finished first draft of doc pages
This commit is contained in:
@ -40,21 +40,26 @@ all compute styles support all parameters.
|
||||
The *extra/dof* or *extra* keyword refers to how many
|
||||
degrees-of-freedom are subtracted (typically from 3N) as a normalizing
|
||||
factor in a temperature computation. Only computes that compute a
|
||||
temperature use this option. The default is 2 or 3 for :doc:`2d or 3d systems <dimension>` which is a correction factor for an ensemble
|
||||
of velocities with zero total linear momentum. For compute
|
||||
temp/partial, if one or more velocity components are excluded, the
|
||||
value used for *extra* is scaled accordingly. You can use a negative
|
||||
number for the *extra* parameter if you need to add
|
||||
degrees-of-freedom. See the :doc:`compute temp/asphere <compute_temp_asphere>` command for an example.
|
||||
temperature use this option. The default is 2 or 3 for :doc:`2d or 3d
|
||||
systems <dimension>` which is a correction factor for an ensemble of
|
||||
velocities with zero total linear momentum. For compute temp/partial,
|
||||
if one or more velocity components are excluded, the value used for
|
||||
*extra* is scaled accordingly. You can use a negative number for the
|
||||
*extra* parameter if you need to add degrees-of-freedom. See the
|
||||
:doc:`compute temp/asphere <compute_temp_asphere>` command for an
|
||||
example.
|
||||
|
||||
The *dynamic/dof* or *dynamic* keyword determines whether the number
|
||||
of atoms N in the compute group and their associated degrees of
|
||||
freedom are re-computed each time a temperature is computed. Only
|
||||
compute styles that calculate a temperature use this option. By
|
||||
default, N and their DOF are assumed to be constant. If you are
|
||||
adding atoms or molecules to the system (see the :doc:`fix pour <fix_pour>`, :doc:`fix deposit <fix_deposit>`, and :doc:`fix gcmc <fix_gcmc>` commands) or expect atoms or molecules to be lost
|
||||
(e.g. due to exiting the simulation box or via :doc:`fix evaporate <fix_evaporate>`), then this option should be used to
|
||||
insure the temperature is correctly normalized.
|
||||
adding atoms or molecules to the system (see the :doc:`fix pour
|
||||
<fix_pour>`, :doc:`fix deposit <fix_deposit>`, and :doc:`fix gcmc
|
||||
<fix_gcmc>` commands) or expect atoms or molecules to be lost
|
||||
(e.g. due to exiting the simulation box or via :doc:`fix evaporate
|
||||
<fix_evaporate>`), then this option should be used to insure the
|
||||
temperature is correctly normalized.
|
||||
|
||||
.. note::
|
||||
|
||||
|
||||
@ -8,10 +8,11 @@ Syntax
|
||||
|
||||
.. parsed-literal::
|
||||
|
||||
compute ID group-ID property/grid input1 input2 ...
|
||||
compute ID group-ID property/grid Nx Ny Nz input1 input2 ...
|
||||
|
||||
* ID, group-ID are documented in :doc:`compute <compute>` command
|
||||
* property/grid = style name of this compute command
|
||||
* Nx, Ny, Nz = grid size in each dimension
|
||||
* input1,etc = one or more attributes
|
||||
|
||||
.. parsed-literal::
|
||||
@ -46,6 +47,12 @@ This compute stores the specified attributes of grids as per-grid data
|
||||
so they can be accessed by other :doc:`output commands <Howto_output>`
|
||||
such as :doc:`dump grid <dump>`.
|
||||
|
||||
*Nx*, *Ny*, and *Nz* define the size of the grid. For a 2d simulation
|
||||
*Nz* must be 1. When this compute is used by :doc:`dump grid <dump>`,
|
||||
*to output per-grid values from other computes of fixes, the grid size
|
||||
*specified for this command must be consistent with the grid sizes
|
||||
*used by the other commands.
|
||||
|
||||
The *id* attribute stores the grid ID for each grid point. For a
|
||||
global grid of size Nx by Ny by Nz (in 3d simulations) the grid IDs
|
||||
range from 1 to Nx*Ny*Nz. They are ordered with the X index of the 3d
|
||||
@ -83,10 +90,9 @@ Output info
|
||||
|
||||
This compute calculates a per-grid vector or array depending on the
|
||||
number of input values. The length of the vector or number of array
|
||||
rows for each processor is the number of grid points it owns.
|
||||
|
||||
For access by other commands, the name of the grid produced
|
||||
by this command is "grid". The name of its data is "data".
|
||||
rows (distributed across all processors) is Nx * Ny * Nz. For access
|
||||
by other commands, the name of the grid produced by this command is
|
||||
"grid". The name of its data is "data".
|
||||
|
||||
The (x,y,z) and (xc,yc,zc) coordinates are in distance :doc:`units
|
||||
<units>`.
|
||||
|
||||
@ -29,7 +29,9 @@ Description
|
||||
|
||||
Define a computation that calculates the temperature of a group of
|
||||
atoms. A compute of this style can be used by any command that
|
||||
computes a temperature, e.g. :doc:`thermo_modify <thermo_modify>`, :doc:`fix temp/rescale <fix_temp_rescale>`, :doc:`fix npt <fix_nh>`, etc.
|
||||
computes a temperature, e.g. :doc:`thermo_modify <thermo_modify>`,
|
||||
:doc:`fix temp/rescale <fix_temp_rescale>`, :doc:`fix npt <fix_nh>`,
|
||||
etc.
|
||||
|
||||
The temperature is calculated by the formula KE = dim/2 N k T, where
|
||||
KE = total kinetic energy of the group of atoms (sum of 1/2 m v\^2),
|
||||
@ -79,8 +81,8 @@ Output info
|
||||
This compute calculates a global scalar (the temperature) and a global
|
||||
vector of length 6 (KE tensor), which can be accessed by indices 1-6.
|
||||
These values can be used by any command that uses global scalar or
|
||||
vector values from a compute as input. See the :doc:`Howto output <Howto_output>` page for an overview of LAMMPS output
|
||||
options.
|
||||
vector values from a compute as input. See the :doc:`Howto output
|
||||
<Howto_output>` page for an overview of LAMMPS output options.
|
||||
|
||||
The scalar value calculated by this compute is "intensive". The
|
||||
vector values are "extensive".
|
||||
|
||||
@ -162,7 +162,7 @@ Syntax
|
||||
|
||||
possible attributes = c_ID:gname:dname, c_ID:gname:dname[I], f_ID:gname:dname, f_ID:gname:dname[I]
|
||||
gname = name of grid defined by compute or fix
|
||||
ename = name of data field defined by compute or fix
|
||||
dname = name of data field defined by compute or fix
|
||||
c_ID = per-grid vector calculated by a compute with ID
|
||||
c_ID[I] = Ith column of per-grid array calculated by a compute with ID, I can include wildcard (see below)
|
||||
f_ID = per-grid vector calculated by a fix with ID
|
||||
@ -818,7 +818,7 @@ the distance and energy of each bond:
|
||||
This section explains the per-grid attributes that can be specified as
|
||||
part of the *grid* style.
|
||||
|
||||
The attributes that begin with *c_ID** and *f_ID* both take
|
||||
The attributes that begin with *c_ID* and *f_ID* both take
|
||||
colon-separated fields *gname* and *dname*. These refer to a grid
|
||||
name and data field name which is defined by the compute or fix. Note
|
||||
that a compute or fix can define one or more grids (of different
|
||||
@ -829,9 +829,7 @@ The *c_ID:gname:dname* and *c_ID:gname:dname[I]* attributes allow
|
||||
per-grid vectors or arrays calculated by a :doc:`compute <compute>` to
|
||||
be output. The ID in the attribute should be replaced by the actual
|
||||
ID of the compute that has been defined previously in the input
|
||||
script. See the :doc:`compute <compute>` command for details. There
|
||||
are computes for calculating local information such as indices, types,
|
||||
and energies for bonds and angles.
|
||||
script.
|
||||
|
||||
If *c_ID:gname:dname* is used as a attribute, then the per-grid vector
|
||||
calculated by the compute is printed. If *c_ID:gname:dname[I]* is
|
||||
|
||||
@ -137,10 +137,11 @@ quantities. :doc:`Variables <variable>` of style *atom* are the only
|
||||
ones that can be used with this fix since all other styles of variable
|
||||
produce global quantities.
|
||||
|
||||
Note that for values from a compute or fix, the bracketed index I can
|
||||
be specified using a wildcard asterisk with the index to effectively
|
||||
specify multiple values. This takes the form "\*" or "\*n" or "n\*" or
|
||||
"m\*n". If N = the size of the vector (for *mode* = scalar) or the
|
||||
Note that for values from a compute or fix that produces a per-atom
|
||||
array (multiple values per atom), the bracketed index I can be
|
||||
specified using a wildcard asterisk with the index to effectively
|
||||
specify multiple values. This takes the form "\*" or "\*n" or "n\*"
|
||||
or "m\*n". If N = the size of the vector (for *mode* = scalar) or the
|
||||
number of columns in the array (for *mode* = vector), then an asterisk
|
||||
with no numeric values means all indices from 1 to N. A leading
|
||||
asterisk means all indices from 1 to n (inclusive). A trailing
|
||||
|
||||
436
doc/src/fix_ave_grid.rst
Normal file
436
doc/src/fix_ave_grid.rst
Normal file
@ -0,0 +1,436 @@
|
||||
.. index:: fix ave/grid
|
||||
|
||||
fix ave/grid command
|
||||
=====================
|
||||
|
||||
Syntax
|
||||
""""""
|
||||
|
||||
.. parsed-literal::
|
||||
|
||||
fix ID group-ID ave/grid Nevery Nrepeat Nfreq Nx Ny Nz value1 value2 ... keyword args ...
|
||||
|
||||
* ID, group-ID are documented in :doc:`fix <fix>` command
|
||||
* ave/grid = style name of this fix command
|
||||
* Nevery = use input values every this many timesteps
|
||||
* Nrepeat = # of times to use input values for calculating averages
|
||||
* Nfreq = calculate averages every this many timesteps
|
||||
* Nx, Ny, Nz = grid size in each dimension
|
||||
* one or more per-atom or per-grid input values can be listed
|
||||
* per-atom value = vx, vy, vz, fx, fy, fz, density/mass, density/number, mass, temp, c_ID, c_ID[I], f_ID, f_ID[I], v_name
|
||||
|
||||
.. parsed-literal::
|
||||
|
||||
vx,vy,vz,fx,fy,fz,mass = atom attribute (velocity, force component, mass)
|
||||
density/number, density/mass = number or mass density (per volume)
|
||||
temp = temperature
|
||||
c_ID = per-atom vector calculated by a compute with ID
|
||||
c_ID[I] = Ith column of per-atom array calculated by a compute with ID, I can include wildcard (see below)
|
||||
f_ID = per-atom vector calculated by a fix with ID
|
||||
f_ID[I] = Ith column of per-atom array calculated by a fix with ID, I can include wildcard (see below)
|
||||
v_name = per-atom vector calculated by an atom-style variable with name
|
||||
|
||||
* per-grid value = c_ID:gname:dname, c_ID:gname:dname[I], f_ID:gname:dname, f_ID:gname:dname[I]
|
||||
|
||||
.. parsed-literal::
|
||||
|
||||
gname = name of grid defined by compute or fix
|
||||
dname = name of data field defined by compute or fix
|
||||
c_ID = per-grid vector calculated by a compute with ID
|
||||
c_ID[I] = Ith column of per-grid array calculated by a compute with ID, I can include wildcard (see below)
|
||||
f_ID = per-grid vector calculated by a fix with ID
|
||||
f_ID[I] = Ith column of per-grid array calculated by a fix with ID, I can include wildcard (see below)
|
||||
|
||||
* zero or more keyword/arg pairs may be appended
|
||||
* keyword = *norm* or *ave* or *bias* or *adof* or *cdof*
|
||||
|
||||
.. parsed-literal::
|
||||
|
||||
*norm* arg = *all* or *sample* or *none* = how output on *Nfreq* steps is normalized
|
||||
all = output is sum of atoms across all *Nrepeat* samples, divided by atom count
|
||||
sample = output is sum of *Nrepeat* sample averages, divided by *Nrepeat*
|
||||
none = output is sum of *Nrepeat* sample sums, divided by *Nrepeat*
|
||||
*ave* args = *one* or *running* or *window M*
|
||||
one = output new average value every Nfreq steps
|
||||
running = output cumulative average of all previous Nfreq steps
|
||||
window M = output average of M most recent Nfreq steps
|
||||
*bias* arg = bias-ID
|
||||
bias-ID = ID of a temperature compute that removes a velocity bias for temperature calculation
|
||||
*adof* value = dof_per_atom
|
||||
dof_per_atom = define this many degrees-of-freedom per atom for temperature calculation
|
||||
*cdof* value = dof_per_grid_cell
|
||||
dof_per_grid_cell = add this many degrees-of-freedom per grid_cell for temperature calculation
|
||||
|
||||
Examples
|
||||
""""""""
|
||||
|
||||
.. code-block:: LAMMPS
|
||||
|
||||
fix 1 all ave/grid 10000 1 10000 10 10 10 fx fy fz c_myMSD[*]
|
||||
fix 1 flow ave/chunk 100 10 1000 20 20 30 f_TTM:grid:data
|
||||
|
||||
Description
|
||||
"""""""""""
|
||||
|
||||
Overlay the 2d or 3d simulation box with a uniformly spaced 2d or 3d
|
||||
grid and use it to either (a) time-average per-atom quantities for the
|
||||
atoms in each grid cell, or to (b) time-average per-grid quantities
|
||||
produced by other computes or fixes. This fix operates in either
|
||||
"per-atom mode" (all input values are per-atom) or in "per-grid mode"
|
||||
(all input values are per-grid).
|
||||
|
||||
The grid created by this command is distributed; each processor owns
|
||||
the grid points that are within its subdomain. This is in contrast to
|
||||
the :doc:`fix ave/chunk <fix_ave_chunk>` command when it uses chunks
|
||||
from the :doc:`compute chunk/atom <compute_chunk_atom>` command which
|
||||
are 2d or 3d regular bins. The per-bin outputs in that case are
|
||||
global; each processor stores a copy of the entire set of bin data.
|
||||
Thus it is better to use this command when the grid is large and a
|
||||
simulation is run on many processors.
|
||||
|
||||
For per-atom mode, only atoms in the specified group contribute to the
|
||||
summing and averaging calculations. For per-grid mode, the specified
|
||||
group is ignored.
|
||||
|
||||
----------
|
||||
|
||||
The *Nevery*, *Nrepeat*, and *Nfreq* arguments specify on what
|
||||
timesteps the input values will be accessed and contribute to the
|
||||
average. The final averaged quantities are generated on timesteps
|
||||
that are a multiples of *Nfreq*\ . The average is over *Nrepeat*
|
||||
quantities, computed in the preceding portion of the simulation every
|
||||
*Nevery* timesteps. *Nfreq* must be a multiple of *Nevery* and
|
||||
*Nevery* must be non-zero even if *Nrepeat* is 1. Also, the timesteps
|
||||
contributing to the average value cannot overlap, i.e. Nrepeat\*Nevery
|
||||
can not exceed Nfreq.
|
||||
|
||||
For example, if Nevery=2, Nrepeat=6, and Nfreq=100, then values on
|
||||
timesteps 90,92,94,96,98,100 will be used to compute the final average
|
||||
on timestep 100. Similarly for timesteps 190,192,194,196,198,200 on
|
||||
timestep 200, etc. If Nrepeat=1 and Nfreq = 100, then no time
|
||||
averaging is done; values are simply generated on timesteps
|
||||
100,200,etc.
|
||||
|
||||
In per-atom mode, each input value can also be averaged over the atoms
|
||||
in each grid cell. The way the averaging is done across the *Nrepeat*
|
||||
timesteps to produce output on the *Nfreq* timesteps, and across
|
||||
multiple *Nfreq* outputs, is determined by the *norm* and *ave*
|
||||
keyword settings, as discussed below.
|
||||
|
||||
----------
|
||||
|
||||
In both per-atom and per-grid mode, input values from a compute or fix
|
||||
that produces an array of values (multiple values per atom or per grid
|
||||
point), the bracketed index I can be specified using a wildcard
|
||||
asterisk with the index to effectively specify multiple values. This
|
||||
takes the form "\*" or "\*n" or "n\*" or "m\*n". If N = the number of
|
||||
columns in the array (for *mode* = vector), then an asterisk with no
|
||||
numeric values means all indices from 1 to N. A leading asterisk
|
||||
means all indices from 1 to n (inclusive). A trailing asterisk means
|
||||
all indices from n to N (inclusive). A middle asterisk means all
|
||||
indices from m to n (inclusive).
|
||||
|
||||
Using a wildcard is the same as if the individual columns of the array
|
||||
had been listed one by one. E.g. if there were a compute fft/grid
|
||||
command which produced 3 values for each grid point, these two fix
|
||||
ave/grid commands would be equivalent:
|
||||
|
||||
.. code-block:: LAMMPS
|
||||
|
||||
compute myFFT all fft/grid 10 10 10 ...
|
||||
fix 1 all ave/grid 100 1 100 10 10 10 c_myFFT:grid:data[*]
|
||||
fix 2 all ave/grid 100 1 100 10 10 10 c_myFFT:grid:data[*][1] c_myFFT:grid:data[*][2] c_myFFT:grid:data[3]
|
||||
|
||||
----------
|
||||
|
||||
*Per-atom mode*:
|
||||
|
||||
Each specified per-atom value can be an atom attribute (velocity,
|
||||
force component), a number or mass density, a mass or temperature, or
|
||||
the result of a :doc:`compute <compute>` or :doc:`fix <fix>` or the
|
||||
evaluation of an atom-style :doc:`variable <variable>`. In the latter
|
||||
cases, the compute, fix, or variable must produce a per-atom quantity,
|
||||
not a global quantity. Note that the :doc:`compute property/atom
|
||||
<compute_property_atom>` command provides access to any attribute
|
||||
defined and stored by atoms.
|
||||
|
||||
The per-atom values of each input vector are summed and averaged
|
||||
independently of the per-atom values in other input vectors.
|
||||
|
||||
:doc:`Computes <compute>` that produce per-atom quantities are those
|
||||
which have the word *atom* in their style name. See the doc pages for
|
||||
individual :doc:`fixes <fix>` to determine which ones produce per-atom
|
||||
quantities. :doc:`Variables <variable>` of style *atom* are the only
|
||||
ones that can be used with this fix since all other styles of variable
|
||||
produce global quantities.
|
||||
|
||||
----------
|
||||
|
||||
The atom attribute values (vx,vy,vz,fx,fy,fz,mass) are
|
||||
self-explanatory. As noted above, any other atom attributes can be
|
||||
used as input values to this fix by using the :doc:`compute
|
||||
property/atom <compute_property_atom>` command and then specifying an
|
||||
input value from that compute.
|
||||
|
||||
The *density/number* value means the number density is computed for
|
||||
each grid cell, i.e. number/volume. The *density/mass* value means
|
||||
the mass density is computed for each grid/cell,
|
||||
i.e. total-mass/volume. The output values are in units of 1/volume or
|
||||
density (mass/volume). See the :doc:`units <units>` command page for
|
||||
the definition of density for each choice of units, e.g. gram/cm\^3.
|
||||
|
||||
The *temp* value means the temperature is computed for each grid cell,
|
||||
by the formula KE = DOF/2 k T, where KE = total kinetic energy of the
|
||||
atoms in the grid cell (sum of 1/2 m v\^2), DOF = the total number of
|
||||
degrees of freedom for all atoms in the grid cell, k = Boltzmann
|
||||
constant, and T = temperature.
|
||||
|
||||
The DOF is calculated as N\*adof + cdof, where N = number of atoms in
|
||||
the grid cell, adof = degrees of freedom per atom, and cdof = degrees
|
||||
of freedom per grid cell. By default adof = 2 or 3 = dimensionality
|
||||
of system, as set via the :doc:`dimension <dimension>` command, and
|
||||
cdof = 0.0. This gives the usual formula for temperature.
|
||||
|
||||
Note that currently this temperature only includes translational
|
||||
degrees of freedom for each atom. No rotational degrees of freedom
|
||||
are included for finite-size particles. Also no degrees of freedom
|
||||
are subtracted for any velocity bias or constraints that are applied,
|
||||
such as :doc:`compute temp/partial <compute_temp_partial>`, or
|
||||
:doc:`fix shake <fix_shake>` or :doc:`fix rigid <fix_rigid>`. This is
|
||||
because those degrees of freedom (e.g. a constrained bond) could apply
|
||||
to sets of atoms that are both inside and outside a specific grid
|
||||
cell, and hence the concept is somewhat ill-defined. In some cases,
|
||||
you can use the *adof* and *cdof* keywords to adjust the calculated
|
||||
degrees of freedom appropriately, as explained below.
|
||||
|
||||
Also note that a bias can be subtracted from atom velocities before
|
||||
they are used in the above formula for KE, by using the *bias*
|
||||
keyword. This allows, for example, a thermal temperature to be
|
||||
computed after removal of a flow velocity profile.
|
||||
|
||||
Note that the per-grid-cell temperature calculated by this fix and the
|
||||
:doc:`compute temp/chunk <compute_temp_chunk>` command (using bins)
|
||||
can be different. The compute calculates the temperature for each
|
||||
chunk for a single snapshot. This fix can do that but can also time
|
||||
average those values over many snapshots, or it can compute a
|
||||
temperature as if the atoms in the grid cell on different timesteps
|
||||
were collected together as one set of atoms to calculate their
|
||||
temperature. The compute allows the center-of-mass velocity of each
|
||||
chunk to be subtracted before calculating the temperature; this fix
|
||||
does not.
|
||||
|
||||
If a value begins with "c\_", a compute ID must follow which has been
|
||||
previously defined in the input script. If no bracketed integer is
|
||||
appended, the per-atom vector calculated by the compute is used. If a
|
||||
bracketed integer is appended, the Ith column of the per-atom array
|
||||
calculated by the compute is used. Users can also write code for
|
||||
their own compute styles and :doc:`add them to LAMMPS <Modify>`. See
|
||||
the discussion above for how I can be specified with a wildcard
|
||||
asterisk to effectively specify multiple values.
|
||||
|
||||
If a value begins with "f\_", a fix ID must follow which has been
|
||||
previously defined in the input script. If no bracketed integer is
|
||||
appended, the per-atom vector calculated by the fix is used. If a
|
||||
bracketed integer is appended, the Ith column of the per-atom array
|
||||
calculated by the fix is used. Note that some fixes only produce
|
||||
their values on certain timesteps, which must be compatible with
|
||||
*Nevery*, else an error results. Users can also write code for their
|
||||
own fix styles and :doc:`add them to LAMMPS <Modify>`. See the
|
||||
discussion above for how I can be specified with a wildcard asterisk
|
||||
to effectively specify multiple values.
|
||||
|
||||
If a value begins with "v\_", a variable name must follow which has
|
||||
been previously defined in the input script. Variables of style
|
||||
*atom* can reference thermodynamic keywords and various per-atom
|
||||
attributes, or invoke other computes, fixes, or variables when they
|
||||
are evaluated, so this is a very general means of generating per-atom
|
||||
quantities to average within grid cells.
|
||||
|
||||
----------
|
||||
|
||||
*Per-grid mode*:
|
||||
|
||||
The attributes that begin with *c_ID* and *f_ID* both take
|
||||
colon-separated fields *gname* and *dname*. These refer to a grid
|
||||
name and data field name which is defined by the compute or fix. Note
|
||||
that a compute or fix can define one or more grids (of different
|
||||
sizes) and one or more data fields for each of those grids. The sizes
|
||||
of all grids used as values for one instance of this fix must be the
|
||||
same.
|
||||
|
||||
The *c_ID:gname:dname* and *c_ID:gname:dname[I]* attributes allow
|
||||
per-grid vectors or arrays calculated by a :doc:`compute <compute>` to
|
||||
be accessed. The ID in the attribute should be replaced by the actual
|
||||
ID of the compute that has been defined previously in the input
|
||||
script.
|
||||
|
||||
If *c_ID:gname:dname* is used as a attribute, then the per-grid vector
|
||||
calculated by the compute is accessed. If *c_ID:gname:dname[I]* is
|
||||
used, then I must be in the range from 1-M, which will acccess the Ith
|
||||
column of the per-grid array with M columns calculated by the compute.
|
||||
See the discussion above for how I can be specified with a wildcard
|
||||
asterisk to effectively specify multiple values.
|
||||
|
||||
The *f_ID:gname:dname* and *f_ID:gname:dname[I]* attributes allow
|
||||
per-grid vectors or arrays calculated by a :doc:`fix <fix>` to be
|
||||
output. The ID in the attribute should be replaced by the actual ID
|
||||
of the fix that has been defined previously in the input script.
|
||||
|
||||
If *f_ID:gname:dname* is used as a attribute, then the per-grid vector
|
||||
calculated by the fix is printed. If *f_ID:gname:dname[I]* is used,
|
||||
then I must be in the range from 1-M, which will print the Ith column
|
||||
of the per-grid with M columns calculated by the fix. See the
|
||||
discussion above for how I can be specified with a wildcard asterisk
|
||||
to effectively specify multiple values.
|
||||
|
||||
----------
|
||||
|
||||
Additional optional keywords also affect the operation of this fix and
|
||||
its outputs. Some are only applicable to per-atom mode. Some are
|
||||
applicable to both per-atom and per-grid mode.
|
||||
|
||||
The *norm* keyword is only applicable to per-atom mode. It affects
|
||||
how averaging is done for the per-grid values that are output once
|
||||
every *Nfreq* timesteps when *Nrepeat* samples contribute to the
|
||||
output. It has 3 possible settings: *all* or *sample* or *none*.
|
||||
*All* is the default.
|
||||
|
||||
In per-atom mode, *norm all* means the output grid value is summed
|
||||
over all atoms in all *Nrepeat* samples, as is the count of atoms in
|
||||
each grid cell. The averaged output value for a grid cell on the
|
||||
*Nfreq* timesteps is Total-sum / Total-count. In other words it is an
|
||||
average over atoms across the entire *Nfreq* timescale. For the
|
||||
*density/number* and *density/mass* values, the grid cell volume used
|
||||
in the final normalization will be the volume at the final *Nfreq*
|
||||
timestep. For the *temp* values, degrees of freedom and kinetic energy
|
||||
are summed separately across the entire *Nfreq* timescale, and the
|
||||
output value is calculated by dividing those two sums.
|
||||
|
||||
In per-atom mode, *norm sample* means the output grid value is summed
|
||||
over atoms for each sample, as is the count, and an "average sample
|
||||
value" is computed for each sample, i.e. Sample-sum / Sample-count.
|
||||
The output grid value on the *Nfreq* timesteps is the average of the
|
||||
*Nrepeat* "average sample values", i.e. the sum of *Nrepeat* "average
|
||||
sample values" divided by *Nrepeat*\ . In other words it is an
|
||||
average of an average. For the *density/number* and *density/mass*
|
||||
values, the grid cell volume used in the per-sample normalization will
|
||||
be the current grid cell volume at each sampling step.
|
||||
|
||||
In per-atom mode, *norm none* perfomrma a similar computation as *norm
|
||||
sample*, except the individual "average sample values" are "summed
|
||||
sample values". A summed sample value is simply the grid value summed
|
||||
over atoms in the sample, without dividing by the number of atoms in
|
||||
the sample. The output grid value on the *Nfreq* timesteps is the
|
||||
average of the *Nrepeat* "summed sample values", i.e. the sum of
|
||||
*Nrepeat* "summed sample values" divided by *Nrepeat*\ . For the
|
||||
*density/number* and *density/mass* values, the grid cell volume used
|
||||
in the per-sample sum normalization will be the current grid cell
|
||||
volume at each sampling step.
|
||||
|
||||
In per-grid mode, all the *norm* keyword options operate the same.
|
||||
The output grid value is summed over the grid value in each of the
|
||||
*Nrepeat* samples and then divided by *Nrepeat*.
|
||||
|
||||
The *ave* keyword is applicated to both per-atom and per-grid mode.
|
||||
Itdetermines how the per-grid values produced once every *Nfreq* steps
|
||||
are averaged with values produced on previous steps that were
|
||||
multiples of *Nfreq*, before they are accessed by another output
|
||||
command.
|
||||
|
||||
If the *ave* setting is *one*, which is the default, then the grid
|
||||
values produced on *Nfreq* timesteps are independent of each other;
|
||||
they are output as-is without further averaging.
|
||||
|
||||
If the *ave* setting is *running*, then the grid values produced on
|
||||
*Nfreq* timesteps are summed and averaged in a cumulative sense before
|
||||
being output. Each output grid value is thus the average of the grid
|
||||
value produced on that timestep with all preceding values for the same
|
||||
grid value. This running average begins when the fix is defined; it
|
||||
can only be restarted by deleting the fix via the :doc:`unfix <unfix>`
|
||||
command, or re-defining the fix by re-specifying it.
|
||||
|
||||
If the *ave* setting is *window*, then the grid values produced on
|
||||
*Nfreq* timesteps are summed and averaged within a moving "window" of
|
||||
time, so that the last M values for the same grid are used to produce
|
||||
the output. E.g. if M = 3 and Nfreq = 1000, then the grid value
|
||||
output on step 10000 will be the average of the grid values on steps
|
||||
8000,9000,10000. Outputs on early steps will average over less than M
|
||||
values if they are not available.
|
||||
|
||||
The *bias*, *adof*, and *cdof* keywords are only applicable to
|
||||
per-atom mode.
|
||||
|
||||
The *bias* keyword specifies the ID of a temperature compute that
|
||||
removes a "bias" velocity from each atom, specified as *bias-ID*\ .
|
||||
It is only used when the *temp* value is calculated, to compute the
|
||||
thermal temperature of each grid cell after the translational kinetic
|
||||
energy components have been altered in a prescribed way, e.g. to
|
||||
remove a flow velocity profile. See the doc pages for individual
|
||||
computes that calculate a temperature to see which ones implement a
|
||||
bias.
|
||||
|
||||
The *adof* and *cdof* keywords define the values used in the degree of
|
||||
freedom (DOF) formula described above for temperature calculation for
|
||||
each grid cell. They are only used when the *temp* value is
|
||||
calculated. They can be used to calculate a more appropriate
|
||||
temperature in some cases. Here are 3 examples:
|
||||
|
||||
If grid cells contain some number of water molecules and :doc:`fix
|
||||
shake <fix_shake>` is used to make each molecule rigid, then you could
|
||||
calculate a temperature with 6 degrees of freedom (DOF) (3
|
||||
translational, 3 rotational) per molecule by setting *adof* to 2.0.
|
||||
|
||||
If :doc:`compute temp/partial <compute_temp_partial>` is used with the
|
||||
*bias* keyword to only allow the x component of velocity to contribute
|
||||
to the temperature, then *adof* = 1.0 would be appropriate.
|
||||
|
||||
Using *cdof* = -2 or -3 (for 2d or 3d simulations) will subtract out 2
|
||||
or 3 degrees of freedom for each grid cell, similar to how the
|
||||
:doc:`compute temp <compute_temp>` command subtracts out 3 DOF for the
|
||||
entire system.
|
||||
|
||||
----------
|
||||
|
||||
Restart, fix_modify, output, run start/stop, minimize info
|
||||
"""""""""""""""""""""""""""""""""""""""""""""""""""""""""""
|
||||
|
||||
No information about this fix is written to :doc:`binary restart files
|
||||
<restart>`. None of the :doc:`fix_modify <fix_modify>` options are
|
||||
relevant to this fix.
|
||||
|
||||
This fix computes a global array of values which can be accessed by
|
||||
various :doc:`output commands <Howto_output>`. The values can only be
|
||||
accessed on timesteps that are multiples of *Nfreq* since that is when
|
||||
averaging is performed. The global array has # of rows = the number
|
||||
of grids *grid* as calculated by the specified :doc:`compute
|
||||
grid/atom <compute_grid_atom>` command. The # of columns =
|
||||
M+1+Nvalues, where M = 1 to 4, depending on whether the optional
|
||||
columns for OrigID and CoordN are used, as explained above. Following
|
||||
the optional columns, the next column contains the count of atoms in
|
||||
the grid, and the remaining columns are the Nvalue quantities. When
|
||||
the array is accessed with a row I that exceeds the current number of
|
||||
grids, than a 0.0 is returned by the fix instead of an error, since
|
||||
the number of grids can vary as a simulation runs depending on how
|
||||
that value is computed by the compute grid/atom command.
|
||||
|
||||
The array values calculated by this fix are treated as "intensive",
|
||||
since they are typically already normalized by the count of atoms in
|
||||
each grid.
|
||||
|
||||
No parameter of this fix can be used with the *start/stop* keywords of
|
||||
the :doc:`run <run>` command. This fix is not invoked during
|
||||
:doc:`energy minimization <minimize>`.
|
||||
|
||||
Restrictions
|
||||
""""""""""""
|
||||
none
|
||||
|
||||
Related commands
|
||||
""""""""""""""""
|
||||
|
||||
:doc:`fix ave/atom <fix_ave_atom>`, :doc:`fix ave/chunk <fix_ave_chunk>`
|
||||
|
||||
Default
|
||||
"""""""
|
||||
|
||||
The option defaults are norm = all, ave = one, and bias = none.
|
||||
@ -371,6 +371,13 @@ electronic subsystem energies reported at the end of the timestep.
|
||||
|
||||
The vector values calculated are "extensive".
|
||||
|
||||
Th fix ttm/grid command also calculates a per-grid vector which store
|
||||
the electron temperature for each grid cell in temperature :doc:`units
|
||||
<units>`. The length of the vector (distributed across all
|
||||
processors) is Nx * Ny * Nz. For access by other commands, the name
|
||||
of the grid produced by fix ttm/grid is "grid". The name of its data
|
||||
is "data".
|
||||
|
||||
No parameter of the fixes can be used with the *start/stop* keywords
|
||||
of the :doc:`run <run>` command. The fixes are not invoked during
|
||||
:doc:`energy minimization <minimize>`.
|
||||
|
||||
@ -24,7 +24,8 @@
|
||||
|
||||
using namespace LAMMPS_NS;
|
||||
|
||||
enum { ID, X, Y, Z, XS, YS, ZS, XC, YC, ZC, XSC, YSC, ZSC };
|
||||
enum { LOW, CTR };
|
||||
enum { UNSCALED, SCALED };
|
||||
|
||||
#define DELTA 10000
|
||||
|
||||
@ -61,49 +62,49 @@ ComputePropertyGrid::ComputePropertyGrid(LAMMPS *lmp, int narg, char **arg) :
|
||||
pack_choice[jarg] = &ComputePropertyGrid::pack_id;
|
||||
|
||||
} else if (strcmp(arg[iarg], "ix") == 0) {
|
||||
pack_choice[jarg] = &ComputePropertyGrid::pack_ix;
|
||||
pack_choice[jarg] = &ComputePropertyGrid::pack_indices<0>;
|
||||
} else if (strcmp(arg[iarg], "iy") == 0) {
|
||||
pack_choice[jarg] = &ComputePropertyGrid::pack_iy;
|
||||
pack_choice[jarg] = &ComputePropertyGrid::pack_indices<1>;
|
||||
} else if (strcmp(arg[iarg], "iz") == 0) {
|
||||
if (dimension == 2)
|
||||
error->all(FLERR,"Compute property/grid for 2d cannot use z coord");
|
||||
pack_choice[jarg] = &ComputePropertyGrid::pack_iz;
|
||||
pack_choice[jarg] = &ComputePropertyGrid::pack_indices<2>;
|
||||
|
||||
} else if (strcmp(arg[iarg], "x") == 0) {
|
||||
pack_choice[jarg] = &ComputePropertyGrid::pack_x;
|
||||
pack_choice[jarg] = &ComputePropertyGrid::pack_coords<LOW,UNSCALED,0>;
|
||||
} else if (strcmp(arg[iarg], "y") == 0) {
|
||||
pack_choice[jarg] = &ComputePropertyGrid::pack_y;
|
||||
pack_choice[jarg] = &ComputePropertyGrid::pack_coords<LOW,UNSCALED,1>;
|
||||
} else if (strcmp(arg[iarg], "z") == 0) {
|
||||
if (dimension == 2)
|
||||
error->all(FLERR,"Compute property/grid for 2d cannot use z coord");
|
||||
pack_choice[jarg] = &ComputePropertyGrid::pack_z;
|
||||
pack_choice[jarg] = &ComputePropertyGrid::pack_coords<LOW,UNSCALED,2>;
|
||||
|
||||
} else if (strcmp(arg[iarg], "xs") == 0) {
|
||||
pack_choice[jarg] = &ComputePropertyGrid::pack_xs;
|
||||
pack_choice[jarg] = &ComputePropertyGrid::pack_coords<LOW,SCALED,0>;
|
||||
} else if (strcmp(arg[iarg], "ys") == 0) {
|
||||
pack_choice[jarg] = &ComputePropertyGrid::pack_ys;
|
||||
pack_choice[jarg] = &ComputePropertyGrid::pack_coords<LOW,SCALED,1>;
|
||||
} else if (strcmp(arg[iarg], "zs") == 0) {
|
||||
if (dimension == 2)
|
||||
error->all(FLERR,"Compute property/grid for 2d cannot use z coord");
|
||||
pack_choice[jarg] = &ComputePropertyGrid::pack_zs;
|
||||
pack_choice[jarg] = &ComputePropertyGrid::pack_coords<LOW,SCALED,2>;
|
||||
|
||||
} else if (strcmp(arg[iarg], "xc") == 0) {
|
||||
pack_choice[jarg] = &ComputePropertyGrid::pack_xc;
|
||||
pack_choice[jarg] = &ComputePropertyGrid::pack_coords<CTR,UNSCALED,0>;
|
||||
} else if (strcmp(arg[iarg], "yc") == 0) {
|
||||
pack_choice[jarg] = &ComputePropertyGrid::pack_yc;
|
||||
pack_choice[jarg] = &ComputePropertyGrid::pack_coords<CTR,UNSCALED,1>;
|
||||
} else if (strcmp(arg[iarg], "zc") == 0) {
|
||||
if (dimension == 2)
|
||||
error->all(FLERR,"Compute property/grid for 2d cannot use z coord");
|
||||
pack_choice[jarg] = &ComputePropertyGrid::pack_zc;
|
||||
pack_choice[jarg] = &ComputePropertyGrid::pack_coords<CTR,UNSCALED,2>;
|
||||
|
||||
} else if (strcmp(arg[iarg], "xsc") == 0) {
|
||||
pack_choice[jarg] = &ComputePropertyGrid::pack_xsc;
|
||||
pack_choice[jarg] = &ComputePropertyGrid::pack_coords<CTR,SCALED,0>;
|
||||
} else if (strcmp(arg[iarg], "ysc") == 0) {
|
||||
pack_choice[jarg] = &ComputePropertyGrid::pack_ysc;
|
||||
pack_choice[jarg] = &ComputePropertyGrid::pack_coords<CTR,SCALED,1>;
|
||||
} else if (strcmp(arg[iarg], "zsc") == 0) {
|
||||
if (dimension == 2)
|
||||
error->all(FLERR,"Compute property/grid for 2d cannot use z coord");
|
||||
pack_choice[jarg] = &ComputePropertyGrid::pack_zsc;
|
||||
pack_choice[jarg] = &ComputePropertyGrid::pack_coords<CTR,SCALED,2>;
|
||||
|
||||
} else error->all(FLERR, "Illegal compute property/grid command");
|
||||
}
|
||||
@ -124,6 +125,13 @@ ComputePropertyGrid::~ComputePropertyGrid()
|
||||
|
||||
/* ---------------------------------------------------------------------- */
|
||||
|
||||
void ComputePropertyGrid::init()
|
||||
{
|
||||
triclinic = domain->triclinic;
|
||||
}
|
||||
|
||||
/* ---------------------------------------------------------------------- */
|
||||
|
||||
void ComputePropertyGrid::compute_pergrid()
|
||||
{
|
||||
invoked_pergrid = update->ntimestep;
|
||||
@ -283,7 +291,7 @@ double ComputePropertyGrid::memory_usage()
|
||||
}
|
||||
|
||||
/* ----------------------------------------------------------------------
|
||||
one method for every keyword compute property/grid can output
|
||||
compute grid point IDs
|
||||
------------------------------------------------------------------------- */
|
||||
|
||||
void ComputePropertyGrid::pack_id(int n)
|
||||
@ -313,411 +321,220 @@ void ComputePropertyGrid::pack_id(int n)
|
||||
}
|
||||
}
|
||||
|
||||
/* ---------------------------------------------------------------------- */
|
||||
/* ----------------------------------------------------------------------
|
||||
compute grid indices via templating
|
||||
------------------------------------------------------------------------- */
|
||||
|
||||
void ComputePropertyGrid::pack_ix(int n)
|
||||
template <int IDIM> void ComputePropertyGrid::pack_indices(int n)
|
||||
{
|
||||
if (dimension == 2) {
|
||||
if (nvalues == 0) {
|
||||
for (int iy = nylo_in; iy <= nyhi_in; iy++)
|
||||
for (int ix = nxlo_in; ix <= nxhi_in; ix++)
|
||||
vec2d[iy][ix] = ix + 1;
|
||||
for (int ix = nxlo_in; ix <= nxhi_in; ix++) {
|
||||
if (IDIM == 0) vec2d[iy][ix] = ix + 1;
|
||||
if (IDIM == 1) vec2d[iy][ix] = iy + 1;
|
||||
}
|
||||
} else {
|
||||
for (int iy = nylo_in; iy <= nyhi_in; iy++)
|
||||
for (int ix = nxlo_in; ix <= nxhi_in; ix++)
|
||||
array2d[iy][ix][n] = ix + 1;
|
||||
for (int ix = nxlo_in; ix <= nxhi_in; ix++) {
|
||||
if (IDIM == 0) array2d[iy][ix][n] = ix + 1;
|
||||
if (IDIM == 1) array2d[iy][ix][n] = iy + 1;
|
||||
}
|
||||
}
|
||||
|
||||
} else if (dimension == 3) {
|
||||
if (nvalues == 0) {
|
||||
for (int iz = nzlo_in; iz <= nzhi_in; iz++)
|
||||
for (int iy = nylo_in; iy <= nyhi_in; iy++)
|
||||
for (int ix = nxlo_in; ix <= nxhi_in; ix++)
|
||||
vec3d[iz][iy][ix] = ix + 1;
|
||||
for (int ix = nxlo_in; ix <= nxhi_in; ix++) {
|
||||
if (IDIM == 0) vec3d[iz][iy][ix] = ix + 1;
|
||||
if (IDIM == 1) vec3d[iz][iy][ix] = iy + 1;
|
||||
if (IDIM == 2) vec3d[iz][iy][ix] = iz + 1;
|
||||
}
|
||||
} else {
|
||||
for (int iz = nzlo_in; iz <= nzhi_in; iz++)
|
||||
for (int iy = nylo_in; iy <= nyhi_in; iy++)
|
||||
for (int ix = nxlo_in; ix <= nxhi_in; ix++)
|
||||
array3d[iz][iy][ix][n] = ix + 1;
|
||||
for (int ix = nxlo_in; ix <= nxhi_in; ix++) {
|
||||
if (IDIM == 0) array3d[iz][iy][ix][n] = ix + 1;
|
||||
if (IDIM == 1) array3d[iz][iy][ix][n] = iy + 1;
|
||||
if (IDIM == 2) array3d[iz][iy][ix][n] = iz + 1;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/* ---------------------------------------------------------------------- */
|
||||
/* ----------------------------------------------------------------------
|
||||
compute LOW/CTR, SCALED/UNSCALED, orthogonal/triclinic grid point coords
|
||||
via templating
|
||||
------------------------------------------------------------------------- */
|
||||
|
||||
void ComputePropertyGrid::pack_iy(int n)
|
||||
template <int POS, int MODE, int IDIM>
|
||||
void ComputePropertyGrid::pack_coords(int n)
|
||||
{
|
||||
if (dimension == 2) {
|
||||
if (nvalues == 0) {
|
||||
for (int iy = nylo_in; iy <= nyhi_in; iy++)
|
||||
for (int ix = nxlo_in; ix <= nxhi_in; ix++)
|
||||
vec2d[iy][ix] = iy + 1;
|
||||
} else {
|
||||
for (int iy = nylo_in; iy <= nyhi_in; iy++)
|
||||
for (int ix = nxlo_in; ix <= nxhi_in; ix++)
|
||||
array2d[iy][ix][n] = iy + 1;
|
||||
}
|
||||
} else if (dimension == 3) {
|
||||
if (nvalues == 0) {
|
||||
for (int iz = nzlo_in; iz <= nzhi_in; iz++)
|
||||
for (int iy = nylo_in; iy <= nyhi_in; iy++)
|
||||
for (int ix = nxlo_in; ix <= nxhi_in; ix++)
|
||||
vec3d[iz][iy][ix] = iy + 1;
|
||||
} else {
|
||||
for (int iz = nzlo_in; iz <= nzhi_in; iz++)
|
||||
for (int iy = nylo_in; iy <= nyhi_in; iy++)
|
||||
for (int ix = nxlo_in; ix <= nxhi_in; ix++)
|
||||
array3d[iz][iy][ix][n] = iy + 1;
|
||||
}
|
||||
}
|
||||
}
|
||||
double boxlo,delta;
|
||||
double lamda[3],xone[3];
|
||||
|
||||
/* ---------------------------------------------------------------------- */
|
||||
|
||||
void ComputePropertyGrid::pack_iz(int n)
|
||||
{
|
||||
if (nvalues == 0) {
|
||||
for (int iz = nzlo_in; iz <= nzhi_in; iz++)
|
||||
for (int iy = nylo_in; iy <= nyhi_in; iy++)
|
||||
for (int ix = nxlo_in; ix <= nxhi_in; ix++)
|
||||
vec3d[iz][iy][ix] = iz + 1;
|
||||
} else {
|
||||
for (int iz = nzlo_in; iz <= nzhi_in; iz++)
|
||||
for (int iy = nylo_in; iy <= nyhi_in; iy++)
|
||||
for (int ix = nxlo_in; ix <= nxhi_in; ix++)
|
||||
array3d[iz][iy][ix][n] = iz + 1;
|
||||
}
|
||||
}
|
||||
|
||||
/* ---------------------------------------------------------------------- */
|
||||
|
||||
void ComputePropertyGrid::pack_x(int n)
|
||||
{
|
||||
double boxlo,dx;
|
||||
// 2d grid
|
||||
|
||||
if (dimension == 2) {
|
||||
grid2d->get_box(0,boxlo,dx);
|
||||
if (nvalues == 0) {
|
||||
for (int iy = nylo_in; iy <= nyhi_in; iy++)
|
||||
for (int ix = nxlo_in; ix <= nxhi_in; ix++)
|
||||
vec2d[iy][ix] = boxlo + ix*dx;
|
||||
} else {
|
||||
for (int iy = nylo_in; iy <= nyhi_in; iy++)
|
||||
for (int ix = nxlo_in; ix <= nxhi_in; ix++)
|
||||
array2d[iy][ix][n] = boxlo + ix*dx;
|
||||
}
|
||||
} else if (dimension == 3) {
|
||||
grid3d->get_box(0,boxlo,dx);
|
||||
if (nvalues == 0) {
|
||||
for (int iz = nzlo_in; iz <= nzhi_in; iz++)
|
||||
for (int iy = nylo_in; iy <= nyhi_in; iy++)
|
||||
for (int ix = nxlo_in; ix <= nxhi_in; ix++)
|
||||
vec3d[iz][iy][ix] = boxlo + ix*dx;
|
||||
} else {
|
||||
for (int iz = nzlo_in; iz <= nzhi_in; iz++)
|
||||
for (int iy = nylo_in; iy <= nyhi_in; iy++)
|
||||
for (int ix = nxlo_in; ix <= nxhi_in; ix++)
|
||||
array3d[iz][iy][ix][n] = boxlo + ix*dx;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/* ---------------------------------------------------------------------- */
|
||||
// for coords which are orthogonal OR scaled
|
||||
|
||||
void ComputePropertyGrid::pack_y(int n)
|
||||
{
|
||||
double boxlo,dy;
|
||||
if (!triclinic || MODE == SCALED) {
|
||||
|
||||
if (dimension == 2) {
|
||||
grid2d->get_box(1,boxlo,dy);
|
||||
if (nvalues == 0) {
|
||||
for (int iy = nylo_in; iy <= nyhi_in; iy++)
|
||||
for (int ix = nxlo_in; ix <= nxhi_in; ix++)
|
||||
vec2d[iy][ix] = boxlo + iy*dy;
|
||||
} else {
|
||||
for (int iy = nylo_in; iy <= nyhi_in; iy++)
|
||||
for (int ix = nxlo_in; ix <= nxhi_in; ix++)
|
||||
array2d[iy][ix][n] = boxlo + iy*dy;
|
||||
if (MODE == UNSCALED) grid2d->get_box(IDIM,boxlo,delta);
|
||||
if (MODE == SCALED) {
|
||||
boxlo = 0.0;
|
||||
if (IDIM == 0) delta = 1.0/nxgrid;
|
||||
if (IDIM == 1) delta = 1.0/nygrid;
|
||||
}
|
||||
} else if (dimension == 3) {
|
||||
grid3d->get_box(1,boxlo,dy);
|
||||
if (nvalues == 0) {
|
||||
for (int iz = nzlo_in; iz <= nzhi_in; iz++)
|
||||
for (int iy = nylo_in; iy <= nyhi_in; iy++)
|
||||
for (int ix = nxlo_in; ix <= nxhi_in; ix++)
|
||||
vec3d[iz][iy][ix] = boxlo + iy*dy;
|
||||
} else {
|
||||
for (int iz = nzlo_in; iz <= nzhi_in; iz++)
|
||||
for (int iy = nylo_in; iy <= nyhi_in; iy++)
|
||||
for (int ix = nxlo_in; ix <= nxhi_in; ix++)
|
||||
array3d[iz][iy][ix][n] = boxlo + iy*dy;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/* ---------------------------------------------------------------------- */
|
||||
|
||||
void ComputePropertyGrid::pack_z(int n)
|
||||
{
|
||||
double boxlo,dz;
|
||||
grid3d->get_box(2,boxlo,dz);
|
||||
|
||||
if (nvalues == 0) {
|
||||
for (int iz = nzlo_in; iz <= nzhi_in; iz++)
|
||||
for (int iy = nylo_in; iy <= nyhi_in; iy++)
|
||||
for (int ix = nxlo_in; ix <= nxhi_in; ix++)
|
||||
vec3d[iz][iy][ix] = boxlo + iz*dz;
|
||||
for (int ix = nxlo_in; ix <= nxhi_in; ix++) {
|
||||
if (POS == LOW) {
|
||||
if (IDIM == 0) vec2d[iy][ix] = boxlo + ix*delta;
|
||||
if (IDIM == 1) vec2d[iy][ix] = boxlo + iy*delta;
|
||||
}
|
||||
if (POS == CTR) {
|
||||
if (IDIM == 0) vec2d[iy][ix] = boxlo + (ix+0.5)*delta;
|
||||
if (IDIM == 1) vec2d[iy][ix] = boxlo + (iy+0.5)*delta;
|
||||
}
|
||||
}
|
||||
|
||||
} else {
|
||||
for (int iz = nzlo_in; iz <= nzhi_in; iz++)
|
||||
for (int iy = nylo_in; iy <= nyhi_in; iy++)
|
||||
for (int ix = nxlo_in; ix <= nxhi_in; ix++)
|
||||
array3d[iz][iy][ix][n] = boxlo + iz*dz;
|
||||
for (int ix = nxlo_in; ix <= nxhi_in; ix++) {
|
||||
if (POS == LOW) {
|
||||
if (IDIM == 0) array2d[iy][ix][n] = boxlo + ix*delta;
|
||||
if (IDIM == 1) array2d[iy][ix][n] = boxlo + iy*delta;
|
||||
}
|
||||
if (POS == CTR) {
|
||||
if (IDIM == 0) array2d[iy][ix][n] = boxlo + (ix+0.5)*delta;
|
||||
if (IDIM == 1) array2d[iy][ix][n] = boxlo + (iy+0.5)*delta;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/* ---------------------------------------------------------------------- */
|
||||
// only for coords which are triclinic AND unscaled
|
||||
|
||||
} else {
|
||||
|
||||
void ComputePropertyGrid::pack_xs(int n)
|
||||
{
|
||||
double dx = 1.0/nxgrid;
|
||||
|
||||
if (dimension == 2) {
|
||||
if (nvalues == 0) {
|
||||
for (int iy = nylo_in; iy <= nyhi_in; iy++)
|
||||
for (int ix = nxlo_in; ix <= nxhi_in; ix++)
|
||||
vec2d[iy][ix] = ix*dx;
|
||||
} else {
|
||||
for (int iy = nylo_in; iy <= nyhi_in; iy++)
|
||||
for (int ix = nxlo_in; ix <= nxhi_in; ix++)
|
||||
array2d[iy][ix][n] = ix*dx;
|
||||
}
|
||||
} else if (dimension == 3) {
|
||||
if (nvalues == 0) {
|
||||
for (int iz = nzlo_in; iz <= nzhi_in; iz++)
|
||||
for (int iy = nylo_in; iy <= nyhi_in; iy++)
|
||||
for (int ix = nxlo_in; ix <= nxhi_in; ix++)
|
||||
vec3d[iz][iy][ix] = ix*dx;
|
||||
} else {
|
||||
for (int iz = nzlo_in; iz <= nzhi_in; iz++)
|
||||
for (int iy = nylo_in; iy <= nyhi_in; iy++)
|
||||
for (int ix = nxlo_in; ix <= nxhi_in; ix++)
|
||||
array3d[iz][iy][ix][n] = ix*dx;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/* ---------------------------------------------------------------------- */
|
||||
|
||||
void ComputePropertyGrid::pack_ys(int n)
|
||||
{
|
||||
double dy = 1.0/nygrid;
|
||||
lamda[2] = 0.0;
|
||||
|
||||
if (dimension == 2) {
|
||||
if (nvalues == 0) {
|
||||
for (int iy = nylo_in; iy <= nyhi_in; iy++)
|
||||
for (int ix = nxlo_in; ix <= nxhi_in; ix++)
|
||||
vec2d[iy][ix] = iy*dy;
|
||||
} else {
|
||||
for (int iy = nylo_in; iy <= nyhi_in; iy++)
|
||||
for (int ix = nxlo_in; ix <= nxhi_in; ix++)
|
||||
array2d[iy][ix][n] = iy*dy;
|
||||
for (int iy = nylo_in; iy <= nyhi_in; iy++) {
|
||||
lamda[1] = iy*dy;
|
||||
for (int ix = nxlo_in; ix <= nxhi_in; ix++) {
|
||||
lamda[0] = ix*dx;
|
||||
domain->lamda2x(lamda,xone);
|
||||
if (IDIM == 0) vec2d[iy][ix] = xone[0];
|
||||
if (IDIM == 1) vec2d[iy][ix] = xone[1];
|
||||
}
|
||||
}
|
||||
|
||||
} else {
|
||||
for (int iy = nylo_in; iy <= nyhi_in; iy++) {
|
||||
lamda[1] = iy*dy;
|
||||
for (int ix = nxlo_in; ix <= nxhi_in; ix++) {
|
||||
lamda[0] = ix*dx;
|
||||
domain->lamda2x(lamda,xone);
|
||||
if (IDIM == 0) array2d[iy][ix][n] = xone[0];
|
||||
if (IDIM == 1) array2d[iy][ix][n] = xone[1];
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// 3d grid
|
||||
|
||||
} else if (dimension == 3) {
|
||||
|
||||
// for coords which are orthogonal OR scaled
|
||||
|
||||
if (!triclinic || MODE == SCALED) {
|
||||
|
||||
if (MODE == UNSCALED) grid3d->get_box(IDIM,boxlo,delta);
|
||||
if (MODE == SCALED) {
|
||||
boxlo = 0.0;
|
||||
if (IDIM == 0) delta = 1.0/nxgrid;
|
||||
if (IDIM == 1) delta = 1.0/nygrid;
|
||||
if (IDIM == 2) delta = 1.0/nzgrid;
|
||||
}
|
||||
|
||||
if (nvalues == 0) {
|
||||
for (int iz = nzlo_in; iz <= nzhi_in; iz++)
|
||||
for (int iy = nylo_in; iy <= nyhi_in; iy++)
|
||||
for (int ix = nxlo_in; ix <= nxhi_in; ix++)
|
||||
vec3d[iz][iy][ix] = iy*dy;
|
||||
for (int ix = nxlo_in; ix <= nxhi_in; ix++) {
|
||||
if (POS == LOW) {
|
||||
if (IDIM == 0) vec3d[iz][iy][ix] = boxlo + ix*delta;
|
||||
if (IDIM == 1) vec3d[iz][iy][ix] = boxlo + iy*delta;
|
||||
if (IDIM == 2) vec3d[iz][iy][ix] = boxlo + iz*delta;
|
||||
}
|
||||
if (POS == CTR) {
|
||||
if (IDIM == 0) vec3d[iz][iy][ix] = boxlo + (ix+0.5)*delta;
|
||||
if (IDIM == 1) vec3d[iz][iy][ix] = boxlo + (iy+0.5)*delta;
|
||||
if (IDIM == 2) vec3d[iz][iy][ix] = boxlo + (iz+0.5)*delta;
|
||||
}
|
||||
}
|
||||
|
||||
} else {
|
||||
for (int iz = nzlo_in; iz <= nzhi_in; iz++)
|
||||
for (int iy = nylo_in; iy <= nyhi_in; iy++)
|
||||
for (int ix = nxlo_in; ix <= nxhi_in; ix++)
|
||||
array3d[iz][iy][ix][n] = iy*dy;
|
||||
for (int ix = nxlo_in; ix <= nxhi_in; ix++) {
|
||||
if (POS == LOW) {
|
||||
if (IDIM == 0) array3d[iz][iy][ix][n] = boxlo + ix*delta;
|
||||
if (IDIM == 1) array3d[iz][iy][ix][n] = boxlo + iy*delta;
|
||||
if (IDIM == 2) array3d[iz][iy][ix][n] = boxlo + iz*delta;
|
||||
}
|
||||
if (POS == CTR) {
|
||||
if (IDIM == 0) array3d[iz][iy][ix][n] = boxlo + (ix+0.5)*delta;
|
||||
if (IDIM == 1) array3d[iz][iy][ix][n] = boxlo + (iy+0.5)*delta;
|
||||
if (IDIM == 2) array3d[iz][iy][ix][n] = boxlo + (iz+0.5)*delta;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/* ---------------------------------------------------------------------- */
|
||||
// only for coords which are triclinic AND unscaled
|
||||
|
||||
void ComputePropertyGrid::pack_zs(int n)
|
||||
{
|
||||
} else {
|
||||
|
||||
double dx = 1.0/nxgrid;
|
||||
double dy = 1.0/nygrid;
|
||||
double dz = 1.0/nzgrid;
|
||||
|
||||
if (nvalues == 0) {
|
||||
for (int iz = nzlo_in; iz <= nzhi_in; iz++)
|
||||
for (int iy = nylo_in; iy <= nyhi_in; iy++)
|
||||
for (int ix = nxlo_in; ix <= nxhi_in; ix++)
|
||||
vec3d[iz][iy][ix] = iz*dz;
|
||||
for (int iz = nzlo_in; iz <= nzhi_in; iz++) {
|
||||
lamda[2] = iz*dz;
|
||||
for (int iy = nylo_in; iy <= nyhi_in; iy++) {
|
||||
lamda[1] = iy*dy;
|
||||
for (int ix = nxlo_in; ix <= nxhi_in; ix++) {
|
||||
lamda[0] = ix*dx;
|
||||
domain->lamda2x(lamda,xone);
|
||||
if (IDIM == 0) vec3d[iz][iy][ix] = xone[0];
|
||||
if (IDIM == 1) vec3d[iz][iy][ix] = xone[1];
|
||||
if (IDIM == 2) vec3d[iz][iy][ix] = xone[2];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
} else {
|
||||
for (int iz = nzlo_in; iz <= nzhi_in; iz++)
|
||||
for (int iy = nylo_in; iy <= nyhi_in; iy++)
|
||||
for (int ix = nxlo_in; ix <= nxhi_in; ix++)
|
||||
array3d[iz][iy][ix][n] = iz*dz;
|
||||
}
|
||||
}
|
||||
|
||||
/* ---------------------------------------------------------------------- */
|
||||
|
||||
void ComputePropertyGrid::pack_xc(int n)
|
||||
{
|
||||
double boxlo,dx;
|
||||
|
||||
if (dimension == 2) {
|
||||
grid2d->get_box(0,boxlo,dx);
|
||||
if (nvalues == 0) {
|
||||
for (int iy = nylo_in; iy <= nyhi_in; iy++)
|
||||
for (int ix = nxlo_in; ix <= nxhi_in; ix++)
|
||||
vec2d[iy][ix] = boxlo + (ix+0.5)*dx;
|
||||
} else {
|
||||
for (int iy = nylo_in; iy <= nyhi_in; iy++)
|
||||
for (int ix = nxlo_in; ix <= nxhi_in; ix++)
|
||||
array2d[iy][ix][n] = boxlo + (ix+0.5)*dx;
|
||||
}
|
||||
} else if (dimension == 3) {
|
||||
grid3d->get_box(0,boxlo,dx);
|
||||
if (nvalues == 0) {
|
||||
for (int iz = nzlo_in; iz <= nzhi_in; iz++)
|
||||
for (int iy = nylo_in; iy <= nyhi_in; iy++)
|
||||
for (int ix = nxlo_in; ix <= nxhi_in; ix++)
|
||||
vec3d[iz][iy][ix] = boxlo + (ix+0.5)*dx;
|
||||
} else {
|
||||
for (int iz = nzlo_in; iz <= nzhi_in; iz++)
|
||||
for (int iy = nylo_in; iy <= nyhi_in; iy++)
|
||||
for (int ix = nxlo_in; ix <= nxhi_in; ix++)
|
||||
array3d[iz][iy][ix][n] = boxlo + (ix+0.5)*dx;
|
||||
for (int iz = nzlo_in; iz <= nzhi_in; iz++) {
|
||||
lamda[2] = iz*dz;
|
||||
for (int iy = nylo_in; iy <= nyhi_in; iy++) {
|
||||
lamda[1] = iy*dy;
|
||||
for (int ix = nxlo_in; ix <= nxhi_in; ix++) {
|
||||
lamda[0] = ix*dx;
|
||||
domain->lamda2x(lamda,xone);
|
||||
if (IDIM == 0) array3d[iz][iy][ix][n] = xone[0];
|
||||
if (IDIM == 1) array3d[iz][iy][ix][n] = xone[1];
|
||||
if (IDIM == 2) array3d[iz][iy][ix][n] = xone[2];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/* ---------------------------------------------------------------------- */
|
||||
|
||||
void ComputePropertyGrid::pack_yc(int n)
|
||||
{
|
||||
double boxlo,dy;
|
||||
|
||||
if (dimension == 2) {
|
||||
grid2d->get_box(1,boxlo,dy);
|
||||
if (nvalues == 0) {
|
||||
for (int iy = nylo_in; iy <= nyhi_in; iy++)
|
||||
for (int ix = nxlo_in; ix <= nxhi_in; ix++)
|
||||
vec2d[iy][ix] = boxlo + (iy+0.5)*dy;
|
||||
} else {
|
||||
for (int iy = nylo_in; iy <= nyhi_in; iy++)
|
||||
for (int ix = nxlo_in; ix <= nxhi_in; ix++)
|
||||
array2d[iy][ix][n] = boxlo + (iy+0.5)*dy;
|
||||
}
|
||||
} else if (dimension == 3) {
|
||||
grid3d->get_box(1,boxlo,dy);
|
||||
if (nvalues == 0) {
|
||||
for (int iz = nzlo_in; iz <= nzhi_in; iz++)
|
||||
for (int iy = nylo_in; iy <= nyhi_in; iy++)
|
||||
for (int ix = nxlo_in; ix <= nxhi_in; ix++)
|
||||
vec3d[iz][iy][ix] = boxlo + (iy+0.5)*dy;
|
||||
} else {
|
||||
for (int iz = nzlo_in; iz <= nzhi_in; iz++)
|
||||
for (int iy = nylo_in; iy <= nyhi_in; iy++)
|
||||
for (int ix = nxlo_in; ix <= nxhi_in; ix++)
|
||||
array3d[iz][iy][ix][n] = boxlo + (iy+0.5)*dy;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/* ---------------------------------------------------------------------- */
|
||||
|
||||
void ComputePropertyGrid::pack_zc(int n)
|
||||
{
|
||||
double boxlo,dz;
|
||||
grid3d->get_box(2,boxlo,dz);
|
||||
|
||||
if (nvalues == 0) {
|
||||
for (int iz = nzlo_in; iz <= nzhi_in; iz++)
|
||||
for (int iy = nylo_in; iy <= nyhi_in; iy++)
|
||||
for (int ix = nxlo_in; ix <= nxhi_in; ix++)
|
||||
vec3d[iz][iy][ix] = boxlo + (iz+0.5)*dz;
|
||||
} else {
|
||||
for (int iz = nzlo_in; iz <= nzhi_in; iz++)
|
||||
for (int iy = nylo_in; iy <= nyhi_in; iy++)
|
||||
for (int ix = nxlo_in; ix <= nxhi_in; ix++)
|
||||
array3d[iz][iy][ix][n] = boxlo + (iz+0.5)*dz;
|
||||
}
|
||||
}
|
||||
|
||||
/* ---------------------------------------------------------------------- */
|
||||
|
||||
void ComputePropertyGrid::pack_xsc(int n)
|
||||
{
|
||||
double dx = 1.0/nxgrid;
|
||||
|
||||
if (dimension == 2) {
|
||||
if (nvalues == 0) {
|
||||
for (int iy = nylo_in; iy <= nyhi_in; iy++)
|
||||
for (int ix = nxlo_in; ix <= nxhi_in; ix++)
|
||||
vec2d[iy][ix] = (ix+0.5)*dx;
|
||||
} else {
|
||||
for (int iy = nylo_in; iy <= nyhi_in; iy++)
|
||||
for (int ix = nxlo_in; ix <= nxhi_in; ix++)
|
||||
array2d[iy][ix][n] = (ix+0.5)*dx;
|
||||
}
|
||||
} else if (dimension == 3) {
|
||||
if (nvalues == 0) {
|
||||
for (int iz = nzlo_in; iz <= nzhi_in; iz++)
|
||||
for (int iy = nylo_in; iy <= nyhi_in; iy++)
|
||||
for (int ix = nxlo_in; ix <= nxhi_in; ix++)
|
||||
vec3d[iz][iy][ix] = (ix+0.5)*dx;
|
||||
} else {
|
||||
for (int iz = nzlo_in; iz <= nzhi_in; iz++)
|
||||
for (int iy = nylo_in; iy <= nyhi_in; iy++)
|
||||
for (int ix = nxlo_in; ix <= nxhi_in; ix++)
|
||||
array3d[iz][iy][ix][n] = (ix+0.5)*dx;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/* ---------------------------------------------------------------------- */
|
||||
|
||||
void ComputePropertyGrid::pack_ysc(int n)
|
||||
{
|
||||
double dy = 1.0/nygrid;
|
||||
|
||||
if (dimension == 2) {
|
||||
if (nvalues == 0) {
|
||||
for (int iy = nylo_in; iy <= nyhi_in; iy++)
|
||||
for (int ix = nxlo_in; ix <= nxhi_in; ix++)
|
||||
vec2d[iy][ix] = (iy+0.5)*dy;
|
||||
} else {
|
||||
for (int iy = nylo_in; iy <= nyhi_in; iy++)
|
||||
for (int ix = nxlo_in; ix <= nxhi_in; ix++)
|
||||
array2d[iy][ix][n] = (iy+0.5)*dy;
|
||||
}
|
||||
} else if (dimension == 3) {
|
||||
if (nvalues == 0) {
|
||||
for (int iz = nzlo_in; iz <= nzhi_in; iz++)
|
||||
for (int iy = nylo_in; iy <= nyhi_in; iy++)
|
||||
for (int ix = nxlo_in; ix <= nxhi_in; ix++)
|
||||
vec3d[iz][iy][ix] = (iy+0.5)*dy;
|
||||
} else {
|
||||
for (int iz = nzlo_in; iz <= nzhi_in; iz++)
|
||||
for (int iy = nylo_in; iy <= nyhi_in; iy++)
|
||||
for (int ix = nxlo_in; ix <= nxhi_in; ix++)
|
||||
array3d[iz][iy][ix][n] = (iy+0.5)*dy;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/* ---------------------------------------------------------------------- */
|
||||
|
||||
void ComputePropertyGrid::pack_zsc(int n)
|
||||
{
|
||||
double dz = 1.0/nzgrid;
|
||||
|
||||
if (nvalues == 0) {
|
||||
for (int iz = nzlo_in; iz <= nzhi_in; iz++)
|
||||
for (int iy = nylo_in; iy <= nyhi_in; iy++)
|
||||
for (int ix = nxlo_in; ix <= nxhi_in; ix++)
|
||||
vec3d[iz][iy][ix] = (iz+0.5)*dz;
|
||||
} else {
|
||||
for (int iz = nzlo_in; iz <= nzhi_in; iz++)
|
||||
for (int iy = nylo_in; iy <= nyhi_in; iy++)
|
||||
for (int ix = nxlo_in; ix <= nxhi_in; ix++)
|
||||
array3d[iz][iy][ix][n] = (iz+0.5)*dz;
|
||||
}
|
||||
}
|
||||
|
||||
@ -28,7 +28,7 @@ class ComputePropertyGrid : public Compute {
|
||||
public:
|
||||
ComputePropertyGrid(class LAMMPS *, int, char **);
|
||||
~ComputePropertyGrid() override;
|
||||
void init() override {}
|
||||
void init() override;
|
||||
void compute_pergrid() override;
|
||||
|
||||
void reset_grid() override;
|
||||
@ -44,6 +44,7 @@ class ComputePropertyGrid : public Compute {
|
||||
int nxgrid,nygrid,nzgrid;
|
||||
int nvalues;
|
||||
int dimension;
|
||||
int triclinic;
|
||||
|
||||
class Grid2d *grid2d;
|
||||
class Grid3d *grid3d;
|
||||
@ -64,26 +65,8 @@ class ComputePropertyGrid : public Compute {
|
||||
FnPtrPack *pack_choice; // ptrs to pack functions
|
||||
|
||||
void pack_id(int);
|
||||
|
||||
void pack_ix(int);
|
||||
void pack_iy(int);
|
||||
void pack_iz(int);
|
||||
|
||||
void pack_x(int);
|
||||
void pack_y(int);
|
||||
void pack_z(int);
|
||||
|
||||
void pack_xs(int);
|
||||
void pack_ys(int);
|
||||
void pack_zs(int);
|
||||
|
||||
void pack_xc(int);
|
||||
void pack_yc(int);
|
||||
void pack_zc(int);
|
||||
|
||||
void pack_xsc(int);
|
||||
void pack_ysc(int);
|
||||
void pack_zsc(int);
|
||||
template <int IDIM> void pack_indices(int);
|
||||
template <int POS, int MODE, int IDIM> void pack_coords(int);
|
||||
};
|
||||
|
||||
} // namespace LAMMPS_NS
|
||||
|
||||
@ -64,7 +64,7 @@ FixAveGrid::FixAveGrid(LAMMPS *lmp, int narg, char **arg) :
|
||||
pergrid_freq = utils::inumeric(FLERR,arg[5],false,lmp);
|
||||
time_depend = 1;
|
||||
|
||||
// NOTE: allow Dxyz as well
|
||||
// NOTE: allow Dxyz as well at some point
|
||||
|
||||
nxgrid = utils::inumeric(FLERR,arg[6],false,lmp);
|
||||
nygrid = utils::inumeric(FLERR,arg[7],false,lmp);
|
||||
@ -957,14 +957,12 @@ void FixAveGrid::atom2grid()
|
||||
n = value2index[m];
|
||||
j = argindex[m];
|
||||
|
||||
// X,V,F adds coord,velocity,force to value
|
||||
// V,F adds velocity,force to value
|
||||
|
||||
if (which[m] == ArgInfo::X || which[m] == ArgInfo::V ||
|
||||
which[m] == ArgInfo::F) {
|
||||
if (which[m] == ArgInfo::V || which[m] == ArgInfo::F) {
|
||||
|
||||
double **attribute;
|
||||
if (which[m] == ArgInfo::X) attribute = atom->x;
|
||||
else if (which[m] == ArgInfo::V) attribute = atom->v;
|
||||
if (which[m] == ArgInfo::V) attribute = atom->v;
|
||||
else if (which[m] == ArgInfo::F) attribute = atom->f;
|
||||
|
||||
if (dimension == 2) {
|
||||
|
||||
Reference in New Issue
Block a user