remove redundant comments from generated C++ files. clean up with clang-format.

This commit is contained in:
Axel Kohlmeyer
2022-12-28 16:31:50 -05:00
parent f157ba2389
commit 57713cf9a3
211 changed files with 6255 additions and 54891 deletions

View File

@ -1,209 +1,29 @@
/* fortran/dgeqr2.f -- translated by f2c (version 20200916).
You must link the resulting object file with libf2c:
on Microsoft Windows system, link with libf2c.lib;
on Linux or Unix systems, link with .../path/to/libf2c.a -lm
or, if you install libf2c.a in a standard place, with -lf2c -lm
-- in that order, at the end of the command line, as in
cc *.o -lf2c -lm
Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
http://www.netlib.org/f2c/libf2c.zip
*/
#ifdef __cplusplus
extern "C" {
#endif
#include "lmp_f2c.h"
/* Table of constant values */
static integer c__1 = 1;
/* > \brief \b DGEQR2 computes the QR factorization of a general rectangular matrix using an unblocked algorit
hm. */
/* =========== DOCUMENTATION =========== */
/* Online html documentation available at */
/* http://www.netlib.org/lapack/explore-html/ */
/* > \htmlonly */
/* > Download DGEQR2 + dependencies */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dgeqr2.
f"> */
/* > [TGZ]</a> */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dgeqr2.
f"> */
/* > [ZIP]</a> */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dgeqr2.
f"> */
/* > [TXT]</a> */
/* > \endhtmlonly */
/* Definition: */
/* =========== */
/* SUBROUTINE DGEQR2( M, N, A, LDA, TAU, WORK, INFO ) */
/* .. Scalar Arguments .. */
/* INTEGER INFO, LDA, M, N */
/* .. */
/* .. Array Arguments .. */
/* DOUBLE PRECISION A( LDA, * ), TAU( * ), WORK( * ) */
/* .. */
/* > \par Purpose: */
/* ============= */
/* > */
/* > \verbatim */
/* > */
/* > DGEQR2 computes a QR factorization of a real m-by-n matrix A: */
/* > */
/* > A = Q * ( R ), */
/* > ( 0 ) */
/* > */
/* > where: */
/* > */
/* > Q is a m-by-m orthogonal matrix; */
/* > R is an upper-triangular n-by-n matrix; */
/* > 0 is a (m-n)-by-n zero matrix, if m > n. */
/* > */
/* > \endverbatim */
/* Arguments: */
/* ========== */
/* > \param[in] M */
/* > \verbatim */
/* > M is INTEGER */
/* > The number of rows of the matrix A. M >= 0. */
/* > \endverbatim */
/* > */
/* > \param[in] N */
/* > \verbatim */
/* > N is INTEGER */
/* > The number of columns of the matrix A. N >= 0. */
/* > \endverbatim */
/* > */
/* > \param[in,out] A */
/* > \verbatim */
/* > A is DOUBLE PRECISION array, dimension (LDA,N) */
/* > On entry, the m by n matrix A. */
/* > On exit, the elements on and above the diagonal of the array */
/* > contain the min(m,n) by n upper trapezoidal matrix R (R is */
/* > upper triangular if m >= n); the elements below the diagonal, */
/* > with the array TAU, represent the orthogonal matrix Q as a */
/* > product of elementary reflectors (see Further Details). */
/* > \endverbatim */
/* > */
/* > \param[in] LDA */
/* > \verbatim */
/* > LDA is INTEGER */
/* > The leading dimension of the array A. LDA >= max(1,M). */
/* > \endverbatim */
/* > */
/* > \param[out] TAU */
/* > \verbatim */
/* > TAU is DOUBLE PRECISION array, dimension (min(M,N)) */
/* > The scalar factors of the elementary reflectors (see Further */
/* > Details). */
/* > \endverbatim */
/* > */
/* > \param[out] WORK */
/* > \verbatim */
/* > WORK is DOUBLE PRECISION array, dimension (N) */
/* > \endverbatim */
/* > */
/* > \param[out] INFO */
/* > \verbatim */
/* > INFO is INTEGER */
/* > = 0: successful exit */
/* > < 0: if INFO = -i, the i-th argument had an illegal value */
/* > \endverbatim */
/* Authors: */
/* ======== */
/* > \author Univ. of Tennessee */
/* > \author Univ. of California Berkeley */
/* > \author Univ. of Colorado Denver */
/* > \author NAG Ltd. */
/* > \ingroup doubleGEcomputational */
/* > \par Further Details: */
/* ===================== */
/* > */
/* > \verbatim */
/* > */
/* > The matrix Q is represented as a product of elementary reflectors */
/* > */
/* > Q = H(1) H(2) . . . H(k), where k = min(m,n). */
/* > */
/* > Each H(i) has the form */
/* > */
/* > H(i) = I - tau * v * v**T */
/* > */
/* > where tau is a real scalar, and v is a real vector with */
/* > v(1:i-1) = 0 and v(i) = 1; v(i+1:m) is stored on exit in A(i+1:m,i), */
/* > and tau in TAU(i). */
/* > \endverbatim */
/* > */
/* ===================================================================== */
/* Subroutine */ int dgeqr2_(integer *m, integer *n, doublereal *a, integer *
lda, doublereal *tau, doublereal *work, integer *info)
int dgeqr2_(integer *m, integer *n, doublereal *a, integer *lda, doublereal *tau, doublereal *work,
integer *info)
{
/* System generated locals */
integer a_dim1, a_offset, i__1, i__2, i__3;
/* Local variables */
integer i__, k;
doublereal aii;
extern /* Subroutine */ int dlarf_(char *, integer *, integer *,
doublereal *, integer *, doublereal *, doublereal *, integer *,
doublereal *, ftnlen), dlarfg_(integer *, doublereal *,
doublereal *, integer *, doublereal *), xerbla_(char *, integer *,
ftnlen);
/* -- LAPACK computational routine -- */
/* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
/* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
/* .. Scalar Arguments .. */
/* .. */
/* .. Array Arguments .. */
/* .. */
/* ===================================================================== */
/* .. Parameters .. */
/* .. */
/* .. Local Scalars .. */
/* .. */
/* .. External Subroutines .. */
/* .. */
/* .. Intrinsic Functions .. */
/* .. */
/* .. Executable Statements .. */
/* Test the input arguments */
/* Parameter adjustments */
extern int dlarf_(char *, integer *, integer *, doublereal *, integer *, doublereal *,
doublereal *, integer *, doublereal *, ftnlen),
dlarfg_(integer *, doublereal *, doublereal *, integer *, doublereal *),
xerbla_(char *, integer *, ftnlen);
a_dim1 = *lda;
a_offset = 1 + a_dim1;
a -= a_offset;
--tau;
--work;
/* Function Body */
*info = 0;
if (*m < 0) {
*info = -1;
} else if (*n < 0) {
*info = -2;
} else if (*lda < max(1,*m)) {
} else if (*lda < max(1, *m)) {
*info = -4;
}
if (*info != 0) {
@ -211,40 +31,24 @@ f"> */
xerbla_((char *)"DGEQR2", &i__1, (ftnlen)6);
return 0;
}
k = min(*m,*n);
k = min(*m, *n);
i__1 = k;
for (i__ = 1; i__ <= i__1; ++i__) {
/* Generate elementary reflector H(i) to annihilate A(i+1:m,i) */
i__2 = *m - i__ + 1;
/* Computing MIN */
i__3 = i__ + 1;
dlarfg_(&i__2, &a[i__ + i__ * a_dim1], &a[min(i__3,*m) + i__ * a_dim1]
, &c__1, &tau[i__]);
dlarfg_(&i__2, &a[i__ + i__ * a_dim1], &a[min(i__3, *m) + i__ * a_dim1], &c__1, &tau[i__]);
if (i__ < *n) {
/* Apply H(i) to A(i:m,i+1:n) from the left */
aii = a[i__ + i__ * a_dim1];
a[i__ + i__ * a_dim1] = 1.;
i__2 = *m - i__ + 1;
i__3 = *n - i__;
dlarf_((char *)"Left", &i__2, &i__3, &a[i__ + i__ * a_dim1], &c__1, &tau[
i__], &a[i__ + (i__ + 1) * a_dim1], lda, &work[1], (
ftnlen)4);
dlarf_((char *)"Left", &i__2, &i__3, &a[i__ + i__ * a_dim1], &c__1, &tau[i__],
&a[i__ + (i__ + 1) * a_dim1], lda, &work[1], (ftnlen)4);
a[i__ + i__ * a_dim1] = aii;
}
/* L10: */
}
return 0;
/* End of DGEQR2 */
} /* dgeqr2_ */
}
#ifdef __cplusplus
}
}
#endif