 30.26400000000000 11.64861903116989 0.00000000000000
121 1 7.56600000000000 13.10469641006613 0.00000000000000
122 1 8.82700000000000 13.83273509951424 0.00000000000000
123 1 10.08800000000000 13.10469641006613 0.00000000000000
124 1 11.34900000000000 13.83273509951424 0.00000000000000
125 1 12.61000000000000 13.10469641006613 0.00000000000000
126 1 13.87100000000000 13.83273509951424 0.00000000000000
127 1 15.13200000000000 13.10469641006613 0.00000000000000
128 1 16.39300000000000 13.83273509951424 0.00000000000000
129 1 17.65400000000000 13.10469641006613 0.00000000000000
130 1 18.91500000000000 13.83273509951424 0.00000000000000
131 1 20.17600000000000 13.10469641006613 0.00000000000000
132 1 21.43700000000000 13.83273509951424 0.00000000000000
133 1 22.69800000000000 13.10469641006613 0.00000000000000
134 1 23.95900000000000 13.83273509951424 0.00000000000000
135 1 25.22000000000000 13.10469641006613 0.00000000000000
136 1 26.48099999999999 13.83273509951424 0.00000000000000
137 1 27.74200000000000 13.10469641006613 0.00000000000000
138 1 29.00300000000000 13.83273509951424 0.00000000000000
139 1 30.26400000000000 13.10469641006613 0.00000000000000
140 1 31.52500000000000 13.83273509951424 0.00000000000000
141 1 8.82700000000000 15.28881247841048 0.00000000000000
142 1 10.08800000000000 16.01685116785860 0.00000000000000
143 1 11.34900000000000 15.28881247841048 0.00000000000000
144 1 12.61000000000000 16.01685116785860 0.00000000000000
145 1 13.87100000000000 15.28881247841048 0.00000000000000
146 1 15.13200000000000 16.01685116785860 0.00000000000000
147 1 16.39300000000000 15.28881247841048 0.00000000000000
148 1 17.65400000000000 16.01685116785860 0.00000000000000
149 1 18.91500000000000 15.28881247841048 0.00000000000000
150 1 20.17599999999999 16.01685116785860 0.00000000000000
151 1 21.43700000000000 15.28881247841048 0.00000000000000
152 1 22.69800000000000 16.01685116785860 0.00000000000000
153 1 23.95900000000000 15.28881247841048 0.00000000000000
154 1 25.22000000000000 16.01685116785860 0.00000000000000
155 1 26.48100000000000 15.28881247841048 0.00000000000000
156 1 27.74200000000000 16.01685116785860 0.00000000000000
157 1 29.00300000000000 15.28881247841048 0.00000000000000
158 1 30.26400000000000 16.01685116785860 0.00000000000000
159 1 31.52500000000000 15.28881247841048 0.00000000000000
160 1 32.78600000000000 16.01685116785860 0.00000000000000
161 1 10.08800000000000 17.47292854675483 0.00000000000000
162 1 11.34900000000000 18.20096723620295 0.00000000000000
163 1 12.61000000000000 17.47292854675483 0.00000000000000
164 1 13.87100000000000 18.20096723620295 0.00000000000000
165 1 15.13200000000000 17.47292854675483 0.00000000000000
166 1 16.39300000000000 18.20096723620295 0.00000000000000
167 1 17.65400000000000 17.47292854675483 0.00000000000000
168 1 18.91500000000000 18.20096723620295 0.00000000000000
169 1 20.17600000000000 17.47292854675483 0.00000000000000
170 1 21.43700000000000 18.20096723620295 0.00000000000000
171 1 22.69800000000000 17.47292854675483 0.00000000000000
172 1 23.95900000000000 18.20096723620295 0.00000000000000
173 1 25.22000000000000 17.47292854675483 0.00000000000000
174 1 26.48100000000000 18.20096723620295 0.00000000000000
175 1 27.74200000000000 17.47292854675483 0.00000000000000
176 1 29.00300000000000 18.20096723620295 0.00000000000000
177 1 30.26400000000000 17.47292854675483 0.00000000000000
178 1 31.52500000000000 18.20096723620295 0.00000000000000
179 1 32.78599999999999 17.47292854675483 0.00000000000000
180 1 34.04700000000000 18.20096723620295 0.00000000000000
181 1 11.34900000000000 19.65704461509919 0.00000000000000
182 1 12.61000000000000 20.38508330454731 0.00000000000000
183 1 13.87100000000000 19.65704461509919 0.00000000000000
184 1 15.13200000000000 20.38508330454731 0.00000000000000
185 1 16.39300000000000 19.65704461509919 0.00000000000000
186 1 17.65400000000000 20.38508330454731 0.00000000000000
187 1 18.91500000000000 19.65704461509919 0.00000000000000
188 1 20.17600000000000 20.38508330454731 0.00000000000000
189 1 21.43700000000000 19.65704461509919 0.00000000000000
190 1 22.69800000000000 20.38508330454731 0.00000000000000
191 1 23.95900000000000 19.65704461509919 0.00000000000000
192 1 25.22000000000000 20.38508330454731 0.00000000000000
193 1 26.48099999999999 19.65704461509919 0.00000000000000
194 1 27.74200000000000 20.38508330454731 0.00000000000000
195 1 29.00300000000000 19.65704461509919 0.00000000000000
196 1 30.26400000000000 20.38508330454731 0.00000000000000
197 1 31.52500000000000 19.65704461509919 0.00000000000000
198 1 32.78600000000000 20.38508330454731 0.00000000000000
199 1 34.04700000000000 19.65704461509919 0.00000000000000
200 1 35.30800000000000 20.38508330454731 0.00000000000000

View File

@ -0,0 +1,16 @@
100
1
2
1
pdisp.dat
0 0 0 ! Gamma
0.5 0.5 0 ! M
21
0.5 0.5 0 ! M
0.3333333333 0.6666666666666 0. ! K
11
0.3333333333 0.6666666666666 0. ! K
0. 0 0 ! Gamma
21
q
0

View File

@ -0,0 +1,45 @@
# 3D copper block simulation
boundary p p p
units metal
atom_style atomic
# geometry
read_data data.pos
mass * 12.0107
# EAM potential
pair_style tersoff
pair_coeff * * SiC.tersoff C
neighbor 2. nsq
neigh_modify every 1 delay 0 check yes
#Langevin random seed
variable dt equal 2e-3
variable r equal 57085
variable T equal 300
variable dT equal "v_dt * 100"
timestep ${dt}
# initialize
velocity all create $T 28459 rot yes dist gaussian mom yes
reset_timestep 0
# fixes
fix 1 all langevin $T $T ${dT} 73504 zero yes
fix 2 all nve
fix 3 all phonon 10 50000 1000000 map.in Graphene nasr 50
# output
# 1 2 3 4 5 6 7
thermo_style custom step temp pe ke press pxx pyy
thermo 100
restart 1000000 restart.one restart.two
dump 1 all xyz 50000 dump.graphene.xyz
# execution
run 6000000
write_restart Restart.final

View File

@ -0,0 +1,202 @@
10 10 1 2
Map file for 10x10x1 Graphene cell.
0 0 0 0 1
0 0 0 1 2
1 0 0 0 3
1 0 0 1 4
2 0 0 0 5
2 0 0 1 6
3 0 0 0 7
3 0 0 1 8
4 0 0 0 9
4 0 0 1 10
5 0 0 0 11
5 0 0 1 12
6 0 0 0 13
6 0 0 1 14
7 0 0 0 15
7 0 0 1 16
8 0 0 0 17
8 0 0 1 18
9 0 0 0 19
9 0 0 1 20
0 1 0 0 21
0 1 0 1 22
1 1 0 0 23
1 1 0 1 24
2 1 0 0 25
2 1 0 1 26
3 1 0 0 27
3 1 0 1 28
4 1 0 0 29
4 1 0 1 30
5 1 0 0 31
5 1 0 1 32
6 1 0 0 33
6 1 0 1 34
7 1 0 0 35
7 1 0 1 36
8 1 0 0 37
8 1 0 1 38
9 1 0 0 39
9 1 0 1 40
0 2 0 0 41
0 2 0 1 42
1 2 0 0 43
1 2 0 1 44
2 2 0 0 45
2 2 0 1 46
3 2 0 0 47
3 2 0 1 48
4 2 0 0 49
4 2 0 1 50
5 2 0 0 51
5 2 0 1 52
6 2 0 0 53
6 2 0 1 54
7 2 0 0 55
7 2 0 1 56
8 2 0 0 57
8 2 0 1 58
9 2 0 0 59
9 2 0 1 60
0 3 0 0 61
0 3 0 1 62
1 3 0 0 63
1 3 0 1 64
2 3 0 0 65
2 3 0 1 66
3 3 0 0 67
3 3 0 1 68
4 3 0 0 69
4 3 0 1 70
5 3 0 0 71
5 3 0 1 72
6 3 0 0 73
6 3 0 1 74
7 3 0 0 75
7 3 0 1 76
8 3 0 0 77
8 3 0 1 78
9 3 0 0 79
9 3 0 1 80
0 4 0 0 81
0 4 0 1 82
1 4 0 0 83
1 4 0 1 84
2 4 0 0 85
2 4 0 1 86
3 4 0 0 87
3 4 0 1 88
4 4 0 0 89
4 4 0 1 90
5 4 0 0 91
5 4 0 1 92
6 4 0 0 93
6 4 0 1 94
7 4 0 0 95
7 4 0 1 96
8 4 0 0 97
8 4 0 1 98
9 4 0 0 99
9 4 0 1 100
0 5 0 0 101
0 5 0 1 102
1 5 0 0 103
1 5 0 1 104
2 5 0 0 105
2 5 0 1 106
3 5 0 0 107
3 5 0 1 108
4 5 0 0 109
4 5 0 1 110
5 5 0 0 111
5 5 0 1 112
6 5 0 0 113
6 5 0 1 114
7 5 0 0 115
7 5 0 1 116
8 5 0 0 117
8 5 0 1 118
9 5 0 0 119
9 5 0 1 120
0 6 0 0 121
0 6 0 1 122
1 6 0 0 123
1 6 0 1 124
2 6 0 0 125
2 6 0 1 126
3 6 0 0 127
3 6 0 1 128
4 6 0 0 129
4 6 0 1 130
5 6 0 0 131
5 6 0 1 132
6 6 0 0 133
6 6 0 1 134
7 6 0 0 135
7 6 0 1 136
8 6 0 0 137
8 6 0 1 138
9 6 0 0 139
9 6 0 1 140
0 7 0 0 141
0 7 0 1 142
1 7 0 0 143
1 7 0 1 144
2 7 0 0 145
2 7 0 1 146
3 7 0 0 147
3 7 0 1 148
4 7 0 0 149
4 7 0 1 150
5 7 0 0 151
5 7 0 1 152
6 7 0 0 153
6 7 0 1 154
7 7 0 0 155
7 7 0 1 156
8 7 0 0 157
8 7 0 1 158
9 7 0 0 159
9 7 0 1 160
0 8 0 0 161
0 8 0 1 162
1 8 0 0 163
1 8 0 1 164
2 8 0 0 165
2 8 0 1 166
3 8 0 0 167
3 8 0 1 168
4 8 0 0 169
4 8 0 1 170
5 8 0 0 171
5 8 0 1 172
6 8 0 0 173
6 8 0 1 174
7 8 0 0 175
7 8 0 1 176
8 8 0 0 177
8 8 0 1 178
9 8 0 0 179
9 8 0 1 180
0 9 0 0 181
0 9 0 1 182
1 9 0 0 183
1 9 0 1 184
2 9 0 0 185
2 9 0 1 186
3 9 0 0 187
3 9 0 1 188
4 9 0 0 189
4 9 0 1 190
5 9 0 0 191
5 9 0 1 192
6 9 0 0 193
6 9 0 1 194
7 9 0 0 195
7 9 0 1 196
8 9 0 0 197
8 9 0 1 198
9 9 0 0 199
9 9 0 1 200

View File

@ -0,0 +1,55 @@
# q qr freq
# 2pi/L 2pi/L THz
0 0 0 0 -1.11621e-06 -6.8296e-07 -3.04927e-07 27.9436 64.7741 65.1206
0.025 0.025 0 0.0353553 0.388597 2.74825 2.98268 27.8692 64.6792 64.9653
0.05 0.05 0 0.0707107 0.536808 4.76732 5.62175 27.7018 64.4446 64.6241
0.075 0.075 0 0.106066 0.497785 6.30176 8.00779 27.4987 64.053 64.3404
0.1 0.1 0 0.141421 0.578135 7.93153 10.2331 27.2573 63.6084 64.1325
0.125 0.125 0 0.176777 1.01429 10.0347 12.4851 26.9297 63.1204 63.9205
0.15 0.15 0 0.212132 1.46628 12.1967 14.762 26.5308 62.5549 63.6414
0.175 0.175 0 0.247487 1.89283 14.2179 17.0341 26.0965 61.9179 63.2545
0.2 0.2 0 0.282843 2.37335 16.19 19.2947 25.6258 61.1479 62.8462
0.225 0.225 0 0.318198 3.00088 18.3466 21.6405 25.0668 60.1167 62.4943
0.25 0.25 0 0.353553 3.68168 20.5797 23.9359 24.4303 58.8946 62.1168
0.275 0.275 0 0.388909 4.34887 22.7191 23.7683 26.043 57.6568 61.6313
0.3 0.3 0 0.424264 5.01898 23.1093 24.741 27.9598 56.4713 61.0758
0.325 0.325 0 0.459619 5.77428 22.4086 26.8129 29.837 55.2402 60.5022
0.35 0.35 0 0.494975 6.55997 21.6559 28.9129 31.5944 53.9114 59.9288
0.375 0.375 0 0.53033 7.2877 20.9156 30.8954 33.0663 52.5447 59.3842
0.4 0.4 0 0.565685 7.93551 20.2486 32.7308 34.2573 51.1858 58.8957
0.425 0.425 0 0.601041 8.55666 19.6383 34.5666 35.3128 49.7453 58.4539
0.45 0.45 0 0.636396 9.07644 19.1094 36.1167 36.2802 48.2636 58.1523
0.475 0.475 0 0.671751 9.38449 18.7556 36.5404 37.4767 47.0746 58.0596
0.5 0.5 0 0.707107 9.46753 18.6375 36.6283 37.8862 46.6183 58.0754
0.5 0.5 0 0.707107 9.46753 18.6375 36.6283 37.8862 46.6183 58.0754
0.483333 0.516667 0 0.730677 9.53225 18.5968 36.6996 37.9824 46.6257 57.98
0.466667 0.533333 0 0.754247 9.71247 18.4705 36.8819 38.2383 46.6341 57.7304
0.45 0.55 0 0.777817 9.98987 18.2524 37.1359 38.6055 46.6148 57.3817
0.433333 0.566667 0 0.801388 10.3508 17.9397 37.4456 39.043 46.5384 56.9779
0.416667 0.583333 0 0.824958 10.7862 17.5354 37.8198 39.5225 46.3847 56.5446
0.4 0.6 0 0.848528 11.2911 17.0489 38.2847 40.0255 46.1458 56.0895
0.383333 0.616667 0 0.872098 11.8918 16.463 38.8843 40.549 45.81 55.6051
0.366667 0.633333 0 0.895669 12.5928 15.7668 39.6197 40.9845 45.4103 55.1505
0.35 0.65 0 0.919239 13.3643 14.9844 40.4039 41.1595 45.0461 54.8327
0.333333 0.666667 0 0.942809 14.1406 14.1858 40.9366 41.0269 44.9098 54.742
0.333333 0.666667 0 0.942809 14.1406 14.1858 40.9366 41.0269 44.9098 54.742
0.316667 0.633333 0 0.980077 13.274 15.0616 40.3164 41.0347 45.2017 54.9045
0.3 0.6 0 1.01734 12.3715 15.9487 39.2842 40.4967 46.03 55.2817
0.283333 0.566667 0 1.05461 11.4419 16.858 38.0157 39.5997 47.2343 55.761
0.266667 0.533333 0 1.09188 10.4472 17.8213 36.3959 38.3935 48.6905 56.4355
0.25 0.5 0 1.12915 9.47752 18.7678 34.5854 36.9846 50.1452 57.2347
0.233333 0.466667 0 1.16642 8.5121 19.7464 32.6547 35.3424 51.5543 58.048
0.216667 0.433333 0 1.20368 7.49426 20.7623 30.5242 33.4618 52.978 58.8792
0.2 0.4 0 1.24095 6.52739 21.695 28.3658 31.5251 54.3516 59.6969
0.183333 0.366667 0 1.27822 5.63994 22.5594 26.1483 29.4583 55.7508 60.5427
0.166667 0.333333 0 1.31549 4.75015 23.4054 23.7183 27.133 57.2113 61.3462
0.15 0.3 0 1.35275 3.91843 21.2961 24.177 24.7519 58.5744 61.9546
0.133333 0.266667 0 1.39002 3.18012 18.9485 22.2648 24.8885 59.8194 62.4661
0.116667 0.233333 0 1.42729 2.44849 16.4548 19.4978 25.5705 60.9634 63.041
0.1 0.2 0 1.46456 1.77934 14.0073 16.7422 26.1568 61.8987 63.5506
0.0833333 0.166667 0 1.50183 1.31432 11.7471 14.1904 26.6411 62.6334 63.8698
0.0666667 0.133333 0 1.53909 0.923438 9.42022 11.6112 27.0576 63.2842 64.1289
0.05 0.1 0 1.57636 0.560453 7.13496 9.0116 27.3836 63.8752 64.3801
0.0333333 0.0666667 0 1.61363 0.492018 5.10548 6.38829 27.6403 64.424 64.5847
0.0166667 0.0333333 0 1.6509 0.384285 2.83964 3.4371 27.8508 64.712 64.9157
4.85723e-17 9.71445e-17 0 1.68817 -1.11621e-06 -6.8296e-07 -3.04927e-07 27.9436 64.7741 65.1206

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,21 @@
set term post enha colo 20
set out "pdisp.eps"
set xlabel "q"
set ylabel "frequency (THz)"
set xrange [0:1.68817]
set yrange [0:*]
set grid xtics
# {/Symbol G} will give you letter gamma in the label
set xtics ("" 0, "" 0.707107, "" 0.942809, "" 1.68817)
unset key
plot "pdisp.dat" u 4:5 w l lt 1,\
"" u 4:6 w l lt 1,\
"" u 4:7 w l lt 1,\
"" u 4:8 w l lt 1,\
"" u 4:9 w l lt 1,\
"" u 4:10 w l lt 1

View File

@ -0,0 +1,17 @@
set term post enha colo 20
set out 'pdisp.eps'
set xlabel 'q'
set ylabel '{/Symbol n} (THz)'
set xtics ("{/Symbol G}" 0, "M" 0.707107, "K" 0.942809, "{/Symbol G}" 1.68817)
set xr [0:1.68817]
set yr [0:70]
set key at 3.0,8.2
set grid xtics lt 9
plot './pdisp.dat' u 4:5 w lp lt 1 pt 7 ps 0.8 t '',\
'' u 4:6 w lp lt 1 pt 7 ps 0.8 t '',\
'' u 4:7 w lp lt 1 pt 7 ps 0.8 t '',\
'' u 4:8 w lp lt 1 pt 7 ps 0.8 t '',\
'' u 4:9 w lp lt 1 pt 7 ps 0.8 t '',\
'' u 4:10 w lp lt 1 pt 7 ps 0.8 t ''