remove redundant comments from generated C++ files. clean up with clang-format.
This commit is contained in:
@ -1,282 +1,30 @@
|
||||
/* fortran/zlatrd.f -- translated by f2c (version 20200916).
|
||||
You must link the resulting object file with libf2c:
|
||||
on Microsoft Windows system, link with libf2c.lib;
|
||||
on Linux or Unix systems, link with .../path/to/libf2c.a -lm
|
||||
or, if you install libf2c.a in a standard place, with -lf2c -lm
|
||||
-- in that order, at the end of the command line, as in
|
||||
cc *.o -lf2c -lm
|
||||
Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
|
||||
|
||||
http://www.netlib.org/f2c/libf2c.zip
|
||||
*/
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
#include "lmp_f2c.h"
|
||||
|
||||
/* Table of constant values */
|
||||
|
||||
static doublecomplex c_b1 = {0.,0.};
|
||||
static doublecomplex c_b2 = {1.,0.};
|
||||
static doublecomplex c_b1 = {0., 0.};
|
||||
static doublecomplex c_b2 = {1., 0.};
|
||||
static integer c__1 = 1;
|
||||
|
||||
/* > \brief \b ZLATRD reduces the first nb rows and columns of a symmetric/Hermitian matrix A to real tridiago
|
||||
nal form by an unitary similarity transformation. */
|
||||
|
||||
/* =========== DOCUMENTATION =========== */
|
||||
|
||||
/* Online html documentation available at */
|
||||
/* http://www.netlib.org/lapack/explore-html/ */
|
||||
|
||||
/* > \htmlonly */
|
||||
/* > Download ZLATRD + dependencies */
|
||||
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zlatrd.
|
||||
f"> */
|
||||
/* > [TGZ]</a> */
|
||||
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zlatrd.
|
||||
f"> */
|
||||
/* > [ZIP]</a> */
|
||||
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zlatrd.
|
||||
f"> */
|
||||
/* > [TXT]</a> */
|
||||
/* > \endhtmlonly */
|
||||
|
||||
/* Definition: */
|
||||
/* =========== */
|
||||
|
||||
/* SUBROUTINE ZLATRD( UPLO, N, NB, A, LDA, E, TAU, W, LDW ) */
|
||||
|
||||
/* .. Scalar Arguments .. */
|
||||
/* CHARACTER UPLO */
|
||||
/* INTEGER LDA, LDW, N, NB */
|
||||
/* .. */
|
||||
/* .. Array Arguments .. */
|
||||
/* DOUBLE PRECISION E( * ) */
|
||||
/* COMPLEX*16 A( LDA, * ), TAU( * ), W( LDW, * ) */
|
||||
/* .. */
|
||||
|
||||
|
||||
/* > \par Purpose: */
|
||||
/* ============= */
|
||||
/* > */
|
||||
/* > \verbatim */
|
||||
/* > */
|
||||
/* > ZLATRD reduces NB rows and columns of a complex Hermitian matrix A to */
|
||||
/* > Hermitian tridiagonal form by a unitary similarity */
|
||||
/* > transformation Q**H * A * Q, and returns the matrices V and W which are */
|
||||
/* > needed to apply the transformation to the unreduced part of A. */
|
||||
/* > */
|
||||
/* > If UPLO = 'U', ZLATRD reduces the last NB rows and columns of a */
|
||||
/* > matrix, of which the upper triangle is supplied; */
|
||||
/* > if UPLO = 'L', ZLATRD reduces the first NB rows and columns of a */
|
||||
/* > matrix, of which the lower triangle is supplied. */
|
||||
/* > */
|
||||
/* > This is an auxiliary routine called by ZHETRD. */
|
||||
/* > \endverbatim */
|
||||
|
||||
/* Arguments: */
|
||||
/* ========== */
|
||||
|
||||
/* > \param[in] UPLO */
|
||||
/* > \verbatim */
|
||||
/* > UPLO is CHARACTER*1 */
|
||||
/* > Specifies whether the upper or lower triangular part of the */
|
||||
/* > Hermitian matrix A is stored: */
|
||||
/* > = 'U': Upper triangular */
|
||||
/* > = 'L': Lower triangular */
|
||||
/* > \endverbatim */
|
||||
/* > */
|
||||
/* > \param[in] N */
|
||||
/* > \verbatim */
|
||||
/* > N is INTEGER */
|
||||
/* > The order of the matrix A. */
|
||||
/* > \endverbatim */
|
||||
/* > */
|
||||
/* > \param[in] NB */
|
||||
/* > \verbatim */
|
||||
/* > NB is INTEGER */
|
||||
/* > The number of rows and columns to be reduced. */
|
||||
/* > \endverbatim */
|
||||
/* > */
|
||||
/* > \param[in,out] A */
|
||||
/* > \verbatim */
|
||||
/* > A is COMPLEX*16 array, dimension (LDA,N) */
|
||||
/* > On entry, the Hermitian matrix A. If UPLO = 'U', the leading */
|
||||
/* > n-by-n upper triangular part of A contains the upper */
|
||||
/* > triangular part of the matrix A, and the strictly lower */
|
||||
/* > triangular part of A is not referenced. If UPLO = 'L', the */
|
||||
/* > leading n-by-n lower triangular part of A contains the lower */
|
||||
/* > triangular part of the matrix A, and the strictly upper */
|
||||
/* > triangular part of A is not referenced. */
|
||||
/* > On exit: */
|
||||
/* > if UPLO = 'U', the last NB columns have been reduced to */
|
||||
/* > tridiagonal form, with the diagonal elements overwriting */
|
||||
/* > the diagonal elements of A; the elements above the diagonal */
|
||||
/* > with the array TAU, represent the unitary matrix Q as a */
|
||||
/* > product of elementary reflectors; */
|
||||
/* > if UPLO = 'L', the first NB columns have been reduced to */
|
||||
/* > tridiagonal form, with the diagonal elements overwriting */
|
||||
/* > the diagonal elements of A; the elements below the diagonal */
|
||||
/* > with the array TAU, represent the unitary matrix Q as a */
|
||||
/* > product of elementary reflectors. */
|
||||
/* > See Further Details. */
|
||||
/* > \endverbatim */
|
||||
/* > */
|
||||
/* > \param[in] LDA */
|
||||
/* > \verbatim */
|
||||
/* > LDA is INTEGER */
|
||||
/* > The leading dimension of the array A. LDA >= max(1,N). */
|
||||
/* > \endverbatim */
|
||||
/* > */
|
||||
/* > \param[out] E */
|
||||
/* > \verbatim */
|
||||
/* > E is DOUBLE PRECISION array, dimension (N-1) */
|
||||
/* > If UPLO = 'U', E(n-nb:n-1) contains the superdiagonal */
|
||||
/* > elements of the last NB columns of the reduced matrix; */
|
||||
/* > if UPLO = 'L', E(1:nb) contains the subdiagonal elements of */
|
||||
/* > the first NB columns of the reduced matrix. */
|
||||
/* > \endverbatim */
|
||||
/* > */
|
||||
/* > \param[out] TAU */
|
||||
/* > \verbatim */
|
||||
/* > TAU is COMPLEX*16 array, dimension (N-1) */
|
||||
/* > The scalar factors of the elementary reflectors, stored in */
|
||||
/* > TAU(n-nb:n-1) if UPLO = 'U', and in TAU(1:nb) if UPLO = 'L'. */
|
||||
/* > See Further Details. */
|
||||
/* > \endverbatim */
|
||||
/* > */
|
||||
/* > \param[out] W */
|
||||
/* > \verbatim */
|
||||
/* > W is COMPLEX*16 array, dimension (LDW,NB) */
|
||||
/* > The n-by-nb matrix W required to update the unreduced part */
|
||||
/* > of A. */
|
||||
/* > \endverbatim */
|
||||
/* > */
|
||||
/* > \param[in] LDW */
|
||||
/* > \verbatim */
|
||||
/* > LDW is INTEGER */
|
||||
/* > The leading dimension of the array W. LDW >= max(1,N). */
|
||||
/* > \endverbatim */
|
||||
|
||||
/* Authors: */
|
||||
/* ======== */
|
||||
|
||||
/* > \author Univ. of Tennessee */
|
||||
/* > \author Univ. of California Berkeley */
|
||||
/* > \author Univ. of Colorado Denver */
|
||||
/* > \author NAG Ltd. */
|
||||
|
||||
/* > \ingroup complex16OTHERauxiliary */
|
||||
|
||||
/* > \par Further Details: */
|
||||
/* ===================== */
|
||||
/* > */
|
||||
/* > \verbatim */
|
||||
/* > */
|
||||
/* > If UPLO = 'U', the matrix Q is represented as a product of elementary */
|
||||
/* > reflectors */
|
||||
/* > */
|
||||
/* > Q = H(n) H(n-1) . . . H(n-nb+1). */
|
||||
/* > */
|
||||
/* > Each H(i) has the form */
|
||||
/* > */
|
||||
/* > H(i) = I - tau * v * v**H */
|
||||
/* > */
|
||||
/* > where tau is a complex scalar, and v is a complex vector with */
|
||||
/* > v(i:n) = 0 and v(i-1) = 1; v(1:i-1) is stored on exit in A(1:i-1,i), */
|
||||
/* > and tau in TAU(i-1). */
|
||||
/* > */
|
||||
/* > If UPLO = 'L', the matrix Q is represented as a product of elementary */
|
||||
/* > reflectors */
|
||||
/* > */
|
||||
/* > Q = H(1) H(2) . . . H(nb). */
|
||||
/* > */
|
||||
/* > Each H(i) has the form */
|
||||
/* > */
|
||||
/* > H(i) = I - tau * v * v**H */
|
||||
/* > */
|
||||
/* > where tau is a complex scalar, and v is a complex vector with */
|
||||
/* > v(1:i) = 0 and v(i+1) = 1; v(i+1:n) is stored on exit in A(i+1:n,i), */
|
||||
/* > and tau in TAU(i). */
|
||||
/* > */
|
||||
/* > The elements of the vectors v together form the n-by-nb matrix V */
|
||||
/* > which is needed, with W, to apply the transformation to the unreduced */
|
||||
/* > part of the matrix, using a Hermitian rank-2k update of the form: */
|
||||
/* > A := A - V*W**H - W*V**H. */
|
||||
/* > */
|
||||
/* > The contents of A on exit are illustrated by the following examples */
|
||||
/* > with n = 5 and nb = 2: */
|
||||
/* > */
|
||||
/* > if UPLO = 'U': if UPLO = 'L': */
|
||||
/* > */
|
||||
/* > ( a a a v4 v5 ) ( d ) */
|
||||
/* > ( a a v4 v5 ) ( 1 d ) */
|
||||
/* > ( a 1 v5 ) ( v1 1 a ) */
|
||||
/* > ( d 1 ) ( v1 v2 a a ) */
|
||||
/* > ( d ) ( v1 v2 a a a ) */
|
||||
/* > */
|
||||
/* > where d denotes a diagonal element of the reduced matrix, a denotes */
|
||||
/* > an element of the original matrix that is unchanged, and vi denotes */
|
||||
/* > an element of the vector defining H(i). */
|
||||
/* > \endverbatim */
|
||||
/* > */
|
||||
/* ===================================================================== */
|
||||
/* Subroutine */ int zlatrd_(char *uplo, integer *n, integer *nb,
|
||||
doublecomplex *a, integer *lda, doublereal *e, doublecomplex *tau,
|
||||
doublecomplex *w, integer *ldw, ftnlen uplo_len)
|
||||
int zlatrd_(char *uplo, integer *n, integer *nb, doublecomplex *a, integer *lda, doublereal *e,
|
||||
doublecomplex *tau, doublecomplex *w, integer *ldw, ftnlen uplo_len)
|
||||
{
|
||||
/* System generated locals */
|
||||
integer a_dim1, a_offset, w_dim1, w_offset, i__1, i__2, i__3;
|
||||
doublereal d__1;
|
||||
doublecomplex z__1, z__2, z__3, z__4;
|
||||
|
||||
/* Local variables */
|
||||
integer i__, iw;
|
||||
doublecomplex alpha;
|
||||
extern logical lsame_(char *, char *, ftnlen, ftnlen);
|
||||
extern /* Subroutine */ int zscal_(integer *, doublecomplex *,
|
||||
doublecomplex *, integer *);
|
||||
extern /* Double Complex */ VOID zdotc_(doublecomplex *, integer *,
|
||||
doublecomplex *, integer *, doublecomplex *, integer *);
|
||||
extern /* Subroutine */ int zgemv_(char *, integer *, integer *,
|
||||
doublecomplex *, doublecomplex *, integer *, doublecomplex *,
|
||||
integer *, doublecomplex *, doublecomplex *, integer *, ftnlen),
|
||||
zhemv_(char *, integer *, doublecomplex *, doublecomplex *,
|
||||
integer *, doublecomplex *, integer *, doublecomplex *,
|
||||
doublecomplex *, integer *, ftnlen), zaxpy_(integer *,
|
||||
doublecomplex *, doublecomplex *, integer *, doublecomplex *,
|
||||
integer *), zlarfg_(integer *, doublecomplex *, doublecomplex *,
|
||||
integer *, doublecomplex *), zlacgv_(integer *, doublecomplex *,
|
||||
integer *);
|
||||
|
||||
|
||||
/* -- LAPACK auxiliary routine -- */
|
||||
/* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
|
||||
/* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
|
||||
|
||||
/* .. Scalar Arguments .. */
|
||||
/* .. */
|
||||
/* .. Array Arguments .. */
|
||||
/* .. */
|
||||
|
||||
/* ===================================================================== */
|
||||
|
||||
/* .. Parameters .. */
|
||||
/* .. */
|
||||
/* .. Local Scalars .. */
|
||||
/* .. */
|
||||
/* .. External Subroutines .. */
|
||||
/* .. */
|
||||
/* .. External Functions .. */
|
||||
/* .. */
|
||||
/* .. Intrinsic Functions .. */
|
||||
/* .. */
|
||||
/* .. Executable Statements .. */
|
||||
|
||||
/* Quick return if possible */
|
||||
|
||||
/* Parameter adjustments */
|
||||
extern int zscal_(integer *, doublecomplex *, doublecomplex *, integer *);
|
||||
extern VOID zdotc_(doublecomplex *, integer *, doublecomplex *, integer *, doublecomplex *,
|
||||
integer *);
|
||||
extern int zgemv_(char *, integer *, integer *, doublecomplex *, doublecomplex *, integer *,
|
||||
doublecomplex *, integer *, doublecomplex *, doublecomplex *, integer *,
|
||||
ftnlen),
|
||||
zhemv_(char *, integer *, doublecomplex *, doublecomplex *, integer *, doublecomplex *,
|
||||
integer *, doublecomplex *, doublecomplex *, integer *, ftnlen),
|
||||
zaxpy_(integer *, doublecomplex *, doublecomplex *, integer *, doublecomplex *, integer *),
|
||||
zlarfg_(integer *, doublecomplex *, doublecomplex *, integer *, doublecomplex *),
|
||||
zlacgv_(integer *, doublecomplex *, integer *);
|
||||
a_dim1 = *lda;
|
||||
a_offset = 1 + a_dim1;
|
||||
a -= a_offset;
|
||||
@ -285,23 +33,14 @@ f"> */
|
||||
w_dim1 = *ldw;
|
||||
w_offset = 1 + w_dim1;
|
||||
w -= w_offset;
|
||||
|
||||
/* Function Body */
|
||||
if (*n <= 0) {
|
||||
return 0;
|
||||
}
|
||||
|
||||
if (lsame_(uplo, (char *)"U", (ftnlen)1, (ftnlen)1)) {
|
||||
|
||||
/* Reduce last NB columns of upper triangle */
|
||||
|
||||
i__1 = *n - *nb + 1;
|
||||
for (i__ = *n; i__ >= i__1; --i__) {
|
||||
iw = i__ - *n + *nb;
|
||||
if (i__ < *n) {
|
||||
|
||||
/* Update A(1:i,i) */
|
||||
|
||||
i__2 = i__ + i__ * a_dim1;
|
||||
i__3 = i__ + i__ * a_dim1;
|
||||
d__1 = a[i__3].r;
|
||||
@ -310,18 +49,18 @@ f"> */
|
||||
zlacgv_(&i__2, &w[i__ + (iw + 1) * w_dim1], ldw);
|
||||
i__2 = *n - i__;
|
||||
z__1.r = -1., z__1.i = -0.;
|
||||
zgemv_((char *)"No transpose", &i__, &i__2, &z__1, &a[(i__ + 1) *
|
||||
a_dim1 + 1], lda, &w[i__ + (iw + 1) * w_dim1], ldw, &
|
||||
c_b2, &a[i__ * a_dim1 + 1], &c__1, (ftnlen)12);
|
||||
zgemv_((char *)"No transpose", &i__, &i__2, &z__1, &a[(i__ + 1) * a_dim1 + 1], lda,
|
||||
&w[i__ + (iw + 1) * w_dim1], ldw, &c_b2, &a[i__ * a_dim1 + 1], &c__1,
|
||||
(ftnlen)12);
|
||||
i__2 = *n - i__;
|
||||
zlacgv_(&i__2, &w[i__ + (iw + 1) * w_dim1], ldw);
|
||||
i__2 = *n - i__;
|
||||
zlacgv_(&i__2, &a[i__ + (i__ + 1) * a_dim1], lda);
|
||||
i__2 = *n - i__;
|
||||
z__1.r = -1., z__1.i = -0.;
|
||||
zgemv_((char *)"No transpose", &i__, &i__2, &z__1, &w[(iw + 1) *
|
||||
w_dim1 + 1], ldw, &a[i__ + (i__ + 1) * a_dim1], lda, &
|
||||
c_b2, &a[i__ * a_dim1 + 1], &c__1, (ftnlen)12);
|
||||
zgemv_((char *)"No transpose", &i__, &i__2, &z__1, &w[(iw + 1) * w_dim1 + 1], ldw,
|
||||
&a[i__ + (i__ + 1) * a_dim1], lda, &c_b2, &a[i__ * a_dim1 + 1], &c__1,
|
||||
(ftnlen)12);
|
||||
i__2 = *n - i__;
|
||||
zlacgv_(&i__2, &a[i__ + (i__ + 1) * a_dim1], lda);
|
||||
i__2 = i__ + i__ * a_dim1;
|
||||
@ -330,81 +69,58 @@ f"> */
|
||||
a[i__2].r = d__1, a[i__2].i = 0.;
|
||||
}
|
||||
if (i__ > 1) {
|
||||
|
||||
/* Generate elementary reflector H(i) to annihilate */
|
||||
/* A(1:i-2,i) */
|
||||
|
||||
i__2 = i__ - 1 + i__ * a_dim1;
|
||||
alpha.r = a[i__2].r, alpha.i = a[i__2].i;
|
||||
i__2 = i__ - 1;
|
||||
zlarfg_(&i__2, &alpha, &a[i__ * a_dim1 + 1], &c__1, &tau[i__
|
||||
- 1]);
|
||||
zlarfg_(&i__2, &alpha, &a[i__ * a_dim1 + 1], &c__1, &tau[i__ - 1]);
|
||||
e[i__ - 1] = alpha.r;
|
||||
i__2 = i__ - 1 + i__ * a_dim1;
|
||||
a[i__2].r = 1., a[i__2].i = 0.;
|
||||
|
||||
/* Compute W(1:i-1,i) */
|
||||
|
||||
i__2 = i__ - 1;
|
||||
zhemv_((char *)"Upper", &i__2, &c_b2, &a[a_offset], lda, &a[i__ *
|
||||
a_dim1 + 1], &c__1, &c_b1, &w[iw * w_dim1 + 1], &c__1,
|
||||
(ftnlen)5);
|
||||
zhemv_((char *)"Upper", &i__2, &c_b2, &a[a_offset], lda, &a[i__ * a_dim1 + 1], &c__1, &c_b1,
|
||||
&w[iw * w_dim1 + 1], &c__1, (ftnlen)5);
|
||||
if (i__ < *n) {
|
||||
i__2 = i__ - 1;
|
||||
i__3 = *n - i__;
|
||||
zgemv_((char *)"Conjugate transpose", &i__2, &i__3, &c_b2, &w[(iw
|
||||
+ 1) * w_dim1 + 1], ldw, &a[i__ * a_dim1 + 1], &
|
||||
c__1, &c_b1, &w[i__ + 1 + iw * w_dim1], &c__1, (
|
||||
ftnlen)19);
|
||||
zgemv_((char *)"Conjugate transpose", &i__2, &i__3, &c_b2, &w[(iw + 1) * w_dim1 + 1],
|
||||
ldw, &a[i__ * a_dim1 + 1], &c__1, &c_b1, &w[i__ + 1 + iw * w_dim1],
|
||||
&c__1, (ftnlen)19);
|
||||
i__2 = i__ - 1;
|
||||
i__3 = *n - i__;
|
||||
z__1.r = -1., z__1.i = -0.;
|
||||
zgemv_((char *)"No transpose", &i__2, &i__3, &z__1, &a[(i__ + 1) *
|
||||
a_dim1 + 1], lda, &w[i__ + 1 + iw * w_dim1], &
|
||||
c__1, &c_b2, &w[iw * w_dim1 + 1], &c__1, (ftnlen)
|
||||
12);
|
||||
zgemv_((char *)"No transpose", &i__2, &i__3, &z__1, &a[(i__ + 1) * a_dim1 + 1], lda,
|
||||
&w[i__ + 1 + iw * w_dim1], &c__1, &c_b2, &w[iw * w_dim1 + 1], &c__1,
|
||||
(ftnlen)12);
|
||||
i__2 = i__ - 1;
|
||||
i__3 = *n - i__;
|
||||
zgemv_((char *)"Conjugate transpose", &i__2, &i__3, &c_b2, &a[(
|
||||
i__ + 1) * a_dim1 + 1], lda, &a[i__ * a_dim1 + 1],
|
||||
&c__1, &c_b1, &w[i__ + 1 + iw * w_dim1], &c__1, (
|
||||
ftnlen)19);
|
||||
zgemv_((char *)"Conjugate transpose", &i__2, &i__3, &c_b2, &a[(i__ + 1) * a_dim1 + 1],
|
||||
lda, &a[i__ * a_dim1 + 1], &c__1, &c_b1, &w[i__ + 1 + iw * w_dim1],
|
||||
&c__1, (ftnlen)19);
|
||||
i__2 = i__ - 1;
|
||||
i__3 = *n - i__;
|
||||
z__1.r = -1., z__1.i = -0.;
|
||||
zgemv_((char *)"No transpose", &i__2, &i__3, &z__1, &w[(iw + 1) *
|
||||
w_dim1 + 1], ldw, &w[i__ + 1 + iw * w_dim1], &
|
||||
c__1, &c_b2, &w[iw * w_dim1 + 1], &c__1, (ftnlen)
|
||||
12);
|
||||
zgemv_((char *)"No transpose", &i__2, &i__3, &z__1, &w[(iw + 1) * w_dim1 + 1], ldw,
|
||||
&w[i__ + 1 + iw * w_dim1], &c__1, &c_b2, &w[iw * w_dim1 + 1], &c__1,
|
||||
(ftnlen)12);
|
||||
}
|
||||
i__2 = i__ - 1;
|
||||
zscal_(&i__2, &tau[i__ - 1], &w[iw * w_dim1 + 1], &c__1);
|
||||
z__3.r = -.5, z__3.i = -0.;
|
||||
i__2 = i__ - 1;
|
||||
z__2.r = z__3.r * tau[i__2].r - z__3.i * tau[i__2].i, z__2.i =
|
||||
z__3.r * tau[i__2].i + z__3.i * tau[i__2].r;
|
||||
z__2.r = z__3.r * tau[i__2].r - z__3.i * tau[i__2].i,
|
||||
z__2.i = z__3.r * tau[i__2].i + z__3.i * tau[i__2].r;
|
||||
i__3 = i__ - 1;
|
||||
zdotc_(&z__4, &i__3, &w[iw * w_dim1 + 1], &c__1, &a[i__ *
|
||||
a_dim1 + 1], &c__1);
|
||||
z__1.r = z__2.r * z__4.r - z__2.i * z__4.i, z__1.i = z__2.r *
|
||||
z__4.i + z__2.i * z__4.r;
|
||||
zdotc_(&z__4, &i__3, &w[iw * w_dim1 + 1], &c__1, &a[i__ * a_dim1 + 1], &c__1);
|
||||
z__1.r = z__2.r * z__4.r - z__2.i * z__4.i,
|
||||
z__1.i = z__2.r * z__4.i + z__2.i * z__4.r;
|
||||
alpha.r = z__1.r, alpha.i = z__1.i;
|
||||
i__2 = i__ - 1;
|
||||
zaxpy_(&i__2, &alpha, &a[i__ * a_dim1 + 1], &c__1, &w[iw *
|
||||
w_dim1 + 1], &c__1);
|
||||
zaxpy_(&i__2, &alpha, &a[i__ * a_dim1 + 1], &c__1, &w[iw * w_dim1 + 1], &c__1);
|
||||
}
|
||||
|
||||
/* L10: */
|
||||
}
|
||||
} else {
|
||||
|
||||
/* Reduce first NB columns of lower triangle */
|
||||
|
||||
i__1 = *nb;
|
||||
for (i__ = 1; i__ <= i__1; ++i__) {
|
||||
|
||||
/* Update A(i:n,i) */
|
||||
|
||||
i__2 = i__ + i__ * a_dim1;
|
||||
i__3 = i__ + i__ * a_dim1;
|
||||
d__1 = a[i__3].r;
|
||||
@ -414,9 +130,8 @@ f"> */
|
||||
i__2 = *n - i__ + 1;
|
||||
i__3 = i__ - 1;
|
||||
z__1.r = -1., z__1.i = -0.;
|
||||
zgemv_((char *)"No transpose", &i__2, &i__3, &z__1, &a[i__ + a_dim1], lda,
|
||||
&w[i__ + w_dim1], ldw, &c_b2, &a[i__ + i__ * a_dim1], &
|
||||
c__1, (ftnlen)12);
|
||||
zgemv_((char *)"No transpose", &i__2, &i__3, &z__1, &a[i__ + a_dim1], lda, &w[i__ + w_dim1],
|
||||
ldw, &c_b2, &a[i__ + i__ * a_dim1], &c__1, (ftnlen)12);
|
||||
i__2 = i__ - 1;
|
||||
zlacgv_(&i__2, &w[i__ + w_dim1], ldw);
|
||||
i__2 = i__ - 1;
|
||||
@ -424,9 +139,8 @@ f"> */
|
||||
i__2 = *n - i__ + 1;
|
||||
i__3 = i__ - 1;
|
||||
z__1.r = -1., z__1.i = -0.;
|
||||
zgemv_((char *)"No transpose", &i__2, &i__3, &z__1, &w[i__ + w_dim1], ldw,
|
||||
&a[i__ + a_dim1], lda, &c_b2, &a[i__ + i__ * a_dim1], &
|
||||
c__1, (ftnlen)12);
|
||||
zgemv_((char *)"No transpose", &i__2, &i__3, &z__1, &w[i__ + w_dim1], ldw, &a[i__ + a_dim1],
|
||||
lda, &c_b2, &a[i__ + i__ * a_dim1], &c__1, (ftnlen)12);
|
||||
i__2 = i__ - 1;
|
||||
zlacgv_(&i__2, &a[i__ + a_dim1], lda);
|
||||
i__2 = i__ + i__ * a_dim1;
|
||||
@ -434,76 +148,60 @@ f"> */
|
||||
d__1 = a[i__3].r;
|
||||
a[i__2].r = d__1, a[i__2].i = 0.;
|
||||
if (i__ < *n) {
|
||||
|
||||
/* Generate elementary reflector H(i) to annihilate */
|
||||
/* A(i+2:n,i) */
|
||||
|
||||
i__2 = i__ + 1 + i__ * a_dim1;
|
||||
alpha.r = a[i__2].r, alpha.i = a[i__2].i;
|
||||
i__2 = *n - i__;
|
||||
/* Computing MIN */
|
||||
i__3 = i__ + 2;
|
||||
zlarfg_(&i__2, &alpha, &a[min(i__3,*n) + i__ * a_dim1], &c__1,
|
||||
&tau[i__]);
|
||||
zlarfg_(&i__2, &alpha, &a[min(i__3, *n) + i__ * a_dim1], &c__1, &tau[i__]);
|
||||
e[i__] = alpha.r;
|
||||
i__2 = i__ + 1 + i__ * a_dim1;
|
||||
a[i__2].r = 1., a[i__2].i = 0.;
|
||||
|
||||
/* Compute W(i+1:n,i) */
|
||||
|
||||
i__2 = *n - i__;
|
||||
zhemv_((char *)"Lower", &i__2, &c_b2, &a[i__ + 1 + (i__ + 1) * a_dim1]
|
||||
, lda, &a[i__ + 1 + i__ * a_dim1], &c__1, &c_b1, &w[
|
||||
i__ + 1 + i__ * w_dim1], &c__1, (ftnlen)5);
|
||||
zhemv_((char *)"Lower", &i__2, &c_b2, &a[i__ + 1 + (i__ + 1) * a_dim1], lda,
|
||||
&a[i__ + 1 + i__ * a_dim1], &c__1, &c_b1, &w[i__ + 1 + i__ * w_dim1], &c__1,
|
||||
(ftnlen)5);
|
||||
i__2 = *n - i__;
|
||||
i__3 = i__ - 1;
|
||||
zgemv_((char *)"Conjugate transpose", &i__2, &i__3, &c_b2, &w[i__ + 1
|
||||
+ w_dim1], ldw, &a[i__ + 1 + i__ * a_dim1], &c__1, &
|
||||
c_b1, &w[i__ * w_dim1 + 1], &c__1, (ftnlen)19);
|
||||
zgemv_((char *)"Conjugate transpose", &i__2, &i__3, &c_b2, &w[i__ + 1 + w_dim1], ldw,
|
||||
&a[i__ + 1 + i__ * a_dim1], &c__1, &c_b1, &w[i__ * w_dim1 + 1], &c__1,
|
||||
(ftnlen)19);
|
||||
i__2 = *n - i__;
|
||||
i__3 = i__ - 1;
|
||||
z__1.r = -1., z__1.i = -0.;
|
||||
zgemv_((char *)"No transpose", &i__2, &i__3, &z__1, &a[i__ + 1 +
|
||||
a_dim1], lda, &w[i__ * w_dim1 + 1], &c__1, &c_b2, &w[
|
||||
i__ + 1 + i__ * w_dim1], &c__1, (ftnlen)12);
|
||||
zgemv_((char *)"No transpose", &i__2, &i__3, &z__1, &a[i__ + 1 + a_dim1], lda,
|
||||
&w[i__ * w_dim1 + 1], &c__1, &c_b2, &w[i__ + 1 + i__ * w_dim1], &c__1,
|
||||
(ftnlen)12);
|
||||
i__2 = *n - i__;
|
||||
i__3 = i__ - 1;
|
||||
zgemv_((char *)"Conjugate transpose", &i__2, &i__3, &c_b2, &a[i__ + 1
|
||||
+ a_dim1], lda, &a[i__ + 1 + i__ * a_dim1], &c__1, &
|
||||
c_b1, &w[i__ * w_dim1 + 1], &c__1, (ftnlen)19);
|
||||
zgemv_((char *)"Conjugate transpose", &i__2, &i__3, &c_b2, &a[i__ + 1 + a_dim1], lda,
|
||||
&a[i__ + 1 + i__ * a_dim1], &c__1, &c_b1, &w[i__ * w_dim1 + 1], &c__1,
|
||||
(ftnlen)19);
|
||||
i__2 = *n - i__;
|
||||
i__3 = i__ - 1;
|
||||
z__1.r = -1., z__1.i = -0.;
|
||||
zgemv_((char *)"No transpose", &i__2, &i__3, &z__1, &w[i__ + 1 +
|
||||
w_dim1], ldw, &w[i__ * w_dim1 + 1], &c__1, &c_b2, &w[
|
||||
i__ + 1 + i__ * w_dim1], &c__1, (ftnlen)12);
|
||||
zgemv_((char *)"No transpose", &i__2, &i__3, &z__1, &w[i__ + 1 + w_dim1], ldw,
|
||||
&w[i__ * w_dim1 + 1], &c__1, &c_b2, &w[i__ + 1 + i__ * w_dim1], &c__1,
|
||||
(ftnlen)12);
|
||||
i__2 = *n - i__;
|
||||
zscal_(&i__2, &tau[i__], &w[i__ + 1 + i__ * w_dim1], &c__1);
|
||||
z__3.r = -.5, z__3.i = -0.;
|
||||
i__2 = i__;
|
||||
z__2.r = z__3.r * tau[i__2].r - z__3.i * tau[i__2].i, z__2.i =
|
||||
z__3.r * tau[i__2].i + z__3.i * tau[i__2].r;
|
||||
z__2.r = z__3.r * tau[i__2].r - z__3.i * tau[i__2].i,
|
||||
z__2.i = z__3.r * tau[i__2].i + z__3.i * tau[i__2].r;
|
||||
i__3 = *n - i__;
|
||||
zdotc_(&z__4, &i__3, &w[i__ + 1 + i__ * w_dim1], &c__1, &a[
|
||||
i__ + 1 + i__ * a_dim1], &c__1);
|
||||
z__1.r = z__2.r * z__4.r - z__2.i * z__4.i, z__1.i = z__2.r *
|
||||
z__4.i + z__2.i * z__4.r;
|
||||
zdotc_(&z__4, &i__3, &w[i__ + 1 + i__ * w_dim1], &c__1, &a[i__ + 1 + i__ * a_dim1],
|
||||
&c__1);
|
||||
z__1.r = z__2.r * z__4.r - z__2.i * z__4.i,
|
||||
z__1.i = z__2.r * z__4.i + z__2.i * z__4.r;
|
||||
alpha.r = z__1.r, alpha.i = z__1.i;
|
||||
i__2 = *n - i__;
|
||||
zaxpy_(&i__2, &alpha, &a[i__ + 1 + i__ * a_dim1], &c__1, &w[
|
||||
i__ + 1 + i__ * w_dim1], &c__1);
|
||||
zaxpy_(&i__2, &alpha, &a[i__ + 1 + i__ * a_dim1], &c__1, &w[i__ + 1 + i__ * w_dim1],
|
||||
&c__1);
|
||||
}
|
||||
|
||||
/* L20: */
|
||||
}
|
||||
}
|
||||
|
||||
return 0;
|
||||
|
||||
/* End of ZLATRD */
|
||||
|
||||
} /* zlatrd_ */
|
||||
|
||||
}
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
}
|
||||
#endif
|
||||
|
||||
Reference in New Issue
Block a user