add missing rst format doc file
This commit is contained in:
158
doc/src/pair_mesocnt.rst
Normal file
158
doc/src/pair_mesocnt.rst
Normal file
@ -0,0 +1,158 @@
|
||||
.. index:: pair\_style mesocnt
|
||||
|
||||
pair\_style mesocnt command
|
||||
===========================
|
||||
|
||||
Syntax
|
||||
""""""
|
||||
|
||||
|
||||
.. parsed-literal::
|
||||
|
||||
pair_style mesocnt
|
||||
|
||||
Examples
|
||||
""""""""
|
||||
|
||||
|
||||
.. parsed-literal::
|
||||
|
||||
pair_style mesocnt
|
||||
pair_coeff \* \* 10_10.cnt
|
||||
|
||||
Description
|
||||
"""""""""""
|
||||
|
||||
Style *mesocnt* implements a mesoscopic potential
|
||||
for the interaction of carbon nanotubes (CNTs). In this potential,
|
||||
CNTs are modelled as chains of cylindrical segments in which
|
||||
each infinitesimal surface element interacts with all other
|
||||
CNT surface elements with the Lennard-Jones (LJ) term adopted from
|
||||
the :doc:`airebo <pair_airebo>` style. The interaction energy
|
||||
is then computed by integrating over the surfaces of all interacting
|
||||
CNTs.
|
||||
|
||||
The potential is based on interactions between one cylindrical
|
||||
segment and infinitely or semi-infinitely long CNTs as described
|
||||
in :ref:`(Volkov1) <Volkov1>`. Chains of segments are
|
||||
converted to these (semi-)infinite CNTs bases on an approximate
|
||||
chain approach outlined in :ref:`(Volkov2) <Volkov2>`.
|
||||
This allows to simplify the computation of the interactions
|
||||
significantly and reduces the computational times to the
|
||||
same order of magnitude as for regular bead spring models
|
||||
where beads interact with the standard :doc:`pair\_lj/cut <pair_lj>`
|
||||
potential.
|
||||
|
||||
In LAMMPS, cylindrical segments are represented by bonds. Each
|
||||
segment is defined by its two end points ("nodes") which correspond
|
||||
to atoms in LAMMPS. For the exact functional form of the potential
|
||||
and implementation details, the reader is referred to the
|
||||
original papers :ref:`(Volkov1) <Volkov1>` and
|
||||
:ref:`(Volkov2) <Volkov2>`.
|
||||
|
||||
The potential requires tabulated data provided in a single ASCII
|
||||
text file specified in the :doc:`pair\_coeff <pair_coeff>` command.
|
||||
The first line of the file provides a time stamp and
|
||||
general information. The second line lists four integers giving
|
||||
the number of data points provided in the subsequent four
|
||||
data tables. The third line lists four floating point numbers:
|
||||
the CNT radius R, the LJ parameter sigma and two numerical
|
||||
parameters delta1 and delta2. These four parameters are given
|
||||
in Angstroms. This is followed by four data tables each separated
|
||||
by a single empty line. The first two tables have two columns
|
||||
and list the parameters uInfParallel and Gamma respectively.
|
||||
The last two tables have three columns giving data on a quadratic
|
||||
array and list the parameters Phi and uSemiParallel respectively.
|
||||
uInfParallel and uSemiParallel are given in eV/Angstrom, Phi is
|
||||
given in eV and Gamma is unitless.
|
||||
|
||||
Potential files for CNTs can be readily generated using the freely
|
||||
available code provided on
|
||||
|
||||
https://github.com/phankl/cntpot
|
||||
|
||||
Using the same approach, it should also be possible to
|
||||
generate potential files for other 1D systems such as
|
||||
boron nitride nanotubes.
|
||||
|
||||
.. note::
|
||||
|
||||
LAMMPS comes with one *mesocnt* style potential file
|
||||
where the default number of data points per table is 1001.
|
||||
This is sufficient for NVT simulations. For proper energy
|
||||
conservation, we recommend using a potential file where
|
||||
the resolution for Phi is at least 2001 data points.
|
||||
|
||||
.. note::
|
||||
|
||||
The *mesocnt* style requires CNTs to be represented
|
||||
as a chain of atoms connected by bonds. Atoms need
|
||||
to be numbered consecutively within one chain.
|
||||
Atoms belonging to different CNTs need to be assigned
|
||||
different molecule IDs.
|
||||
|
||||
A full summary of the method and LAMMPS implementation details
|
||||
is expected to soon become available in Computer Physics
|
||||
Communications.
|
||||
|
||||
|
||||
----------
|
||||
|
||||
|
||||
**Mixing, shift, table, tail correction, restart, rRESPA info**\ :
|
||||
|
||||
This pair style does not support mixing.
|
||||
|
||||
This pair style does not support the :doc:`pair\_modify <pair_modify>`
|
||||
shift, table, and tail options.
|
||||
|
||||
The mesocnt pair style do not write their information to :doc:`binary restart files <restart>`, since it is stored in tabulated potential files.
|
||||
Thus, you need to re-specify the pair\_style and pair\_coeff commands in
|
||||
an input script that reads a restart file.
|
||||
|
||||
These pair style can only be used via the *pair* keyword of the
|
||||
:doc:`run\_style respa <run_style>` command. They do not support the
|
||||
*inner*\ , *middle*\ , *outer* keywords.
|
||||
|
||||
|
||||
----------
|
||||
|
||||
|
||||
Restrictions
|
||||
""""""""""""
|
||||
|
||||
|
||||
The mesocnt pair style is part of the USER-MISC package. It is only
|
||||
enabled if LAMMPS was built with that package. See the :doc:`Build package <Build_package>` doc page for more info.
|
||||
|
||||
This pair potential requires the :doc:`newton <newton>` setting to be
|
||||
"on" for pair interactions.
|
||||
|
||||
Related commands
|
||||
""""""""""""""""
|
||||
|
||||
:doc:`pair\_coeff <pair_coeff>`
|
||||
|
||||
**Default:** none
|
||||
|
||||
|
||||
----------
|
||||
|
||||
|
||||
.. _Volkov1:
|
||||
|
||||
|
||||
|
||||
**(Volkov1)** Volkov and Zhigilei, J Phys Chem C, 114, 5513 (2010).
|
||||
|
||||
.. _Volkov2:
|
||||
|
||||
|
||||
|
||||
**(Volkov2)** Volkov, Simov and Zhigilei, APS Meeting Abstracts,
|
||||
Q31.013 (2008).
|
||||
|
||||
|
||||
.. _lws: http://lammps.sandia.gov
|
||||
.. _ld: Manual.html
|
||||
.. _lc: Commands_all.html
|
||||
Reference in New Issue
Block a user