more Voigt clarifications

This commit is contained in:
Plimpton
2021-02-10 09:58:53 -07:00
parent 761527e563
commit 5fecd9ed72
4 changed files with 8 additions and 8 deletions

View File

@ -539,7 +539,7 @@ void AtomVecTri::data_atom_bonus(int m, char **values)
double area = 0.5 * MathExtra::len3(norm);
rmass[m] *= area;
// inertia = inertia tensor of triangle as 6-vector in Voigt notation
// inertia = inertia tensor of triangle as 6-vector in Voigt ordering
double inertia[6];
MathExtra::inertia_triangle(c1,c2,c3,rmass[m],inertia);

View File

@ -75,7 +75,7 @@ class Domain : protected Pointers {
// triclinic box
double xy,xz,yz; // 3 tilt factors
double h[6],h_inv[6]; // shape matrix in Voigt notation
double h[6],h_inv[6]; // shape matrix in Voigt ordering
// Voigt = xx,yy,zz,yz,xz,xy
double h_rate[6],h_ratelo[3]; // rate of box size/shape change

View File

@ -396,7 +396,7 @@ void quat_to_mat_trans(const double *quat, double mat[3][3])
compute space-frame inertia tensor of an ellipsoid
radii = 3 radii of ellipsoid
quat = orientiation quaternion of ellipsoid
return symmetric inertia tensor as 6-vector in Voigt notation
return symmetric inertia tensor as 6-vector in Voigt ordering
------------------------------------------------------------------------- */
void inertia_ellipsoid(double *radii, double *quat, double mass,
@ -424,7 +424,7 @@ void inertia_ellipsoid(double *radii, double *quat, double mass,
compute space-frame inertia tensor of a line segment in 2d
length = length of line
theta = orientiation of line
return symmetric inertia tensor as 6-vector in Voigt notation
return symmetric inertia tensor as 6-vector in Voigt ordering
------------------------------------------------------------------------- */
void inertia_line(double length, double theta, double mass, double *inertia)
@ -462,7 +462,7 @@ void inertia_line(double length, double theta, double mass, double *inertia)
S = 1/24 [2 1 1]
[1 2 1]
[1 1 2]
return symmetric inertia tensor as 6-vector in Voigt notation
return symmetric inertia tensor as 6-vector in Voigt ordering
------------------------------------------------------------------------- */
void inertia_triangle(double *v0, double *v1, double *v2,
@ -503,7 +503,7 @@ void inertia_triangle(double *v0, double *v1, double *v2,
compute space-frame inertia tensor of a triangle
idiag = previously computed diagonal inertia tensor
quat = orientiation quaternion of triangle
return symmetric inertia tensor as 6-vector in Voigt notation
return symmetric inertia tensor as 6-vector in Voigt ordering
------------------------------------------------------------------------- */
void inertia_triangle(double *idiag, double *quat, double /*mass*/,

View File

@ -95,7 +95,7 @@ namespace MathExtra {
double dt);
// shape matrix operations
// upper-triangular 3x3 matrix stored in Voigt notation as 6-vector
// upper-triangular 3x3 matrix stored in Voigt ordering as 6-vector
inline void multiply_shape_shape(const double *one, const double *two,
double *ans);
@ -593,7 +593,7 @@ inline void MathExtra::scalar_times3(const double f, double m[3][3])
/* ----------------------------------------------------------------------
multiply 2 shape matrices
upper-triangular 3x3, stored as 6-vector in Voigt notation
upper-triangular 3x3, stored as 6-vector in Voigt ordering
------------------------------------------------------------------------- */
inline void MathExtra::multiply_shape_shape(const double *one,