remove redundant comments from generated C++ files. clean up with clang-format.

This commit is contained in:
Axel Kohlmeyer
2022-12-28 16:31:50 -05:00
parent f157ba2389
commit 57713cf9a3
211 changed files with 6255 additions and 54891 deletions

View File

@ -1,198 +1,39 @@
/* fortran/dpotrf.f -- translated by f2c (version 20200916).
You must link the resulting object file with libf2c:
on Microsoft Windows system, link with libf2c.lib;
on Linux or Unix systems, link with .../path/to/libf2c.a -lm
or, if you install libf2c.a in a standard place, with -lf2c -lm
-- in that order, at the end of the command line, as in
cc *.o -lf2c -lm
Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
http://www.netlib.org/f2c/libf2c.zip
*/
#ifdef __cplusplus
extern "C" {
#endif
#include "lmp_f2c.h"
/* Table of constant values */
static integer c__1 = 1;
static integer c_n1 = -1;
static doublereal c_b13 = -1.;
static doublereal c_b14 = 1.;
/* > \brief \b DPOTRF */
/* =========== DOCUMENTATION =========== */
/* Online html documentation available at */
/* http://www.netlib.org/lapack/explore-html/ */
/* > \htmlonly */
/* > Download DPOTRF + dependencies */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dpotrf.
f"> */
/* > [TGZ]</a> */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dpotrf.
f"> */
/* > [ZIP]</a> */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dpotrf.
f"> */
/* > [TXT]</a> */
/* > \endhtmlonly */
/* Definition: */
/* =========== */
/* SUBROUTINE DPOTRF( UPLO, N, A, LDA, INFO ) */
/* .. Scalar Arguments .. */
/* CHARACTER UPLO */
/* INTEGER INFO, LDA, N */
/* .. */
/* .. Array Arguments .. */
/* DOUBLE PRECISION A( LDA, * ) */
/* .. */
/* > \par Purpose: */
/* ============= */
/* > */
/* > \verbatim */
/* > */
/* > DPOTRF computes the Cholesky factorization of a real symmetric */
/* > positive definite matrix A. */
/* > */
/* > The factorization has the form */
/* > A = U**T * U, if UPLO = 'U', or */
/* > A = L * L**T, if UPLO = 'L', */
/* > where U is an upper triangular matrix and L is lower triangular. */
/* > */
/* > This is the block version of the algorithm, calling Level 3 BLAS. */
/* > \endverbatim */
/* Arguments: */
/* ========== */
/* > \param[in] UPLO */
/* > \verbatim */
/* > UPLO is CHARACTER*1 */
/* > = 'U': Upper triangle of A is stored; */
/* > = 'L': Lower triangle of A is stored. */
/* > \endverbatim */
/* > */
/* > \param[in] N */
/* > \verbatim */
/* > N is INTEGER */
/* > The order of the matrix A. N >= 0. */
/* > \endverbatim */
/* > */
/* > \param[in,out] A */
/* > \verbatim */
/* > A is DOUBLE PRECISION array, dimension (LDA,N) */
/* > On entry, the symmetric matrix A. If UPLO = 'U', the leading */
/* > N-by-N upper triangular part of A contains the upper */
/* > triangular part of the matrix A, and the strictly lower */
/* > triangular part of A is not referenced. If UPLO = 'L', the */
/* > leading N-by-N lower triangular part of A contains the lower */
/* > triangular part of the matrix A, and the strictly upper */
/* > triangular part of A is not referenced. */
/* > */
/* > On exit, if INFO = 0, the factor U or L from the Cholesky */
/* > factorization A = U**T*U or A = L*L**T. */
/* > \endverbatim */
/* > */
/* > \param[in] LDA */
/* > \verbatim */
/* > LDA is INTEGER */
/* > The leading dimension of the array A. LDA >= max(1,N). */
/* > \endverbatim */
/* > */
/* > \param[out] INFO */
/* > \verbatim */
/* > INFO is INTEGER */
/* > = 0: successful exit */
/* > < 0: if INFO = -i, the i-th argument had an illegal value */
/* > > 0: if INFO = i, the leading minor of order i is not */
/* > positive definite, and the factorization could not be */
/* > completed. */
/* > \endverbatim */
/* Authors: */
/* ======== */
/* > \author Univ. of Tennessee */
/* > \author Univ. of California Berkeley */
/* > \author Univ. of Colorado Denver */
/* > \author NAG Ltd. */
/* > \ingroup doublePOcomputational */
/* ===================================================================== */
/* Subroutine */ int dpotrf_(char *uplo, integer *n, doublereal *a, integer *
lda, integer *info, ftnlen uplo_len)
int dpotrf_(char *uplo, integer *n, doublereal *a, integer *lda, integer *info, ftnlen uplo_len)
{
/* System generated locals */
integer a_dim1, a_offset, i__1, i__2, i__3, i__4;
/* Local variables */
integer j, jb, nb;
extern /* Subroutine */ int dgemm_(char *, char *, integer *, integer *,
integer *, doublereal *, doublereal *, integer *, doublereal *,
integer *, doublereal *, doublereal *, integer *, ftnlen, ftnlen);
extern int dgemm_(char *, char *, integer *, integer *, integer *, doublereal *, doublereal *,
integer *, doublereal *, integer *, doublereal *, doublereal *, integer *,
ftnlen, ftnlen);
extern logical lsame_(char *, char *, ftnlen, ftnlen);
extern /* Subroutine */ int dtrsm_(char *, char *, char *, char *,
integer *, integer *, doublereal *, doublereal *, integer *,
doublereal *, integer *, ftnlen, ftnlen, ftnlen, ftnlen);
extern int dtrsm_(char *, char *, char *, char *, integer *, integer *, doublereal *,
doublereal *, integer *, doublereal *, integer *, ftnlen, ftnlen, ftnlen,
ftnlen);
logical upper;
extern /* Subroutine */ int dsyrk_(char *, char *, integer *, integer *,
doublereal *, doublereal *, integer *, doublereal *, doublereal *,
integer *, ftnlen, ftnlen), xerbla_(char *, integer *, ftnlen);
extern integer ilaenv_(integer *, char *, char *, integer *, integer *,
integer *, integer *, ftnlen, ftnlen);
extern /* Subroutine */ int dpotrf2_(char *, integer *, doublereal *,
integer *, integer *, ftnlen);
/* -- LAPACK computational routine -- */
/* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
/* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
/* .. Scalar Arguments .. */
/* .. */
/* .. Array Arguments .. */
/* .. */
/* ===================================================================== */
/* .. Parameters .. */
/* .. */
/* .. Local Scalars .. */
/* .. */
/* .. External Functions .. */
/* .. */
/* .. External Subroutines .. */
/* .. */
/* .. Intrinsic Functions .. */
/* .. */
/* .. Executable Statements .. */
/* Test the input parameters. */
/* Parameter adjustments */
extern int dsyrk_(char *, char *, integer *, integer *, doublereal *, doublereal *, integer *,
doublereal *, doublereal *, integer *, ftnlen, ftnlen),
xerbla_(char *, integer *, ftnlen);
extern integer ilaenv_(integer *, char *, char *, integer *, integer *, integer *, integer *,
ftnlen, ftnlen);
extern int dpotrf2_(char *, integer *, doublereal *, integer *, integer *, ftnlen);
a_dim1 = *lda;
a_offset = 1 + a_dim1;
a -= a_offset;
/* Function Body */
*info = 0;
upper = lsame_(uplo, (char *)"U", (ftnlen)1, (ftnlen)1);
if (! upper && ! lsame_(uplo, (char *)"L", (ftnlen)1, (ftnlen)1)) {
if (!upper && !lsame_(uplo, (char *)"L", (ftnlen)1, (ftnlen)1)) {
*info = -1;
} else if (*n < 0) {
*info = -2;
} else if (*lda < max(1,*n)) {
} else if (*lda < max(1, *n)) {
*info = -4;
}
if (*info != 0) {
@ -200,123 +41,71 @@ f"> */
xerbla_((char *)"DPOTRF", &i__1, (ftnlen)6);
return 0;
}
/* Quick return if possible */
if (*n == 0) {
return 0;
}
/* Determine the block size for this environment. */
nb = ilaenv_(&c__1, (char *)"DPOTRF", uplo, n, &c_n1, &c_n1, &c_n1, (ftnlen)6, (
ftnlen)1);
nb = ilaenv_(&c__1, (char *)"DPOTRF", uplo, n, &c_n1, &c_n1, &c_n1, (ftnlen)6, (ftnlen)1);
if (nb <= 1 || nb >= *n) {
/* Use unblocked code. */
dpotrf2_(uplo, n, &a[a_offset], lda, info, (ftnlen)1);
} else {
/* Use blocked code. */
if (upper) {
/* Compute the Cholesky factorization A = U**T*U. */
i__1 = *n;
i__2 = nb;
for (j = 1; i__2 < 0 ? j >= i__1 : j <= i__1; j += i__2) {
/* Update and factorize the current diagonal block and test */
/* for non-positive-definiteness. */
/* Computing MIN */
i__3 = nb, i__4 = *n - j + 1;
jb = min(i__3,i__4);
jb = min(i__3, i__4);
i__3 = j - 1;
dsyrk_((char *)"Upper", (char *)"Transpose", &jb, &i__3, &c_b13, &a[j *
a_dim1 + 1], lda, &c_b14, &a[j + j * a_dim1], lda, (
ftnlen)5, (ftnlen)9);
dpotrf2_((char *)"Upper", &jb, &a[j + j * a_dim1], lda, info, (ftnlen)
5);
dsyrk_((char *)"Upper", (char *)"Transpose", &jb, &i__3, &c_b13, &a[j * a_dim1 + 1], lda, &c_b14,
&a[j + j * a_dim1], lda, (ftnlen)5, (ftnlen)9);
dpotrf2_((char *)"Upper", &jb, &a[j + j * a_dim1], lda, info, (ftnlen)5);
if (*info != 0) {
goto L30;
}
if (j + jb <= *n) {
/* Compute the current block row. */
i__3 = *n - j - jb + 1;
i__4 = j - 1;
dgemm_((char *)"Transpose", (char *)"No transpose", &jb, &i__3, &i__4, &
c_b13, &a[j * a_dim1 + 1], lda, &a[(j + jb) *
a_dim1 + 1], lda, &c_b14, &a[j + (j + jb) *
a_dim1], lda, (ftnlen)9, (ftnlen)12);
dgemm_((char *)"Transpose", (char *)"No transpose", &jb, &i__3, &i__4, &c_b13,
&a[j * a_dim1 + 1], lda, &a[(j + jb) * a_dim1 + 1], lda, &c_b14,
&a[j + (j + jb) * a_dim1], lda, (ftnlen)9, (ftnlen)12);
i__3 = *n - j - jb + 1;
dtrsm_((char *)"Left", (char *)"Upper", (char *)"Transpose", (char *)"Non-unit", &jb, &
i__3, &c_b14, &a[j + j * a_dim1], lda, &a[j + (j
+ jb) * a_dim1], lda, (ftnlen)4, (ftnlen)5, (
ftnlen)9, (ftnlen)8);
dtrsm_((char *)"Left", (char *)"Upper", (char *)"Transpose", (char *)"Non-unit", &jb, &i__3, &c_b14,
&a[j + j * a_dim1], lda, &a[j + (j + jb) * a_dim1], lda, (ftnlen)4,
(ftnlen)5, (ftnlen)9, (ftnlen)8);
}
/* L10: */
}
} else {
/* Compute the Cholesky factorization A = L*L**T. */
i__2 = *n;
i__1 = nb;
for (j = 1; i__1 < 0 ? j >= i__2 : j <= i__2; j += i__1) {
/* Update and factorize the current diagonal block and test */
/* for non-positive-definiteness. */
/* Computing MIN */
i__3 = nb, i__4 = *n - j + 1;
jb = min(i__3,i__4);
jb = min(i__3, i__4);
i__3 = j - 1;
dsyrk_((char *)"Lower", (char *)"No transpose", &jb, &i__3, &c_b13, &a[j +
a_dim1], lda, &c_b14, &a[j + j * a_dim1], lda, (
ftnlen)5, (ftnlen)12);
dpotrf2_((char *)"Lower", &jb, &a[j + j * a_dim1], lda, info, (ftnlen)
5);
dsyrk_((char *)"Lower", (char *)"No transpose", &jb, &i__3, &c_b13, &a[j + a_dim1], lda, &c_b14,
&a[j + j * a_dim1], lda, (ftnlen)5, (ftnlen)12);
dpotrf2_((char *)"Lower", &jb, &a[j + j * a_dim1], lda, info, (ftnlen)5);
if (*info != 0) {
goto L30;
}
if (j + jb <= *n) {
/* Compute the current block column. */
i__3 = *n - j - jb + 1;
i__4 = j - 1;
dgemm_((char *)"No transpose", (char *)"Transpose", &i__3, &jb, &i__4, &
c_b13, &a[j + jb + a_dim1], lda, &a[j + a_dim1],
lda, &c_b14, &a[j + jb + j * a_dim1], lda, (
ftnlen)12, (ftnlen)9);
dgemm_((char *)"No transpose", (char *)"Transpose", &i__3, &jb, &i__4, &c_b13,
&a[j + jb + a_dim1], lda, &a[j + a_dim1], lda, &c_b14,
&a[j + jb + j * a_dim1], lda, (ftnlen)12, (ftnlen)9);
i__3 = *n - j - jb + 1;
dtrsm_((char *)"Right", (char *)"Lower", (char *)"Transpose", (char *)"Non-unit", &i__3, &
jb, &c_b14, &a[j + j * a_dim1], lda, &a[j + jb +
j * a_dim1], lda, (ftnlen)5, (ftnlen)5, (ftnlen)9,
(ftnlen)8);
dtrsm_((char *)"Right", (char *)"Lower", (char *)"Transpose", (char *)"Non-unit", &i__3, &jb, &c_b14,
&a[j + j * a_dim1], lda, &a[j + jb + j * a_dim1], lda, (ftnlen)5,
(ftnlen)5, (ftnlen)9, (ftnlen)8);
}
/* L20: */
}
}
}
goto L40;
L30:
*info = *info + j - 1;
L40:
return 0;
/* End of DPOTRF */
} /* dpotrf_ */
}
#ifdef __cplusplus
}
}
#endif