Update Kokkos library in LAMMPS to v3.0

This commit is contained in:
Stan Moore
2020-03-25 14:08:39 -06:00
parent 0252d8c210
commit 60864e38d1
2169 changed files with 121406 additions and 126492 deletions

View File

@ -1,13 +1,14 @@
/*
//@HEADER
// ************************************************************************
//
// Kokkos v. 2.0
// Copyright (2014) Sandia Corporation
//
// Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation,
//
// Kokkos v. 3.0
// Copyright (2020) National Technology & Engineering
// Solutions of Sandia, LLC (NTESS).
//
// Under the terms of Contract DE-NA0003525 with NTESS,
// the U.S. Government retains certain rights in this software.
//
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
@ -23,10 +24,10 @@
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
// THIS SOFTWARE IS PROVIDED BY NTESS "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL NTESS OR THE
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
@ -36,24 +37,21 @@
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Questions? Contact Christian R. Trott (crtrott@sandia.gov)
//
//
// ************************************************************************
//@HEADER
*/
namespace Test {
template< class DeviceType
, typename ScalarType = double
, typename TestLayout = Kokkos::LayoutRight
>
struct MultiDimRangePerf3D
{
template <class DeviceType, typename ScalarType = double,
typename TestLayout = Kokkos::LayoutRight>
struct MultiDimRangePerf3D {
typedef DeviceType execution_space;
typedef typename execution_space::size_type size_type;
typedef typename execution_space::size_type size_type;
using iterate_type = Kokkos::Iterate;
typedef Kokkos::View<ScalarType***, TestLayout, DeviceType> view_type;
typedef Kokkos::View<ScalarType ***, TestLayout, DeviceType> view_type;
typedef typename view_type::HostMirror host_view_type;
view_type A;
@ -62,39 +60,36 @@ struct MultiDimRangePerf3D
const long jrange;
const long krange;
MultiDimRangePerf3D(const view_type & A_, const view_type & B_, const long &irange_, const long &jrange_, const long &krange_)
: A(A_), B(B_), irange(irange_), jrange(jrange_), krange(krange_)
{}
MultiDimRangePerf3D(const view_type &A_, const view_type &B_,
const long &irange_, const long &jrange_,
const long &krange_)
: A(A_), B(B_), irange(irange_), jrange(jrange_), krange(krange_) {}
KOKKOS_INLINE_FUNCTION
void operator()(const long i, const long j, const long k) const
{
A(i,j,k) = 0.25*(ScalarType)( B(i+2,j,k) + B(i+1,j,k)
+ B(i,j+2,k) + B(i,j+1,k)
+ B(i,j,k+2) + B(i,j,k+1)
+ B(i,j,k) );
void operator()(const long i, const long j, const long k) const {
A(i, j, k) =
0.25 * (ScalarType)(B(i + 2, j, k) + B(i + 1, j, k) + B(i, j + 2, k) +
B(i, j + 1, k) + B(i, j, k + 2) + B(i, j, k + 1) +
B(i, j, k));
}
struct InitZeroTag {};
// struct InitViewTag {};
// struct InitViewTag {};
struct Init
{
Init(const view_type & input_, const long &irange_, const long &jrange_, const long &krange_)
: input(input_), irange(irange_), jrange(jrange_), krange(krange_) {}
struct Init {
Init(const view_type &input_, const long &irange_, const long &jrange_,
const long &krange_)
: input(input_), irange(irange_), jrange(jrange_), krange(krange_) {}
KOKKOS_INLINE_FUNCTION
void operator()(const long i, const long j, const long k) const
{
input(i,j,k) = 1.0;
void operator()(const long i, const long j, const long k) const {
input(i, j, k) = 1.0;
}
KOKKOS_INLINE_FUNCTION
void operator()(const InitZeroTag&, const long i, const long j, const long k) const
{
input(i,j,k) = 0;
void operator()(const InitZeroTag &, const long i, const long j,
const long k) const {
input(i, j, k) = 0;
}
view_type input;
@ -103,166 +98,221 @@ struct MultiDimRangePerf3D
const long krange;
};
static double test_multi_index(const unsigned int icount, const unsigned int jcount, const unsigned int kcount, const unsigned int Ti = 1, const unsigned int Tj = 1, const unsigned int Tk = 1, const long iter = 1)
{
//This test performs multidim range over all dims
static double test_multi_index(const unsigned int icount,
const unsigned int jcount,
const unsigned int kcount,
const unsigned int Ti = 1,
const unsigned int Tj = 1,
const unsigned int Tk = 1,
const long iter = 1) {
// This test performs multidim range over all dims
view_type Atest("Atest", icount, jcount, kcount);
view_type Btest("Btest", icount+2, jcount+2, kcount+2);
typedef MultiDimRangePerf3D<execution_space,ScalarType,TestLayout> FunctorType;
view_type Btest("Btest", icount + 2, jcount + 2, kcount + 2);
typedef MultiDimRangePerf3D<execution_space, ScalarType, TestLayout>
FunctorType;
double dt_min = 0;
// LayoutRight
if ( std::is_same<TestLayout, Kokkos::LayoutRight>::value ) {
Kokkos::MDRangePolicy<Kokkos::Rank<3, iterate_type::Right, iterate_type::Right>, execution_space > policy_initA({{0,0,0}},{{icount,jcount,kcount}},{{Ti,Tj,Tk}});
Kokkos::MDRangePolicy<Kokkos::Rank<3, iterate_type::Right, iterate_type::Right>, execution_space > policy_initB({{0,0,0}},{{icount+2,jcount+2,kcount+2}},{{Ti,Tj,Tk}});
if (std::is_same<TestLayout, Kokkos::LayoutRight>::value) {
Kokkos::MDRangePolicy<
Kokkos::Rank<3, iterate_type::Right, iterate_type::Right>,
execution_space>
policy_initA({{0, 0, 0}}, {{icount, jcount, kcount}}, {{Ti, Tj, Tk}});
Kokkos::MDRangePolicy<
Kokkos::Rank<3, iterate_type::Right, iterate_type::Right>,
execution_space>
policy_initB({{0, 0, 0}}, {{icount + 2, jcount + 2, kcount + 2}},
{{Ti, Tj, Tk}});
typedef typename Kokkos::MDRangePolicy<Kokkos::Rank<3, iterate_type::Right, iterate_type::Right>, execution_space > MDRangeType;
using tile_type = typename MDRangeType::tile_type;
typedef typename Kokkos::MDRangePolicy<
Kokkos::Rank<3, iterate_type::Right, iterate_type::Right>,
execution_space>
MDRangeType;
using tile_type = typename MDRangeType::tile_type;
using point_type = typename MDRangeType::point_type;
Kokkos::MDRangePolicy<Kokkos::Rank<3, iterate_type::Right, iterate_type::Right>, execution_space > policy(point_type{{0,0,0}},point_type{{icount,jcount,kcount}},tile_type{{Ti,Tj,Tk}} );
Kokkos::MDRangePolicy<
Kokkos::Rank<3, iterate_type::Right, iterate_type::Right>,
execution_space>
policy(point_type{{0, 0, 0}}, point_type{{icount, jcount, kcount}},
tile_type{{Ti, Tj, Tk}});
Kokkos::parallel_for( policy_initA, Init(Atest, icount, jcount, kcount) );
Kokkos::parallel_for(policy_initA, Init(Atest, icount, jcount, kcount));
execution_space().fence();
Kokkos::parallel_for( policy_initB, Init(Btest, icount+2, jcount+2, kcount+2) );
Kokkos::parallel_for(policy_initB,
Init(Btest, icount + 2, jcount + 2, kcount + 2));
execution_space().fence();
for (int i = 0; i < iter; ++i)
{
Kokkos::Timer timer;
Kokkos::parallel_for( policy, FunctorType(Atest, Btest, icount, jcount, kcount) );
execution_space().fence();
const double dt = timer.seconds();
if ( 0 == i ) dt_min = dt ;
else dt_min = dt < dt_min ? dt : dt_min ;
for (int i = 0; i < iter; ++i) {
Kokkos::Timer timer;
Kokkos::parallel_for(policy,
FunctorType(Atest, Btest, icount, jcount, kcount));
execution_space().fence();
const double dt = timer.seconds();
if (0 == i)
dt_min = dt;
else
dt_min = dt < dt_min ? dt : dt_min;
//Correctness check - only the first run
if ( 0 == i )
{
long numErrors = 0;
host_view_type Ahost("Ahost", icount, jcount, kcount);
Kokkos::deep_copy(Ahost, Atest);
host_view_type Bhost("Bhost", icount+2, jcount+2, kcount+2);
Kokkos::deep_copy(Bhost, Btest);
// Correctness check - only the first run
if (0 == i) {
long numErrors = 0;
host_view_type Ahost("Ahost", icount, jcount, kcount);
Kokkos::deep_copy(Ahost, Atest);
host_view_type Bhost("Bhost", icount + 2, jcount + 2, kcount + 2);
Kokkos::deep_copy(Bhost, Btest);
// On KNL, this may vectorize - add print statement to prevent
// Also, compare against epsilon, as vectorization can change bitwise answer
for ( long l = 0; l < static_cast<long>(icount); ++l ) {
for ( long j = 0; j < static_cast<long>(jcount); ++j ) {
for ( long k = 0; k < static_cast<long>(kcount); ++k ) {
ScalarType check = 0.25*(ScalarType)( Bhost(l+2,j,k) + Bhost(l+1,j,k)
+ Bhost(l,j+2,k) + Bhost(l,j+1,k)
+ Bhost(l,j,k+2) + Bhost(l,j,k+1)
+ Bhost(l,j,k) );
if ( Ahost(l,j,k) - check != 0 ) {
++numErrors;
std::cout << " Correctness error at index: " << l << ","<<j<<","<<k<<"\n"
<< " multi Ahost = " << Ahost(l,j,k) << " expected = " << check
<< " multi Bhost(ijk) = " << Bhost(l,j,k)
<< " multi Bhost(l+1jk) = " << Bhost(l+1,j,k)
<< " multi Bhost(l+2jk) = " << Bhost(l+2,j,k)
<< " multi Bhost(ij+1k) = " << Bhost(l,j+1,k)
<< " multi Bhost(ij+2k) = " << Bhost(l,j+2,k)
<< " multi Bhost(ijk+1) = " << Bhost(l,j,k+1)
<< " multi Bhost(ijk+2) = " << Bhost(l,j,k+2)
<< std::endl;
//exit(-1);
// On KNL, this may vectorize - add print statement to prevent
// Also, compare against epsilon, as vectorization can change bitwise
// answer
for (long l = 0; l < static_cast<long>(icount); ++l) {
for (long j = 0; j < static_cast<long>(jcount); ++j) {
for (long k = 0; k < static_cast<long>(kcount); ++k) {
ScalarType check =
0.25 *
(ScalarType)(Bhost(l + 2, j, k) + Bhost(l + 1, j, k) +
Bhost(l, j + 2, k) + Bhost(l, j + 1, k) +
Bhost(l, j, k + 2) + Bhost(l, j, k + 1) +
Bhost(l, j, k));
if (Ahost(l, j, k) - check != 0) {
++numErrors;
std::cout << " Correctness error at index: " << l << "," << j
<< "," << k << "\n"
<< " multi Ahost = " << Ahost(l, j, k)
<< " expected = " << check
<< " multi Bhost(ijk) = " << Bhost(l, j, k)
<< " multi Bhost(l+1jk) = " << Bhost(l + 1, j, k)
<< " multi Bhost(l+2jk) = " << Bhost(l + 2, j, k)
<< " multi Bhost(ij+1k) = " << Bhost(l, j + 1, k)
<< " multi Bhost(ij+2k) = " << Bhost(l, j + 2, k)
<< " multi Bhost(ijk+1) = " << Bhost(l, j, k + 1)
<< " multi Bhost(ijk+2) = " << Bhost(l, j, k + 2)
<< std::endl;
// exit(-1);
}
}
}
}
} } }
if ( numErrors != 0 ) { std::cout << "LR multi: errors " << numErrors << " range product " << icount*jcount*kcount << " LL " << jcount*kcount << " LR " << icount*jcount << std::endl; }
//else { std::cout << " multi: No errors!" << std::endl; }
}
} //end for
if (numErrors != 0) {
std::cout << "LR multi: errors " << numErrors << " range product "
<< icount * jcount * kcount << " LL " << jcount * kcount
<< " LR " << icount * jcount << std::endl;
}
// else { std::cout << " multi: No errors!" << std::endl; }
}
} // end for
}
}
// LayoutLeft
else {
Kokkos::MDRangePolicy<Kokkos::Rank<3,iterate_type::Left,iterate_type::Left>, execution_space > policy_initA({{0,0,0}},{{icount,jcount,kcount}},{{Ti,Tj,Tk}});
Kokkos::MDRangePolicy<Kokkos::Rank<3,iterate_type::Left,iterate_type::Left>, execution_space > policy_initB({{0,0,0}},{{icount+2,jcount+2,kcount+2}},{{Ti,Tj,Tk}});
Kokkos::MDRangePolicy<
Kokkos::Rank<3, iterate_type::Left, iterate_type::Left>,
execution_space>
policy_initA({{0, 0, 0}}, {{icount, jcount, kcount}}, {{Ti, Tj, Tk}});
Kokkos::MDRangePolicy<
Kokkos::Rank<3, iterate_type::Left, iterate_type::Left>,
execution_space>
policy_initB({{0, 0, 0}}, {{icount + 2, jcount + 2, kcount + 2}},
{{Ti, Tj, Tk}});
//typedef typename Kokkos::MDRangePolicy<Kokkos::Rank<3, iterate_type::Left, iterate_type::Left>, execution_space > MDRangeType;
//using tile_type = typename MDRangeType::tile_type;
//using point_type = typename MDRangeType::point_type;
//Kokkos::MDRangePolicy<Kokkos::Rank<3, iterate_type::Left, iterate_type::Left>, execution_space > policy(point_type{{0,0,0}},point_type{{icount,jcount,kcount}},tile_type{{Ti,Tj,Tk}} );
Kokkos::MDRangePolicy<Kokkos::Rank<3, iterate_type::Left, iterate_type::Left>, execution_space > policy({{0,0,0}},{{icount,jcount,kcount}},{{Ti,Tj,Tk}} );
// typedef typename Kokkos::MDRangePolicy<Kokkos::Rank<3,
// iterate_type::Left, iterate_type::Left>, execution_space > MDRangeType;
// using tile_type = typename MDRangeType::tile_type;
// using point_type = typename MDRangeType::point_type;
// Kokkos::MDRangePolicy<Kokkos::Rank<3, iterate_type::Left,
// iterate_type::Left>, execution_space >
// policy(point_type{{0,0,0}},point_type{{icount,jcount,kcount}},tile_type{{Ti,Tj,Tk}}
// );
Kokkos::MDRangePolicy<
Kokkos::Rank<3, iterate_type::Left, iterate_type::Left>,
execution_space>
policy({{0, 0, 0}}, {{icount, jcount, kcount}}, {{Ti, Tj, Tk}});
Kokkos::parallel_for( policy_initA, Init(Atest, icount, jcount, kcount) );
Kokkos::parallel_for(policy_initA, Init(Atest, icount, jcount, kcount));
execution_space().fence();
Kokkos::parallel_for( policy_initB, Init(Btest, icount+2, jcount+2, kcount+2) );
Kokkos::parallel_for(policy_initB,
Init(Btest, icount + 2, jcount + 2, kcount + 2));
execution_space().fence();
for (int i = 0; i < iter; ++i)
{
Kokkos::Timer timer;
Kokkos::parallel_for( policy, FunctorType(Atest, Btest, icount, jcount, kcount) );
execution_space().fence();
const double dt = timer.seconds();
if ( 0 == i ) dt_min = dt ;
else dt_min = dt < dt_min ? dt : dt_min ;
for (int i = 0; i < iter; ++i) {
Kokkos::Timer timer;
Kokkos::parallel_for(policy,
FunctorType(Atest, Btest, icount, jcount, kcount));
execution_space().fence();
const double dt = timer.seconds();
if (0 == i)
dt_min = dt;
else
dt_min = dt < dt_min ? dt : dt_min;
//Correctness check - only the first run
if ( 0 == i )
{
long numErrors = 0;
host_view_type Ahost("Ahost", icount, jcount, kcount);
Kokkos::deep_copy(Ahost, Atest);
host_view_type Bhost("Bhost", icount+2, jcount+2, kcount+2);
Kokkos::deep_copy(Bhost, Btest);
// Correctness check - only the first run
if (0 == i) {
long numErrors = 0;
host_view_type Ahost("Ahost", icount, jcount, kcount);
Kokkos::deep_copy(Ahost, Atest);
host_view_type Bhost("Bhost", icount + 2, jcount + 2, kcount + 2);
Kokkos::deep_copy(Bhost, Btest);
// On KNL, this may vectorize - add print statement to prevent
// Also, compare against epsilon, as vectorization can change bitwise answer
for ( long l = 0; l < static_cast<long>(icount); ++l ) {
for ( long j = 0; j < static_cast<long>(jcount); ++j ) {
for ( long k = 0; k < static_cast<long>(kcount); ++k ) {
ScalarType check = 0.25*(ScalarType)( Bhost(l+2,j,k) + Bhost(l+1,j,k)
+ Bhost(l,j+2,k) + Bhost(l,j+1,k)
+ Bhost(l,j,k+2) + Bhost(l,j,k+1)
+ Bhost(l,j,k) );
if ( Ahost(l,j,k) - check != 0 ) {
++numErrors;
std::cout << " Correctness error at index: " << l << ","<<j<<","<<k<<"\n"
<< " multi Ahost = " << Ahost(l,j,k) << " expected = " << check
<< " multi Bhost(ijk) = " << Bhost(l,j,k)
<< " multi Bhost(l+1jk) = " << Bhost(l+1,j,k)
<< " multi Bhost(l+2jk) = " << Bhost(l+2,j,k)
<< " multi Bhost(ij+1k) = " << Bhost(l,j+1,k)
<< " multi Bhost(ij+2k) = " << Bhost(l,j+2,k)
<< " multi Bhost(ijk+1) = " << Bhost(l,j,k+1)
<< " multi Bhost(ijk+2) = " << Bhost(l,j,k+2)
<< std::endl;
//exit(-1);
// On KNL, this may vectorize - add print statement to prevent
// Also, compare against epsilon, as vectorization can change bitwise
// answer
for (long l = 0; l < static_cast<long>(icount); ++l) {
for (long j = 0; j < static_cast<long>(jcount); ++j) {
for (long k = 0; k < static_cast<long>(kcount); ++k) {
ScalarType check =
0.25 *
(ScalarType)(Bhost(l + 2, j, k) + Bhost(l + 1, j, k) +
Bhost(l, j + 2, k) + Bhost(l, j + 1, k) +
Bhost(l, j, k + 2) + Bhost(l, j, k + 1) +
Bhost(l, j, k));
if (Ahost(l, j, k) - check != 0) {
++numErrors;
std::cout << " Correctness error at index: " << l << "," << j
<< "," << k << "\n"
<< " multi Ahost = " << Ahost(l, j, k)
<< " expected = " << check
<< " multi Bhost(ijk) = " << Bhost(l, j, k)
<< " multi Bhost(l+1jk) = " << Bhost(l + 1, j, k)
<< " multi Bhost(l+2jk) = " << Bhost(l + 2, j, k)
<< " multi Bhost(ij+1k) = " << Bhost(l, j + 1, k)
<< " multi Bhost(ij+2k) = " << Bhost(l, j + 2, k)
<< " multi Bhost(ijk+1) = " << Bhost(l, j, k + 1)
<< " multi Bhost(ijk+2) = " << Bhost(l, j, k + 2)
<< std::endl;
// exit(-1);
}
}
}
}
} } }
if ( numErrors != 0 ) { std::cout << " LL multi run: errors " << numErrors << " range product " << icount*jcount*kcount << " LL " << jcount*kcount << " LR " << icount*jcount << std::endl; }
//else { std::cout << " multi: No errors!" << std::endl; }
}
} //end for
if (numErrors != 0) {
std::cout << " LL multi run: errors " << numErrors
<< " range product " << icount * jcount * kcount
<< " LL " << jcount * kcount << " LR "
<< icount * jcount << std::endl;
}
// else { std::cout << " multi: No errors!" << std::endl; }
}
} // end for
}
return dt_min;
}
}
};
template< class DeviceType
, typename ScalarType = double
, typename TestLayout = Kokkos::LayoutRight
>
struct RangePolicyCollapseTwo
{
// RangePolicy for 3D range, but will collapse only 2 dims => like Rank<2> for multi-dim; unroll 2 dims in one-dim
template <class DeviceType, typename ScalarType = double,
typename TestLayout = Kokkos::LayoutRight>
struct RangePolicyCollapseTwo {
// RangePolicy for 3D range, but will collapse only 2 dims => like Rank<2> for
// multi-dim; unroll 2 dims in one-dim
typedef DeviceType execution_space;
typedef typename execution_space::size_type size_type;
typedef typename execution_space::size_type size_type;
typedef TestLayout layout;
using iterate_type = Kokkos::Iterate;
typedef Kokkos::View<ScalarType***, TestLayout, DeviceType> view_type;
typedef Kokkos::View<ScalarType ***, TestLayout, DeviceType> view_type;
typedef typename view_type::HostMirror host_view_type;
view_type A;
@ -271,165 +321,170 @@ struct RangePolicyCollapseTwo
const long jrange;
const long krange;
RangePolicyCollapseTwo(view_type & A_, const view_type & B_, const long &irange_, const long &jrange_, const long &krange_)
: A(A_), B(B_) , irange(irange_), jrange(jrange_), krange(krange_)
{}
RangePolicyCollapseTwo(view_type &A_, const view_type &B_,
const long &irange_, const long &jrange_,
const long &krange_)
: A(A_), B(B_), irange(irange_), jrange(jrange_), krange(krange_) {}
KOKKOS_INLINE_FUNCTION
void operator()(const long r) const
{
if ( std::is_same<TestLayout, Kokkos::LayoutRight>::value )
{
//id(i,j,k) = k + j*Nk + i*Nk*Nj = k + Nk*(j + i*Nj) = k + Nk*r
//r = j + i*Nj
long i = int(r / jrange);
long j = int( r - i*jrange);
void operator()(const long r) const {
if (std::is_same<TestLayout, Kokkos::LayoutRight>::value) {
// id(i,j,k) = k + j*Nk + i*Nk*Nj = k + Nk*(j + i*Nj) = k + Nk*r
// r = j + i*Nj
long i = int(r / jrange);
long j = int(r - i * jrange);
for (int k = 0; k < krange; ++k) {
A(i,j,k) = 0.25*(ScalarType)( B(i+2,j,k) + B(i+1,j,k)
+ B(i,j+2,k) + B(i,j+1,k)
+ B(i,j,k+2) + B(i,j,k+1)
+ B(i,j,k) );
A(i, j, k) =
0.25 * (ScalarType)(B(i + 2, j, k) + B(i + 1, j, k) +
B(i, j + 2, k) + B(i, j + 1, k) +
B(i, j, k + 2) + B(i, j, k + 1) + B(i, j, k));
}
}
else if ( std::is_same<TestLayout, Kokkos::LayoutLeft>::value )
{
//id(i,j,k) = i + j*Ni + k*Ni*Nj = i + Ni*(j + k*Nj) = i + Ni*r
//r = j + k*Nj
long k = int(r / jrange);
long j = int( r - k*jrange);
} else if (std::is_same<TestLayout, Kokkos::LayoutLeft>::value) {
// id(i,j,k) = i + j*Ni + k*Ni*Nj = i + Ni*(j + k*Nj) = i + Ni*r
// r = j + k*Nj
long k = int(r / jrange);
long j = int(r - k * jrange);
for (int i = 0; i < irange; ++i) {
A(i,j,k) = 0.25*(ScalarType)( B(i+2,j,k) + B(i+1,j,k)
+ B(i,j+2,k) + B(i,j+1,k)
+ B(i,j,k+2) + B(i,j,k+1)
+ B(i,j,k) );
A(i, j, k) =
0.25 * (ScalarType)(B(i + 2, j, k) + B(i + 1, j, k) +
B(i, j + 2, k) + B(i, j + 1, k) +
B(i, j, k + 2) + B(i, j, k + 1) + B(i, j, k));
}
}
}
struct Init
{
struct Init {
view_type input;
const long irange;
const long jrange;
const long krange;
Init(const view_type & input_, const long &irange_, const long &jrange_, const long &krange_)
: input(input_), irange(irange_), jrange(jrange_), krange(krange_) {}
Init(const view_type &input_, const long &irange_, const long &jrange_,
const long &krange_)
: input(input_), irange(irange_), jrange(jrange_), krange(krange_) {}
KOKKOS_INLINE_FUNCTION
void operator()(const long r) const
{
if ( std::is_same<TestLayout, Kokkos::LayoutRight>::value )
{
long i = int(r / jrange);
long j = int( r - i*jrange);
void operator()(const long r) const {
if (std::is_same<TestLayout, Kokkos::LayoutRight>::value) {
long i = int(r / jrange);
long j = int(r - i * jrange);
for (int k = 0; k < krange; ++k) {
input(i,j,k) = 1;
input(i, j, k) = 1;
}
}
else if ( std::is_same<TestLayout, Kokkos::LayoutLeft>::value )
{
long k = int(r / jrange);
long j = int( r - k*jrange);
} else if (std::is_same<TestLayout, Kokkos::LayoutLeft>::value) {
long k = int(r / jrange);
long j = int(r - k * jrange);
for (int i = 0; i < irange; ++i) {
input(i,j,k) = 1;
input(i, j, k) = 1;
}
}
}
};
static double test_index_collapse_two(const unsigned int icount, const unsigned int jcount, const unsigned int kcount, const long iter = 1)
{
static double test_index_collapse_two(const unsigned int icount,
const unsigned int jcount,
const unsigned int kcount,
const long iter = 1) {
// This test refers to collapsing two dims while using the RangePolicy
view_type Atest("Atest", icount, jcount, kcount);
view_type Btest("Btest", icount+2, jcount+2, kcount+2);
typedef RangePolicyCollapseTwo<execution_space,ScalarType,TestLayout> FunctorType;
view_type Btest("Btest", icount + 2, jcount + 2, kcount + 2);
typedef RangePolicyCollapseTwo<execution_space, ScalarType, TestLayout>
FunctorType;
long collapse_index_rangeA = 0;
long collapse_index_rangeB = 0;
if ( std::is_same<TestLayout, Kokkos::LayoutRight>::value ) {
collapse_index_rangeA = icount*jcount;
collapse_index_rangeB = (icount+2)*(jcount+2);
// std::cout << " LayoutRight " << std::endl;
} else if ( std::is_same<TestLayout, Kokkos::LayoutLeft>::value ) {
collapse_index_rangeA = kcount*jcount;
collapse_index_rangeB = (kcount+2)*(jcount+2);
// std::cout << " LayoutLeft " << std::endl;
if (std::is_same<TestLayout, Kokkos::LayoutRight>::value) {
collapse_index_rangeA = icount * jcount;
collapse_index_rangeB = (icount + 2) * (jcount + 2);
// std::cout << " LayoutRight " << std::endl;
} else if (std::is_same<TestLayout, Kokkos::LayoutLeft>::value) {
collapse_index_rangeA = kcount * jcount;
collapse_index_rangeB = (kcount + 2) * (jcount + 2);
// std::cout << " LayoutLeft " << std::endl;
} else {
std::cout << " LayoutRight or LayoutLeft required - will pass 0 as range instead " << std::endl;
std::cout << " LayoutRight or LayoutLeft required - will pass 0 as "
"range instead "
<< std::endl;
exit(-1);
}
Kokkos::RangePolicy<execution_space> policy(0, (collapse_index_rangeA) );
Kokkos::RangePolicy<execution_space> policy_initB(0, (collapse_index_rangeB) );
Kokkos::RangePolicy<execution_space> policy(0, (collapse_index_rangeA));
Kokkos::RangePolicy<execution_space> policy_initB(0,
(collapse_index_rangeB));
double dt_min = 0;
Kokkos::parallel_for( policy, Init(Atest,icount,jcount,kcount) );
Kokkos::parallel_for(policy, Init(Atest, icount, jcount, kcount));
execution_space().fence();
Kokkos::parallel_for( policy_initB, Init(Btest,icount+2,jcount+2,kcount+2) );
Kokkos::parallel_for(policy_initB,
Init(Btest, icount + 2, jcount + 2, kcount + 2));
execution_space().fence();
for (int i = 0; i < iter; ++i)
{
for (int i = 0; i < iter; ++i) {
Kokkos::Timer timer;
Kokkos::parallel_for(policy, FunctorType(Atest, Btest, icount, jcount, kcount));
Kokkos::parallel_for(policy,
FunctorType(Atest, Btest, icount, jcount, kcount));
execution_space().fence();
const double dt = timer.seconds();
if ( 0 == i ) dt_min = dt ;
else dt_min = dt < dt_min ? dt : dt_min ;
if (0 == i)
dt_min = dt;
else
dt_min = dt < dt_min ? dt : dt_min;
//Correctness check - first iteration only
if ( 0 == i )
{
// Correctness check - first iteration only
if (0 == i) {
long numErrors = 0;
host_view_type Ahost("Ahost", icount, jcount, kcount);
Kokkos::deep_copy(Ahost, Atest);
host_view_type Bhost("Bhost", icount+2, jcount+2, kcount+2);
host_view_type Bhost("Bhost", icount + 2, jcount + 2, kcount + 2);
Kokkos::deep_copy(Bhost, Btest);
// On KNL, this may vectorize - add print statement to prevent
// Also, compare against epsilon, as vectorization can change bitwise answer
for ( long l = 0; l < static_cast<long>(icount); ++l ) {
for ( long j = 0; j < static_cast<long>(jcount); ++j ) {
for ( long k = 0; k < static_cast<long>(kcount); ++k ) {
ScalarType check = 0.25*(ScalarType)( Bhost(l+2,j,k) + Bhost(l+1,j,k)
+ Bhost(l,j+2,k) + Bhost(l,j+1,k)
+ Bhost(l,j,k+2) + Bhost(l,j,k+1)
+ Bhost(l,j,k) );
if ( Ahost(l,j,k) - check != 0 ) {
++numErrors;
std::cout << " Correctness error at index: " << l << ","<<j<<","<<k<<"\n"
<< " flat Ahost = " << Ahost(l,j,k) << " expected = " << check << std::endl;
//exit(-1);
// Also, compare against epsilon, as vectorization can change bitwise
// answer
for (long l = 0; l < static_cast<long>(icount); ++l) {
for (long j = 0; j < static_cast<long>(jcount); ++j) {
for (long k = 0; k < static_cast<long>(kcount); ++k) {
ScalarType check =
0.25 * (ScalarType)(Bhost(l + 2, j, k) + Bhost(l + 1, j, k) +
Bhost(l, j + 2, k) + Bhost(l, j + 1, k) +
Bhost(l, j, k + 2) + Bhost(l, j, k + 1) +
Bhost(l, j, k));
if (Ahost(l, j, k) - check != 0) {
++numErrors;
std::cout << " Correctness error at index: " << l << "," << j
<< "," << k << "\n"
<< " flat Ahost = " << Ahost(l, j, k)
<< " expected = " << check << std::endl;
// exit(-1);
}
}
}
} } }
if ( numErrors != 0 ) { std::cout << " RP collapse2: errors " << numErrors << " range product " << icount*jcount*kcount << " LL " << jcount*kcount << " LR " << icount*jcount << std::endl; }
//else { std::cout << " RP collapse2: Pass! " << std::endl; }
}
if (numErrors != 0) {
std::cout << " RP collapse2: errors " << numErrors
<< " range product " << icount * jcount * kcount << " LL "
<< jcount * kcount << " LR " << icount * jcount
<< std::endl;
}
// else { std::cout << " RP collapse2: Pass! " << std::endl; }
}
}
return dt_min;
}
}
};
template< class DeviceType
, typename ScalarType = double
, typename TestLayout = Kokkos::LayoutRight
>
struct RangePolicyCollapseAll
{
template <class DeviceType, typename ScalarType = double,
typename TestLayout = Kokkos::LayoutRight>
struct RangePolicyCollapseAll {
// RangePolicy for 3D range, but will collapse all dims
typedef DeviceType execution_space;
typedef typename execution_space::size_type size_type;
typedef typename execution_space::size_type size_type;
typedef TestLayout layout;
typedef Kokkos::View<ScalarType***, TestLayout, DeviceType> view_type;
typedef Kokkos::View<ScalarType ***, TestLayout, DeviceType> view_type;
typedef typename view_type::HostMirror host_view_type;
view_type A;
@ -438,127 +493,134 @@ struct RangePolicyCollapseAll
const long jrange;
const long krange;
RangePolicyCollapseAll(view_type & A_, const view_type & B_, const long &irange_, const long &jrange_, const long &krange_)
: A(A_), B(B_), irange(irange_), jrange(jrange_), krange(krange_)
{}
RangePolicyCollapseAll(view_type &A_, const view_type &B_,
const long &irange_, const long &jrange_,
const long &krange_)
: A(A_), B(B_), irange(irange_), jrange(jrange_), krange(krange_) {}
KOKKOS_INLINE_FUNCTION
void operator()(const long r) const
{
if ( std::is_same<TestLayout, Kokkos::LayoutRight>::value )
{
long i = int(r / (jrange*krange));
long j = int(( r - i*jrange*krange)/krange);
long k = int(r - i*jrange*krange - j*krange);
A(i,j,k) = 0.25*(ScalarType)( B(i+2,j,k) + B(i+1,j,k)
+ B(i,j+2,k) + B(i,j+1,k)
+ B(i,j,k+2) + B(i,j,k+1)
+ B(i,j,k) );
}
else if ( std::is_same<TestLayout, Kokkos::LayoutLeft>::value )
{
long k = int(r / (irange*jrange));
long j = int(( r - k*irange*jrange)/irange);
long i = int(r - k*irange*jrange - j*irange);
A(i,j,k) = 0.25*(ScalarType)( B(i+2,j,k) + B(i+1,j,k)
+ B(i,j+2,k) + B(i,j+1,k)
+ B(i,j,k+2) + B(i,j,k+1)
+ B(i,j,k) );
void operator()(const long r) const {
if (std::is_same<TestLayout, Kokkos::LayoutRight>::value) {
long i = int(r / (jrange * krange));
long j = int((r - i * jrange * krange) / krange);
long k = int(r - i * jrange * krange - j * krange);
A(i, j, k) =
0.25 * (ScalarType)(B(i + 2, j, k) + B(i + 1, j, k) + B(i, j + 2, k) +
B(i, j + 1, k) + B(i, j, k + 2) + B(i, j, k + 1) +
B(i, j, k));
} else if (std::is_same<TestLayout, Kokkos::LayoutLeft>::value) {
long k = int(r / (irange * jrange));
long j = int((r - k * irange * jrange) / irange);
long i = int(r - k * irange * jrange - j * irange);
A(i, j, k) =
0.25 * (ScalarType)(B(i + 2, j, k) + B(i + 1, j, k) + B(i, j + 2, k) +
B(i, j + 1, k) + B(i, j, k + 2) + B(i, j, k + 1) +
B(i, j, k));
}
}
struct Init
{
struct Init {
view_type input;
const long irange;
const long jrange;
const long krange;
Init(const view_type & input_, const long &irange_, const long &jrange_, const long &krange_)
: input(input_), irange(irange_), jrange(jrange_), krange(krange_) {}
Init(const view_type &input_, const long &irange_, const long &jrange_,
const long &krange_)
: input(input_), irange(irange_), jrange(jrange_), krange(krange_) {}
KOKKOS_INLINE_FUNCTION
void operator()(const long r) const
{
if ( std::is_same<TestLayout, Kokkos::LayoutRight>::value )
{
long i = int(r / (jrange*krange));
long j = int(( r - i*jrange*krange)/krange);
long k = int(r - i*jrange*krange - j*krange);
input(i,j,k) = 1;
}
else if ( std::is_same<TestLayout, Kokkos::LayoutLeft>::value )
{
long k = int(r / (irange*jrange));
long j = int(( r - k*irange*jrange)/irange);
long i = int(r - k*irange*jrange - j*irange);
input(i,j,k) = 1;
void operator()(const long r) const {
if (std::is_same<TestLayout, Kokkos::LayoutRight>::value) {
long i = int(r / (jrange * krange));
long j = int((r - i * jrange * krange) / krange);
long k = int(r - i * jrange * krange - j * krange);
input(i, j, k) = 1;
} else if (std::is_same<TestLayout, Kokkos::LayoutLeft>::value) {
long k = int(r / (irange * jrange));
long j = int((r - k * irange * jrange) / irange);
long i = int(r - k * irange * jrange - j * irange);
input(i, j, k) = 1;
}
}
};
static double test_collapse_all(const unsigned int icount, const unsigned int jcount, const unsigned int kcount, const long iter = 1)
{
//This test refers to collapsing all dims using the RangePolicy
static double test_collapse_all(const unsigned int icount,
const unsigned int jcount,
const unsigned int kcount,
const long iter = 1) {
// This test refers to collapsing all dims using the RangePolicy
view_type Atest("Atest", icount, jcount, kcount);
view_type Btest("Btest", icount+2, jcount+2, kcount+2);
typedef RangePolicyCollapseAll<execution_space,ScalarType,TestLayout> FunctorType;
view_type Btest("Btest", icount + 2, jcount + 2, kcount + 2);
typedef RangePolicyCollapseAll<execution_space, ScalarType, TestLayout>
FunctorType;
const long flat_index_range = icount*jcount*kcount;
Kokkos::RangePolicy<execution_space> policy(0, flat_index_range );
Kokkos::RangePolicy<execution_space> policy_initB(0, (icount+2)*(jcount+2)*(kcount+2) );
const long flat_index_range = icount * jcount * kcount;
Kokkos::RangePolicy<execution_space> policy(0, flat_index_range);
Kokkos::RangePolicy<execution_space> policy_initB(
0, (icount + 2) * (jcount + 2) * (kcount + 2));
double dt_min = 0;
Kokkos::parallel_for( policy, Init(Atest,icount,jcount,kcount) );
Kokkos::parallel_for(policy, Init(Atest, icount, jcount, kcount));
execution_space().fence();
Kokkos::parallel_for( policy_initB, Init(Btest,icount+2,jcount+2,kcount+2) );
Kokkos::parallel_for(policy_initB,
Init(Btest, icount + 2, jcount + 2, kcount + 2));
execution_space().fence();
for (int i = 0; i < iter; ++i)
{
for (int i = 0; i < iter; ++i) {
Kokkos::Timer timer;
Kokkos::parallel_for(policy, FunctorType(Atest, Btest, icount, jcount, kcount));
Kokkos::parallel_for(policy,
FunctorType(Atest, Btest, icount, jcount, kcount));
execution_space().fence();
const double dt = timer.seconds();
if ( 0 == i ) dt_min = dt ;
else dt_min = dt < dt_min ? dt : dt_min ;
if (0 == i)
dt_min = dt;
else
dt_min = dt < dt_min ? dt : dt_min;
//Correctness check - first iteration only
if ( 0 == i )
{
// Correctness check - first iteration only
if (0 == i) {
long numErrors = 0;
host_view_type Ahost("Ahost", icount, jcount, kcount);
Kokkos::deep_copy(Ahost, Atest);
host_view_type Bhost("Bhost", icount+2, jcount+2, kcount+2);
host_view_type Bhost("Bhost", icount + 2, jcount + 2, kcount + 2);
Kokkos::deep_copy(Bhost, Btest);
// On KNL, this may vectorize - add print statement to prevent
// Also, compare against epsilon, as vectorization can change bitwise answer
for ( long l = 0; l < static_cast<long>(icount); ++l ) {
for ( long j = 0; j < static_cast<long>(jcount); ++j ) {
for ( long k = 0; k < static_cast<long>(kcount); ++k ) {
ScalarType check = 0.25*(ScalarType)( Bhost(l+2,j,k) + Bhost(l+1,j,k)
+ Bhost(l,j+2,k) + Bhost(l,j+1,k)
+ Bhost(l,j,k+2) + Bhost(l,j,k+1)
+ Bhost(l,j,k) );
if ( Ahost(l,j,k) - check != 0 ) {
++numErrors;
std::cout << " Callapse ALL Correctness error at index: " << l << ","<<j<<","<<k<<"\n"
<< " flat Ahost = " << Ahost(l,j,k) << " expected = " << check << std::endl;
//exit(-1);
// Also, compare against epsilon, as vectorization can change bitwise
// answer
for (long l = 0; l < static_cast<long>(icount); ++l) {
for (long j = 0; j < static_cast<long>(jcount); ++j) {
for (long k = 0; k < static_cast<long>(kcount); ++k) {
ScalarType check =
0.25 * (ScalarType)(Bhost(l + 2, j, k) + Bhost(l + 1, j, k) +
Bhost(l, j + 2, k) + Bhost(l, j + 1, k) +
Bhost(l, j, k + 2) + Bhost(l, j, k + 1) +
Bhost(l, j, k));
if (Ahost(l, j, k) - check != 0) {
++numErrors;
std::cout << " Callapse ALL Correctness error at index: " << l
<< "," << j << "," << k << "\n"
<< " flat Ahost = " << Ahost(l, j, k)
<< " expected = " << check << std::endl;
// exit(-1);
}
}
}
} } }
if ( numErrors != 0 ) { std::cout << " RP collapse all: errors " << numErrors << " range product " << icount*jcount*kcount << " LL " << jcount*kcount << " LR " << icount*jcount << std::endl; }
//else { std::cout << " RP collapse all: Pass! " << std::endl; }
}
if (numErrors != 0) {
std::cout << " RP collapse all: errors " << numErrors
<< " range product " << icount * jcount * kcount << " LL "
<< jcount * kcount << " LR " << icount * jcount
<< std::endl;
}
// else { std::cout << " RP collapse all: Pass! " << std::endl; }
}
}
return dt_min;
}
}
};
} //end namespace Test
} // end namespace Test