remove redundant comments from generated C++ files. clean up with clang-format.

This commit is contained in:
Axel Kohlmeyer
2022-12-28 16:31:50 -05:00
parent f157ba2389
commit 57713cf9a3
211 changed files with 6255 additions and 54891 deletions

View File

@ -1,282 +1,30 @@
/* fortran/zlatrd.f -- translated by f2c (version 20200916).
You must link the resulting object file with libf2c:
on Microsoft Windows system, link with libf2c.lib;
on Linux or Unix systems, link with .../path/to/libf2c.a -lm
or, if you install libf2c.a in a standard place, with -lf2c -lm
-- in that order, at the end of the command line, as in
cc *.o -lf2c -lm
Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
http://www.netlib.org/f2c/libf2c.zip
*/
#ifdef __cplusplus
extern "C" {
#endif
#include "lmp_f2c.h"
/* Table of constant values */
static doublecomplex c_b1 = {0.,0.};
static doublecomplex c_b2 = {1.,0.};
static doublecomplex c_b1 = {0., 0.};
static doublecomplex c_b2 = {1., 0.};
static integer c__1 = 1;
/* > \brief \b ZLATRD reduces the first nb rows and columns of a symmetric/Hermitian matrix A to real tridiago
nal form by an unitary similarity transformation. */
/* =========== DOCUMENTATION =========== */
/* Online html documentation available at */
/* http://www.netlib.org/lapack/explore-html/ */
/* > \htmlonly */
/* > Download ZLATRD + dependencies */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zlatrd.
f"> */
/* > [TGZ]</a> */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zlatrd.
f"> */
/* > [ZIP]</a> */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zlatrd.
f"> */
/* > [TXT]</a> */
/* > \endhtmlonly */
/* Definition: */
/* =========== */
/* SUBROUTINE ZLATRD( UPLO, N, NB, A, LDA, E, TAU, W, LDW ) */
/* .. Scalar Arguments .. */
/* CHARACTER UPLO */
/* INTEGER LDA, LDW, N, NB */
/* .. */
/* .. Array Arguments .. */
/* DOUBLE PRECISION E( * ) */
/* COMPLEX*16 A( LDA, * ), TAU( * ), W( LDW, * ) */
/* .. */
/* > \par Purpose: */
/* ============= */
/* > */
/* > \verbatim */
/* > */
/* > ZLATRD reduces NB rows and columns of a complex Hermitian matrix A to */
/* > Hermitian tridiagonal form by a unitary similarity */
/* > transformation Q**H * A * Q, and returns the matrices V and W which are */
/* > needed to apply the transformation to the unreduced part of A. */
/* > */
/* > If UPLO = 'U', ZLATRD reduces the last NB rows and columns of a */
/* > matrix, of which the upper triangle is supplied; */
/* > if UPLO = 'L', ZLATRD reduces the first NB rows and columns of a */
/* > matrix, of which the lower triangle is supplied. */
/* > */
/* > This is an auxiliary routine called by ZHETRD. */
/* > \endverbatim */
/* Arguments: */
/* ========== */
/* > \param[in] UPLO */
/* > \verbatim */
/* > UPLO is CHARACTER*1 */
/* > Specifies whether the upper or lower triangular part of the */
/* > Hermitian matrix A is stored: */
/* > = 'U': Upper triangular */
/* > = 'L': Lower triangular */
/* > \endverbatim */
/* > */
/* > \param[in] N */
/* > \verbatim */
/* > N is INTEGER */
/* > The order of the matrix A. */
/* > \endverbatim */
/* > */
/* > \param[in] NB */
/* > \verbatim */
/* > NB is INTEGER */
/* > The number of rows and columns to be reduced. */
/* > \endverbatim */
/* > */
/* > \param[in,out] A */
/* > \verbatim */
/* > A is COMPLEX*16 array, dimension (LDA,N) */
/* > On entry, the Hermitian matrix A. If UPLO = 'U', the leading */
/* > n-by-n upper triangular part of A contains the upper */
/* > triangular part of the matrix A, and the strictly lower */
/* > triangular part of A is not referenced. If UPLO = 'L', the */
/* > leading n-by-n lower triangular part of A contains the lower */
/* > triangular part of the matrix A, and the strictly upper */
/* > triangular part of A is not referenced. */
/* > On exit: */
/* > if UPLO = 'U', the last NB columns have been reduced to */
/* > tridiagonal form, with the diagonal elements overwriting */
/* > the diagonal elements of A; the elements above the diagonal */
/* > with the array TAU, represent the unitary matrix Q as a */
/* > product of elementary reflectors; */
/* > if UPLO = 'L', the first NB columns have been reduced to */
/* > tridiagonal form, with the diagonal elements overwriting */
/* > the diagonal elements of A; the elements below the diagonal */
/* > with the array TAU, represent the unitary matrix Q as a */
/* > product of elementary reflectors. */
/* > See Further Details. */
/* > \endverbatim */
/* > */
/* > \param[in] LDA */
/* > \verbatim */
/* > LDA is INTEGER */
/* > The leading dimension of the array A. LDA >= max(1,N). */
/* > \endverbatim */
/* > */
/* > \param[out] E */
/* > \verbatim */
/* > E is DOUBLE PRECISION array, dimension (N-1) */
/* > If UPLO = 'U', E(n-nb:n-1) contains the superdiagonal */
/* > elements of the last NB columns of the reduced matrix; */
/* > if UPLO = 'L', E(1:nb) contains the subdiagonal elements of */
/* > the first NB columns of the reduced matrix. */
/* > \endverbatim */
/* > */
/* > \param[out] TAU */
/* > \verbatim */
/* > TAU is COMPLEX*16 array, dimension (N-1) */
/* > The scalar factors of the elementary reflectors, stored in */
/* > TAU(n-nb:n-1) if UPLO = 'U', and in TAU(1:nb) if UPLO = 'L'. */
/* > See Further Details. */
/* > \endverbatim */
/* > */
/* > \param[out] W */
/* > \verbatim */
/* > W is COMPLEX*16 array, dimension (LDW,NB) */
/* > The n-by-nb matrix W required to update the unreduced part */
/* > of A. */
/* > \endverbatim */
/* > */
/* > \param[in] LDW */
/* > \verbatim */
/* > LDW is INTEGER */
/* > The leading dimension of the array W. LDW >= max(1,N). */
/* > \endverbatim */
/* Authors: */
/* ======== */
/* > \author Univ. of Tennessee */
/* > \author Univ. of California Berkeley */
/* > \author Univ. of Colorado Denver */
/* > \author NAG Ltd. */
/* > \ingroup complex16OTHERauxiliary */
/* > \par Further Details: */
/* ===================== */
/* > */
/* > \verbatim */
/* > */
/* > If UPLO = 'U', the matrix Q is represented as a product of elementary */
/* > reflectors */
/* > */
/* > Q = H(n) H(n-1) . . . H(n-nb+1). */
/* > */
/* > Each H(i) has the form */
/* > */
/* > H(i) = I - tau * v * v**H */
/* > */
/* > where tau is a complex scalar, and v is a complex vector with */
/* > v(i:n) = 0 and v(i-1) = 1; v(1:i-1) is stored on exit in A(1:i-1,i), */
/* > and tau in TAU(i-1). */
/* > */
/* > If UPLO = 'L', the matrix Q is represented as a product of elementary */
/* > reflectors */
/* > */
/* > Q = H(1) H(2) . . . H(nb). */
/* > */
/* > Each H(i) has the form */
/* > */
/* > H(i) = I - tau * v * v**H */
/* > */
/* > where tau is a complex scalar, and v is a complex vector with */
/* > v(1:i) = 0 and v(i+1) = 1; v(i+1:n) is stored on exit in A(i+1:n,i), */
/* > and tau in TAU(i). */
/* > */
/* > The elements of the vectors v together form the n-by-nb matrix V */
/* > which is needed, with W, to apply the transformation to the unreduced */
/* > part of the matrix, using a Hermitian rank-2k update of the form: */
/* > A := A - V*W**H - W*V**H. */
/* > */
/* > The contents of A on exit are illustrated by the following examples */
/* > with n = 5 and nb = 2: */
/* > */
/* > if UPLO = 'U': if UPLO = 'L': */
/* > */
/* > ( a a a v4 v5 ) ( d ) */
/* > ( a a v4 v5 ) ( 1 d ) */
/* > ( a 1 v5 ) ( v1 1 a ) */
/* > ( d 1 ) ( v1 v2 a a ) */
/* > ( d ) ( v1 v2 a a a ) */
/* > */
/* > where d denotes a diagonal element of the reduced matrix, a denotes */
/* > an element of the original matrix that is unchanged, and vi denotes */
/* > an element of the vector defining H(i). */
/* > \endverbatim */
/* > */
/* ===================================================================== */
/* Subroutine */ int zlatrd_(char *uplo, integer *n, integer *nb,
doublecomplex *a, integer *lda, doublereal *e, doublecomplex *tau,
doublecomplex *w, integer *ldw, ftnlen uplo_len)
int zlatrd_(char *uplo, integer *n, integer *nb, doublecomplex *a, integer *lda, doublereal *e,
doublecomplex *tau, doublecomplex *w, integer *ldw, ftnlen uplo_len)
{
/* System generated locals */
integer a_dim1, a_offset, w_dim1, w_offset, i__1, i__2, i__3;
doublereal d__1;
doublecomplex z__1, z__2, z__3, z__4;
/* Local variables */
integer i__, iw;
doublecomplex alpha;
extern logical lsame_(char *, char *, ftnlen, ftnlen);
extern /* Subroutine */ int zscal_(integer *, doublecomplex *,
doublecomplex *, integer *);
extern /* Double Complex */ VOID zdotc_(doublecomplex *, integer *,
doublecomplex *, integer *, doublecomplex *, integer *);
extern /* Subroutine */ int zgemv_(char *, integer *, integer *,
doublecomplex *, doublecomplex *, integer *, doublecomplex *,
integer *, doublecomplex *, doublecomplex *, integer *, ftnlen),
zhemv_(char *, integer *, doublecomplex *, doublecomplex *,
integer *, doublecomplex *, integer *, doublecomplex *,
doublecomplex *, integer *, ftnlen), zaxpy_(integer *,
doublecomplex *, doublecomplex *, integer *, doublecomplex *,
integer *), zlarfg_(integer *, doublecomplex *, doublecomplex *,
integer *, doublecomplex *), zlacgv_(integer *, doublecomplex *,
integer *);
/* -- LAPACK auxiliary routine -- */
/* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
/* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
/* .. Scalar Arguments .. */
/* .. */
/* .. Array Arguments .. */
/* .. */
/* ===================================================================== */
/* .. Parameters .. */
/* .. */
/* .. Local Scalars .. */
/* .. */
/* .. External Subroutines .. */
/* .. */
/* .. External Functions .. */
/* .. */
/* .. Intrinsic Functions .. */
/* .. */
/* .. Executable Statements .. */
/* Quick return if possible */
/* Parameter adjustments */
extern int zscal_(integer *, doublecomplex *, doublecomplex *, integer *);
extern VOID zdotc_(doublecomplex *, integer *, doublecomplex *, integer *, doublecomplex *,
integer *);
extern int zgemv_(char *, integer *, integer *, doublecomplex *, doublecomplex *, integer *,
doublecomplex *, integer *, doublecomplex *, doublecomplex *, integer *,
ftnlen),
zhemv_(char *, integer *, doublecomplex *, doublecomplex *, integer *, doublecomplex *,
integer *, doublecomplex *, doublecomplex *, integer *, ftnlen),
zaxpy_(integer *, doublecomplex *, doublecomplex *, integer *, doublecomplex *, integer *),
zlarfg_(integer *, doublecomplex *, doublecomplex *, integer *, doublecomplex *),
zlacgv_(integer *, doublecomplex *, integer *);
a_dim1 = *lda;
a_offset = 1 + a_dim1;
a -= a_offset;
@ -285,23 +33,14 @@ f"> */
w_dim1 = *ldw;
w_offset = 1 + w_dim1;
w -= w_offset;
/* Function Body */
if (*n <= 0) {
return 0;
}
if (lsame_(uplo, (char *)"U", (ftnlen)1, (ftnlen)1)) {
/* Reduce last NB columns of upper triangle */
i__1 = *n - *nb + 1;
for (i__ = *n; i__ >= i__1; --i__) {
iw = i__ - *n + *nb;
if (i__ < *n) {
/* Update A(1:i,i) */
i__2 = i__ + i__ * a_dim1;
i__3 = i__ + i__ * a_dim1;
d__1 = a[i__3].r;
@ -310,18 +49,18 @@ f"> */
zlacgv_(&i__2, &w[i__ + (iw + 1) * w_dim1], ldw);
i__2 = *n - i__;
z__1.r = -1., z__1.i = -0.;
zgemv_((char *)"No transpose", &i__, &i__2, &z__1, &a[(i__ + 1) *
a_dim1 + 1], lda, &w[i__ + (iw + 1) * w_dim1], ldw, &
c_b2, &a[i__ * a_dim1 + 1], &c__1, (ftnlen)12);
zgemv_((char *)"No transpose", &i__, &i__2, &z__1, &a[(i__ + 1) * a_dim1 + 1], lda,
&w[i__ + (iw + 1) * w_dim1], ldw, &c_b2, &a[i__ * a_dim1 + 1], &c__1,
(ftnlen)12);
i__2 = *n - i__;
zlacgv_(&i__2, &w[i__ + (iw + 1) * w_dim1], ldw);
i__2 = *n - i__;
zlacgv_(&i__2, &a[i__ + (i__ + 1) * a_dim1], lda);
i__2 = *n - i__;
z__1.r = -1., z__1.i = -0.;
zgemv_((char *)"No transpose", &i__, &i__2, &z__1, &w[(iw + 1) *
w_dim1 + 1], ldw, &a[i__ + (i__ + 1) * a_dim1], lda, &
c_b2, &a[i__ * a_dim1 + 1], &c__1, (ftnlen)12);
zgemv_((char *)"No transpose", &i__, &i__2, &z__1, &w[(iw + 1) * w_dim1 + 1], ldw,
&a[i__ + (i__ + 1) * a_dim1], lda, &c_b2, &a[i__ * a_dim1 + 1], &c__1,
(ftnlen)12);
i__2 = *n - i__;
zlacgv_(&i__2, &a[i__ + (i__ + 1) * a_dim1], lda);
i__2 = i__ + i__ * a_dim1;
@ -330,81 +69,58 @@ f"> */
a[i__2].r = d__1, a[i__2].i = 0.;
}
if (i__ > 1) {
/* Generate elementary reflector H(i) to annihilate */
/* A(1:i-2,i) */
i__2 = i__ - 1 + i__ * a_dim1;
alpha.r = a[i__2].r, alpha.i = a[i__2].i;
i__2 = i__ - 1;
zlarfg_(&i__2, &alpha, &a[i__ * a_dim1 + 1], &c__1, &tau[i__
- 1]);
zlarfg_(&i__2, &alpha, &a[i__ * a_dim1 + 1], &c__1, &tau[i__ - 1]);
e[i__ - 1] = alpha.r;
i__2 = i__ - 1 + i__ * a_dim1;
a[i__2].r = 1., a[i__2].i = 0.;
/* Compute W(1:i-1,i) */
i__2 = i__ - 1;
zhemv_((char *)"Upper", &i__2, &c_b2, &a[a_offset], lda, &a[i__ *
a_dim1 + 1], &c__1, &c_b1, &w[iw * w_dim1 + 1], &c__1,
(ftnlen)5);
zhemv_((char *)"Upper", &i__2, &c_b2, &a[a_offset], lda, &a[i__ * a_dim1 + 1], &c__1, &c_b1,
&w[iw * w_dim1 + 1], &c__1, (ftnlen)5);
if (i__ < *n) {
i__2 = i__ - 1;
i__3 = *n - i__;
zgemv_((char *)"Conjugate transpose", &i__2, &i__3, &c_b2, &w[(iw
+ 1) * w_dim1 + 1], ldw, &a[i__ * a_dim1 + 1], &
c__1, &c_b1, &w[i__ + 1 + iw * w_dim1], &c__1, (
ftnlen)19);
zgemv_((char *)"Conjugate transpose", &i__2, &i__3, &c_b2, &w[(iw + 1) * w_dim1 + 1],
ldw, &a[i__ * a_dim1 + 1], &c__1, &c_b1, &w[i__ + 1 + iw * w_dim1],
&c__1, (ftnlen)19);
i__2 = i__ - 1;
i__3 = *n - i__;
z__1.r = -1., z__1.i = -0.;
zgemv_((char *)"No transpose", &i__2, &i__3, &z__1, &a[(i__ + 1) *
a_dim1 + 1], lda, &w[i__ + 1 + iw * w_dim1], &
c__1, &c_b2, &w[iw * w_dim1 + 1], &c__1, (ftnlen)
12);
zgemv_((char *)"No transpose", &i__2, &i__3, &z__1, &a[(i__ + 1) * a_dim1 + 1], lda,
&w[i__ + 1 + iw * w_dim1], &c__1, &c_b2, &w[iw * w_dim1 + 1], &c__1,
(ftnlen)12);
i__2 = i__ - 1;
i__3 = *n - i__;
zgemv_((char *)"Conjugate transpose", &i__2, &i__3, &c_b2, &a[(
i__ + 1) * a_dim1 + 1], lda, &a[i__ * a_dim1 + 1],
&c__1, &c_b1, &w[i__ + 1 + iw * w_dim1], &c__1, (
ftnlen)19);
zgemv_((char *)"Conjugate transpose", &i__2, &i__3, &c_b2, &a[(i__ + 1) * a_dim1 + 1],
lda, &a[i__ * a_dim1 + 1], &c__1, &c_b1, &w[i__ + 1 + iw * w_dim1],
&c__1, (ftnlen)19);
i__2 = i__ - 1;
i__3 = *n - i__;
z__1.r = -1., z__1.i = -0.;
zgemv_((char *)"No transpose", &i__2, &i__3, &z__1, &w[(iw + 1) *
w_dim1 + 1], ldw, &w[i__ + 1 + iw * w_dim1], &
c__1, &c_b2, &w[iw * w_dim1 + 1], &c__1, (ftnlen)
12);
zgemv_((char *)"No transpose", &i__2, &i__3, &z__1, &w[(iw + 1) * w_dim1 + 1], ldw,
&w[i__ + 1 + iw * w_dim1], &c__1, &c_b2, &w[iw * w_dim1 + 1], &c__1,
(ftnlen)12);
}
i__2 = i__ - 1;
zscal_(&i__2, &tau[i__ - 1], &w[iw * w_dim1 + 1], &c__1);
z__3.r = -.5, z__3.i = -0.;
i__2 = i__ - 1;
z__2.r = z__3.r * tau[i__2].r - z__3.i * tau[i__2].i, z__2.i =
z__3.r * tau[i__2].i + z__3.i * tau[i__2].r;
z__2.r = z__3.r * tau[i__2].r - z__3.i * tau[i__2].i,
z__2.i = z__3.r * tau[i__2].i + z__3.i * tau[i__2].r;
i__3 = i__ - 1;
zdotc_(&z__4, &i__3, &w[iw * w_dim1 + 1], &c__1, &a[i__ *
a_dim1 + 1], &c__1);
z__1.r = z__2.r * z__4.r - z__2.i * z__4.i, z__1.i = z__2.r *
z__4.i + z__2.i * z__4.r;
zdotc_(&z__4, &i__3, &w[iw * w_dim1 + 1], &c__1, &a[i__ * a_dim1 + 1], &c__1);
z__1.r = z__2.r * z__4.r - z__2.i * z__4.i,
z__1.i = z__2.r * z__4.i + z__2.i * z__4.r;
alpha.r = z__1.r, alpha.i = z__1.i;
i__2 = i__ - 1;
zaxpy_(&i__2, &alpha, &a[i__ * a_dim1 + 1], &c__1, &w[iw *
w_dim1 + 1], &c__1);
zaxpy_(&i__2, &alpha, &a[i__ * a_dim1 + 1], &c__1, &w[iw * w_dim1 + 1], &c__1);
}
/* L10: */
}
} else {
/* Reduce first NB columns of lower triangle */
i__1 = *nb;
for (i__ = 1; i__ <= i__1; ++i__) {
/* Update A(i:n,i) */
i__2 = i__ + i__ * a_dim1;
i__3 = i__ + i__ * a_dim1;
d__1 = a[i__3].r;
@ -414,9 +130,8 @@ f"> */
i__2 = *n - i__ + 1;
i__3 = i__ - 1;
z__1.r = -1., z__1.i = -0.;
zgemv_((char *)"No transpose", &i__2, &i__3, &z__1, &a[i__ + a_dim1], lda,
&w[i__ + w_dim1], ldw, &c_b2, &a[i__ + i__ * a_dim1], &
c__1, (ftnlen)12);
zgemv_((char *)"No transpose", &i__2, &i__3, &z__1, &a[i__ + a_dim1], lda, &w[i__ + w_dim1],
ldw, &c_b2, &a[i__ + i__ * a_dim1], &c__1, (ftnlen)12);
i__2 = i__ - 1;
zlacgv_(&i__2, &w[i__ + w_dim1], ldw);
i__2 = i__ - 1;
@ -424,9 +139,8 @@ f"> */
i__2 = *n - i__ + 1;
i__3 = i__ - 1;
z__1.r = -1., z__1.i = -0.;
zgemv_((char *)"No transpose", &i__2, &i__3, &z__1, &w[i__ + w_dim1], ldw,
&a[i__ + a_dim1], lda, &c_b2, &a[i__ + i__ * a_dim1], &
c__1, (ftnlen)12);
zgemv_((char *)"No transpose", &i__2, &i__3, &z__1, &w[i__ + w_dim1], ldw, &a[i__ + a_dim1],
lda, &c_b2, &a[i__ + i__ * a_dim1], &c__1, (ftnlen)12);
i__2 = i__ - 1;
zlacgv_(&i__2, &a[i__ + a_dim1], lda);
i__2 = i__ + i__ * a_dim1;
@ -434,76 +148,60 @@ f"> */
d__1 = a[i__3].r;
a[i__2].r = d__1, a[i__2].i = 0.;
if (i__ < *n) {
/* Generate elementary reflector H(i) to annihilate */
/* A(i+2:n,i) */
i__2 = i__ + 1 + i__ * a_dim1;
alpha.r = a[i__2].r, alpha.i = a[i__2].i;
i__2 = *n - i__;
/* Computing MIN */
i__3 = i__ + 2;
zlarfg_(&i__2, &alpha, &a[min(i__3,*n) + i__ * a_dim1], &c__1,
&tau[i__]);
zlarfg_(&i__2, &alpha, &a[min(i__3, *n) + i__ * a_dim1], &c__1, &tau[i__]);
e[i__] = alpha.r;
i__2 = i__ + 1 + i__ * a_dim1;
a[i__2].r = 1., a[i__2].i = 0.;
/* Compute W(i+1:n,i) */
i__2 = *n - i__;
zhemv_((char *)"Lower", &i__2, &c_b2, &a[i__ + 1 + (i__ + 1) * a_dim1]
, lda, &a[i__ + 1 + i__ * a_dim1], &c__1, &c_b1, &w[
i__ + 1 + i__ * w_dim1], &c__1, (ftnlen)5);
zhemv_((char *)"Lower", &i__2, &c_b2, &a[i__ + 1 + (i__ + 1) * a_dim1], lda,
&a[i__ + 1 + i__ * a_dim1], &c__1, &c_b1, &w[i__ + 1 + i__ * w_dim1], &c__1,
(ftnlen)5);
i__2 = *n - i__;
i__3 = i__ - 1;
zgemv_((char *)"Conjugate transpose", &i__2, &i__3, &c_b2, &w[i__ + 1
+ w_dim1], ldw, &a[i__ + 1 + i__ * a_dim1], &c__1, &
c_b1, &w[i__ * w_dim1 + 1], &c__1, (ftnlen)19);
zgemv_((char *)"Conjugate transpose", &i__2, &i__3, &c_b2, &w[i__ + 1 + w_dim1], ldw,
&a[i__ + 1 + i__ * a_dim1], &c__1, &c_b1, &w[i__ * w_dim1 + 1], &c__1,
(ftnlen)19);
i__2 = *n - i__;
i__3 = i__ - 1;
z__1.r = -1., z__1.i = -0.;
zgemv_((char *)"No transpose", &i__2, &i__3, &z__1, &a[i__ + 1 +
a_dim1], lda, &w[i__ * w_dim1 + 1], &c__1, &c_b2, &w[
i__ + 1 + i__ * w_dim1], &c__1, (ftnlen)12);
zgemv_((char *)"No transpose", &i__2, &i__3, &z__1, &a[i__ + 1 + a_dim1], lda,
&w[i__ * w_dim1 + 1], &c__1, &c_b2, &w[i__ + 1 + i__ * w_dim1], &c__1,
(ftnlen)12);
i__2 = *n - i__;
i__3 = i__ - 1;
zgemv_((char *)"Conjugate transpose", &i__2, &i__3, &c_b2, &a[i__ + 1
+ a_dim1], lda, &a[i__ + 1 + i__ * a_dim1], &c__1, &
c_b1, &w[i__ * w_dim1 + 1], &c__1, (ftnlen)19);
zgemv_((char *)"Conjugate transpose", &i__2, &i__3, &c_b2, &a[i__ + 1 + a_dim1], lda,
&a[i__ + 1 + i__ * a_dim1], &c__1, &c_b1, &w[i__ * w_dim1 + 1], &c__1,
(ftnlen)19);
i__2 = *n - i__;
i__3 = i__ - 1;
z__1.r = -1., z__1.i = -0.;
zgemv_((char *)"No transpose", &i__2, &i__3, &z__1, &w[i__ + 1 +
w_dim1], ldw, &w[i__ * w_dim1 + 1], &c__1, &c_b2, &w[
i__ + 1 + i__ * w_dim1], &c__1, (ftnlen)12);
zgemv_((char *)"No transpose", &i__2, &i__3, &z__1, &w[i__ + 1 + w_dim1], ldw,
&w[i__ * w_dim1 + 1], &c__1, &c_b2, &w[i__ + 1 + i__ * w_dim1], &c__1,
(ftnlen)12);
i__2 = *n - i__;
zscal_(&i__2, &tau[i__], &w[i__ + 1 + i__ * w_dim1], &c__1);
z__3.r = -.5, z__3.i = -0.;
i__2 = i__;
z__2.r = z__3.r * tau[i__2].r - z__3.i * tau[i__2].i, z__2.i =
z__3.r * tau[i__2].i + z__3.i * tau[i__2].r;
z__2.r = z__3.r * tau[i__2].r - z__3.i * tau[i__2].i,
z__2.i = z__3.r * tau[i__2].i + z__3.i * tau[i__2].r;
i__3 = *n - i__;
zdotc_(&z__4, &i__3, &w[i__ + 1 + i__ * w_dim1], &c__1, &a[
i__ + 1 + i__ * a_dim1], &c__1);
z__1.r = z__2.r * z__4.r - z__2.i * z__4.i, z__1.i = z__2.r *
z__4.i + z__2.i * z__4.r;
zdotc_(&z__4, &i__3, &w[i__ + 1 + i__ * w_dim1], &c__1, &a[i__ + 1 + i__ * a_dim1],
&c__1);
z__1.r = z__2.r * z__4.r - z__2.i * z__4.i,
z__1.i = z__2.r * z__4.i + z__2.i * z__4.r;
alpha.r = z__1.r, alpha.i = z__1.i;
i__2 = *n - i__;
zaxpy_(&i__2, &alpha, &a[i__ + 1 + i__ * a_dim1], &c__1, &w[
i__ + 1 + i__ * w_dim1], &c__1);
zaxpy_(&i__2, &alpha, &a[i__ + 1 + i__ * a_dim1], &c__1, &w[i__ + 1 + i__ * w_dim1],
&c__1);
}
/* L20: */
}
}
return 0;
/* End of ZLATRD */
} /* zlatrd_ */
}
#ifdef __cplusplus
}
}
#endif