remove redundant comments from generated C++ files. clean up with clang-format.
This commit is contained in:
@ -1,247 +1,26 @@
|
||||
/* fortran/dtrmm.f -- translated by f2c (version 20200916).
|
||||
You must link the resulting object file with libf2c:
|
||||
on Microsoft Windows system, link with libf2c.lib;
|
||||
on Linux or Unix systems, link with .../path/to/libf2c.a -lm
|
||||
or, if you install libf2c.a in a standard place, with -lf2c -lm
|
||||
-- in that order, at the end of the command line, as in
|
||||
cc *.o -lf2c -lm
|
||||
Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
|
||||
|
||||
http://www.netlib.org/f2c/libf2c.zip
|
||||
*/
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
#include "lmp_f2c.h"
|
||||
|
||||
/* > \brief \b DTRMM */
|
||||
|
||||
/* =========== DOCUMENTATION =========== */
|
||||
|
||||
/* Online html documentation available at */
|
||||
/* http://www.netlib.org/lapack/explore-html/ */
|
||||
|
||||
/* Definition: */
|
||||
/* =========== */
|
||||
|
||||
/* SUBROUTINE DTRMM(SIDE,UPLO,TRANSA,DIAG,M,N,ALPHA,A,LDA,B,LDB) */
|
||||
|
||||
/* .. Scalar Arguments .. */
|
||||
/* DOUBLE PRECISION ALPHA */
|
||||
/* INTEGER LDA,LDB,M,N */
|
||||
/* CHARACTER DIAG,SIDE,TRANSA,UPLO */
|
||||
/* .. */
|
||||
/* .. Array Arguments .. */
|
||||
/* DOUBLE PRECISION A(LDA,*),B(LDB,*) */
|
||||
/* .. */
|
||||
|
||||
|
||||
/* > \par Purpose: */
|
||||
/* ============= */
|
||||
/* > */
|
||||
/* > \verbatim */
|
||||
/* > */
|
||||
/* > DTRMM performs one of the matrix-matrix operations */
|
||||
/* > */
|
||||
/* > B := alpha*op( A )*B, or B := alpha*B*op( A ), */
|
||||
/* > */
|
||||
/* > where alpha is a scalar, B is an m by n matrix, A is a unit, or */
|
||||
/* > non-unit, upper or lower triangular matrix and op( A ) is one of */
|
||||
/* > */
|
||||
/* > op( A ) = A or op( A ) = A**T. */
|
||||
/* > \endverbatim */
|
||||
|
||||
/* Arguments: */
|
||||
/* ========== */
|
||||
|
||||
/* > \param[in] SIDE */
|
||||
/* > \verbatim */
|
||||
/* > SIDE is CHARACTER*1 */
|
||||
/* > On entry, SIDE specifies whether op( A ) multiplies B from */
|
||||
/* > the left or right as follows: */
|
||||
/* > */
|
||||
/* > SIDE = 'L' or 'l' B := alpha*op( A )*B. */
|
||||
/* > */
|
||||
/* > SIDE = 'R' or 'r' B := alpha*B*op( A ). */
|
||||
/* > \endverbatim */
|
||||
/* > */
|
||||
/* > \param[in] UPLO */
|
||||
/* > \verbatim */
|
||||
/* > UPLO is CHARACTER*1 */
|
||||
/* > On entry, UPLO specifies whether the matrix A is an upper or */
|
||||
/* > lower triangular matrix as follows: */
|
||||
/* > */
|
||||
/* > UPLO = 'U' or 'u' A is an upper triangular matrix. */
|
||||
/* > */
|
||||
/* > UPLO = 'L' or 'l' A is a lower triangular matrix. */
|
||||
/* > \endverbatim */
|
||||
/* > */
|
||||
/* > \param[in] TRANSA */
|
||||
/* > \verbatim */
|
||||
/* > TRANSA is CHARACTER*1 */
|
||||
/* > On entry, TRANSA specifies the form of op( A ) to be used in */
|
||||
/* > the matrix multiplication as follows: */
|
||||
/* > */
|
||||
/* > TRANSA = 'N' or 'n' op( A ) = A. */
|
||||
/* > */
|
||||
/* > TRANSA = 'T' or 't' op( A ) = A**T. */
|
||||
/* > */
|
||||
/* > TRANSA = 'C' or 'c' op( A ) = A**T. */
|
||||
/* > \endverbatim */
|
||||
/* > */
|
||||
/* > \param[in] DIAG */
|
||||
/* > \verbatim */
|
||||
/* > DIAG is CHARACTER*1 */
|
||||
/* > On entry, DIAG specifies whether or not A is unit triangular */
|
||||
/* > as follows: */
|
||||
/* > */
|
||||
/* > DIAG = 'U' or 'u' A is assumed to be unit triangular. */
|
||||
/* > */
|
||||
/* > DIAG = 'N' or 'n' A is not assumed to be unit */
|
||||
/* > triangular. */
|
||||
/* > \endverbatim */
|
||||
/* > */
|
||||
/* > \param[in] M */
|
||||
/* > \verbatim */
|
||||
/* > M is INTEGER */
|
||||
/* > On entry, M specifies the number of rows of B. M must be at */
|
||||
/* > least zero. */
|
||||
/* > \endverbatim */
|
||||
/* > */
|
||||
/* > \param[in] N */
|
||||
/* > \verbatim */
|
||||
/* > N is INTEGER */
|
||||
/* > On entry, N specifies the number of columns of B. N must be */
|
||||
/* > at least zero. */
|
||||
/* > \endverbatim */
|
||||
/* > */
|
||||
/* > \param[in] ALPHA */
|
||||
/* > \verbatim */
|
||||
/* > ALPHA is DOUBLE PRECISION. */
|
||||
/* > On entry, ALPHA specifies the scalar alpha. When alpha is */
|
||||
/* > zero then A is not referenced and B need not be set before */
|
||||
/* > entry. */
|
||||
/* > \endverbatim */
|
||||
/* > */
|
||||
/* > \param[in] A */
|
||||
/* > \verbatim */
|
||||
/* > A is DOUBLE PRECISION array, dimension ( LDA, k ), where k is m */
|
||||
/* > when SIDE = 'L' or 'l' and is n when SIDE = 'R' or 'r'. */
|
||||
/* > Before entry with UPLO = 'U' or 'u', the leading k by k */
|
||||
/* > upper triangular part of the array A must contain the upper */
|
||||
/* > triangular matrix and the strictly lower triangular part of */
|
||||
/* > A is not referenced. */
|
||||
/* > Before entry with UPLO = 'L' or 'l', the leading k by k */
|
||||
/* > lower triangular part of the array A must contain the lower */
|
||||
/* > triangular matrix and the strictly upper triangular part of */
|
||||
/* > A is not referenced. */
|
||||
/* > Note that when DIAG = 'U' or 'u', the diagonal elements of */
|
||||
/* > A are not referenced either, but are assumed to be unity. */
|
||||
/* > \endverbatim */
|
||||
/* > */
|
||||
/* > \param[in] LDA */
|
||||
/* > \verbatim */
|
||||
/* > LDA is INTEGER */
|
||||
/* > On entry, LDA specifies the first dimension of A as declared */
|
||||
/* > in the calling (sub) program. When SIDE = 'L' or 'l' then */
|
||||
/* > LDA must be at least max( 1, m ), when SIDE = 'R' or 'r' */
|
||||
/* > then LDA must be at least max( 1, n ). */
|
||||
/* > \endverbatim */
|
||||
/* > */
|
||||
/* > \param[in,out] B */
|
||||
/* > \verbatim */
|
||||
/* > B is DOUBLE PRECISION array, dimension ( LDB, N ) */
|
||||
/* > Before entry, the leading m by n part of the array B must */
|
||||
/* > contain the matrix B, and on exit is overwritten by the */
|
||||
/* > transformed matrix. */
|
||||
/* > \endverbatim */
|
||||
/* > */
|
||||
/* > \param[in] LDB */
|
||||
/* > \verbatim */
|
||||
/* > LDB is INTEGER */
|
||||
/* > On entry, LDB specifies the first dimension of B as declared */
|
||||
/* > in the calling (sub) program. LDB must be at least */
|
||||
/* > max( 1, m ). */
|
||||
/* > \endverbatim */
|
||||
|
||||
/* Authors: */
|
||||
/* ======== */
|
||||
|
||||
/* > \author Univ. of Tennessee */
|
||||
/* > \author Univ. of California Berkeley */
|
||||
/* > \author Univ. of Colorado Denver */
|
||||
/* > \author NAG Ltd. */
|
||||
|
||||
/* > \ingroup double_blas_level3 */
|
||||
|
||||
/* > \par Further Details: */
|
||||
/* ===================== */
|
||||
/* > */
|
||||
/* > \verbatim */
|
||||
/* > */
|
||||
/* > Level 3 Blas routine. */
|
||||
/* > */
|
||||
/* > -- Written on 8-February-1989. */
|
||||
/* > Jack Dongarra, Argonne National Laboratory. */
|
||||
/* > Iain Duff, AERE Harwell. */
|
||||
/* > Jeremy Du Croz, Numerical Algorithms Group Ltd. */
|
||||
/* > Sven Hammarling, Numerical Algorithms Group Ltd. */
|
||||
/* > \endverbatim */
|
||||
/* > */
|
||||
/* ===================================================================== */
|
||||
/* Subroutine */ int dtrmm_(char *side, char *uplo, char *transa, char *diag,
|
||||
integer *m, integer *n, doublereal *alpha, doublereal *a, integer *
|
||||
lda, doublereal *b, integer *ldb, ftnlen side_len, ftnlen uplo_len,
|
||||
ftnlen transa_len, ftnlen diag_len)
|
||||
int dtrmm_(char *side, char *uplo, char *transa, char *diag, integer *m, integer *n,
|
||||
doublereal *alpha, doublereal *a, integer *lda, doublereal *b, integer *ldb,
|
||||
ftnlen side_len, ftnlen uplo_len, ftnlen transa_len, ftnlen diag_len)
|
||||
{
|
||||
/* System generated locals */
|
||||
integer a_dim1, a_offset, b_dim1, b_offset, i__1, i__2, i__3;
|
||||
|
||||
/* Local variables */
|
||||
integer i__, j, k, info;
|
||||
doublereal temp;
|
||||
logical lside;
|
||||
extern logical lsame_(char *, char *, ftnlen, ftnlen);
|
||||
integer nrowa;
|
||||
logical upper;
|
||||
extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
|
||||
extern int xerbla_(char *, integer *, ftnlen);
|
||||
logical nounit;
|
||||
|
||||
|
||||
/* -- Reference BLAS level3 routine -- */
|
||||
/* -- Reference BLAS is a software package provided by Univ. of Tennessee, -- */
|
||||
/* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
|
||||
|
||||
/* .. Scalar Arguments .. */
|
||||
/* .. */
|
||||
/* .. Array Arguments .. */
|
||||
/* .. */
|
||||
|
||||
/* ===================================================================== */
|
||||
|
||||
/* .. External Functions .. */
|
||||
/* .. */
|
||||
/* .. External Subroutines .. */
|
||||
/* .. */
|
||||
/* .. Intrinsic Functions .. */
|
||||
/* .. */
|
||||
/* .. Local Scalars .. */
|
||||
/* .. */
|
||||
/* .. Parameters .. */
|
||||
/* .. */
|
||||
|
||||
/* Test the input parameters. */
|
||||
|
||||
/* Parameter adjustments */
|
||||
a_dim1 = *lda;
|
||||
a_offset = 1 + a_dim1;
|
||||
a -= a_offset;
|
||||
b_dim1 = *ldb;
|
||||
b_offset = 1 + b_dim1;
|
||||
b -= b_offset;
|
||||
|
||||
/* Function Body */
|
||||
lside = lsame_(side, (char *)"L", (ftnlen)1, (ftnlen)1);
|
||||
if (lside) {
|
||||
nrowa = *m;
|
||||
@ -250,61 +29,46 @@ extern "C" {
|
||||
}
|
||||
nounit = lsame_(diag, (char *)"N", (ftnlen)1, (ftnlen)1);
|
||||
upper = lsame_(uplo, (char *)"U", (ftnlen)1, (ftnlen)1);
|
||||
|
||||
info = 0;
|
||||
if (! lside && ! lsame_(side, (char *)"R", (ftnlen)1, (ftnlen)1)) {
|
||||
if (!lside && !lsame_(side, (char *)"R", (ftnlen)1, (ftnlen)1)) {
|
||||
info = 1;
|
||||
} else if (! upper && ! lsame_(uplo, (char *)"L", (ftnlen)1, (ftnlen)1)) {
|
||||
} else if (!upper && !lsame_(uplo, (char *)"L", (ftnlen)1, (ftnlen)1)) {
|
||||
info = 2;
|
||||
} else if (! lsame_(transa, (char *)"N", (ftnlen)1, (ftnlen)1) && ! lsame_(transa,
|
||||
(char *)"T", (ftnlen)1, (ftnlen)1) && ! lsame_(transa, (char *)"C", (ftnlen)1, (
|
||||
ftnlen)1)) {
|
||||
} else if (!lsame_(transa, (char *)"N", (ftnlen)1, (ftnlen)1) &&
|
||||
!lsame_(transa, (char *)"T", (ftnlen)1, (ftnlen)1) &&
|
||||
!lsame_(transa, (char *)"C", (ftnlen)1, (ftnlen)1)) {
|
||||
info = 3;
|
||||
} else if (! lsame_(diag, (char *)"U", (ftnlen)1, (ftnlen)1) && ! lsame_(diag,
|
||||
(char *)"N", (ftnlen)1, (ftnlen)1)) {
|
||||
} else if (!lsame_(diag, (char *)"U", (ftnlen)1, (ftnlen)1) &&
|
||||
!lsame_(diag, (char *)"N", (ftnlen)1, (ftnlen)1)) {
|
||||
info = 4;
|
||||
} else if (*m < 0) {
|
||||
info = 5;
|
||||
} else if (*n < 0) {
|
||||
info = 6;
|
||||
} else if (*lda < max(1,nrowa)) {
|
||||
} else if (*lda < max(1, nrowa)) {
|
||||
info = 9;
|
||||
} else if (*ldb < max(1,*m)) {
|
||||
} else if (*ldb < max(1, *m)) {
|
||||
info = 11;
|
||||
}
|
||||
if (info != 0) {
|
||||
xerbla_((char *)"DTRMM ", &info, (ftnlen)6);
|
||||
return 0;
|
||||
}
|
||||
|
||||
/* Quick return if possible. */
|
||||
|
||||
if (*m == 0 || *n == 0) {
|
||||
return 0;
|
||||
}
|
||||
|
||||
/* And when alpha.eq.zero. */
|
||||
|
||||
if (*alpha == 0.) {
|
||||
i__1 = *n;
|
||||
for (j = 1; j <= i__1; ++j) {
|
||||
i__2 = *m;
|
||||
for (i__ = 1; i__ <= i__2; ++i__) {
|
||||
b[i__ + j * b_dim1] = 0.;
|
||||
/* L10: */
|
||||
}
|
||||
/* L20: */
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
||||
/* Start the operations. */
|
||||
|
||||
if (lside) {
|
||||
if (lsame_(transa, (char *)"N", (ftnlen)1, (ftnlen)1)) {
|
||||
|
||||
/* Form B := alpha*A*B. */
|
||||
|
||||
if (upper) {
|
||||
i__1 = *n;
|
||||
for (j = 1; j <= i__1; ++j) {
|
||||
@ -314,18 +78,14 @@ extern "C" {
|
||||
temp = *alpha * b[k + j * b_dim1];
|
||||
i__3 = k - 1;
|
||||
for (i__ = 1; i__ <= i__3; ++i__) {
|
||||
b[i__ + j * b_dim1] += temp * a[i__ + k *
|
||||
a_dim1];
|
||||
/* L30: */
|
||||
b[i__ + j * b_dim1] += temp * a[i__ + k * a_dim1];
|
||||
}
|
||||
if (nounit) {
|
||||
temp *= a[k + k * a_dim1];
|
||||
}
|
||||
b[k + j * b_dim1] = temp;
|
||||
}
|
||||
/* L40: */
|
||||
}
|
||||
/* L50: */
|
||||
}
|
||||
} else {
|
||||
i__1 = *n;
|
||||
@ -339,20 +99,13 @@ extern "C" {
|
||||
}
|
||||
i__2 = *m;
|
||||
for (i__ = k + 1; i__ <= i__2; ++i__) {
|
||||
b[i__ + j * b_dim1] += temp * a[i__ + k *
|
||||
a_dim1];
|
||||
/* L60: */
|
||||
b[i__ + j * b_dim1] += temp * a[i__ + k * a_dim1];
|
||||
}
|
||||
}
|
||||
/* L70: */
|
||||
}
|
||||
/* L80: */
|
||||
}
|
||||
}
|
||||
} else {
|
||||
|
||||
/* Form B := alpha*A**T*B. */
|
||||
|
||||
if (upper) {
|
||||
i__1 = *n;
|
||||
for (j = 1; j <= i__1; ++j) {
|
||||
@ -364,12 +117,9 @@ extern "C" {
|
||||
i__2 = i__ - 1;
|
||||
for (k = 1; k <= i__2; ++k) {
|
||||
temp += a[k + i__ * a_dim1] * b[k + j * b_dim1];
|
||||
/* L90: */
|
||||
}
|
||||
b[i__ + j * b_dim1] = *alpha * temp;
|
||||
/* L100: */
|
||||
}
|
||||
/* L110: */
|
||||
}
|
||||
} else {
|
||||
i__1 = *n;
|
||||
@ -383,20 +133,14 @@ extern "C" {
|
||||
i__3 = *m;
|
||||
for (k = i__ + 1; k <= i__3; ++k) {
|
||||
temp += a[k + i__ * a_dim1] * b[k + j * b_dim1];
|
||||
/* L120: */
|
||||
}
|
||||
b[i__ + j * b_dim1] = *alpha * temp;
|
||||
/* L130: */
|
||||
}
|
||||
/* L140: */
|
||||
}
|
||||
}
|
||||
}
|
||||
} else {
|
||||
if (lsame_(transa, (char *)"N", (ftnlen)1, (ftnlen)1)) {
|
||||
|
||||
/* Form B := alpha*B*A. */
|
||||
|
||||
if (upper) {
|
||||
for (j = *n; j >= 1; --j) {
|
||||
temp = *alpha;
|
||||
@ -406,7 +150,6 @@ extern "C" {
|
||||
i__1 = *m;
|
||||
for (i__ = 1; i__ <= i__1; ++i__) {
|
||||
b[i__ + j * b_dim1] = temp * b[i__ + j * b_dim1];
|
||||
/* L150: */
|
||||
}
|
||||
i__1 = j - 1;
|
||||
for (k = 1; k <= i__1; ++k) {
|
||||
@ -414,14 +157,10 @@ extern "C" {
|
||||
temp = *alpha * a[k + j * a_dim1];
|
||||
i__2 = *m;
|
||||
for (i__ = 1; i__ <= i__2; ++i__) {
|
||||
b[i__ + j * b_dim1] += temp * b[i__ + k *
|
||||
b_dim1];
|
||||
/* L160: */
|
||||
b[i__ + j * b_dim1] += temp * b[i__ + k * b_dim1];
|
||||
}
|
||||
}
|
||||
/* L170: */
|
||||
}
|
||||
/* L180: */
|
||||
}
|
||||
} else {
|
||||
i__1 = *n;
|
||||
@ -433,7 +172,6 @@ extern "C" {
|
||||
i__2 = *m;
|
||||
for (i__ = 1; i__ <= i__2; ++i__) {
|
||||
b[i__ + j * b_dim1] = temp * b[i__ + j * b_dim1];
|
||||
/* L190: */
|
||||
}
|
||||
i__2 = *n;
|
||||
for (k = j + 1; k <= i__2; ++k) {
|
||||
@ -441,20 +179,13 @@ extern "C" {
|
||||
temp = *alpha * a[k + j * a_dim1];
|
||||
i__3 = *m;
|
||||
for (i__ = 1; i__ <= i__3; ++i__) {
|
||||
b[i__ + j * b_dim1] += temp * b[i__ + k *
|
||||
b_dim1];
|
||||
/* L200: */
|
||||
b[i__ + j * b_dim1] += temp * b[i__ + k * b_dim1];
|
||||
}
|
||||
}
|
||||
/* L210: */
|
||||
}
|
||||
/* L220: */
|
||||
}
|
||||
}
|
||||
} else {
|
||||
|
||||
/* Form B := alpha*B*A**T. */
|
||||
|
||||
if (upper) {
|
||||
i__1 = *n;
|
||||
for (k = 1; k <= i__1; ++k) {
|
||||
@ -464,12 +195,9 @@ extern "C" {
|
||||
temp = *alpha * a[j + k * a_dim1];
|
||||
i__3 = *m;
|
||||
for (i__ = 1; i__ <= i__3; ++i__) {
|
||||
b[i__ + j * b_dim1] += temp * b[i__ + k *
|
||||
b_dim1];
|
||||
/* L230: */
|
||||
b[i__ + j * b_dim1] += temp * b[i__ + k * b_dim1];
|
||||
}
|
||||
}
|
||||
/* L240: */
|
||||
}
|
||||
temp = *alpha;
|
||||
if (nounit) {
|
||||
@ -479,10 +207,8 @@ extern "C" {
|
||||
i__2 = *m;
|
||||
for (i__ = 1; i__ <= i__2; ++i__) {
|
||||
b[i__ + k * b_dim1] = temp * b[i__ + k * b_dim1];
|
||||
/* L250: */
|
||||
}
|
||||
}
|
||||
/* L260: */
|
||||
}
|
||||
} else {
|
||||
for (k = *n; k >= 1; --k) {
|
||||
@ -492,12 +218,9 @@ extern "C" {
|
||||
temp = *alpha * a[j + k * a_dim1];
|
||||
i__2 = *m;
|
||||
for (i__ = 1; i__ <= i__2; ++i__) {
|
||||
b[i__ + j * b_dim1] += temp * b[i__ + k *
|
||||
b_dim1];
|
||||
/* L270: */
|
||||
b[i__ + j * b_dim1] += temp * b[i__ + k * b_dim1];
|
||||
}
|
||||
}
|
||||
/* L280: */
|
||||
}
|
||||
temp = *alpha;
|
||||
if (nounit) {
|
||||
@ -507,21 +230,14 @@ extern "C" {
|
||||
i__1 = *m;
|
||||
for (i__ = 1; i__ <= i__1; ++i__) {
|
||||
b[i__ + k * b_dim1] = temp * b[i__ + k * b_dim1];
|
||||
/* L290: */
|
||||
}
|
||||
}
|
||||
/* L300: */
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return 0;
|
||||
|
||||
/* End of DTRMM */
|
||||
|
||||
} /* dtrmm_ */
|
||||
|
||||
}
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
}
|
||||
#endif
|
||||
|
||||
Reference in New Issue
Block a user