another day, another colvars update

This commit is contained in:
Axel Kohlmeyer
2014-10-28 18:05:29 -04:00
parent fa9c01c701
commit 5890ef420b
7 changed files with 1036 additions and 921 deletions

View File

@ -188,6 +188,15 @@ colvar::colvar(std::string const &conf)
sorted_cvc_values.push_back(&(cvcs[j]->value())); sorted_cvc_values.push_back(&(cvcs[j]->value()));
} }
// // these two are the vector value and the Jacobian matrix of the scripted function, respectively
// x_cvc.type(type_vector);
// dx_cvc.type(type_matrix); // TODO: not implemented yet
// for (j = 0; j < cvcs.size(); j++) {
// x_cvc.add_elem(cvcs[j]->value());
// dx_cvc.add_elem(cvcs[j]->value());
// }
b_homogeneous = false; b_homogeneous = false;
// Scripted functions are deemed non-periodic // Scripted functions are deemed non-periodic
b_periodic = false; b_periodic = false;

View File

@ -190,6 +190,13 @@ protected:
/// Value of the colvar /// Value of the colvar
colvarvalue x; colvarvalue x;
// TODO: implement functionality to treat these
// /// Vector of individual values from CVCs
// colvarvalue x_cvc;
// /// Jacobian matrix of individual values from CVCs
// colvarvalue dx_cvc;
/// Cached reported value (x may be manipulated) /// Cached reported value (x may be manipulated)
colvarvalue x_reported; colvarvalue x_reported;

View File

@ -4,7 +4,7 @@
#define COLVARMODULE_H #define COLVARMODULE_H
#ifndef COLVARS_VERSION #ifndef COLVARS_VERSION
#define COLVARS_VERSION "2014-10-27" #define COLVARS_VERSION "2014-10-28"
#endif #endif
#ifndef COLVARS_DEBUG #ifndef COLVARS_DEBUG

View File

@ -4,6 +4,7 @@
#include "colvartypes.h" #include "colvartypes.h"
#include "colvarparse.h" #include "colvarparse.h"
std::string cvm::rvector::to_simple_string() const std::string cvm::rvector::to_simple_string() const
{ {
std::ostringstream os; std::ostringstream os;
@ -13,6 +14,7 @@ std::string cvm::rvector::to_simple_string() const
return os.str(); return os.str();
} }
int cvm::rvector::from_simple_string(std::string const &s) int cvm::rvector::from_simple_string(std::string const &s)
{ {
std::stringstream stream(s); std::stringstream stream(s);
@ -24,6 +26,7 @@ int cvm::rvector::from_simple_string(std::string const &s)
return COLVARS_OK; return COLVARS_OK;
} }
std::ostream & operator << (std::ostream &os, colvarmodule::rvector const &v) std::ostream & operator << (std::ostream &os, colvarmodule::rvector const &v)
{ {
std::streamsize const w = os.width(); std::streamsize const w = os.width();
@ -277,11 +280,14 @@ void colvarmodule::rotation::diagonalize_matrix(cvm::matrix2d<cvm::real> &S,
{ {
// diagonalize // diagonalize
int jac_nrot = 0; int jac_nrot = 0;
jacobi(S, S_eigval, S_eigvec, &jac_nrot); jacobi(S, S_eigval.c_array(), S_eigvec, &jac_nrot);
eigsrt(S_eigval, S_eigvec); eigsrt(S_eigval.c_array(), S_eigvec);
// jacobi saves eigenvectors by columns // jacobi saves eigenvectors by columns
transpose(S_eigvec); transpose(S_eigvec);
S_eigval.update_from_c_array();
S_eigval.delete_c_array();
// normalize eigenvectors // normalize eigenvectors
for (size_t ie = 0; ie < 4; ie++) { for (size_t ie = 0; ie < 4; ie++) {
cvm::real norm2 = 0.0; cvm::real norm2 = 0.0;
@ -301,7 +307,7 @@ void colvarmodule::rotation::calc_optimal_rotation
{ {
cvm::matrix2d<cvm::real> S(4, 4, 0.0); cvm::matrix2d<cvm::real> S(4, 4, 0.0);
cvm::matrix2d<cvm::real> S_backup(4, 4, 0.0); cvm::matrix2d<cvm::real> S_backup(4, 4, 0.0);
cvm::vector1d<cvm::real> S_eigval(4, 0.0); cvm::vector1d<cvm::real> S_eigval(4);
cvm::matrix2d<cvm::real> S_eigvec(4, 4, 0.0); cvm::matrix2d<cvm::real> S_eigvec(4, 4, 0.0);
build_matrix(pos1, pos2, S); build_matrix(pos1, pos2, S);
@ -470,7 +476,7 @@ void colvarmodule::rotation::calc_optimal_rotation
if (b_debug_gradients) { if (b_debug_gradients) {
cvm::matrix2d<cvm::real> S_new(4, 4, 0.0); cvm::matrix2d<cvm::real> S_new(4, 4, 0.0);
cvm::vector1d<cvm::real> S_new_eigval(4, 0.0); cvm::vector1d<cvm::real> S_new_eigval(4);
cvm::matrix2d<cvm::real> S_new_eigvec(4, 4, 0.0); cvm::matrix2d<cvm::real> S_new_eigvec(4, 4, 0.0);
// make an infitesimal move along each cartesian coordinate of // make an infitesimal move along each cartesian coordinate of
@ -519,6 +525,7 @@ void colvarmodule::rotation::calc_optimal_rotation
h=a[k][l]; \ h=a[k][l]; \
a[i][j]=g-s*(h+g*tau); \ a[i][j]=g-s*(h+g*tau); \
a[k][l]=h+s*(g-h*tau); a[k][l]=h+s*(g-h*tau);
#define n 4 #define n 4
void jacobi(cvm::real **a, cvm::real d[], cvm::real **v, int *nrot) void jacobi(cvm::real **a, cvm::real d[], cvm::real **v, int *nrot)

View File

@ -18,145 +18,158 @@
/// \brief Arbitrary size array (one dimensions) suitable for linear /// \brief Arbitrary size array (one dimensions) suitable for linear
/// algebra operations (i.e. for floating point numbers it can be used /// algebra operations (i.e. for floating point numbers it can be used
/// with library functions) /// with library functions)
template <class T> class colvarmodule::vector1d template <class T> class colvarmodule::vector1d : public std::vector<T>
{ {
protected: protected:
/// Underlying C-array // member used to exchange with functions expecting a C-style array
T *array; T *array;
size_t length; size_t length;
public: public:
/// Allocation routine, used by all constructors
inline void alloc() {
if (length > 0) {
array = new T [length];
} else {
array = NULL;
}
}
/// Deallocation routine
inline void dealloc() {
if (array != NULL) {
delete [] array;
}
}
/// Length of the array
inline size_t size() const
{
return length;
}
/// Default constructor /// Default constructor
inline vector1d(size_t const n = 0, T const &t = T()) inline vector1d(size_t const n = 0) : array (NULL)
{ {
length = n; length = n;
this->alloc(); this->resize(n);
reset(); reset();
} }
/// Constructor from a 1-d C array /// Create a copy (unless it exists already), and return it
inline vector1d(size_t const n, T const *v) inline T * c_array()
{ {
length = n; if (array == NULL) {
this->alloc(); array = new T[this->size()];
for (size_t i = 0; i < length; i++) { for (size_t i = 0; i < this->size(); i++) {
array[i] = v[i]; array[i] = (*this)[i];
}
}
return array;
}
inline void update_from_c_array()
{
for (size_t i = 0; i < this->size(); i++) {
(*this)[i] = array[i];
} }
} }
/// Copy constructor inline void delete_c_array()
inline vector1d(vector1d<T> const &v)
{ {
length = v.length; delete [] array;
this->alloc(); array = NULL;
for (size_t i = 0; i < length; i++) { }
array[i] = v.array[i];
} inline ~vector1d()
{
this->delete_c_array();
} }
/// Set all elements to zero /// Set all elements to zero
inline void reset() inline void reset()
{ {
for (size_t i = 0; i < length; i++) { this->assign(this->size(), T(0.0));
array[i] = T(0.0);
}
} }
/// Assignment inline static void check_sizes(size_t const n1, size_t const n2)
inline vector1d<T> & operator = (vector1d<T> const &v)
{ {
if (length != v.length) { if (n1 != n2) {
this->dealloc(); cvm::error("Error: trying to perform an operation between vectors of different sizes, "+
length = v.length; cvm::to_str(n1)+" and "+cvm::to_str(n2)+".\n");
this->alloc();
} }
for (size_t i = 0; i < length; i++) { }
this->array[i] = v.array[i];
inline void operator += (vector1d<T> const &v)
{
check_sizes(this->size(), v.size());
for (size_t i = 0; i < this->size(); i++) {
(*this)[i] += v[i];
} }
return *this;
} }
/// Destructor inline void operator -= (vector1d<T> const &v)
inline ~vector1d() { {
this->dealloc(); check_sizes(this->size(), v.size());
for (size_t i = 0; i < this->size(); i++) {
(*this)[i] -= v[i];
}
} }
/// Return the 1-d C array inline void operator *= (cvm::real const &a)
inline operator T *() { return array; } {
for (size_t i = 0; i < this->size(); i++) {
inline T & operator [] (int const &i) { (*this)[i] *= a;
return array[i]; }
} }
inline T const operator [] (int const &i) const { inline void operator /= (cvm::real const &a)
return array[i]; {
for (size_t i = 0; i < this->size(); i++) {
(*this)[i] /= a;
}
}
inline friend vector1d<T> operator + (vector1d<T> const &v1, vector1d<T> const &v2)
{
check_sizes(v1.size(), v2.size());
vector1d<T> result(v1.size());
for (size_t i = 0; i < v1.size(); i++) {
result[i] = v1[i] + v2[i];
}
return result;
}
inline friend vector1d<T> operator - (vector1d<T> const &v1, vector1d<T> const &v2)
{
check_sizes(v1.size(), v2.size());
vector1d<T> result(v1.size());
for (size_t i = 0; i < v1.size(); i++) {
result[i] = v1[i] - v2[i];
}
return result;
}
inline friend vector1d<T> operator * (vector1d<T> const &v, cvm::real const &a)
{
vector1d<T> result(v.size());
for (size_t i = 0; i < v.size(); i++) {
result[i] = v[i] * a;
}
return result;
}
inline friend vector1d<T> operator * (cvm::real const &a, vector1d<T> const &v)
{
return v * a;
}
inline friend vector1d<T> operator / (vector1d<T> const &v, cvm::real const &a)
{
vector1d<T> result(v.size());
for (size_t i = 0; i < v.size(); i++) {
result[i] = v[i] / a;
}
return result;
} }
/// Inner product /// Inner product
inline friend T operator * (vector1d<T> const &v1, inline friend T operator * (vector1d<T> const &v1, vector1d<T> const &v2)
vector1d<T> const &v2)
{ {
check_sizes(v1.size(), v2.size());
T prod(0.0); T prod(0.0);
size_t const min_length = (v1.length > v2.length) ? v1.length : v2.length; for (size_t i = 0; i < v1.size(); i++) {
for (size_t i = 0; i < min_length; i++) { prod += v1[i] * v2[i];
prod += v1.array[i] * v2.array[i];
} }
return prod; return prod;
} }
/// Slicing
inline vector1d<T> const slice(size_t const i1, size_t const i2) const
{
if ((i2 < i1) || (i1 < 0) || (i2 >= length)) {
cvm::error("Error: trying to slice a vector using incorrect boundaries.\n");
}
vector1d<T> result(i2 - i1, T());
for (size_t i = 0; i < (i2 - i1); i++) {
result[i] = (*this)[i1+i];
}
}
/// Assign to a slice
inline void sliceassign(size_t const i1, size_t const i2, vector1d<T> const &v)
{
if ((i2 < i1) || (i1 < 0) || (i2 >= length)) {
cvm::error("Error: trying to slice a vector using incorrect boundaries.\n");
}
for (size_t i = 0; i < (i2 - i1); i++) {
(*this)[i1+i] = v[i];
}
}
/// Squared norm /// Squared norm
inline cvm::real norm2() const inline cvm::real norm2() const
{ {
cvm::real result = 0.0; cvm::real result = 0.0;
for (size_t i = 0; i < length; i++) { for (size_t i = 0; i < this->size(); i++) {
result += array[i] * array[i]; result += (*this)[i] * (*this)[i];
} }
return result; return result;
} }
@ -166,23 +179,75 @@ public:
return std::sqrt(this->norm2()); return std::sqrt(this->norm2());
} }
/// Slicing
inline vector1d<T> const slice(size_t const i1, size_t const i2) const
{
if ((i2 < i1) || (i1 < 0) || (i2 >= this->size())) {
cvm::error("Error: trying to slice a vector using incorrect boundaries.\n");
}
vector1d<T> result(i2 - i1);
for (size_t i = 0; i < (i2 - i1); i++) {
result[i] = (*this)[i1+i];
}
return result;
}
/// Assign a vector to a slice of this vector
inline void sliceassign(size_t const i1, size_t const i2, vector1d<T> const &v)
{
if ((i2 < i1) || (i1 < 0) || (i2 >= this->size())) {
cvm::error("Error: trying to slice a vector using incorrect boundaries.\n");
}
for (size_t i = 0; i < (i2 - i1); i++) {
(*this)[i1+i] = v[i];
}
}
/// Formatted output /// Formatted output
friend std::ostream & operator << (std::ostream &os,
vector1d<T> const &v) inline friend std::ostream & operator << (std::ostream &os, cvm::vector1d<T> const &v)
{ {
std::streamsize const w = os.width(); std::streamsize const w = os.width();
std::streamsize const p = os.precision(); std::streamsize const p = os.precision();
os << "( "; os << "( ";
for (size_t i = 0; i < v.length-1; i++) { for (size_t i = 0; i < v.size()-1; i++) {
os.width(w); os.precision(p); os.width(w); os.precision(p);
os << v.array[i] << " , "; os << v[i] << " , ";
} }
os.width(w); os.precision(p); os.width(w); os.precision(p);
os << v.array[v.length-1] << " )"; os << v[v.size()-1] << " )";
return os; return os;
} }
inline std::string to_simple_string() const
{
if (this->size() == 0) return std::string("");
std::ostringstream os;
os.setf(std::ios::scientific, std::ios::floatfield);
os.precision(cvm::cv_prec);
os << (*this)[0];
for (size_t i = 1; i < this->size(); i++) {
os << " " << (*this)[i];
}
return os.str();
}
inline int from_simple_string(std::string const &s)
{
std::stringstream stream(s);
size_t i = 0;
while ((stream >> (*this)[i]) && (i < this->size())) {
i++;
}
if (i < this->size()) {
return COLVARS_ERROR;
}
return COLVARS_OK;
}
}; };
@ -242,10 +307,11 @@ public:
inline cvm::vector1d<cvm::real> const as_vector() const inline cvm::vector1d<cvm::real> const as_vector() const
{ {
cvm::vector1d<cvm::real> result(3, 0.0); cvm::vector1d<cvm::real> result(3);
result[0] = this->x; result[0] = this->x;
result[1] = this->y; result[1] = this->y;
result[2] = this->z; result[2] = this->z;
return result;
} }
inline cvm::rvector & operator = (cvm::real const &v) inline cvm::rvector & operator = (cvm::real const &v)
@ -762,11 +828,12 @@ public:
inline cvm::vector1d<cvm::real> const as_vector() const inline cvm::vector1d<cvm::real> const as_vector() const
{ {
cvm::vector1d<cvm::real> result(4, 0.0); cvm::vector1d<cvm::real> result(4);
result[0] = q0; result[0] = q0;
result[1] = q1; result[1] = q1;
result[2] = q2; result[2] = q2;
result[3] = q3; result[3] = q3;
return result;
} }
/// Square norm of the quaternion /// Square norm of the quaternion
@ -1014,7 +1081,7 @@ public:
{ {
dS_1.resize(n, cvm::matrix2d<cvm::rvector>(4, 4, cvm::rvector(0.0, 0.0, 0.0))); dS_1.resize(n, cvm::matrix2d<cvm::rvector>(4, 4, cvm::rvector(0.0, 0.0, 0.0)));
dL0_1.resize(n, cvm::rvector(0.0, 0.0, 0.0)); dL0_1.resize(n, cvm::rvector(0.0, 0.0, 0.0));
dQ0_1.resize(n, cvm::vector1d<cvm::rvector>(4, cvm::rvector(0.0, 0.0, 0.0))); dQ0_1.resize(n, cvm::vector1d<cvm::rvector>(4));
} }
/// Allocate space for the derivatives of the rotation /// Allocate space for the derivatives of the rotation
@ -1022,7 +1089,7 @@ public:
{ {
dS_2.resize(n, cvm::matrix2d<cvm::rvector>(4, 4, cvm::rvector(0.0, 0.0, 0.0))); dS_2.resize(n, cvm::matrix2d<cvm::rvector>(4, 4, cvm::rvector(0.0, 0.0, 0.0)));
dL0_2.resize(n, cvm::rvector(0.0, 0.0, 0.0)); dL0_2.resize(n, cvm::rvector(0.0, 0.0, 0.0));
dQ0_2.resize(n, cvm::vector1d<cvm::rvector>(4, cvm::rvector(0.0, 0.0, 0.0))); dQ0_2.resize(n, cvm::vector1d<cvm::rvector>(4));
} }
/// \brief Calculate the optimal rotation and store the /// \brief Calculate the optimal rotation and store the

View File

@ -1,9 +1,606 @@
/// -*- c++ -*- /// -*- c++ -*-
#include <vector> #include <vector>
#include <sstream>
#include <iostream>
#include "colvarmodule.h" #include "colvarmodule.h"
#include "colvarvalue.h" #include "colvarvalue.h"
void colvarvalue::add_elem(colvarvalue const &x)
{
if (this->value_type != type_vector) {
cvm::error("Error: trying to set an element for a variable that is not set to be a vector.\n");
return;
}
size_t const n = vector1d_value.size();
size_t const nd = num_dimensions(x.value_type);
elem_types.push_back(x.value_type);
elem_indices.push_back(n);
elem_sizes.push_back(nd);
vector1d_value.resize(n + nd);
set_elem(n, x);
}
colvarvalue const colvarvalue::get_elem(int const i_begin, int const i_end, Type const vt) const
{
if (vector1d_value.size() > 0) {
cvm::vector1d<cvm::real> const v(vector1d_value.slice(i_begin, i_end));
return colvarvalue(v, vt);
} else {
cvm::error("Error: trying to get an element from a variable that is not a vector.\n");
return colvarvalue(type_notset);
}
}
void colvarvalue::set_elem(int const i_begin, int const i_end, colvarvalue const &x)
{
if (vector1d_value.size() > 0) {
vector1d_value.sliceassign(i_begin, i_end, x.as_vector());
} else {
cvm::error("Error: trying to set an element for a variable that is not a vector.\n");
}
}
colvarvalue const colvarvalue::get_elem(int const icv) const
{
if (elem_types.size() > 0) {
return get_elem(elem_indices[icv], elem_indices[icv] + elem_sizes[icv],
elem_types[icv]);
} else {
cvm::error("Error: trying to get a colvarvalue element from a vector colvarvalue that was initialized as a plain array.\n");
return colvarvalue(type_notset);
}
}
void colvarvalue::set_elem(int const icv, colvarvalue const &x)
{
if (elem_types.size() > 0) {
check_types_assign(elem_types[icv], x.value_type);
set_elem(elem_indices[icv], elem_indices[icv] + elem_sizes[icv], x);
} else {
cvm::error("Error: trying to set a colvarvalue element for a colvarvalue that was initialized as a plain array.\n");
}
}
colvarvalue colvarvalue::inverse() const
{
switch (value_type) {
case colvarvalue::type_scalar:
return colvarvalue(1.0/real_value);
break;
case colvarvalue::type_3vector:
case colvarvalue::type_unit3vector:
case colvarvalue::type_unit3vectorderiv:
return colvarvalue(cvm::rvector(1.0/rvector_value.x,
1.0/rvector_value.y,
1.0/rvector_value.z));
break;
case colvarvalue::type_quaternion:
case colvarvalue::type_quaternionderiv:
return colvarvalue(cvm::quaternion(1.0/quaternion_value.q0,
1.0/quaternion_value.q1,
1.0/quaternion_value.q2,
1.0/quaternion_value.q3));
break;
case colvarvalue::type_vector:
{
cvm::vector1d<cvm::real> result(vector1d_value);
if (elem_types.size() > 0) {
// if we have information about non-scalar types, use it
for (size_t i = 0; i < elem_types.size(); i++) {
result.sliceassign(elem_indices[i], elem_indices[i]+elem_sizes[i],
cvm::vector1d<cvm::real>((this->get_elem(i)).inverse()));
}
} else {
for (size_t i = 0; i < result.size(); i++) {
if (result[i] != 0.0) {
result = 1.0/result[i];
}
}
}
return colvarvalue(result, type_vector);
}
break;
case colvarvalue::type_notset:
default:
undef_op();
break;
}
return colvarvalue();
}
// binary operations between two colvarvalues
colvarvalue operator + (colvarvalue const &x1,
colvarvalue const &x2)
{
colvarvalue::check_types(x1, x2);
switch (x1.value_type) {
case colvarvalue::type_scalar:
return colvarvalue(x1.real_value + x2.real_value);
case colvarvalue::type_3vector:
return colvarvalue(x1.rvector_value + x2.rvector_value);
case colvarvalue::type_unit3vector:
case colvarvalue::type_unit3vectorderiv:
return colvarvalue(x1.rvector_value + x2.rvector_value,
colvarvalue::type_unit3vector);
case colvarvalue::type_quaternion:
case colvarvalue::type_quaternionderiv:
return colvarvalue(x1.quaternion_value + x2.quaternion_value);
case colvarvalue::type_vector:
return colvarvalue(x1.vector1d_value + x2.vector1d_value, colvarvalue::type_vector);
case colvarvalue::type_notset:
default:
x1.undef_op();
return colvarvalue(colvarvalue::type_notset);
};
}
colvarvalue operator - (colvarvalue const &x1,
colvarvalue const &x2)
{
colvarvalue::check_types(x1, x2);
switch (x1.value_type) {
case colvarvalue::type_scalar:
return colvarvalue(x1.real_value - x2.real_value);
case colvarvalue::type_3vector:
return colvarvalue(x1.rvector_value - x2.rvector_value);
case colvarvalue::type_unit3vector:
case colvarvalue::type_unit3vectorderiv:
return colvarvalue(x1.rvector_value - x2.rvector_value,
colvarvalue::type_unit3vector);
case colvarvalue::type_quaternion:
case colvarvalue::type_quaternionderiv:
return colvarvalue(x1.quaternion_value - x2.quaternion_value);
case colvarvalue::type_vector:
return colvarvalue(x1.vector1d_value - x2.vector1d_value, colvarvalue::type_vector);
case colvarvalue::type_notset:
default:
x1.undef_op();
return colvarvalue(colvarvalue::type_notset);
};
}
// binary operations with real numbers
colvarvalue operator * (cvm::real const &a,
colvarvalue const &x)
{
switch (x.value_type) {
case colvarvalue::type_scalar:
return colvarvalue(a * x.real_value);
case colvarvalue::type_3vector:
return colvarvalue(a * x.rvector_value);
case colvarvalue::type_unit3vector:
case colvarvalue::type_unit3vectorderiv:
return colvarvalue(a * x.rvector_value,
colvarvalue::type_unit3vector);
case colvarvalue::type_quaternion:
case colvarvalue::type_quaternionderiv:
return colvarvalue(a * x.quaternion_value);
case colvarvalue::type_vector:
return colvarvalue(x.vector1d_value * a, colvarvalue::type_vector);
case colvarvalue::type_notset:
default:
x.undef_op();
return colvarvalue(colvarvalue::type_notset);
}
}
colvarvalue operator * (colvarvalue const &x,
cvm::real const &a)
{
return a * x;
}
colvarvalue operator / (colvarvalue const &x,
cvm::real const &a)
{
switch (x.value_type) {
case colvarvalue::type_scalar:
return colvarvalue(x.real_value / a);
case colvarvalue::type_3vector:
return colvarvalue(x.rvector_value / a);
case colvarvalue::type_unit3vector:
case colvarvalue::type_unit3vectorderiv:
return colvarvalue(x.rvector_value / a,
colvarvalue::type_unit3vector);
case colvarvalue::type_quaternion:
case colvarvalue::type_quaternionderiv:
return colvarvalue(x.quaternion_value / a);
case colvarvalue::type_vector:
return colvarvalue(x.vector1d_value / a, colvarvalue::type_vector);
case colvarvalue::type_notset:
default:
x.undef_op();
return colvarvalue(colvarvalue::type_notset);
}
}
// inner product between two colvarvalues
cvm::real operator * (colvarvalue const &x1,
colvarvalue const &x2)
{
colvarvalue::check_types(x1, x2);
switch (x1.value_type) {
case colvarvalue::type_scalar:
return (x1.real_value * x2.real_value);
case colvarvalue::type_3vector:
case colvarvalue::type_unit3vector:
case colvarvalue::type_unit3vectorderiv:
return (x1.rvector_value * x2.rvector_value);
case colvarvalue::type_quaternion:
case colvarvalue::type_quaternionderiv:
// the "*" product is the quaternion product, here the inner
// member function is used instead
return (x1.quaternion_value.inner(x2.quaternion_value));
case colvarvalue::type_vector:
return (x1.vector1d_value * x2.vector1d_value);
case colvarvalue::type_notset:
default:
x1.undef_op();
return 0.0;
};
}
colvarvalue colvarvalue::dist2_grad(colvarvalue const &x2) const
{
colvarvalue::check_types(*this, x2);
switch (this->value_type) {
case colvarvalue::type_scalar:
return 2.0 * (this->real_value - x2.real_value);
case colvarvalue::type_3vector:
return 2.0 * (this->rvector_value - x2.rvector_value);
case colvarvalue::type_unit3vector:
case colvarvalue::type_unit3vectorderiv:
{
cvm::rvector const &v1 = this->rvector_value;
cvm::rvector const &v2 = x2.rvector_value;
cvm::real const cos_t = v1 * v2;
cvm::real const sin_t = std::sqrt(1.0 - cos_t*cos_t);
return colvarvalue( 2.0 * sin_t *
cvm::rvector((-1.0) * sin_t * v2.x +
cos_t/sin_t * (v1.x - cos_t*v2.x),
(-1.0) * sin_t * v2.y +
cos_t/sin_t * (v1.y - cos_t*v2.y),
(-1.0) * sin_t * v2.z +
cos_t/sin_t * (v1.z - cos_t*v2.z)
),
colvarvalue::type_unit3vector );
}
case colvarvalue::type_quaternion:
case colvarvalue::type_quaternionderiv:
return this->quaternion_value.dist2_grad(x2.quaternion_value);
case colvarvalue::type_vector:
return colvarvalue(2.0 * (this->vector1d_value - x2.vector1d_value), colvarvalue::type_vector);
break;
case colvarvalue::type_notset:
default:
this->undef_op();
return colvarvalue(colvarvalue::type_notset);
};
}
std::string colvarvalue::to_simple_string() const
{
switch (type()) {
case colvarvalue::type_scalar:
return cvm::to_str(real_value, 0, cvm::cv_prec);
break;
case colvarvalue::type_3vector:
case colvarvalue::type_unit3vector:
case colvarvalue::type_unit3vectorderiv:
return rvector_value.to_simple_string();
break;
case colvarvalue::type_quaternion:
case colvarvalue::type_quaternionderiv:
return quaternion_value.to_simple_string();
break;
case colvarvalue::type_vector:
return vector1d_value.to_simple_string();
break;
case colvarvalue::type_notset:
default:
undef_op();
break;
}
return std::string();
}
int colvarvalue::from_simple_string(std::string const &s)
{
switch (type()) {
case colvarvalue::type_scalar:
return ((std::istringstream(s) >> real_value)
? COLVARS_OK : COLVARS_ERROR);
break;
case colvarvalue::type_3vector:
case colvarvalue::type_unit3vector:
case colvarvalue::type_unit3vectorderiv:
return rvector_value.from_simple_string(s);
break;
case colvarvalue::type_quaternion:
case colvarvalue::type_quaternionderiv:
return quaternion_value.from_simple_string(s);
break;
case colvarvalue::type_vector:
return vector1d_value.from_simple_string(s);
break;
case colvarvalue::type_notset:
default:
undef_op();
break;
}
return COLVARS_ERROR;
}
std::ostream & operator << (std::ostream &os, colvarvalue const &x)
{
switch (x.type()) {
case colvarvalue::type_scalar:
os << x.real_value;
break;
case colvarvalue::type_3vector:
case colvarvalue::type_unit3vector:
case colvarvalue::type_unit3vectorderiv:
os << x.rvector_value;
break;
case colvarvalue::type_quaternion:
case colvarvalue::type_quaternionderiv:
os << x.quaternion_value;
break;
case colvarvalue::type_notset:
os << "not set"; break;
}
return os;
}
std::ostream & operator << (std::ostream &os, std::vector<colvarvalue> const &v)
{
for (size_t i = 0; i < v.size(); i++) {
os << v[i];
}
return os;
}
std::istream & operator >> (std::istream &is, colvarvalue &x)
{
if (x.type() == colvarvalue::type_notset) {
cvm::error("Trying to read from a stream a colvarvalue, "
"which has not yet been assigned a data type.\n");
return is;
}
switch (x.type()) {
case colvarvalue::type_scalar:
is >> x.real_value;
break;
case colvarvalue::type_3vector:
case colvarvalue::type_unit3vectorderiv:
is >> x.rvector_value;
break;
case colvarvalue::type_unit3vector:
is >> x.rvector_value;
x.apply_constraints();
break;
case colvarvalue::type_quaternion:
is >> x.quaternion_value;
x.apply_constraints();
break;
case colvarvalue::type_quaternionderiv:
is >> x.quaternion_value;
break;
default:
x.undef_op();
}
return is;
}
size_t colvarvalue::output_width(size_t const &real_width) const
{
switch (this->value_type) {
case colvarvalue::type_scalar:
return real_width;
case colvarvalue::type_3vector:
case colvarvalue::type_unit3vector:
case colvarvalue::type_unit3vectorderiv:
return cvm::rvector::output_width(real_width);
case colvarvalue::type_quaternion:
case colvarvalue::type_quaternionderiv:
return cvm::quaternion::output_width(real_width);
case colvarvalue::type_notset:
default:
return 0;
}
}
void colvarvalue::inner_opt(colvarvalue const &x,
std::vector<colvarvalue>::iterator &xv,
std::vector<colvarvalue>::iterator const &xv_end,
std::vector<cvm::real>::iterator &result)
{
// doing type check only once, here
colvarvalue::check_types(x, *xv);
std::vector<colvarvalue>::iterator &xvi = xv;
std::vector<cvm::real>::iterator &ii = result;
switch (x.value_type) {
case colvarvalue::type_scalar:
while (xvi != xv_end) {
*(ii++) += (xvi++)->real_value * x.real_value;
}
break;
case colvarvalue::type_3vector:
case colvarvalue::type_unit3vector:
case colvarvalue::type_unit3vectorderiv:
while (xvi != xv_end) {
*(ii++) += (xvi++)->rvector_value * x.rvector_value;
}
break;
case colvarvalue::type_quaternion:
case colvarvalue::type_quaternionderiv:
while (xvi != xv_end) {
*(ii++) += ((xvi++)->quaternion_value).cosine(x.quaternion_value);
}
break;
default:
x.undef_op();
};
}
void colvarvalue::inner_opt(colvarvalue const &x,
std::list<colvarvalue>::iterator &xv,
std::list<colvarvalue>::iterator const &xv_end,
std::vector<cvm::real>::iterator &result)
{
// doing type check only once, here
colvarvalue::check_types(x, *xv);
std::list<colvarvalue>::iterator &xvi = xv;
std::vector<cvm::real>::iterator &ii = result;
switch (x.value_type) {
case colvarvalue::type_scalar:
while (xvi != xv_end) {
*(ii++) += (xvi++)->real_value * x.real_value;
}
break;
case colvarvalue::type_3vector:
case colvarvalue::type_unit3vector:
case colvarvalue::type_unit3vectorderiv:
while (xvi != xv_end) {
*(ii++) += (xvi++)->rvector_value * x.rvector_value;
}
break;
case colvarvalue::type_quaternion:
case colvarvalue::type_quaternionderiv:
while (xvi != xv_end) {
*(ii++) += ((xvi++)->quaternion_value).cosine(x.quaternion_value);
}
break;
default:
x.undef_op();
};
}
void colvarvalue::p2leg_opt(colvarvalue const &x,
std::vector<colvarvalue>::iterator &xv,
std::vector<colvarvalue>::iterator const &xv_end,
std::vector<cvm::real>::iterator &result)
{
// doing type check only once, here
colvarvalue::check_types(x, *xv);
std::vector<colvarvalue>::iterator &xvi = xv;
std::vector<cvm::real>::iterator &ii = result;
switch (x.value_type) {
case colvarvalue::type_scalar:
cvm::error("Error: cannot calculate Legendre polynomials "
"for scalar variables.\n");
return;
break;
case colvarvalue::type_3vector:
while (xvi != xv_end) {
cvm::real const cosine =
((xvi)->rvector_value * x.rvector_value) /
((xvi)->rvector_value.norm() * x.rvector_value.norm());
xvi++;
*(ii++) += 1.5*cosine*cosine - 0.5;
}
break;
case colvarvalue::type_unit3vector:
case colvarvalue::type_unit3vectorderiv:
while (xvi != xv_end) {
cvm::real const cosine = (xvi++)->rvector_value * x.rvector_value;
*(ii++) += 1.5*cosine*cosine - 0.5;
}
break;
case colvarvalue::type_quaternion:
case colvarvalue::type_quaternionderiv:
while (xvi != xv_end) {
cvm::real const cosine = (xvi++)->quaternion_value.cosine(x.quaternion_value);
*(ii++) += 1.5*cosine*cosine - 0.5;
}
break;
default:
x.undef_op();
};
}
void colvarvalue::p2leg_opt(colvarvalue const &x,
std::list<colvarvalue>::iterator &xv,
std::list<colvarvalue>::iterator const &xv_end,
std::vector<cvm::real>::iterator &result)
{
// doing type check only once, here
colvarvalue::check_types(x, *xv);
std::list<colvarvalue>::iterator &xvi = xv;
std::vector<cvm::real>::iterator &ii = result;
switch (x.value_type) {
case colvarvalue::type_scalar:
cvm::error("Error: cannot calculate Legendre polynomials "
"for scalar variables.\n");
break;
case colvarvalue::type_3vector:
while (xvi != xv_end) {
cvm::real const cosine =
((xvi)->rvector_value * x.rvector_value) /
((xvi)->rvector_value.norm() * x.rvector_value.norm());
xvi++;
*(ii++) += 1.5*cosine*cosine - 0.5;
}
break;
case colvarvalue::type_unit3vector:
case colvarvalue::type_unit3vectorderiv:
while (xvi != xv_end) {
cvm::real const cosine = (xvi++)->rvector_value * x.rvector_value;
*(ii++) += 1.5*cosine*cosine - 0.5;
}
break;
case colvarvalue::type_quaternion:
case colvarvalue::type_quaternionderiv:
while (xvi != xv_end) {
cvm::real const cosine = (xvi++)->quaternion_value.cosine(x.quaternion_value);
*(ii++) += 1.5*cosine*cosine - 0.5;
}
break;
default:
x.undef_op();
};
}

File diff suppressed because it is too large Load Diff