Merge remote-tracking branch 'upstream/master' into fix-elstop
This commit is contained in:
@ -28,7 +28,7 @@ Makefile(s). Example:
|
||||
|
||||
cd lammps # change to the LAMMPS distribution directory
|
||||
mkdir build; cd build # create a new directory (folder) for build
|
||||
cmake ../cmake \[options ...\] # configuration with (command-line) cmake
|
||||
cmake \[options ...\] ../cmake # configuration with (command-line) cmake
|
||||
make # compilation :pre
|
||||
|
||||
The cmake command will detect available features, enable selected
|
||||
@ -41,7 +41,8 @@ If your machine has multiple CPU cores (most do these days), using a
|
||||
command like "make -jN" (with N being the number of available local
|
||||
CPU cores) can be much faster. If you plan to do development on
|
||||
LAMMPS or need to re-compile LAMMPS repeatedly, installation of the
|
||||
ccache (= Compiler Cache) software may speed up compilation even more.
|
||||
ccache (= Compiler Cache) software may speed up repeated compilation
|
||||
even more.
|
||||
|
||||
After compilation, you can optionally copy the LAMMPS executable and
|
||||
library into your system folders (by default under $HOME/.local) with:
|
||||
@ -108,7 +109,8 @@ command-line options. Several useful ones are:
|
||||
-D CMAKE_BUILD_TYPE=type # type = Release or Debug
|
||||
-G output # style of output CMake generates
|
||||
-DVARIABLE=value # setting for a LAMMPS feature to enable
|
||||
-D VARIABLE=value # ditto, but cannot come after CMakeLists.txt dir :pre
|
||||
-D VARIABLE=value # ditto, but cannot come after CMakeLists.txt dir
|
||||
-C path/to/preset/file # load some CMake settings before configuring :pre
|
||||
|
||||
All the LAMMPS-specific -D variables that a LAMMPS build supports are
|
||||
described on the pages linked to from the "Build"_Build.html doc page.
|
||||
|
||||
@ -82,17 +82,19 @@ which GPU hardware to build for.
|
||||
|
||||
[CMake build]:
|
||||
|
||||
-D GPU_API=value # value = opencl (default) or cuda
|
||||
-D GPU_PREC=value # precision setting
|
||||
# value = double or mixed (default) or single
|
||||
-D OCL_TUNE=value # hardware choice for GPU_API=opencl
|
||||
# generic (default) or intel (Intel CPU) or fermi, kepler, cypress (NVIDIA)
|
||||
-D GPU_ARCH=value # primary GPU hardware choice for GPU_API=cuda
|
||||
# value = sm_XX, see below
|
||||
# default is Cuda-compiler dependent, but typically sm_20
|
||||
-D CUDPP_OPT=value # optimization setting for GPU_API=cuda
|
||||
# enables CUDA Performance Primitives Optimizations
|
||||
# yes (default) or no :pre
|
||||
-D GPU_API=value # value = opencl (default) or cuda
|
||||
-D GPU_PREC=value # precision setting
|
||||
# value = double or mixed (default) or single
|
||||
-D OCL_TUNE=value # hardware choice for GPU_API=opencl
|
||||
# generic (default) or intel (Intel CPU) or fermi, kepler, cypress (NVIDIA)
|
||||
-D GPU_ARCH=value # primary GPU hardware choice for GPU_API=cuda
|
||||
# value = sm_XX, see below
|
||||
# default is Cuda-compiler dependent, but typically sm_20
|
||||
-D CUDPP_OPT=value # optimization setting for GPU_API=cuda
|
||||
# enables CUDA Performance Primitives Optimizations
|
||||
# value = yes (default) or no
|
||||
-D CUDA_MPS_SUPPORT=value # enables some tweaks required to run with active nvidia-cuda-mps daemon
|
||||
# value = yes or no (default) :pre
|
||||
|
||||
GPU_ARCH settings for different GPU hardware is as follows:
|
||||
|
||||
@ -195,7 +197,7 @@ https://openkim.org/browse/models/by-model-drivers
|
||||
If DOWNLOAD_KIM is set, the KIM library will be downloaded and built
|
||||
inside the CMake build directory. If the KIM library is already on
|
||||
your system (in a location CMake cannot find it), set the PKG_CONFIG_PATH
|
||||
environment variable so that libkim-api-v2 can be found.
|
||||
environment variable so that libkim-api can be found.
|
||||
|
||||
[Traditional make]:
|
||||
|
||||
@ -857,23 +859,34 @@ file.
|
||||
USER-INTEL package :h4,link(user-intel)
|
||||
|
||||
To build with this package, you must choose which hardware you want to
|
||||
build for, either Intel CPUs or Intel KNLs. You should also typically
|
||||
"install the USER-OMP package"_#user-omp, as it can be used in tandem
|
||||
with the USER-INTEL package to good effect, as explained on the "Speed
|
||||
intel"_Speed_intel.html doc page.
|
||||
build for, either x86 CPUs or Intel KNLs in offload mode. You should
|
||||
also typically "install the USER-OMP package"_#user-omp, as it can be
|
||||
used in tandem with the USER-INTEL package to good effect, as explained
|
||||
on the "Speed intel"_Speed_intel.html doc page.
|
||||
|
||||
[CMake build]:
|
||||
|
||||
-D INTEL_ARCH=value # value = cpu (default) or knl
|
||||
-D BUILD_OMP=yes # also required to build with the USER-INTEl package :pre
|
||||
-D INTEL_LRT_MODE=value # value = threads, none, or c++11 :pre
|
||||
|
||||
Requires an Intel compiler as well as the Intel TBB and MKL libraries.
|
||||
In Long-range thread mode (LRT) a modified verlet style is used, that
|
||||
operates the Kspace calculation in a separate thread concurrently to
|
||||
other calculations. This has to be enabled in the "package intel"_package.html
|
||||
command at runtime. With the setting "threads" it used the pthreads
|
||||
library, while c++11 will use the built-in thread support of C++11
|
||||
compilers. The option "none" skips compilation of this feature. The
|
||||
default is to use "threads" if pthreads is available and otherwise "none".
|
||||
|
||||
Best performance is achieved with Intel hardware, Intel compilers, as well as
|
||||
the Intel TBB and MKL libraries. However, the code also compiles, links, and
|
||||
runs with other compilers and without TBB and MKL.
|
||||
|
||||
[Traditional make]:
|
||||
|
||||
Choose which hardware to compile for in Makefile.machine via the
|
||||
following settings. See src/MAKE/OPTIONS/Makefile.intel_cpu* and
|
||||
Makefile.knl files for examples.
|
||||
Makefile.knl files for examples. and src/USER-INTEL/README for
|
||||
additional information.
|
||||
|
||||
For CPUs:
|
||||
|
||||
|
||||
@ -149,26 +149,39 @@ system. Using these files you can enable/disable portions of the
|
||||
available packages in LAMMPS. If you need a custom preset you can take
|
||||
one of them as a starting point and customize it to your needs.
|
||||
|
||||
cmake -C ../cmake/presets/all_on.cmake \[OPTIONS\] ../cmake | enable all packages
|
||||
cmake -C ../cmake/presets/all_off.cmake \[OPTIONS\] ../cmake | disable all packages
|
||||
cmake -C ../cmake/presets/std.cmake \[OPTIONS\] ../cmake | enable standard packages
|
||||
cmake -C ../cmake/presets/user.cmake \[OPTIONS\] ../cmake | enable user packages
|
||||
cmake -C ../cmake/presets/std_nolib.cmake \[OPTIONS\] ../cmake | enable standard packages that do not require extra libraries
|
||||
cmake -C ../cmake/presets/nolib.cmake \[OPTIONS\] ../cmake | disable all packages that do not require extra libraries
|
||||
cmake -C ../cmake/presets/manual_selection.cmake \[OPTIONS\] ../cmake | example of how to create a manual selection of packages :tb(s=|,a=l)
|
||||
cmake -C ../cmake/presets/all_on.cmake \[OPTIONS\] ../cmake |
|
||||
enable all packages |
|
||||
cmake -C ../cmake/presets/all_off.cmake \[OPTIONS\] ../cmake |
|
||||
disable all packages |
|
||||
cmake -C ../cmake/presets/minimal.cmake \[OPTIONS\] ../cmake |
|
||||
enable just a few core packages |
|
||||
cmake -C ../cmake/presets/most.cmake \[OPTIONS\] ../cmake |
|
||||
enable most common packages |
|
||||
cmake -C ../cmake/presets/nolib.cmake \[OPTIONS\] ../cmake |
|
||||
disable packages that do require extra libraries or tools |
|
||||
cmake -C ../cmake/presets/mingw.cmake \[OPTIONS\] ../cmake |
|
||||
enable all packages compatible with MinGW compilers :tb(c=2,s=|,a=l)
|
||||
|
||||
NOTE: Running cmake this way manipulates the variable cache in your
|
||||
current build directory. You can combine presets and options with
|
||||
multiple cmake runs.
|
||||
current build directory. You can combine multiple presets and options
|
||||
in a single cmake run, or change settings incrementally by running
|
||||
cmake with new flags.
|
||||
|
||||
[Example:]
|
||||
|
||||
# build LAMMPS with all "standard" packages which don't
|
||||
# use libraries and enable GPU package
|
||||
# build LAMMPS with most commonly used packages, but then remove
|
||||
# those requiring additional library or tools, but still enable
|
||||
# GPU package and configure it for using CUDA. You can run.
|
||||
mkdir build
|
||||
cd build
|
||||
cmake -C ../cmake/presets/std_nolib.cmake -D PKG_GPU=on ../cmake :pre
|
||||
cmake -C ../cmake/presets/most.cmake -C ../cmake/presets/nolib.cmake -D PKG_GPU=on -D GPU_API=cuda ../cmake :pre
|
||||
|
||||
# to add another package, say BODY to the previous configuration you can run:
|
||||
cmake -D PKG_BODY=on . :pre
|
||||
|
||||
# to reset the package selection from above to the default of no packages
|
||||
# but leaving all other settings untouched. You can run:
|
||||
cmake -C ../cmake/presets/no_all.cmake . :pre
|
||||
:line
|
||||
|
||||
[Make shortcuts for installing many packages]:
|
||||
|
||||
@ -57,10 +57,10 @@ FFT_INC = -DFFT_SINGLE # do not specify for double precision
|
||||
FFT_INC = -DFFT_PACK_ARRAY # or -DFFT_PACK_POINTER or -DFFT_PACK_MEMCPY :pre
|
||||
# default is FFT_PACK_ARRAY if not specified
|
||||
|
||||
FFT_INC = -I/usr/local/include
|
||||
FFT_INC = -I/usr/local/include
|
||||
FFT_PATH = -L/usr/local/lib
|
||||
FFT_LIB = -lfftw3 # FFTW3 double precision
|
||||
FFT_LIB = -lfftw3 -lfftw3f # FFTW3 single precision
|
||||
FFT_LIB = -lfftw3 # FFTW3 double precision
|
||||
FFT_LIB = -lfftw3 -lfftw3f # FFTW3 single precision
|
||||
FFT_LIB = -lmkl_intel_lp64 -lmkl_sequential -lmkl_core # MKL with Intel compiler
|
||||
FFT_LIB = -lmkl_gf_lp64 -lmkl_sequential -lmkl_core # MKL with GNU compier :pre
|
||||
|
||||
@ -179,8 +179,11 @@ e.g. from 511 to -512, which can cause diagnostics like the
|
||||
mean-squared displacement, as calculated by the "compute
|
||||
msd"_compute_msd.html command, to be faulty.
|
||||
|
||||
Note that the USER-ATC package is not currently compatible with the
|
||||
"bigbig" setting.
|
||||
Note that the USER-ATC package and the USER-INTEL package are currently
|
||||
not compatible with the "bigbig" setting. Also, there are limitations
|
||||
when using the library interface. Some functions with known issues
|
||||
have been replaced by dummy calls printing a corresponding error rather
|
||||
than crashing randomly or corrupting data.
|
||||
|
||||
Also note that the GPU package requires its lib/gpu library to be
|
||||
compiled with the same size setting, or the link will fail. A CMake
|
||||
|
||||
@ -51,11 +51,10 @@ provides a unix/linux interface to low-level Windows functions, so LAMMPS
|
||||
can be compiled on Windows. The necessary (minor) modifications to LAMMPS
|
||||
are included, but may not always up-to-date for recently added functionality
|
||||
and the corresponding new code. A machine makefile for using cygwin for
|
||||
the old build system is provided. The CMake build system is untested
|
||||
for this; you will have to request that makefiles are generated and
|
||||
manually set the compiler.
|
||||
the old build system is provided. Using CMake for this mode of compilation
|
||||
is untested and not likely to work.
|
||||
|
||||
When compiling for Windows [not] set the -DLAMMPS_MEMALIGN define
|
||||
When compiling for Windows do [not] set the -DLAMMPS_MEMALIGN define
|
||||
in the LMP_INC makefile variable and add -lwsock32 -lpsapi to the linker
|
||||
flags in LIB makefile variable. Try adding -static-libgcc or -static or
|
||||
both to the linker flags when your resulting LAMMPS Windows executable
|
||||
@ -79,7 +78,13 @@ probably the currently best tested and supported way to build LAMMPS
|
||||
executables for Windows. There are makefiles provided for the
|
||||
traditional build system, but CMake has also been successfully tested
|
||||
using the mingw32-cmake and mingw64-cmake wrappers that are bundled
|
||||
with the cross-compiler environment on Fedora machines.
|
||||
with the cross-compiler environment on Fedora machines. A CMake preset
|
||||
selecting all packages compatible with this cross-compilation build
|
||||
is provided. You likely need to disable the GPU package unless you
|
||||
download and install the contents of the pre-compiled "OpenCL ICD loader
|
||||
library"_https://download.lammps.org/thirdparty/opencl-win-devel.tar.gz
|
||||
into your MinGW64 cross-compiler environment. The cross-compilation
|
||||
currently will only produce non-MPI serial binaries.
|
||||
|
||||
Please keep in mind, though, that this only applies to compiling LAMMPS.
|
||||
Whether the resulting binaries do work correctly is no tested by the
|
||||
|
||||
@ -79,6 +79,7 @@ An alphabetic list of all general LAMMPS commands.
|
||||
"minimize"_minimize.html,
|
||||
"min_modify"_min_modify.html,
|
||||
"min_style"_min_style.html,
|
||||
"min_style spin"_min_spin.html,
|
||||
"molecule"_molecule.html,
|
||||
"ndx2group"_group2ndx.html,
|
||||
"neb"_neb.html,
|
||||
|
||||
@ -225,7 +225,7 @@ OPT.
|
||||
"wall/body/polyhedron"_fix_wall_body_polyhedron.html,
|
||||
"wall/colloid"_fix_wall.html,
|
||||
"wall/ees"_fix_wall_ees.html,
|
||||
"wall/gran (o)"_fix_wall_gran.html,
|
||||
"wall/gran"_fix_wall_gran.html,
|
||||
"wall/gran/region"_fix_wall_gran_region.html,
|
||||
"wall/harmonic"_fix_wall.html,
|
||||
"wall/lj1043"_fix_wall.html,
|
||||
|
||||
@ -98,6 +98,7 @@ OPT.
|
||||
"gran/hertz/history (o)"_pair_gran.html,
|
||||
"gran/hooke (o)"_pair_gran.html,
|
||||
"gran/hooke/history (ko)"_pair_gran.html,
|
||||
"granular"_pair_granular.html,
|
||||
"gw"_pair_gw.html,
|
||||
"gw/zbl"_pair_gw.html,
|
||||
"hbond/dreiding/lj (o)"_pair_hbond_dreiding.html,
|
||||
|
||||
BIN
doc/src/Eqs/min_spin_damping.jpg
Normal file
BIN
doc/src/Eqs/min_spin_damping.jpg
Normal file
Binary file not shown.
|
After Width: | Height: | Size: 6.9 KiB |
13
doc/src/Eqs/min_spin_damping.tex
Normal file
13
doc/src/Eqs/min_spin_damping.tex
Normal file
@ -0,0 +1,13 @@
|
||||
\documentclass[preview]{standalone}
|
||||
\usepackage{varwidth}
|
||||
\usepackage[utf8x]{inputenc}
|
||||
\usepackage{amsmath, amssymb, graphics, setspace}
|
||||
|
||||
\begin{document}
|
||||
\begin{varwidth}{50in}
|
||||
\begin{equation}
|
||||
\frac{d \vec{s}_{i}}{dt} = \lambda\, \vec{s}_{i} \times\left( \vec{\omega}_{i} \times\vec{s}_{i} \right)
|
||||
\nonumber
|
||||
\end{equation}
|
||||
\end{varwidth}
|
||||
\end{document}
|
||||
BIN
doc/src/Eqs/min_spin_timestep.jpg
Normal file
BIN
doc/src/Eqs/min_spin_timestep.jpg
Normal file
Binary file not shown.
|
After Width: | Height: | Size: 5.8 KiB |
14
doc/src/Eqs/min_spin_timestep.tex
Normal file
14
doc/src/Eqs/min_spin_timestep.tex
Normal file
@ -0,0 +1,14 @@
|
||||
\documentclass[preview]{standalone}
|
||||
\usepackage{varwidth}
|
||||
\usepackage[utf8x]{inputenc}
|
||||
\usepackage{amsmath, amssymb, graphics, setspace}
|
||||
|
||||
\begin{document}
|
||||
\begin{varwidth}{50in}
|
||||
\begin{equation}
|
||||
{\Delta t}_{\rm max} = \frac{2\pi}{\kappa
|
||||
\left|\vec{\omega}_{\rm max} \right|}
|
||||
\nonumber
|
||||
\end{equation}
|
||||
\end{varwidth}
|
||||
\end{document}
|
||||
@ -166,9 +166,6 @@ void lammps_gather_atoms_subset(void *, char *, int, int, int, int *, void *)
|
||||
void lammps_scatter_atoms(void *, char *, int, int, void *)
|
||||
void lammps_scatter_atoms_subset(void *, char *, int, int, int, int *, void *) :pre
|
||||
|
||||
void lammps_create_atoms(void *, int, tagint *, int *, double *, double *,
|
||||
imageint *, int) :pre
|
||||
|
||||
The gather functions collect peratom info of the requested type (atom
|
||||
coords, atom types, forces, etc) from all processors, and returns the
|
||||
same vector of values to each calling processor. The scatter
|
||||
@ -176,6 +173,11 @@ functions do the inverse. They distribute a vector of peratom values,
|
||||
passed by all calling processors, to individual atoms, which may be
|
||||
owned by different processors.
|
||||
|
||||
IMPORTANT NOTE: These functions are not compatible with the
|
||||
-DLAMMPS_BIGBIG setting when compiling LAMMPS. Dummy functions
|
||||
that result in an error message and abort will be substituted
|
||||
instead of resulting in random crashes and memory corruption.
|
||||
|
||||
The lammps_gather_atoms() function does this for all N atoms in the
|
||||
system, ordered by atom ID, from 1 to N. The
|
||||
lammps_gather_atoms_concat() function does it for all N atoms, but
|
||||
@ -196,6 +198,9 @@ those values to each atom in the system. The
|
||||
lammps_scatter_atoms_subset() function takes a subset of IDs as an
|
||||
argument and only scatters those values to the owning atoms.
|
||||
|
||||
void lammps_create_atoms(void *, int, tagint *, int *, double *, double *,
|
||||
imageint *, int) :pre
|
||||
|
||||
The lammps_create_atoms() function takes a list of N atoms as input
|
||||
with atom types and coords (required), an optionally atom IDs and
|
||||
velocities and image flags. It uses the coords of each atom to assign
|
||||
|
||||
@ -57,6 +57,17 @@ library is then loaded by the Python interface. In this example we enable the
|
||||
MOLECULE package and compile LAMMPS with C++ exceptions, PNG, JPEG and FFMPEG
|
||||
output support enabled.
|
||||
|
||||
Step 1a: For the CMake based build system, the steps are:
|
||||
|
||||
mkdir $LAMMPS_DIR/build-shared
|
||||
cd $LAMMPS_DIR/build-shared :pre
|
||||
|
||||
# MPI, PNG, Jpeg, FFMPEG are auto-detected
|
||||
cmake ../cmake -DPKG_MOLECULE=yes -DLAMMPS_EXCEPTIONS=yes -DBUILD_LIB=yes -DBUILD_SHARED_LIBS=yes
|
||||
make :pre
|
||||
|
||||
Step 1b: For the legacy, make based build system, the steps are:
|
||||
|
||||
cd $LAMMPS_DIR/src :pre
|
||||
|
||||
# add packages if necessary
|
||||
@ -68,10 +79,9 @@ make mpi mode=shlib LMP_INC="-DLAMMPS_PNG -DLAMMPS_JPEG -DLAMMPS_FFMPEG -DLAMMPS
|
||||
Step 2: Installing the LAMMPS Python package :h6
|
||||
|
||||
PyLammps is part of the lammps Python package. To install it simply install
|
||||
that package into your current Python installation.
|
||||
that package into your current Python installation with:
|
||||
|
||||
cd $LAMMPS_DIR/python
|
||||
python install.py :pre
|
||||
make install-python :pre
|
||||
|
||||
NOTE: Recompiling the shared library requires re-installing the Python package
|
||||
|
||||
@ -94,14 +104,21 @@ apt-get install python-virtualenv :pre
|
||||
|
||||
Creating a virtualenv with lammps installed :h6
|
||||
|
||||
# create virtualenv name 'testing' :pre
|
||||
# create virtualenv named 'testing'
|
||||
virtualenv $HOME/python/testing :pre
|
||||
|
||||
# activate 'testing' environment
|
||||
source testing/bin/activate :pre
|
||||
source $HOME/python/testing/bin/activate :pre
|
||||
|
||||
Now configure and compile the LAMMPS shared library as outlined above.
|
||||
When using CMake and the shared library has already been build, you
|
||||
need to re-run CMake to update the location of the python executable
|
||||
to the location in the virtual environment with:
|
||||
|
||||
cmake . -DPYTHON_EXECUTABLE=$(which python) :pre
|
||||
|
||||
# install LAMMPS package in virtualenv
|
||||
(testing) cd $LAMMPS_DIR/python
|
||||
(testing) python install.py :pre
|
||||
(testing) make install-python :pre
|
||||
|
||||
# install other useful packages
|
||||
(testing) pip install matplotlib jupyter mpi4py :pre
|
||||
|
||||
@ -1,7 +1,7 @@
|
||||
<!-- HTML_ONLY -->
|
||||
<HEAD>
|
||||
<TITLE>LAMMPS Users Manual</TITLE>
|
||||
<META NAME="docnumber" CONTENT="28 Feb 2019 version">
|
||||
<META NAME="docnumber" CONTENT="29 Mar 2019 version">
|
||||
<META NAME="author" CONTENT="http://lammps.sandia.gov - Sandia National Laboratories">
|
||||
<META NAME="copyright" CONTENT="Copyright (2003) Sandia Corporation. This software and manual is distributed under the GNU General Public License.">
|
||||
</HEAD>
|
||||
@ -21,7 +21,7 @@
|
||||
:line
|
||||
|
||||
LAMMPS Documentation :c,h1
|
||||
28 Feb 2019 version :c,h2
|
||||
29 Mar 2019 version :c,h2
|
||||
|
||||
"What is a LAMMPS version?"_Manual_version.html
|
||||
|
||||
|
||||
@ -12,16 +12,23 @@ Installing LAMMPS in Python :h3
|
||||
For Python to invoke LAMMPS, there are 2 files it needs to know about:
|
||||
|
||||
python/lammps.py
|
||||
src/liblammps.so :ul
|
||||
liblammps.so or liblammps.dylib :ul
|
||||
|
||||
Lammps.py is the Python wrapper on the LAMMPS library interface.
|
||||
Liblammps.so is the shared LAMMPS library that Python loads, as
|
||||
described above.
|
||||
The python source code in lammps.py is the Python wrapper on the
|
||||
LAMMPS library interface. The liblammps.so or liblammps.dylib file
|
||||
is the shared LAMMPS library that Python loads dynamically.
|
||||
|
||||
You can insure Python can find these files in one of two ways:
|
||||
You can achieve that Python can find these files in one of two ways:
|
||||
|
||||
set two environment variables
|
||||
run the python/install.py script :ul
|
||||
set two environment variables pointing to the location in the source tree
|
||||
run "make install-python" or run the python/install.py script explicitly :ul
|
||||
|
||||
When calling "make install-python" LAMMPS will try to install the
|
||||
python module and the shared library into the python site-packages folders;
|
||||
either the system-wide ones, or the local users ones (in case of insufficient
|
||||
permissions for the global install). Python will then find the module
|
||||
and shared library file automatically. The exact location of these folders
|
||||
depends on your python version and your operating system.
|
||||
|
||||
If you set the paths to these files as environment variables, you only
|
||||
have to do it once. For the csh or tcsh shells, add something like
|
||||
@ -30,42 +37,28 @@ this to your ~/.cshrc file, one line for each of the two files:
|
||||
setenv PYTHONPATH $\{PYTHONPATH\}:/home/sjplimp/lammps/python
|
||||
setenv LD_LIBRARY_PATH $\{LD_LIBRARY_PATH\}:/home/sjplimp/lammps/src :pre
|
||||
|
||||
If you use the python/install.py script, you need to invoke it every
|
||||
time you rebuild LAMMPS (as a shared library) or make changes to the
|
||||
python/lammps.py file.
|
||||
On MacOSX you may also need to set DYLD_LIBRARY_PATH accordingly.
|
||||
For Bourne/Korn shells accordingly into the corresponding files using
|
||||
the "export" shell builtin.
|
||||
|
||||
You can invoke install.py from the python directory as
|
||||
If you use "make install-python" or the python/install.py script, you need
|
||||
to invoke it every time you rebuild LAMMPS (as a shared library) or
|
||||
make changes to the python/lammps.py file, so that the site-packages
|
||||
files are updated with the new version.
|
||||
|
||||
% python install.py \[libdir\] \[pydir\] :pre
|
||||
If the default settings of "make install-python" are not what you want,
|
||||
you can invoke install.py from the python directory manually as
|
||||
|
||||
The optional libdir is where to copy the LAMMPS shared library to; the
|
||||
default is /usr/local/lib. The optional pydir is where to copy the
|
||||
lammps.py file to; the default is the site-packages directory of the
|
||||
version of Python that is running the install script.
|
||||
% python install.py -m \<python module\> -l <shared library> -v <version.h file> \[-d \<pydir\>\] :pre
|
||||
|
||||
Note that libdir must be a location that is in your default
|
||||
LD_LIBRARY_PATH, like /usr/local/lib or /usr/lib. And pydir must be a
|
||||
location that Python looks in by default for imported modules, like
|
||||
its site-packages dir. If you want to copy these files to
|
||||
non-standard locations, such as within your own user space, you will
|
||||
need to set your PYTHONPATH and LD_LIBRARY_PATH environment variables
|
||||
accordingly, as above.
|
||||
The -m flag points to the lammps.py python module file to be installed,
|
||||
the -l flag points to the LAMMPS shared library file to be installed,
|
||||
the -v flag points to the version.h file in the LAMMPS source
|
||||
and the optional -d flag to a custom (legacy) installation folder :ul
|
||||
|
||||
If the install.py script does not allow you to copy files into system
|
||||
directories, prefix the python command with "sudo". If you do this,
|
||||
make sure that the Python that root runs is the same as the Python you
|
||||
run. E.g. you may need to do something like
|
||||
|
||||
% sudo /usr/local/bin/python install.py \[libdir\] \[pydir\] :pre
|
||||
|
||||
You can also invoke install.py from the make command in the src
|
||||
directory as
|
||||
|
||||
% make install-python :pre
|
||||
|
||||
In this mode you cannot append optional arguments. Again, you may
|
||||
need to prefix this with "sudo". In this mode you cannot control
|
||||
which Python is invoked by root.
|
||||
If you use a legacy installation folder, you will need to set your
|
||||
PYTHONPATH and LD_LIBRARY_PATH (and/or DYLD_LIBRARY_PATH) environment
|
||||
variables accordingly, as described above.
|
||||
|
||||
Note that if you want Python to be able to load different versions of
|
||||
the LAMMPS shared library (see "this section"_Python_shlib.html), you will
|
||||
|
||||
@ -13,11 +13,11 @@ Overview of Python and LAMMPS :h3
|
||||
LAMMPS can work together with Python in three ways. First, Python can
|
||||
wrap LAMMPS through the its "library interface"_Howto_library.html, so
|
||||
that a Python script can create one or more instances of LAMMPS and
|
||||
launch one or more simulations. In Python lingo, this is "extending"
|
||||
Python with LAMMPS.
|
||||
launch one or more simulations. In Python lingo, this is called
|
||||
"extending" Python with a LAMMPS module.
|
||||
|
||||
Second, a lower-level Python interface can be used indirectly through
|
||||
provided PyLammps and IPyLammps wrapper classes, written in Python.
|
||||
the provided PyLammps and IPyLammps wrapper classes, written in Python.
|
||||
These wrappers try to simplify the usage of LAMMPS in Python by
|
||||
providing an object-based interface to common LAMMPS functionality.
|
||||
They also reduces the amount of code necessary to parameterize LAMMPS
|
||||
@ -25,11 +25,12 @@ scripts through Python and make variables and computes directly
|
||||
accessible.
|
||||
|
||||
Third, LAMMPS can use the Python interpreter, so that a LAMMPS
|
||||
input script can invoke Python code directly, and pass information
|
||||
back-and-forth between the input script and Python functions you
|
||||
write. This Python code can also callback to LAMMPS to query or change
|
||||
its attributes. In Python lingo, this is "embedding" Python in
|
||||
LAMMPS. When used in this mode, Python can perform operations that
|
||||
the simple LAMMPS input script syntax cannot.
|
||||
input script or styles can invoke Python code directly, and pass
|
||||
information back-and-forth between the input script and Python
|
||||
functions you write. This Python code can also callback to LAMMPS
|
||||
to query or change its attributes through the LAMMPS Python module
|
||||
mentioned above. In Python lingo, this is "embedding" Python in
|
||||
LAMMPS. When used in this mode, Python can perform script operations
|
||||
that the simple LAMMPS input script syntax can not.
|
||||
|
||||
|
||||
|
||||
@ -24,7 +24,7 @@ LAMMPS to run on the CPU cores and co-processor cores simultaneously.
|
||||
|
||||
Angle Styles: charmm, harmonic :ulb,l
|
||||
Bond Styles: fene, fourier, harmonic :l
|
||||
Dihedral Styles: charmm, harmonic, opls :l
|
||||
Dihedral Styles: charmm, fourier, harmonic, opls :l
|
||||
Fixes: nve, npt, nvt, nvt/sllod, nve/asphere :l
|
||||
Improper Styles: cvff, harmonic :l
|
||||
Pair Styles: airebo, airebo/morse, buck/coul/cut, buck/coul/long,
|
||||
@ -34,6 +34,10 @@ rebo, sw, tersoff :l
|
||||
K-Space Styles: pppm, pppm/disp :l
|
||||
:ule
|
||||
|
||||
IMPORTANT NOTE: None of the styles in the USER-INTEL package currently
|
||||
support computing per-atom stress. If any compute or fix in your
|
||||
input requires it, LAMMPS will abort with an error message.
|
||||
|
||||
[Speed-ups to expect:]
|
||||
|
||||
The speedups will depend on your simulation, the hardware, which
|
||||
|
||||
@ -62,6 +62,7 @@ Commands :h1
|
||||
mass
|
||||
message
|
||||
min_modify
|
||||
min_spin
|
||||
min_style
|
||||
minimize
|
||||
molecule
|
||||
|
||||
@ -54,9 +54,10 @@ local quantities have the word "local" in their style,
|
||||
e.g. {bond/local}. Styles with neither "atom" or "local" in their
|
||||
style produce global quantities.
|
||||
|
||||
Note that a single compute produces either global or per-atom or local
|
||||
quantities, but never more than one of these (with only a few
|
||||
exceptions, as documented by individual compute commands).
|
||||
Note that a single compute can produce either global or per-atom or
|
||||
local quantities, but not both global and per-atom. It can produce
|
||||
local quantities in tandem with global or per-atom quantities. The
|
||||
compute doc page will explain.
|
||||
|
||||
Global, per-atom, and local quantities each come in three kinds: a
|
||||
single scalar value, a vector of values, or a 2d array of values. The
|
||||
|
||||
@ -83,8 +83,10 @@ not in the specified fix group. Local quantities are calculated by
|
||||
each processor based on the atoms it owns, but there may be zero or
|
||||
more per atoms.
|
||||
|
||||
Note that a single fix may produces either global or per-atom or local
|
||||
quantities (or none at all), but never more than one of these.
|
||||
Note that a single fix can produce either global or per-atom or local
|
||||
quantities (or none at all), but not both global and per-atom. It can
|
||||
produce local quantities in tandem with global or per-atom quantities.
|
||||
The fix doc page will explain.
|
||||
|
||||
Global, per-atom, and local quantities each come in three kinds: a
|
||||
single scalar value, a vector of values, or a 2d array of values. The
|
||||
|
||||
@ -35,6 +35,7 @@ keyword = {mode} or {file} or {ave} or {start} or {beyond} or {overwrite} or {ti
|
||||
{mode} arg = {scalar} or {vector}
|
||||
scalar = all input values are scalars
|
||||
vector = all input values are vectors
|
||||
{kind} arg = {global} or {peratom} or {local}
|
||||
{file} arg = filename
|
||||
filename = name of file to output histogram(s) to
|
||||
{ave} args = {one} or {running} or {window}
|
||||
@ -92,7 +93,8 @@ either all global, all per-atom, or all local quantities. Inputs of
|
||||
different kinds (e.g. global and per-atom) cannot be mixed. Atom
|
||||
attributes are per-atom vector values. See the doc page for
|
||||
individual "compute" and "fix" commands to see what kinds of
|
||||
quantities they generate.
|
||||
quantities they generate. See the optional {kind} keyword below for
|
||||
how to force the fix ave/histo command to disambiguate if necessary.
|
||||
|
||||
Note that the output of this command is a single histogram for all
|
||||
input values combined together, not one histogram per input value.
|
||||
@ -231,6 +233,14 @@ keyword is set to {vector}, then all input values must be global or
|
||||
per-atom or local vectors, or columns of global or per-atom or local
|
||||
arrays.
|
||||
|
||||
The {kind} keyword only needs to be set if a compute or fix produces
|
||||
more than one kind of output (global, per-atom, local). If this is
|
||||
not the case, then LAMMPS will determine what kind of input is
|
||||
provided and whether all the input arguments are consistent. If a
|
||||
compute or fix produces more than one kind of output, the {kind}
|
||||
keyword should be used to specify which output will be used. The
|
||||
remaining input arguments must still be consistent.
|
||||
|
||||
The {beyond} keyword determines how input values that fall outside the
|
||||
{lo} to {hi} bounds are treated. Values such that {lo} <= value <=
|
||||
{hi} are assigned to one bin. Values on a bin boundary are assigned
|
||||
@ -240,7 +250,7 @@ If {beyond} is set to {end} then values < {lo} are counted in the
|
||||
first bin and values > {hi} are counted in the last bin. If {beyond}
|
||||
is set to {extend} then two extra bins are created, so that there are
|
||||
Nbins+2 total bins. Values < {lo} are counted in the first bin and
|
||||
values > {hi} are counted in the last bin (Nbins+1). Values between
|
||||
values > {hi} are counted in the last bin (Nbins+2). Values between
|
||||
{lo} and {hi} (inclusive) are counted in bins 2 through Nbins+1. The
|
||||
"coordinate" stored and printed for these two extra bins is {lo} and
|
||||
{hi}.
|
||||
@ -354,5 +364,6 @@ ave/chunk"_fix_ave_chunk.html, "fix ave/time"_fix_ave_time.html,
|
||||
|
||||
[Default:] none
|
||||
|
||||
The option defaults are mode = scalar, ave = one, start = 0, no file
|
||||
output, beyond = ignore, and title 1,2,3 = strings as described above.
|
||||
The option defaults are mode = scalar, kind = figured out from input
|
||||
arguments, ave = one, start = 0, no file output, beyond = ignore, and
|
||||
title 1,2,3 = strings as described above.
|
||||
|
||||
@ -102,7 +102,7 @@ Bi = exp(beta * Vij(max)) :pre
|
||||
where beta = 1/kTequil, and {Tequil} is the temperature of the system
|
||||
and an argument to this fix. Note that Bi >= 1 at every step.
|
||||
|
||||
NOTE: To run GHD, the input script must also use the "fix
|
||||
NOTE: To run a GHD simulation, the input script must also use the "fix
|
||||
langevin"_fix_langevin.html command to thermostat the atoms at the
|
||||
same {Tequil} as specified by this fix, so that the system is running
|
||||
constant-temperature (NVT) dynamics. LAMMPS does not check that this
|
||||
@ -166,9 +166,9 @@ correctly. There will just be fewer events because the hyper time
|
||||
|
||||
NOTE: If you have no physical intuition as to the smallest barrier
|
||||
height in your system, a reasonable strategy to determine the largest
|
||||
{Vmax} you can use for an LHD model, is to run a sequence of
|
||||
{Vmax} you can use for a GHD model, is to run a sequence of
|
||||
simulations with smaller and smaller {Vmax} values, until the event
|
||||
rate does not change.
|
||||
rate does not change (as a function of hyper time).
|
||||
|
||||
The {Tequil} argument is the temperature at which the system is
|
||||
simulated; see the comment above about the "fix
|
||||
@ -177,7 +177,8 @@ beta term in the exponential factor that determines how much boost is
|
||||
achieved as a function of the bias potential.
|
||||
|
||||
In general, the lower the value of {Tequil} and the higher the value
|
||||
of {Vmax}, the more boost will be achievable by the GHD algorithm.
|
||||
of {Vmax}, the more time boost will be achievable by the GHD
|
||||
algorithm.
|
||||
|
||||
:line
|
||||
|
||||
@ -190,41 +191,43 @@ The "fix_modify"_fix_modify.html {energy} option is supported by this
|
||||
fix to add the energy of the bias potential to the the system's
|
||||
potential energy as part of "thermodynamic output"_thermo_style.html.
|
||||
|
||||
This fix computes a global scalar and global vector of length 11, which
|
||||
This fix computes a global scalar and global vector of length 12, which
|
||||
can be accessed by various "output commands"_Howto_output.html. The
|
||||
scalar is the magnitude of the bias potential (energy units) applied on
|
||||
the current timestep. The vector stores the following quantities:
|
||||
|
||||
1 = boost factor on this step (unitless)
|
||||
2 = max strain Eij of any bond on this step (unitless)
|
||||
2 = max strain Eij of any bond on this step (absolute value, unitless)
|
||||
3 = ID of first atom in the max-strain bond
|
||||
4 = ID of second atom in the max-strain bond
|
||||
5 = average # of bonds/atom on this step :ul
|
||||
|
||||
6 = fraction of timesteps with bias = 0.0 during this run
|
||||
7 = max drift distance of any atom during this run (distance units)
|
||||
8 = max bond length during this run (distance units) :ul
|
||||
6 = fraction of timesteps where the biased bond has bias = 0.0 during this run
|
||||
7 = fraction of timesteps where the biased bond has negative strain during this run
|
||||
8 = max drift distance of any atom during this run (distance units)
|
||||
9 = max bond length during this run (distance units) :ul
|
||||
|
||||
9 = cumulative hyper time since fix was defined (time units)
|
||||
10 = cumulative count of event timesteps since fix was defined
|
||||
11 = cumulative count of atoms in events since fix was defined :ul
|
||||
10 = cumulative hyper time since fix was defined (time units)
|
||||
11 = cumulative count of event timesteps since fix was defined
|
||||
12 = cumulative count of atoms in events since fix was defined :ul
|
||||
|
||||
The first 5 quantities are for the current timestep. Quantities 6-8
|
||||
are for the current hyper run. Quantities 9-11 are cumulative across
|
||||
multiple runs (since the fix was defined in the input script).
|
||||
The first 5 quantities are for the current timestep. Quantities 6-9
|
||||
are for the current hyper run. They are reset each time a new hyper
|
||||
run is performed. Quantities 19-12 are cumulative across multiple
|
||||
runs (since the point in the input script the fix was defined).
|
||||
|
||||
For value 7, drift is the distance an atom moves between timesteps
|
||||
when the bond list is reset, i.e. between events. Atoms involved in
|
||||
an event will typically move the greatest distance since others are
|
||||
typically oscillating around their lattice site.
|
||||
For value 8, drift is the distance an atom moves between two quenched
|
||||
states when the second quench determines an event has occurred. Atoms
|
||||
involved in an event will typically move the greatest distance since
|
||||
others typically remain near their original quenched position.
|
||||
|
||||
For value 10, events are checked for by the "hyper"_hyper.html command
|
||||
For value 11, events are checked for by the "hyper"_hyper.html command
|
||||
once every {Nevent} timesteps. This value is the count of those
|
||||
timesteps on which one (or more) events was detected. It is NOT the
|
||||
number of distinct events, since more than one event may occur in the
|
||||
same {Nevent} time window.
|
||||
|
||||
For value 11, each time the "hyper"_hyper.html command checks for an
|
||||
For value 12, each time the "hyper"_hyper.html command checks for an
|
||||
event, it invokes a compute to flag zero or more atoms as
|
||||
participating in one or more events. E.g. atoms that have displaced
|
||||
more than some distance from the previous quench state. Value 11 is
|
||||
|
||||
@ -22,10 +22,9 @@ Dcut = minimum distance between boosted bonds (distance units) :l
|
||||
alpha = boostostat relaxation time (time units) :l
|
||||
Btarget = desired time boost factor (unitless) :l
|
||||
zero or more keyword/value pairs may be appended :l
|
||||
keyword = {lost} or {check/bias} or {check/coeff}
|
||||
{lostbond} value = error/warn/ignore
|
||||
{check/bias} values = Nevery error/warn/ignore
|
||||
{check/coeff} values = Nevery error/warn/ignore :pre
|
||||
keyword = {check/ghost} or {check/bias} :l
|
||||
{check/ghost} values = none
|
||||
{check/bias} values = Nevery error/warn/ignore :pre
|
||||
:ule
|
||||
|
||||
[Examples:]
|
||||
@ -65,8 +64,8 @@ To understand this description, you should first read the description
|
||||
of the GHD algorithm on the "fix hyper/global"_fix_hyper_global.html
|
||||
doc page. This description of LHD builds on the GHD description.
|
||||
|
||||
The definition of bonds, Eij, and Emax are the same for GHD and LHD.
|
||||
The formulas for Vij(max) and Fij(max) are also the same except for a
|
||||
The definition of bonds and Eij are the same for GHD and LHD. The
|
||||
formulas for Vij(max) and Fij(max) are also the same except for a
|
||||
pre-factor Cij, explained below.
|
||||
|
||||
The bias energy Vij applied to a bond IJ with maximum strain is
|
||||
@ -117,11 +116,11 @@ where Vkl(max) is the bias energy of the maxstrain bond KL within bond
|
||||
IJ's neighborhood, beta = 1/kTequil, and {Tequil} is the temperature
|
||||
of the system and an argument to this fix.
|
||||
|
||||
NOTE: To run LHD, the input script must also use the "fix
|
||||
langevin"_fix_langevin.html command to thermostat the atoms at the
|
||||
same {Tequil} as specified by this fix, so that the system is running
|
||||
constant-temperature (NVT) dynamics. LAMMPS does not check that this
|
||||
is done.
|
||||
NOTE: To run an LHD simulation, the input script must also use the
|
||||
"fix langevin"_fix_langevin.html command to thermostat the atoms at
|
||||
the same {Tequil} as specified by this fix, so that the system is
|
||||
running constant-temperature (NVT) dynamics. LAMMPS does not check
|
||||
that this is done.
|
||||
|
||||
Note that if IJ = KL, then bond IJ is a biased bond on that timestep,
|
||||
otherwise it is not. But regardless, the boost factor Bij can be
|
||||
@ -216,20 +215,20 @@ each pair. E.g. something like 2x the cutoff of the interatomic
|
||||
potential. In practice a {Dcut} value of ~10 Angstroms seems to work
|
||||
well for many solid-state systems.
|
||||
|
||||
NOTE: You must also insure that ghost atom communication is performed
|
||||
for a distance of at least {Dcut} + {cutevent} where {cutevent} = the
|
||||
distance one or more atoms move (between quenched states) to be
|
||||
considered an "event". It is an argument to the "compute
|
||||
event/displace" command used to detect events. By default the ghost
|
||||
communication distance is set by the pair_style cutoff, which will
|
||||
typically be < {Dcut}. The "comm_modify cutoff"_comm_modify.html
|
||||
command can be used to set the ghost cutoff explicitly, e.g.
|
||||
NOTE: You should insure that ghost atom communication is performed for
|
||||
a distance of at least {Dcut} + {cutevent} = the distance one or more
|
||||
atoms move (between quenched states) to be considered an "event". It
|
||||
is an argument to the "compute event/displace" command used to detect
|
||||
events. By default the ghost communication distance is set by the
|
||||
pair_style cutoff, which will typically be < {Dcut}. The "comm_modify
|
||||
cutoff"_comm_modify.html command should be used to override the ghost
|
||||
cutoff explicitly, e.g.
|
||||
|
||||
comm_modify cutoff 12.0 :pre
|
||||
|
||||
This fix does not know the {cutevent} parameter, but uses half the
|
||||
bond length as an estimate to warn if the ghost cutoff is not long
|
||||
enough.
|
||||
Note that this fix does not know the {cutevent} parameter, but uses
|
||||
half the {cutbond} parameter as an estimate to warn if the ghost
|
||||
cutoff is not long enough.
|
||||
|
||||
As described above the {alpha} argument is a pre-factor in the
|
||||
boostostat update equation for each bond's Cij prefactor. {Alpha} is
|
||||
@ -269,7 +268,30 @@ NOTE: If you have no physical intuition as to the smallest barrier
|
||||
height in your system, a reasonable strategy to determine the largest
|
||||
{Btarget} you can use for an LHD model, is to run a sequence of
|
||||
simulations with smaller and smaller {Btarget} values, until the event
|
||||
rate does not change.
|
||||
rate does not change (as a function of hyper time).
|
||||
|
||||
:line
|
||||
|
||||
Here is additional information on the optional keywords for this fix.
|
||||
|
||||
The {check/ghost} keyword turns on extra computation each timestep to
|
||||
compute statistics about ghost atoms used to determine which bonds to
|
||||
bias. The output of these stats are the vector values 14 and 15,
|
||||
described below. If this keyword is not enabled, the output
|
||||
of the stats will be zero.
|
||||
|
||||
The {check/bias} keyword turns on extra computation and communication
|
||||
to check if any biased bonds are closer than {Dcut} to each other,
|
||||
which should not be the case if LHD is operating correctly. Thus it
|
||||
is a debugging check. The {Nevery} setting determines how often the
|
||||
check is made. The {error}, {warn}, or {ignore} setting determines
|
||||
what is done if the count of too-close bonds is not zero. Either the
|
||||
code will exit, or issue a warning, or silently tally the count. The
|
||||
count can be output as vector value 17, as described below. If this
|
||||
keyword is not enabled, the output of that statistic will be 0.
|
||||
|
||||
Note that both of these computations are costly, hence they are only
|
||||
enabled by these keywords.
|
||||
|
||||
:line
|
||||
|
||||
@ -282,95 +304,120 @@ The "fix_modify"_fix_modify.html {energy} option is supported by this
|
||||
fix to add the energy of the bias potential to the the system's
|
||||
potential energy as part of "thermodynamic output"_thermo_style.html.
|
||||
|
||||
This fix computes a global scalar and global vector of length 23,
|
||||
which can be accessed by various "output
|
||||
commands"_Howto_output.html. The scalar is the magnitude of
|
||||
the bias potential (energy units) applied on the current timestep,
|
||||
summed over all biased bonds. The vector stores the following
|
||||
quantities:
|
||||
This fix computes a global scalar and global vector of length 21,
|
||||
which can be accessed by various "output commands"_Howto_output.html.
|
||||
The scalar is the magnitude of the bias potential (energy units)
|
||||
applied on the current timestep, summed over all biased bonds. The
|
||||
vector stores the following quantities:
|
||||
|
||||
1 = # of biased bonds on this step
|
||||
2 = max strain Eij of any bond on this step (unitless)
|
||||
3 = average bias potential for all biased bonds on this step (energy units)
|
||||
2 = max strain Eij of any bond on this step (absolute value, unitless)
|
||||
3 = average bias coeff for all bonds on this step (unitless)
|
||||
4 = average # of bonds/atom on this step
|
||||
5 = average neighbor bonds/bond on this step within {Dcut} :ul
|
||||
|
||||
6 = fraction of steps and bonds with no bias during this run
|
||||
7 = max drift distance of any atom during this run (distance units)
|
||||
8 = max bond length during this run (distance units)
|
||||
9 = average # of biased bonds/step during this run
|
||||
10 = average bias potential for all biased bonds during this run (energy units)
|
||||
11 = max bias potential for any biased bond during this run (energy units)
|
||||
12 = min bias potential for any biased bond during this run (energy units)
|
||||
13 = max distance from my sub-box of any ghost atom with maxstrain < qfactor during this run (distance units)
|
||||
14 = max distance outside my box of any ghost atom with any maxstrain during this run (distance units)
|
||||
15 = count of ghost neighbor atoms not found on reneighbor steps during this run
|
||||
16 = count of lost bond partners during this run
|
||||
17 = average bias coeff for lost bond partners during this run
|
||||
18 = count of bias overlaps found during this run
|
||||
19 = count of non-matching bias coefficients found during this run :ul
|
||||
6 = max bond length during this run (distance units)
|
||||
7 = average # of biased bonds/step during this run
|
||||
8 = fraction of biased bonds with no bias during this run
|
||||
9 = fraction of biased bonds with negative strain during this run
|
||||
10 = average bias coeff for all bonds during this run (unitless)
|
||||
11 = min bias coeff for any bond during this run (unitless)
|
||||
12 = max bias coeff for any bond during this run (unitless)
|
||||
|
||||
20 = cumulative hyper time since fix created (time units)
|
||||
21 = cumulative count of event timesteps since fix created
|
||||
22 = cumulative count of atoms in events since fix created
|
||||
23 = cumulative # of new bonds since fix created :ul
|
||||
13 = max drift distance of any bond atom during this run (distance units)
|
||||
14 = max distance from proc subbox of any ghost atom with maxstrain < qfactor during this run (distance units)
|
||||
15 = max distance outside my box of any ghost atom with any maxstrain during this run (distance units)
|
||||
16 = count of ghost atoms that could not be found on reneighbor steps during this run
|
||||
17 = count of bias overlaps (< Dcut) found during this run
|
||||
|
||||
18 = cumulative hyper time since fix created (time units)
|
||||
19 = cumulative count of event timesteps since fix created
|
||||
20 = cumulative count of atoms in events since fix created
|
||||
21 = cumulative # of new bonds formed since fix created :ul
|
||||
|
||||
The first quantities (1-5) are for the current timestep. Quantities
|
||||
6-19 are for the current hyper run. They are reset each time a new
|
||||
hyper run is performed. Quantities 20-23 are cumulative across
|
||||
multiple runs (since the fix was defined in the input script).
|
||||
6-17 are for the current hyper run. They are reset each time a new
|
||||
hyper run is performed. Quantities 18-21 are cumulative across
|
||||
multiple runs (since the point in the input script the fix was
|
||||
defined).
|
||||
|
||||
For value 6, the numerator is a count of all biased bonds on every
|
||||
For value 8, the numerator is a count of all biased bonds on each
|
||||
timestep whose bias energy = 0.0 due to Eij >= {qfactor}. The
|
||||
denominator is the count of all biased bonds on all timesteps.
|
||||
|
||||
For value 7, drift is the distance an atom moves between timesteps
|
||||
when the bond list is reset, i.e. between events. Atoms involved in
|
||||
an event will typically move the greatest distance since others are
|
||||
typically oscillating around their lattice site.
|
||||
For value 9, the numerator is a count of all biased bonds on each
|
||||
timestep with negative strain. The denominator is the count of all
|
||||
biased bonds on all timesteps.
|
||||
|
||||
For values 13 and 14, the maxstrain of a ghost atom is the maxstrain
|
||||
of any bond it is part of, and it is checked for ghost atoms within
|
||||
the bond neighbor cutoff.
|
||||
Values 13-17 are mostly useful for debugging and diagnostic purposes.
|
||||
|
||||
Values 15-19 are mostly useful for debugging and diagnostic purposes.
|
||||
For value 13, drift is the distance an atom moves between two quenched
|
||||
states when the second quench determines an event has occurred. Atoms
|
||||
involved in an event will typically move the greatest distance since
|
||||
others typically remain near their original quenched position.
|
||||
|
||||
For values 15-17, it is possible that a ghost atom owned by another
|
||||
processor will move far enough (e.g. as part of an event-in-progress)
|
||||
that it will no longer be within the communication cutoff distance for
|
||||
acquiring ghost atoms. Likewise it may be a ghost atom bond partner
|
||||
that cannot be found because it has moved too far. These values count
|
||||
those occurrences. Because they typically involve atoms that are part
|
||||
of events, they do not usually indicate bad dynamics. Value 16 is the
|
||||
average bias coefficient for bonds where a partner atom was lost.
|
||||
For values 14-16, neighbor atoms in the full neighbor list with cutoff
|
||||
{Dcut} may be ghost atoms outside a processor's sub-box. Before the
|
||||
next event occurs they may move further than {Dcut} away from the
|
||||
sub-box boundary. Value 14 is the furthest (from the sub-box) any
|
||||
ghost atom in the neighbor list with maxstrain < {qfactor} was
|
||||
accessed during the run. Value 15 is the same except that the ghost
|
||||
atom's maxstrain may be >= {qfactor}, which may mean it is about to
|
||||
participate in an event. Value 16 is a count of how many ghost atoms
|
||||
could not be found on reneighbor steps, presumably because they moved
|
||||
too far away due to their participation in an event (which will likely
|
||||
be detected at the next quench).
|
||||
|
||||
For value 18, no two bonds should be biased if they are within a
|
||||
Typical values for 14 and 15 should be slightly larger than {Dcut},
|
||||
which accounts for ghost atoms initially at a {Dcut} distance moving
|
||||
thermally before the next event takes place.
|
||||
|
||||
Note that for values 14 and 15 to be computed, the optional keyword
|
||||
{check/ghost} must be specified. Otherwise these values will be zero.
|
||||
This is because computing them incurs overhead, so the values are only
|
||||
computed if requested.
|
||||
|
||||
Value 16 should be zero or small. As explained above a small count
|
||||
likely means some ghost atoms were participating in their own events
|
||||
and moved a longer distance. If the value is large, it likely means
|
||||
the communication cutoff for ghosts is too close to {Dcut} leading to
|
||||
many not-found ghost atoms before the next event. This may lead to a
|
||||
reduced number of bonds being selected for biasing, since the code
|
||||
assumes those atoms are part of highly strained bonds. As explained
|
||||
above, the "comm_modify cutoff"_comm_modify.html command can be used
|
||||
to set a longer cutoff.
|
||||
|
||||
For value 17, no two bonds should be biased if they are within a
|
||||
{Dcut} distance of each other. This value should be zero, indicating
|
||||
that no pair of bonds "overlap", meaning they are closer than {Dcut}
|
||||
from each other.
|
||||
that no pair of biased bonds are closer than {Dcut} from each other.
|
||||
|
||||
For value 19, the same bias coefficient is stored by both atoms in an
|
||||
IJ bond. This value should be zero, indicating that for all bonds,
|
||||
each atom in the bond stores the a bias coefficient with the same
|
||||
value.
|
||||
Note that for values 17 to be computed, the optional keyword
|
||||
{check/bias} must be specified and it determines how often this check
|
||||
is performed. This is because performing the check incurs overhead,
|
||||
so if only computed as often as requested.
|
||||
|
||||
Value 20 is simply the specified {boost} factor times the number of
|
||||
timestep times the timestep size.
|
||||
The result at the end of the run is the cumulative total from every
|
||||
timestep the check was made. Note that the value is a count of atoms
|
||||
in bonds which found other atoms in bonds too close, so it is almost
|
||||
always an over-count of the number of too-close bonds.
|
||||
|
||||
For value 21, events are checked for by the "hyper"_hyper.html command
|
||||
Value 18 is simply the specified {boost} factor times the number of
|
||||
timesteps times the timestep size.
|
||||
|
||||
For value 19, events are checked for by the "hyper"_hyper.html command
|
||||
once every {Nevent} timesteps. This value is the count of those
|
||||
timesteps on which one (or more) events was detected. It is NOT the
|
||||
number of distinct events, since more than one event may occur in the
|
||||
same {Nevent} time window.
|
||||
|
||||
For value 22, each time the "hyper"_hyper.html command checks for an
|
||||
For value 20, each time the "hyper"_hyper.html command checks for an
|
||||
event, it invokes a compute to flag zero or more atoms as
|
||||
participating in one or more events. E.g. atoms that have displaced
|
||||
more than some distance from the previous quench state. Value 22 is
|
||||
more than some distance from the previous quench state. Value 20 is
|
||||
the cumulative count of the number of atoms participating in any of
|
||||
the events that were found.
|
||||
|
||||
Value 23 tallies the number of new bonds created by the bond reset
|
||||
Value 21 tallies the number of new bonds created by the bond reset
|
||||
operation. Bonds between a specific I,J pair of atoms may persist for
|
||||
the entire hyperdynamics simulation if neither I or J are involved in
|
||||
an event.
|
||||
@ -378,6 +425,16 @@ an event.
|
||||
The scalar and vector values calculated by this fix are all
|
||||
"intensive".
|
||||
|
||||
This fix also computes a local vector of length the number of bonds
|
||||
currently in the system. The value for each bond is its Cij prefactor
|
||||
(bias coefficient). These values can be can be accessed by various
|
||||
"output commands"_Howto_output.html. A particularly useful one is the
|
||||
"fix ave/histo"_fix_ave_histo.html command which can be used to
|
||||
histogram the Cij values to see if they are distributed reasonably
|
||||
close to 1.0, which indicates a good choice of {Vmax}.
|
||||
|
||||
The local values calculated by this fix are unitless.
|
||||
|
||||
No parameter of this fix can be used with the {start/stop} keywords of
|
||||
the "run"_run.html command. This fix is not invoked during "energy
|
||||
minimization"_minimize.html.
|
||||
@ -392,7 +449,9 @@ doc page for more info.
|
||||
|
||||
"hyper"_hyper.html, "fix hyper/global"_fix_hyper_global.html
|
||||
|
||||
[Default:] None
|
||||
[Default:]
|
||||
|
||||
The check/ghost and check/bias keywords are not enabled by default.
|
||||
|
||||
:line
|
||||
|
||||
|
||||
@ -7,22 +7,24 @@
|
||||
:line
|
||||
|
||||
fix wall/gran command :h3
|
||||
fix wall/gran/omp command :h3
|
||||
|
||||
[Syntax:]
|
||||
|
||||
fix ID group-ID wall/gran fstyle Kn Kt gamma_n gamma_t xmu dampflag wallstyle args keyword values ... :pre
|
||||
fix ID group-ID wall/gran fstyle fstyle_params wallstyle args keyword values ... :pre
|
||||
|
||||
ID, group-ID are documented in "fix"_fix.html command :ulb,l
|
||||
wall/gran = style name of this fix command :l
|
||||
fstyle = style of force interactions between particles and wall :l
|
||||
possible choices: hooke, hooke/history, hertz/history :pre
|
||||
Kn = elastic constant for normal particle repulsion (force/distance units or pressure units - see discussion below) :l
|
||||
Kt = elastic constant for tangential contact (force/distance units or pressure units - see discussion below) :l
|
||||
gamma_n = damping coefficient for collisions in normal direction (1/time units or 1/time-distance units - see discussion below) :l
|
||||
gamma_t = damping coefficient for collisions in tangential direction (1/time units or 1/time-distance units - see discussion below) :l
|
||||
xmu = static yield criterion (unitless value between 0.0 and 1.0e4) :l
|
||||
dampflag = 0 or 1 if tangential damping force is excluded or included :l
|
||||
possible choices: hooke, hooke/history, hertz/history, granular :pre
|
||||
fstyle_params = parameters associated with force interaction style :l
|
||||
For {hooke}, {hooke/history}, and {hertz/history}, {fstyle_params} are:
|
||||
Kn = elastic constant for normal particle repulsion (force/distance units or pressure units - see discussion below)
|
||||
Kt = elastic constant for tangential contact (force/distance units or pressure units - see discussion below)
|
||||
gamma_n = damping coefficient for collisions in normal direction (1/time units or 1/time-distance units - see discussion below)
|
||||
gamma_t = damping coefficient for collisions in tangential direction (1/time units or 1/time-distance units - see discussion below)
|
||||
xmu = static yield criterion (unitless value between 0.0 and 1.0e4)
|
||||
dampflag = 0 or 1 if tangential damping force is excluded or included :pre
|
||||
For {granular}, {fstyle_params} are set using the same syntax as for the {pair_coeff} command of "pair_style granular"_pair_granular.html :pre
|
||||
wallstyle = {xplane} or {yplane} or {zplane} or {zcylinder} :l
|
||||
args = list of arguments for a particular style :l
|
||||
{xplane} or {yplane} or {zplane} args = lo hi
|
||||
@ -44,7 +46,10 @@ keyword = {wiggle} or {shear} :l
|
||||
|
||||
fix 1 all wall/gran hooke 200000.0 NULL 50.0 NULL 0.5 0 xplane -10.0 10.0
|
||||
fix 1 all wall/gran hooke/history 200000.0 NULL 50.0 NULL 0.5 0 zplane 0.0 NULL
|
||||
fix 2 all wall/gran hooke 100000.0 20000.0 50.0 30.0 0.5 1 zcylinder 15.0 wiggle z 3.0 2.0 :pre
|
||||
fix 2 all wall/gran hooke 100000.0 20000.0 50.0 30.0 0.5 1 zcylinder 15.0 wiggle z 3.0 2.0
|
||||
fix 3 all wall/gran granular hooke 1000.0 50.0 tangential linear_nohistory 1.0 0.4 zplane 0.0 NULL
|
||||
fix 4 all wall/gran granular jkr 1000.0 50.0 0.3 5.0 tangential mindlin 800.0 1.0 0.5 rolling sds 500.0 200.0 0.5 twisting marshall zcylinder 15.0 wiggle z 3.0 2.0
|
||||
fix 5 all wall/gran granular dmt 1000.0 50.0 0.3 10.0 tangential mindlin 800.0 0.5 0.1 roll sds 500.0 200.0 0.1 twisting marshall zplane 0.0 NULL :pre
|
||||
|
||||
[Description:]
|
||||
|
||||
@ -54,31 +59,40 @@ close enough to touch it.
|
||||
|
||||
The nature of the wall/particle interactions are determined by the
|
||||
{fstyle} setting. It can be any of the styles defined by the
|
||||
"pair_style granular"_pair_gran.html commands. Currently this is
|
||||
{hooke}, {hooke/history}, or {hertz/history}. The equation for the
|
||||
force between the wall and particles touching it is the same as the
|
||||
corresponding equation on the "pair_style granular"_pair_gran.html doc
|
||||
page, in the limit of one of the two particles going to infinite
|
||||
radius and mass (flat wall). Specifically, delta = radius - r =
|
||||
overlap of particle with wall, m_eff = mass of particle, and the
|
||||
effective radius of contact = RiRj/Ri+Rj is just the radius of the
|
||||
particle.
|
||||
"pair_style gran/*"_pair_gran.html or the more general "pair_style
|
||||
granular"_pair_granular.html" commands. Currently the options are
|
||||
{hooke}, {hooke/history}, or {hertz/history} for the former, and
|
||||
{granular} with all the possible options of the associated
|
||||
{pair_coeff} command for the latter. The equation for the force
|
||||
between the wall and particles touching it is the same as the
|
||||
corresponding equation on the "pair_style gran/*"_pair_gran.html and
|
||||
"pair_style_granular"_pair_granular.html doc pages, in the limit of
|
||||
one of the two particles going to infinite radius and mass (flat
|
||||
wall). Specifically, delta = radius - r = overlap of particle with
|
||||
wall, m_eff = mass of particle, and the effective radius of contact =
|
||||
RiRj/Ri+Rj is set to the radius of the particle.
|
||||
|
||||
The parameters {Kn}, {Kt}, {gamma_n}, {gamma_t}, {xmu} and {dampflag}
|
||||
have the same meaning and units as those specified with the
|
||||
"pair_style granular"_pair_gran.html commands. This means a NULL can
|
||||
be used for either {Kt} or {gamma_t} as described on that page. If a
|
||||
"pair_style gran/*"_pair_gran.html commands. This means a NULL can be
|
||||
used for either {Kt} or {gamma_t} as described on that page. If a
|
||||
NULL is used for {Kt}, then a default value is used where {Kt} = 2/7
|
||||
{Kn}. If a NULL is used for {gamma_t}, then a default value is used
|
||||
where {gamma_t} = 1/2 {gamma_n}.
|
||||
|
||||
All the model choices for cohesion, tangential friction, rolling
|
||||
friction and twisting friction supported by the "pair_style
|
||||
granular"_pair_granular.html through its {pair_coeff} command are also
|
||||
supported for walls. These are discussed in greater detail on the doc
|
||||
page for "pair_style granular"_pair_granular.html.
|
||||
|
||||
Note that you can choose a different force styles and/or different
|
||||
values for the 6 wall/particle coefficients than for particle/particle
|
||||
values for the wall/particle coefficients than for particle/particle
|
||||
interactions. E.g. if you wish to model the wall as a different
|
||||
material.
|
||||
|
||||
NOTE: As discussed on the doc page for "pair_style
|
||||
granular"_pair_gran.html, versions of LAMMPS before 9Jan09 used a
|
||||
gran/*"_pair_gran.html, versions of LAMMPS before 9Jan09 used a
|
||||
different equation for Hertzian interactions. This means Hertizian
|
||||
wall/particle interactions have also changed. They now include a
|
||||
sqrt(radius) term which was not present before. Also the previous
|
||||
@ -108,14 +122,14 @@ Optionally, the wall can be moving, if the {wiggle} or {shear}
|
||||
keywords are appended. Both keywords cannot be used together.
|
||||
|
||||
For the {wiggle} keyword, the wall oscillates sinusoidally, similar to
|
||||
the oscillations of particles which can be specified by the
|
||||
"fix move"_fix_move.html command. This is useful in packing
|
||||
simulations of granular particles. The arguments to the {wiggle}
|
||||
keyword specify a dimension for the motion, as well as it's
|
||||
{amplitude} and {period}. Note that if the dimension is in the plane
|
||||
of the wall, this is effectively a shearing motion. If the dimension
|
||||
is perpendicular to the wall, it is more of a shaking motion. A
|
||||
{zcylinder} wall can only be wiggled in the z dimension.
|
||||
the oscillations of particles which can be specified by the "fix
|
||||
move"_fix_move.html command. This is useful in packing simulations of
|
||||
granular particles. The arguments to the {wiggle} keyword specify a
|
||||
dimension for the motion, as well as it's {amplitude} and {period}.
|
||||
Note that if the dimension is in the plane of the wall, this is
|
||||
effectively a shearing motion. If the dimension is perpendicular to
|
||||
the wall, it is more of a shaking motion. A {zcylinder} wall can only
|
||||
be wiggled in the z dimension.
|
||||
|
||||
Each timestep, the position of a wiggled wall in the appropriate {dim}
|
||||
is set according to this equation:
|
||||
@ -137,28 +151,6 @@ the clockwise direction for {vshear} > 0 or counter-clockwise for
|
||||
{vshear} < 0. In this case, {vshear} is the tangential velocity of
|
||||
the wall at whatever {radius} has been defined.
|
||||
|
||||
:line
|
||||
|
||||
Styles with a {gpu}, {intel}, {kk}, {omp}, or {opt} suffix are
|
||||
functionally the same as the corresponding style without the suffix.
|
||||
They have been optimized to run faster, depending on your available
|
||||
hardware, as discussed on the "Speed packages"_Speed_packages.html doc
|
||||
page. The accelerated styles take the same arguments and should
|
||||
produce the same results, except for round-off and precision issues.
|
||||
|
||||
These accelerated styles are part of the GPU, USER-INTEL, KOKKOS,
|
||||
USER-OMP and OPT packages, respectively. They are only enabled if
|
||||
LAMMPS was built with those packages. See the "Build
|
||||
package"_Build_package.html doc page for more info.
|
||||
|
||||
You can specify the accelerated styles explicitly in your input script
|
||||
by including their suffix, or you can use the "-suffix command-line
|
||||
switch"_Run_options.html when you invoke LAMMPS, or you can use the
|
||||
"suffix"_suffix.html command in your input script.
|
||||
|
||||
See the "Speed packages"_Speed_packages.html doc page for more
|
||||
instructions on how to use the accelerated styles effectively.
|
||||
|
||||
[Restart, fix_modify, output, run start/stop, minimize info:]
|
||||
|
||||
This fix writes the shear friction state of atoms interacting with the
|
||||
@ -188,6 +180,7 @@ Any dimension (xyz) that has a granular wall must be non-periodic.
|
||||
|
||||
"fix move"_fix_move.html,
|
||||
"fix wall/gran/region"_fix_wall_gran_region.html,
|
||||
"pair_style granular"_pair_gran.html
|
||||
"pair_style gran/*"_pair_gran.html
|
||||
"pair_style granular"_pair_granular.html
|
||||
|
||||
[Default:] none
|
||||
|
||||
@ -10,24 +10,30 @@ fix wall/gran/region command :h3
|
||||
|
||||
[Syntax:]
|
||||
|
||||
fix ID group-ID wall/gran/region fstyle Kn Kt gamma_n gamma_t xmu dampflag wallstyle regionID :pre
|
||||
fix ID group-ID wall/gran/region fstyle fstyle_params wallstyle regionID :pre
|
||||
|
||||
ID, group-ID are documented in "fix"_fix.html command :ulb,l
|
||||
wall/region = style name of this fix command :l
|
||||
fstyle = style of force interactions between particles and wall :l
|
||||
possible choices: hooke, hooke/history, hertz/history :pre
|
||||
Kn = elastic constant for normal particle repulsion (force/distance units or pressure units - see discussion below) :l
|
||||
Kt = elastic constant for tangential contact (force/distance units or pressure units - see discussion below) :l
|
||||
gamma_n = damping coefficient for collisions in normal direction (1/time units or 1/time-distance units - see discussion below) :l
|
||||
gamma_t = damping coefficient for collisions in tangential direction (1/time units or 1/time-distance units - see discussion below) :l
|
||||
xmu = static yield criterion (unitless value between 0.0 and 1.0e4) :l
|
||||
dampflag = 0 or 1 if tangential damping force is excluded or included :l
|
||||
possible choices: hooke, hooke/history, hertz/history, granular :pre
|
||||
fstyle_params = parameters associated with force interaction style :l
|
||||
For {hooke}, {hooke/history}, and {hertz/history}, {fstyle_params} are:
|
||||
Kn = elastic constant for normal particle repulsion (force/distance units or pressure units - see discussion below)
|
||||
Kt = elastic constant for tangential contact (force/distance units or pressure units - see discussion below)
|
||||
gamma_n = damping coefficient for collisions in normal direction (1/time units or 1/time-distance units - see discussion below)
|
||||
gamma_t = damping coefficient for collisions in tangential direction (1/time units or 1/time-distance units - see discussion below)
|
||||
xmu = static yield criterion (unitless value between 0.0 and 1.0e4)
|
||||
dampflag = 0 or 1 if tangential damping force is excluded or included :pre
|
||||
For {granular}, {fstyle_params} are set using the same syntax as for the {pair_coeff} command of "pair_style granular"_pair_granular.html :pre
|
||||
wallstyle = region (see "fix wall/gran"_fix_wall_gran.html for options for other kinds of walls) :l
|
||||
region-ID = region whose boundary will act as wall :l,ule
|
||||
|
||||
[Examples:]
|
||||
|
||||
fix wall all wall/gran/region hooke/history 1000.0 200.0 200.0 100.0 0.5 1 region myCone :pre
|
||||
fix wall all wall/gran/region hooke/history 1000.0 200.0 200.0 100.0 0.5 1 region myCone
|
||||
fix 3 all wall/gran/region granular hooke 1000.0 50.0 tangential linear_nohistory 1.0 0.4 region myBox
|
||||
fix 4 all wall/gran/region granular jkr 1000.0 50.0 tangential linear_history 800.0 1.0 0.5 rolling sds 500.0 200.0 0.5 twisting marshall region myCone
|
||||
fix 5 all wall/gran/region granular dmt 1000.0 50.0 0.3 10.0 tangential linear_history 800.0 0.5 0.1 roll sds 500.0 200.0 0.1 twisting marshall region myCone :pre
|
||||
|
||||
[Description:]
|
||||
|
||||
@ -42,8 +48,8 @@ Here are snapshots of example models using this command.
|
||||
Corresponding input scripts can be found in examples/granregion.
|
||||
Click on the images to see a bigger picture. Movies of these
|
||||
simulations are "here on the Movies
|
||||
page"_http://lammps.sandia.gov/movies.html#granregion of the
|
||||
LAMMPS web site.
|
||||
page"_http://lammps.sandia.gov/movies.html#granregion of the LAMMPS
|
||||
web site.
|
||||
|
||||
:image(JPG/gran_funnel_small.jpg,JPG/gran_funnel.png)
|
||||
:image(JPG/gran_mixer_small.jpg,JPG/gran_mixer.png)
|
||||
@ -123,12 +129,16 @@ to make the two faces differ by epsilon in their position.
|
||||
|
||||
The nature of the wall/particle interactions are determined by the
|
||||
{fstyle} setting. It can be any of the styles defined by the
|
||||
"pair_style granular"_pair_gran.html commands. Currently this is
|
||||
{hooke}, {hooke/history}, or {hertz/history}. The equation for the
|
||||
force between the wall and particles touching it is the same as the
|
||||
corresponding equation on the "pair_style granular"_pair_gran.html doc
|
||||
page, but the effective radius is calculated using the radius of the
|
||||
particle and the radius of curvature of the wall at the contact point.
|
||||
"pair_style gran/*"_pair_gran.html or the more general "pair_style
|
||||
granular"_pair_granular.html" commands. Currently the options are
|
||||
{hooke}, {hooke/history}, or {hertz/history} for the former, and
|
||||
{granular} with all the possible options of the associated
|
||||
{pair_coeff} command for the latter. The equation for the force
|
||||
between the wall and particles touching it is the same as the
|
||||
corresponding equation on the "pair_style gran/*"_pair_gran.html and
|
||||
"pair_style_granular"_pair_granular.html doc pages, but the effective
|
||||
radius is calculated using the radius of the particle and the radius
|
||||
of curvature of the wall at the contact point.
|
||||
|
||||
Specifically, delta = radius - r = overlap of particle with wall,
|
||||
m_eff = mass of particle, and RiRj/Ri+Rj is the effective radius, with
|
||||
@ -141,12 +151,18 @@ particle.
|
||||
|
||||
The parameters {Kn}, {Kt}, {gamma_n}, {gamma_t}, {xmu} and {dampflag}
|
||||
have the same meaning and units as those specified with the
|
||||
"pair_style granular"_pair_gran.html commands. This means a NULL can
|
||||
be used for either {Kt} or {gamma_t} as described on that page. If a
|
||||
"pair_style gran/*"_pair_gran.html commands. This means a NULL can be
|
||||
used for either {Kt} or {gamma_t} as described on that page. If a
|
||||
NULL is used for {Kt}, then a default value is used where {Kt} = 2/7
|
||||
{Kn}. If a NULL is used for {gamma_t}, then a default value is used
|
||||
where {gamma_t} = 1/2 {gamma_n}.
|
||||
|
||||
All the model choices for cohesion, tangential friction, rolling
|
||||
friction and twisting friction supported by the "pair_style
|
||||
granular"_pair_granular.html through its {pair_coeff} command are also
|
||||
supported for walls. These are discussed in greater detail on the doc
|
||||
page for "pair_style granular"_pair_granular.html.
|
||||
|
||||
Note that you can choose a different force styles and/or different
|
||||
values for the 6 wall/particle coefficients than for particle/particle
|
||||
interactions. E.g. if you wish to model the wall as a different
|
||||
@ -154,9 +170,9 @@ material.
|
||||
|
||||
[Restart, fix_modify, output, run start/stop, minimize info:]
|
||||
|
||||
Similar to "fix wall/gran"_fix_wall_gran.html command, this fix
|
||||
writes the shear friction state of atoms interacting with the wall to
|
||||
"binary restart files"_restart.html, so that a simulation can continue
|
||||
Similar to "fix wall/gran"_fix_wall_gran.html command, this fix writes
|
||||
the shear friction state of atoms interacting with the wall to "binary
|
||||
restart files"_restart.html, so that a simulation can continue
|
||||
correctly if granular potentials with shear "history" effects are
|
||||
being used. This fix also includes info about a moving region in the
|
||||
restart file. See the "read_restart"_read_restart.html command for
|
||||
@ -170,14 +186,14 @@ So you must re-define your region and if it is a moving region, define
|
||||
its motion attributes in a way that is consistent with the simulation
|
||||
that wrote the restart file. In particular, if you want to change the
|
||||
region motion attributes (e.g. its velocity), then you should ensure
|
||||
the position/orientation of the region at the initial restart
|
||||
timestep is the same as it was on the timestep the restart file was
|
||||
written. If this is not possible, you may need to ignore info in the
|
||||
restart file by defining a new fix wall/gran/region command in your
|
||||
restart script, e.g. with a different fix ID. Or if you want to keep
|
||||
the shear history info but discard the region motion information, you
|
||||
can use the same fix ID for fix wall/gran/region, but assign it a
|
||||
region with a different region ID.
|
||||
the position/orientation of the region at the initial restart timestep
|
||||
is the same as it was on the timestep the restart file was written.
|
||||
If this is not possible, you may need to ignore info in the restart
|
||||
file by defining a new fix wall/gran/region command in your restart
|
||||
script, e.g. with a different fix ID. Or if you want to keep the
|
||||
shear history info but discard the region motion information, you can
|
||||
use the same fix ID for fix wall/gran/region, but assign it a region
|
||||
with a different region ID.
|
||||
|
||||
None of the "fix_modify"_fix_modify.html options are relevant to this
|
||||
fix. No global or per-atom quantities are stored by this fix for
|
||||
|
||||
@ -26,12 +26,13 @@ kim_query latconst get_test_result test=TE_156715955670 model=MO_800509458712 &
|
||||
The kim_query command allows to retrieve properties from the OpenKIM
|
||||
through a web query. The result is stored in a string style
|
||||
"variable"_variable.html, the name of which must be given as the first
|
||||
argument of the kim_query command. The second required argument is the
|
||||
name of the actual query function (e.g. {get_test_result}). All following
|
||||
argument of the kim_query command. The second required argument is the
|
||||
name of the actual query function (e.g. {get_test_result}). All following
|
||||
arguments are parameters handed over to the web query in the format
|
||||
{keyword=value}. This list of supported keywords and the type of how
|
||||
the value has to be encoded depends on the query function used.
|
||||
For more details on this, please refer to the OpenKIM homepage.
|
||||
{keyword=value}. The list of supported keywords and the type of how
|
||||
the value has to be encoded depends on the query function used. This
|
||||
mirrors the functionality available on the OpenKIM webpage at
|
||||
"https://query.openkim.org"_https://query.openkim.org/
|
||||
|
||||
[Restrictions:]
|
||||
|
||||
|
||||
@ -175,6 +175,7 @@ mass.html
|
||||
message.html
|
||||
min_modify.html
|
||||
min_style.html
|
||||
min_spin.html
|
||||
minimize.html
|
||||
molecule.html
|
||||
neb.html
|
||||
@ -580,6 +581,7 @@ pair_extep.html
|
||||
pair_gauss.html
|
||||
pair_gayberne.html
|
||||
pair_gran.html
|
||||
pair_granular.html
|
||||
pair_gromacs.html
|
||||
pair_gw.html
|
||||
pair_ilp_graphene_hbn.html
|
||||
|
||||
@ -13,11 +13,15 @@ min_modify command :h3
|
||||
min_modify keyword values ... :pre
|
||||
|
||||
one or more keyword/value pairs may be listed :ulb,l
|
||||
keyword = {dmax} or {line}
|
||||
keyword = {dmax} or {line} or {alpha_damp} or {discrete_factor}
|
||||
{dmax} value = max
|
||||
max = maximum distance for line search to move (distance units)
|
||||
{line} value = {backtrack} or {quadratic} or {forcezero}
|
||||
backtrack,quadratic,forcezero = style of linesearch to use :pre
|
||||
backtrack,quadratic,forcezero = style of linesearch to use
|
||||
{alpha_damp} value = damping
|
||||
damping = fictitious Gilbert damping for spin minimization (adim)
|
||||
{discrete_factor} value = factor
|
||||
factor = discretization factor for adaptive spin timestep (adim) :pre
|
||||
:ule
|
||||
|
||||
[Examples:]
|
||||
@ -65,6 +69,17 @@ difference of two large values (energy before and energy after) and
|
||||
that difference may be smaller than machine epsilon even if atoms
|
||||
could move in the gradient direction to reduce forces further.
|
||||
|
||||
Keywords {alpha_damp} and {discrete_factor} only make sense when
|
||||
a "min_spin"_min_spin.html command is declared.
|
||||
Keyword {alpha_damp} defines an analog of a magnetic Gilbert
|
||||
damping. It defines a relaxation rate toward an equilibrium for
|
||||
a given magnetic system.
|
||||
Keyword {discrete_factor} defines a discretization factor for the
|
||||
adaptive timestep used in the {spin} minimization.
|
||||
See "min_spin"_min_spin.html for more information about those
|
||||
quantities.
|
||||
Default values are {alpha_damp} = 1.0 and {discrete_factor} = 10.0.
|
||||
|
||||
[Restrictions:] none
|
||||
|
||||
[Related commands:]
|
||||
|
||||
65
doc/src/min_spin.txt
Normal file
65
doc/src/min_spin.txt
Normal file
@ -0,0 +1,65 @@
|
||||
"LAMMPS WWW Page"_lws - "LAMMPS Documentation"_ld - "LAMMPS Commands"_lc :c
|
||||
|
||||
:link(lws,http://lammps.sandia.gov)
|
||||
:link(ld,Manual.html)
|
||||
:link(lc,Commands_all.html)
|
||||
:line
|
||||
|
||||
min_style spin command :h3
|
||||
|
||||
[Syntax:]
|
||||
|
||||
min_style spin :pre
|
||||
|
||||
[Examples:]
|
||||
|
||||
min_style spin :pre
|
||||
|
||||
[Description:]
|
||||
|
||||
Apply a minimization algorithm to use when a "minimize"_minimize.html
|
||||
command is performed.
|
||||
|
||||
Style {spin} defines a damped spin dynamics with an adaptive
|
||||
timestep, according to:
|
||||
|
||||
:c,image(Eqs/min_spin_damping.jpg)
|
||||
|
||||
with lambda a damping coefficient (similar to a Gilbert
|
||||
damping).
|
||||
Lambda can be defined by setting the {alpha_damp} keyword with the
|
||||
"min_modify"_min_modify.html command.
|
||||
|
||||
The minimization procedure solves this equation using an
|
||||
adaptive timestep. The value of this timestep is defined
|
||||
by the largest precession frequency that has to be solved in the
|
||||
system:
|
||||
|
||||
:c,image(Eqs/min_spin_timestep.jpg)
|
||||
|
||||
with {|omega|_{max}} the norm of the largest precession frequency
|
||||
in the system (across all processes, and across all replicas if a
|
||||
spin/neb calculation is performed).
|
||||
|
||||
Kappa defines a discretization factor {discrete_factor} for the
|
||||
definition of this timestep.
|
||||
{discrete_factor} can be defined with the "min_modify"_min_modify.html
|
||||
command.
|
||||
|
||||
NOTE: The {spin} style replaces the force tolerance by a torque
|
||||
tolerance. See "minimize"_minimize.html for more explanation.
|
||||
|
||||
[Restrictions:]
|
||||
|
||||
This minimization procedure is only applied to spin degrees of
|
||||
freedom for a frozen lattice configuration.
|
||||
|
||||
[Related commands:]
|
||||
|
||||
"min_style"_min_style.html, "minimize"_minimize.html,
|
||||
"min_modify"_min_modify.html
|
||||
|
||||
[Default:]
|
||||
|
||||
The option defaults are {alpha_damp} = 1.0 and {discrete_factor} =
|
||||
10.0.
|
||||
@ -11,11 +11,12 @@ min_style command :h3
|
||||
|
||||
min_style style :pre
|
||||
|
||||
style = {cg} or {hftn} or {sd} or {quickmin} or {fire} :ul
|
||||
style = {cg} or {hftn} or {sd} or {quickmin} or {fire} or {spin} :ul
|
||||
|
||||
[Examples:]
|
||||
|
||||
min_style cg
|
||||
min_style spin
|
||||
min_style fire :pre
|
||||
|
||||
[Description:]
|
||||
@ -61,6 +62,10 @@ the velocity non-parallel to the current force vector. The velocity
|
||||
of each atom is initialized to 0.0 by this style, at the beginning of
|
||||
a minimization.
|
||||
|
||||
Style {spin} is a damped spin dynamics with an adaptive
|
||||
timestep.
|
||||
See the "min/spin"_min_spin.html doc page for more information.
|
||||
|
||||
Either the {quickmin} and {fire} styles are useful in the context of
|
||||
nudged elastic band (NEB) calculations via the "neb"_neb.html command.
|
||||
|
||||
|
||||
@ -103,6 +103,13 @@ the line search fails because the step distance backtracks to 0.0
|
||||
the number of outer iterations or timesteps exceeds {maxiter}
|
||||
the number of total force evaluations exceeds {maxeval} :ul
|
||||
|
||||
NOTE: the "minimization style"_min_style.html {spin} replaces
|
||||
the force tolerance {ftol} by a torque tolerance.
|
||||
The minimization procedure stops if the 2-norm (length) of the
|
||||
global torque vector (defined as the cross product between the
|
||||
spins and their precession vectors omega) is less than {ftol},
|
||||
or if any of the other criteria are met.
|
||||
|
||||
NOTE: You can also use the "fix halt"_fix_halt.html command to specify
|
||||
a general criterion for exiting a minimization, that is a calculation
|
||||
performed on the state of the current system, as defined by an
|
||||
|
||||
765
doc/src/pair_granular.txt
Normal file
765
doc/src/pair_granular.txt
Normal file
@ -0,0 +1,765 @@
|
||||
<script type="text/javascript"
|
||||
src="https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML">
|
||||
</script>
|
||||
<script type="text/x-mathjax-config">
|
||||
MathJax.Hub.Config({ TeX: { equationNumbers: {autoNumber: "AMS"} } });
|
||||
</script>
|
||||
|
||||
"LAMMPS WWW Site"_lws - "LAMMPS Documentation"_ld - "LAMMPS Commands"_lc :c
|
||||
|
||||
:link(lws,http://lammps.sandia.gov)
|
||||
:link(ld,Manual.html)
|
||||
:link(lc,Commands_all.html)
|
||||
|
||||
:line
|
||||
|
||||
pair_style granular command :h3
|
||||
|
||||
[Syntax:]
|
||||
|
||||
pair_style granular cutoff :pre
|
||||
|
||||
cutoff = global cutoff (optional). See discussion below. :ul
|
||||
|
||||
[Examples:]
|
||||
|
||||
pair_style granular
|
||||
pair_coeff * * hooke 1000.0 50.0 tangential linear_nohistory 1.0 0.4 :pre
|
||||
|
||||
pair_style granular
|
||||
pair_coeff * * hertz 1000.0 50.0 tangential mindlin NULL 1.0 0.4 :pre
|
||||
|
||||
pair_style granular
|
||||
pair_coeff * * hertz/material 1e8 0.3 tangential mindlin_rescale NULL 1.0 0.4 damping tsuji :pre
|
||||
|
||||
pair_style granular
|
||||
pair_coeff 1 1 jkr 1000.0 50.0 tangential mindlin 800.0 1.0 0.5 rolling sds 500.0 200.0 0.5 twisting marshall
|
||||
pair_coeff 2 2 hertz 200.0 20.0 tangential linear_history 300.0 1.0 0.1 rolling sds 200.0 100.0 0.1 twisting marshall :pre
|
||||
|
||||
pair_style granular
|
||||
pair_coeff 1 1 hertz 1000.0 50.0 tangential mindlin 800.0 0.5 0.5 rolling sds 500.0 200.0 0.5 twisting marshall
|
||||
pair_coeff 2 2 dmt 1000.0 50.0 0.3 10.0 tangential mindlin 800.0 0.5 0.1 roll sds 500.0 200.0 0.1 twisting marshall
|
||||
pair_coeff 1 2 dmt 1000.0 50.0 0.3 10.0 tangential mindlin 800.0 0.5 0.1 roll sds 500.0 200.0 0.1 twisting marshall :pre
|
||||
|
||||
[Description:]
|
||||
|
||||
The {granular} styles support a variety of options for the normal,
|
||||
tangential, rolling and twisting forces resulting from contact between
|
||||
two granular particles. This expands on the options offered by the
|
||||
"pair gran/*"_pair_gran.html pair styles. The total computed forces
|
||||
and torques are the sum of various models selected for the normal,
|
||||
tangential, rolling and twisting modes of motion.
|
||||
|
||||
All model choices and parameters are entered in the
|
||||
"pair_coeff"_pair_coeff.html command, as described below. Unlike
|
||||
e.g. "pair gran/hooke"_pair_gran.html, coefficient values are not
|
||||
global, but can be set to different values for different combinations
|
||||
of particle types, as determined by the "pair_coeff"_pair_coeff.html
|
||||
command. If the contact model choice is the same for two particle
|
||||
types, the mixing for the cross-coefficients can be carried out
|
||||
automatically. This is shown in the second example, where model
|
||||
choices are the same for type 1 - type 1 as for type 2 - type2
|
||||
interactions, but coefficients are different. In this case, the
|
||||
coefficients for type 2 - type interactions can be determined from
|
||||
mixing rules discussed below. For additional flexibility,
|
||||
coefficients as well as model forms can vary between particle types,
|
||||
as shown in the third example: type 1- type 1 interactions are based
|
||||
on a Hertzian normal contact model and 2-2 interactions are based on a
|
||||
DMT cohesive model (see below). In that example, 1-1 and 2-2
|
||||
interactions have different model forms, in which case mixing of
|
||||
coefficients cannot be determined, so 1-2 interactions must be
|
||||
explicitly defined via the {pair_coeff 1 2} command, otherwise an
|
||||
error would result.
|
||||
|
||||
:line
|
||||
|
||||
The first required keyword for the {pair_coeff} command is the normal
|
||||
contact model. Currently supported options for normal contact models
|
||||
and their required arguments are:
|
||||
|
||||
{hooke} : \(k_n\), \(\eta_\{n0\}\) (or \(e\))
|
||||
{hertz} : \(k_n\), \(\eta_\{n0\}\) (or \(e\))
|
||||
{hertz/material} : E, \(\eta_\{n0\}\) (or \(e\)), \(\nu\)
|
||||
{dmt} : E, \(\eta_\{n0\}\) (or \(e\)), \(\nu\), \(\gamma\)
|
||||
{jkr} : E, \(\eta_\{n0\}\) (or \(e\)), \(\nu\), \(\gamma\) :ol
|
||||
|
||||
Here, \(k_n\) is spring stiffness (with units that depend on model
|
||||
choice, see below); \(\eta_\{n0\}\) is a damping prefactor (or, in its
|
||||
place a coefficient of restitution \(e\), depending on the choice of
|
||||
damping mode, see below); E is Young's modulus in units of
|
||||
{force}/{length}^2, i.e. {pressure}; \(\nu\) is Poisson's ratio and
|
||||
\(\gamma\) is a surface energy density, in units of
|
||||
{energy}/{length}^2.
|
||||
|
||||
For the {hooke} model, the normal, elastic component of force acting
|
||||
on particle {i} due to contact with particle {j} is given by:
|
||||
|
||||
\begin\{equation\}
|
||||
\mathbf\{F\}_\{ne, Hooke\} = k_N \delta_\{ij\} \mathbf\{n\}
|
||||
\end\{equation\}
|
||||
|
||||
Where \(\delta = R_i + R_j - \|\mathbf\{r\}_\{ij\}\|\) is the particle
|
||||
overlap, \(R_i, R_j\) are the particle radii, \(\mathbf\{r\}_\{ij\} =
|
||||
\mathbf\{r\}_i - \mathbf\{r\}_j\) is the vector separating the two
|
||||
particle centers (note the i-j ordering so that \(F_\{ne\}\) is
|
||||
positive for repulsion), and \(\mathbf\{n\} =
|
||||
\frac\{\mathbf\{r\}_\{ij\}\}\{\|\mathbf\{r\}_\{ij\}\|\}\). Therefore,
|
||||
for {hooke}, the units of the spring constant \(k_n\) are
|
||||
{force}/{distance}, or equivalently {mass}/{time^2}.
|
||||
|
||||
For the {hertz} model, the normal component of force is given by:
|
||||
|
||||
\begin\{equation\}
|
||||
\mathbf\{F\}_\{ne, Hertz\} = k_N R_\{eff\}^\{1/2\}\delta_\{ij\}^\{3/2\} \mathbf\{n\}
|
||||
\end\{equation\}
|
||||
|
||||
Here, \(R_\{eff\} = \frac\{R_i R_j\}\{R_i + R_j\}\) is the effective
|
||||
radius, denoted for simplicity as {R} from here on. For {hertz}, the
|
||||
units of the spring constant \(k_n\) are {force}/{length}^2, or
|
||||
equivalently {pressure}.
|
||||
|
||||
For the {hertz/material} model, the force is given by:
|
||||
|
||||
\begin\{equation\}
|
||||
\mathbf\{F\}_\{ne, Hertz/material\} = \frac\{4\}\{3\} E_\{eff\} R_\{eff\}^\{1/2\}\delta_\{ij\}^\{3/2\} \mathbf\{n\}
|
||||
\end\{equation\}
|
||||
|
||||
Here, \(E_\{eff\} = E = \left(\frac\{1-\nu_i^2\}\{E_i\} +
|
||||
\frac\{1-\nu_j^2\}\{E_j\}\right)^\{-1\}\) is the effective Young's
|
||||
modulus, with \(\nu_i, \nu_j \) the Poisson ratios of the particles of
|
||||
types {i} and {j}. Note that if the elastic modulus and the shear
|
||||
modulus of the two particles are the same, the {hertz/material} model
|
||||
is equivalent to the {hertz} model with \(k_N = 4/3 E_\{eff\}\)
|
||||
|
||||
The {dmt} model corresponds to the
|
||||
"(Derjaguin-Muller-Toporov)"_#DMT1975 cohesive model, where the force
|
||||
is simply Hertz with an additional attractive cohesion term:
|
||||
|
||||
\begin\{equation\}
|
||||
\mathbf\{F\}_\{ne, dmt\} = \left(\frac\{4\}\{3\} E R^\{1/2\}\delta_\{ij\}^\{3/2\} - 4\pi\gamma R\right)\mathbf\{n\}
|
||||
\end\{equation\}
|
||||
|
||||
The {jkr} model is the "(Johnson-Kendall-Roberts)"_#JKR1971 model,
|
||||
where the force is computed as:
|
||||
|
||||
\begin\{equation\}
|
||||
\label\{eq:force_jkr\}
|
||||
\mathbf\{F\}_\{ne, jkr\} = \left(\frac\{4Ea^3\}\{3R\} - 2\pi a^2\sqrt\{\frac\{4\gamma E\}\{\pi a\}\}\right)\mathbf\{n\}
|
||||
\end\{equation\}
|
||||
|
||||
Here, {a} is the radius of the contact zone, related to the overlap
|
||||
\(\delta\) according to:
|
||||
|
||||
\begin\{equation\}
|
||||
\delta = a^2/R - 2\sqrt\{\pi \gamma a/E\}
|
||||
\end\{equation\}
|
||||
|
||||
LAMMPS internally inverts the equation above to solve for {a} in terms
|
||||
of \(\delta\), then solves for the force in the previous
|
||||
equation. Additionally, note that the JKR model allows for a tensile
|
||||
force beyond contact (i.e. for \(\delta < 0\)), up to a maximum of
|
||||
\(3\pi\gamma R\) (also known as the 'pull-off' force). Note that this
|
||||
is a hysteretic effect, where particles that are not contacting
|
||||
initially will not experience force until they come into contact
|
||||
\(\delta \geq 0\); as they move apart and (\(\delta < 0\)), they
|
||||
experience a tensile force up to \(3\pi\gamma R\), at which point they
|
||||
lose contact.
|
||||
|
||||
:line
|
||||
|
||||
In addition, the normal force is augmented by a damping term of the
|
||||
following general form:
|
||||
|
||||
\begin\{equation\}
|
||||
\mathbf\{F\}_\{n,damp\} = -\eta_n \mathbf\{v\}_\{n,rel\}
|
||||
\end\{equation\}
|
||||
|
||||
Here, \(\mathbf\{v\}_\{n,rel\} = (\mathbf\{v\}_j - \mathbf\{v\}_i)
|
||||
\cdot \mathbf\{n\}\) is the component of relative velocity along
|
||||
\(\mathbf\{n\}\).
|
||||
|
||||
The optional {damping} keyword to the {pair_coeff} command followed by
|
||||
a keyword determines the model form of the damping factor \(\eta_n\),
|
||||
and the interpretation of the \(\eta_\{n0\}\) or \(e\) coefficients
|
||||
specified as part of the normal contact model settings. The {damping}
|
||||
keyword and corresponding model form selection may be appended
|
||||
anywhere in the {pair coeff} command. Note that the choice of damping
|
||||
model affects both the normal and tangential damping (and depending on
|
||||
other settings, potentially also the twisting damping). The options
|
||||
for the damping model currently supported are:
|
||||
|
||||
{velocity}
|
||||
{viscoelastic}
|
||||
{tsuji} :ol
|
||||
|
||||
If the {damping} keyword is not specified, the {viscoelastic} model is
|
||||
used by default.
|
||||
|
||||
For {damping velocity}, the normal damping is simply equal to the
|
||||
user-specified damping coefficient in the {normal} model:
|
||||
|
||||
\begin\{equation\}
|
||||
\eta_n = \eta_\{n0\}\
|
||||
\end\{equation\}
|
||||
|
||||
Here, \(\gamma_n\) is the damping coefficient specified for the normal
|
||||
contact model, in units of {mass}/{time},
|
||||
|
||||
The {damping viscoelastic} model is based on the viscoelastic
|
||||
treatment of "(Brilliantov et al)"_#Brill1996, where the normal
|
||||
damping is given by:
|
||||
|
||||
\begin\{equation\}
|
||||
\eta_n = \eta_\{n0\}\ a m_\{eff\}
|
||||
\end\{equation\}
|
||||
|
||||
Here, \(m_\{eff\} = m_i m_j/(m_i + m_j)\) is the effective mass, {a}
|
||||
is the contact radius, given by \(a =\sqrt\{R\delta\}\) for all models
|
||||
except {jkr}, for which it is given implicitly according to \(delta =
|
||||
a^2/R - 2\sqrt\{\pi \gamma a/E\}\). In this case, \eta_\{n0\}\ is in
|
||||
units of 1/({time}*{distance}).
|
||||
|
||||
The {tsuji} model is based on the work of "(Tsuji et
|
||||
al)"_#Tsuji1992. Here, the damping coefficient specified as part of
|
||||
the normal model is interpreted as a restitution coefficient
|
||||
\(e\). The damping constant \(\eta_n\) is given by:
|
||||
|
||||
\begin\{equation\}
|
||||
\eta_n = \alpha (m_\{eff\}k_n)^\{1/2\}
|
||||
\end\{equation\}
|
||||
|
||||
For normal contact models based on material parameters, \(k_n =
|
||||
4/3Ea\). The parameter \(\alpha\) is related to the restitution
|
||||
coefficient {e} according to:
|
||||
|
||||
\begin\{equation\}
|
||||
\alpha = 1.2728-4.2783e+11.087e^2-22.348e^3+27.467e^4-18.022e^5+4.8218e^6
|
||||
\end\{equation\}
|
||||
|
||||
The dimensionless coefficient of restitution \(e\) specified as part
|
||||
of the normal contact model parameters should be between 0 and 1, but
|
||||
no error check is performed on this.
|
||||
|
||||
The total normal force is computed as the sum of the elastic and
|
||||
damping components:
|
||||
|
||||
\begin\{equation\}
|
||||
\mathbf\{F\}_n = \mathbf\{F\}_\{ne\} + \mathbf\{F\}_\{n,damp\}
|
||||
\end\{equation\}
|
||||
|
||||
:line
|
||||
|
||||
The {pair_coeff} command also requires specification of the tangential
|
||||
contact model. The required keyword {tangential} is expected, followed
|
||||
by the model choice and associated parameters. Currently supported
|
||||
tangential model choices and their expected parameters are as follows:
|
||||
|
||||
{linear_nohistory} : \(x_\{\gamma,t\}\), \(\mu_s\)
|
||||
{linear_history} : \(k_t\), \(x_\{\gamma,t\}\), \(\mu_s\)
|
||||
{mindlin} : \(k_t\) or NULL, \(x_\{\gamma,t\}\), \(\mu_s\)
|
||||
{mindlin_rescale} : \(k_t\) or NULL, \(x_\{\gamma,t\}\), \(\mu_s\) :ol
|
||||
|
||||
Here, \(x_\{\gamma,t\}\) is a dimensionless multiplier for the normal
|
||||
damping \(\eta_n\) that determines the magnitude of the tangential
|
||||
damping, \(\mu_t\) is the tangential (or sliding) friction
|
||||
coefficient, and \(k_t\) is the tangential stiffness coefficient.
|
||||
|
||||
For {tangential linear_nohistory}, a simple velocity-dependent Coulomb
|
||||
friction criterion is used, which mimics the behavior of the {pair
|
||||
gran/hooke} style. The tangential force (\mathbf\{F\}_t\) is given by:
|
||||
|
||||
\begin\{equation\}
|
||||
\mathbf\{F\}_t = -min(\mu_t F_\{n0\}, \|\mathbf\{F\}_\mathrm\{t,damp\}\|) \mathbf\{t\}
|
||||
\end\{equation\}
|
||||
|
||||
The tangential damping force \(\mathbf\{F\}_\mathrm\{t,damp\}\) is given by:
|
||||
|
||||
\begin\{equation\}
|
||||
\mathbf\{F\}_\mathrm\{t,damp\} = -\eta_t \mathbf\{v\}_\{t,rel\}
|
||||
\end\{equation\}
|
||||
|
||||
The tangential damping prefactor \(\eta_t\) is calculated by scaling
|
||||
the normal damping \(\eta_n\) (see above):
|
||||
|
||||
\begin\{equation\}
|
||||
\eta_t = -x_\{\gamma,t\} \eta_n
|
||||
\end\{equation\}
|
||||
|
||||
The normal damping prefactor \(\eta_n\) is determined by the choice of
|
||||
the {damping} keyword, as discussed above. Thus, the {damping}
|
||||
keyword also affects the tangential damping. The parameter
|
||||
\(x_\{\gamma,t\}\) is a scaling coefficient. Several works in the
|
||||
literature use \(x_\{\gamma,t\} = 1\) ("Marshall"_#Marshall2009,
|
||||
"Tsuji et al"_#Tsuji1992, "Silbert et al"_#Silbert2001). The relative
|
||||
tangential velocity at the point of contact is given by
|
||||
\(\mathbf\{v\}_\{t, rel\} = \mathbf\{v\}_\{t\} - (R_i\Omega_i +
|
||||
R_j\Omega_j) \times \mathbf\{n\}\), where \(\mathbf\{v\}_\{t\} =
|
||||
\mathbf\{v\}_r - \mathbf\{v\}_r\cdot\mathbf\{n\}\), \(\mathbf\{v\}_r =
|
||||
\mathbf\{v\}_j - \mathbf\{v\}_i\). The direction of the applied force
|
||||
is \(\mathbf\{t\} =
|
||||
\mathbf\{v_\{t,rel\}\}/\|\mathbf\{v_\{t,rel\}\}\|\).
|
||||
|
||||
The normal force value \(F_\{n0\}\) used to compute the critical force
|
||||
depends on the form of the contact model. For non-cohesive models
|
||||
({hertz}, {hertz/material}, {hooke}), it is given by the magnitude of
|
||||
the normal force:
|
||||
|
||||
\begin\{equation\}
|
||||
F_\{n0\} = \|\mathbf\{F\}_n\|
|
||||
\end\{equation\}
|
||||
|
||||
For cohesive models such as {jkr} and {dmt}, the critical force is
|
||||
adjusted so that the critical tangential force approaches \(\mu_t
|
||||
F_\{pulloff\}\), see "Marshall"_#Marshall2009, equation 43, and
|
||||
"Thornton"_#Thornton1991. For both models, \(F_\{n0\}\) takes the
|
||||
form:
|
||||
|
||||
\begin\{equation\}
|
||||
F_\{n0\} = \|\mathbf\{F\}_ne + 2 F_\{pulloff\}\|
|
||||
\end\{equation\}
|
||||
|
||||
Where \(F_\{pulloff\} = 3\pi \gamma R \) for {jkr}, and
|
||||
\(F_\{pulloff\} = 4\pi \gamma R \) for {dmt}.
|
||||
|
||||
The remaining tangential options all use accumulated tangential
|
||||
displacement (i.e. contact history). This is discussed below in the
|
||||
context of the {linear_history} option, but the same treatment of the
|
||||
accumulated displacement applies to the other options as well.
|
||||
|
||||
For {tangential linear_history}, the tangential force is given by:
|
||||
|
||||
\begin\{equation\}
|
||||
\mathbf\{F\}_t = -min(\mu_t F_\{n0\}, \|-k_t\mathbf\{\xi\} + \mathbf\{F\}_\mathrm\{t,damp\}\|) \mathbf\{t\}
|
||||
\end\{equation\}
|
||||
|
||||
Here, \(\mathbf\{\xi\}\) is the tangential displacement accumulated
|
||||
during the entire duration of the contact:
|
||||
|
||||
\begin\{equation\}
|
||||
\mathbf\{\xi\} = \int_\{t0\}^t \mathbf\{v\}_\{t,rel\}(\tau) \mathrm\{d\}\tau
|
||||
\end\{equation\}
|
||||
|
||||
This accumulated tangential displacement must be adjusted to account
|
||||
for changes in the frame of reference of the contacting pair of
|
||||
particles during contact. This occurs due to the overall motion of the
|
||||
contacting particles in a rigid-body-like fashion during the duration
|
||||
of the contact. There are two modes of motion that are relevant: the
|
||||
'tumbling' rotation of the contacting pair, which changes the
|
||||
orientation of the plane in which tangential displacement occurs; and
|
||||
'spinning' rotation of the contacting pair about the vector connecting
|
||||
their centers of mass (\(\mathbf\{n\}\)). Corrections due to the
|
||||
former mode of motion are made by rotating the accumulated
|
||||
displacement into the plane that is tangential to the contact vector
|
||||
at each step, or equivalently removing any component of the tangential
|
||||
displacement that lies along \(\mathbf\{n\}\), and rescaling to
|
||||
preserve the magnitude. This follows the discussion in
|
||||
"Luding"_#Luding2008, see equation 17 and relevant discussion in that
|
||||
work:
|
||||
|
||||
\begin\{equation\}
|
||||
\mathbf\{\xi\} = \left(\mathbf\{\xi'\} - (\mathbf\{n\} \cdot \mathbf\{\xi'\})\mathbf\{n\}\right) \frac\{\|\mathbf\{\xi'\}\|\}\{\|\mathbf\{\xi'\}\| - \mathbf\{n\}\cdot\mathbf\{\xi'\}\}
|
||||
\label\{eq:rotate_displacements\}
|
||||
\end\{equation\}
|
||||
|
||||
Here, \(\mathbf\{\xi'\}\) is the accumulated displacement prior to the
|
||||
current time step and \(\mathbf\{\xi\}\) is the corrected
|
||||
displacement. Corrections to the displacement due to the second mode
|
||||
of motion described above (rotations about \(\mathbf\{n\}\)) are not
|
||||
currently implemented, but are expected to be minor for most
|
||||
simulations.
|
||||
|
||||
Furthermore, when the tangential force exceeds the critical force, the
|
||||
tangential displacement is re-scaled to match the value for the
|
||||
critical force (see "Luding"_#Luding2008, equation 20 and related
|
||||
discussion):
|
||||
|
||||
\begin\{equation\}
|
||||
\mathbf\{\xi\} = -\frac\{1\}\{k_t\}\left(\mu_t F_\{n0\}\mathbf\{t\} + \mathbf\{F\}_\{t,damp\}\right)
|
||||
\end\{equation\}
|
||||
|
||||
The tangential force is added to the total normal force (elastic plus
|
||||
damping) to produce the total force on the particle. The tangential
|
||||
force also acts at the contact point (defined as the center of the
|
||||
overlap region) to induce a torque on each particle according to:
|
||||
|
||||
\begin\{equation\}
|
||||
\mathbf\{\tau\}_i = -(R_i - 0.5 \delta) \mathbf\{n\} \times \mathbf\{F\}_t
|
||||
\end\{equation\}
|
||||
|
||||
\begin\{equation\}
|
||||
\mathbf\{\tau\}_j = -(R_j - 0.5 \delta) \mathbf\{n\} \times \mathbf\{F\}_t
|
||||
\end\{equation\}
|
||||
|
||||
For {tangential mindlin}, the "Mindlin"_#Mindlin1949 no-slip solution is used, which differs from the {linear_history}
|
||||
option by an additional factor of {a}, the radius of the contact region. The tangential force is given by:
|
||||
|
||||
\begin\{equation\}
|
||||
\mathbf\{F\}_t = -min(\mu_t F_\{n0\}, \|-k_t a \mathbf\{\xi\} + \mathbf\{F\}_\mathrm\{t,damp\}\|) \mathbf\{t\}
|
||||
\end\{equation\}
|
||||
|
||||
Here, {a} is the radius of the contact region, given by \(a = \delta
|
||||
R\) for all normal contact models, except for {jkr}, where it is given
|
||||
implicitly by \(\delta = a^2/R - 2\sqrt\{\pi \gamma a/E\}\), see
|
||||
discussion above. To match the Mindlin solution, one should set \(k_t
|
||||
= 8G\), where \(G\) is the shear modulus, related to Young's modulus
|
||||
\(E\) by \(G = E/(2(1+\nu))\), where \(\nu\) is Poisson's ratio. This
|
||||
can also be achieved by specifying {NULL} for \(k_t\), in which case a
|
||||
normal contact model that specifies material parameters \(E\) and
|
||||
\(\nu\) is required (e.g. {hertz/material}, {dmt} or {jkr}). In this
|
||||
case, mixing of the shear modulus for different particle types {i} and
|
||||
{j} is done according to:
|
||||
|
||||
\begin\{equation\}
|
||||
1/G = 2(2-\nu_i)(1+\nu_i)/E_i + 2(2-\nu_j)(1+\nu_j)/E_j
|
||||
\end\{equation\}
|
||||
|
||||
The {mindlin_rescale} option uses the same form as {mindlin}, but the
|
||||
magnitude of the tangential displacement is re-scaled as the contact
|
||||
unloads, i.e. if \(a < a_\{t_\{n-1\}\}\):
|
||||
|
||||
\begin\{equation\}
|
||||
\mathbf\{\xi\} = \mathbf\{\xi_\{t_\{n-1\}\}\} \frac\{a\}\{a_\{t_\{n-1\}\}\}
|
||||
\end\{equation\}
|
||||
|
||||
Here, \(t_\{n-1\}\) indicates the value at the previous time
|
||||
step. This rescaling accounts for the fact that a decrease in the
|
||||
contact area upon unloading leads to the contact being unable to
|
||||
support the previous tangential loading, and spurious energy is
|
||||
created without the rescaling above ("Walton"_#WaltonPC ). See also
|
||||
discussion in "Thornton et al, 2013"_#Thornton2013 , particularly
|
||||
equation 18(b) of that work and associated discussion.
|
||||
|
||||
:line
|
||||
|
||||
The optional {rolling} keyword enables rolling friction, which resists
|
||||
pure rolling motion of particles. The options currently supported are:
|
||||
|
||||
{none}
|
||||
{sds} : \(k_\{roll\}\), \(\gamma_\{roll\}\), \(\mu_\{roll\}\) :ol
|
||||
|
||||
If the {rolling} keyword is not specified, the model defaults to {none}.
|
||||
|
||||
For {rolling sds}, rolling friction is computed via a
|
||||
spring-dashpot-slider, using a 'pseudo-force' formulation, as detailed
|
||||
by "Luding"_#Luding2008. Unlike the formulation in
|
||||
"Marshall"_#Marshall2009, this allows for the required adjustment of
|
||||
rolling displacement due to changes in the frame of reference of the
|
||||
contacting pair. The rolling pseudo-force is computed analogously to
|
||||
the tangential force:
|
||||
|
||||
\begin\{equation\}
|
||||
\mathbf\{F\}_\{roll,0\} = k_\{roll\} \mathbf\{\xi\}_\{roll\} - \gamma_\{roll\} \mathbf\{v\}_\{roll\}
|
||||
\end\{equation\}
|
||||
|
||||
Here, \(\mathbf\{v\}_\{roll\} = -R(\mathbf\{\Omega\}_i -
|
||||
\mathbf\{\Omega\}_j) \times \mathbf\{n\}\) is the relative rolling
|
||||
velocity, as given in "Wang et al"_#Wang2015 and
|
||||
"Luding"_#Luding2008. This differs from the expressions given by "Kuhn
|
||||
and Bagi"_#Kuhn2004 and used in "Marshall"_#Marshall2009; see "Wang et
|
||||
al"_#Wang2015 for details. The rolling displacement is given by:
|
||||
|
||||
\begin\{equation\}
|
||||
\mathbf\{\xi\}_\{roll\} = \int_\{t_0\}^t \mathbf\{v\}_\{roll\} (\tau) \mathrm\{d\} \tau
|
||||
\end\{equation\}
|
||||
|
||||
A Coulomb friction criterion truncates the rolling pseudo-force if it
|
||||
exceeds a critical value:
|
||||
|
||||
\begin\{equation\}
|
||||
\mathbf\{F\}_\{roll\} = min(\mu_\{roll\} F_\{n,0\}, \|\mathbf\{F\}_\{roll,0\}\|)\mathbf\{k\}
|
||||
\end\{equation\}
|
||||
|
||||
Here, \(\mathbf\{k\} =
|
||||
\mathbf\{v\}_\{roll\}/\|\mathbf\{v\}_\{roll\}\|\) is the direction of
|
||||
the pseudo-force. As with tangential displacement, the rolling
|
||||
displacement is rescaled when the critical force is exceeded, so that
|
||||
the spring length corresponds the critical force. Additionally, the
|
||||
displacement is adjusted to account for rotations of the frame of
|
||||
reference of the two contacting particles in a manner analogous to the
|
||||
tangential displacement.
|
||||
|
||||
The rolling pseudo-force does not contribute to the total force on
|
||||
either particle (hence 'pseudo'), but acts only to induce an equal and
|
||||
opposite torque on each particle, according to:
|
||||
|
||||
\begin\{equation\}
|
||||
\tau_\{roll,i\} = R_\{eff\} \mathbf\{n\} \times \mathbf\{F\}_\{roll\}
|
||||
\end\{equation\}
|
||||
|
||||
\begin\{equation\}
|
||||
\tau_\{roll,j\} = -\tau_\{roll,i\}
|
||||
\end\{equation\}
|
||||
|
||||
:line
|
||||
|
||||
The optional {twisting} keyword enables twisting friction, which
|
||||
resists rotation of two contacting particles about the vector
|
||||
\(\mathbf\{n\}\) that connects their centers. The options currently
|
||||
supported are:
|
||||
|
||||
{none}
|
||||
{sds} : \(k_\{twist\}\), \(\gamma_\{twist\}\), \(\mu_\{twist\}\)
|
||||
{marshall} :ol
|
||||
|
||||
If the {twisting} keyword is not specified, the model defaults to {none}.
|
||||
|
||||
For both {twisting sds} and {twisting marshall}, a history-dependent
|
||||
spring-dashpot-slider is used to compute the twisting torque. Because
|
||||
twisting displacement is a scalar, there is no need to adjust for
|
||||
changes in the frame of reference due to rotations of the particle
|
||||
pair. The formulation in "Marshall"_#Marshall2009 therefore provides
|
||||
the most straightforward treatment:
|
||||
|
||||
\begin\{equation\}
|
||||
\tau_\{twist,0\} = -k_\{twist\}\xi_\{twist\} - \gamma_\{twist\}\Omega_\{twist\}
|
||||
\end\{equation\}
|
||||
|
||||
Here \(\xi_\{twist\} = \int_\{t_0\}^t \Omega_\{twist\} (\tau)
|
||||
\mathrm\{d\}\tau\) is the twisting angular displacement, and
|
||||
\(\Omega_\{twist\} = (\mathbf\{\Omega\}_i - \mathbf\{\Omega\}_j) \cdot
|
||||
\mathbf\{n\}\) is the relative twisting angular velocity. The torque
|
||||
is then truncated according to:
|
||||
|
||||
\begin\{equation\}
|
||||
\tau_\{twist\} = min(\mu_\{twist\} F_\{n,0\}, \tau_\{twist,0\})
|
||||
\end\{equation\}
|
||||
|
||||
Similar to the sliding and rolling displacement, the angular
|
||||
displacement is rescaled so that it corresponds to the critical value
|
||||
if the twisting torque exceeds this critical value:
|
||||
|
||||
\begin\{equation\}
|
||||
\xi_\{twist\} = \frac\{1\}\{k_\{twist\}\} (\mu_\{twist\} F_\{n,0\}sgn(\Omega_\{twist\}) - \gamma_\{twist\}\Omega_\{twist\})
|
||||
\end\{equation\}
|
||||
|
||||
For {twisting sds}, the coefficients \(k_\{twist\}, \gamma_\{twist\}\)
|
||||
and \(\mu_\{twist\}\) are simply the user input parameters that follow
|
||||
the {twisting sds} keywords in the {pair_coeff} command.
|
||||
|
||||
For {twisting_marshall}, the coefficients are expressed in terms of
|
||||
sliding friction coefficients, as discussed in
|
||||
"Marshall"_#Marshall2009 (see equations 32 and 33 of that work):
|
||||
|
||||
\begin\{equation\}
|
||||
k_\{twist\} = 0.5k_ta^2
|
||||
\end\{equation\}
|
||||
|
||||
\begin\{equation\}
|
||||
\eta_\{twist\} = 0.5\eta_ta^2
|
||||
\end\{equation\}
|
||||
|
||||
\begin\{equation\}
|
||||
\mu_\{twist\} = \frac\{2\}\{3\}a\mu_t
|
||||
\end\{equation\}
|
||||
|
||||
Finally, the twisting torque on each particle is given by:
|
||||
|
||||
\begin\{equation\}
|
||||
\mathbf\{\tau\}_\{twist,i\} = \tau_\{twist\}\mathbf\{n\}
|
||||
\end\{equation\}
|
||||
|
||||
\begin\{equation\}
|
||||
\mathbf\{\tau\}_\{twist,j\} = -\mathbf\{\tau\}_\{twist,i\}
|
||||
\end\{equation\}
|
||||
|
||||
:line
|
||||
|
||||
LAMMPS automatically sets pairwise cutoff values for {pair_style
|
||||
granular} based on particle radii (and in the case of {jkr} pull-off
|
||||
distances). In the vast majority of situations, this is adequate.
|
||||
However, a cutoff value can optionally be appended to the {pair_style
|
||||
granular} command to specify a global cutoff (i.e. a cutoff for all
|
||||
atom types). Additionally, the optional {cutoff} keyword can be passed
|
||||
to the {pair_coeff} command, followed by a cutoff value. This will
|
||||
set a pairwise cutoff for the atom types in the {pair_coeff} command.
|
||||
These options may be useful in some rare cases where the automatic
|
||||
cutoff determination is not sufficient, e.g. if particle diameters
|
||||
are being modified via the {fix adapt} command. In that case, the
|
||||
global cutoff specified as part of the {pair_style granular} command
|
||||
is applied to all atom types, unless it is overridden for a given atom
|
||||
type combination by the {cutoff} value specified in the {pair coeff}
|
||||
command. If {cutoff} is only specified in the {pair coeff} command
|
||||
and no global cutoff is appended to the {pair_style granular} command,
|
||||
then LAMMPS will use that cutoff for the specified atom type
|
||||
combination, and automatically set pairwise cutoffs for the remaining
|
||||
atom types.
|
||||
|
||||
:line
|
||||
|
||||
Styles with a {gpu}, {intel}, {kk}, {omp}, or {opt} suffix are
|
||||
functionally the same as the corresponding style without the suffix.
|
||||
They have been optimized to run faster, depending on your available
|
||||
hardware, as discussed on the "Speed packages"_Speed_packages.html doc
|
||||
page. The accelerated styles take the same arguments and should
|
||||
produce the same results, except for round-off and precision issues.
|
||||
|
||||
These accelerated styles are part of the GPU, USER-INTEL, KOKKOS,
|
||||
USER-OMP and OPT packages, respectively. They are only enabled if
|
||||
LAMMPS was built with those packages. See the "Build
|
||||
package"_Build_package.html doc page for more info.
|
||||
|
||||
You can specify the accelerated styles explicitly in your input script
|
||||
by including their suffix, or you can use the "-suffix command-line
|
||||
switch"_Run_options.html when you invoke LAMMPS, or you can use the
|
||||
"suffix"_suffix.html command in your input script.
|
||||
|
||||
See the "Speed packages"_Speed_packages.html doc page for more
|
||||
instructions on how to use the accelerated styles effectively.
|
||||
|
||||
:line
|
||||
|
||||
[Mixing, shift, table, tail correction, restart, rRESPA info]:
|
||||
|
||||
The "pair_modify"_pair_modify.html mix, shift, table, and tail options
|
||||
are not relevant for granular pair styles.
|
||||
|
||||
Mixing of coefficients is carried out using geometric averaging for
|
||||
most quantities, e.g. if friction coefficient for type 1-type 1
|
||||
interactions is set to \(\mu_1\), and friction coefficient for type
|
||||
2-type 2 interactions is set to \(\mu_2\), the friction coefficient
|
||||
for type1-type2 interactions is computed as \(\sqrt\{\mu_1\mu_2\}\)
|
||||
(unless explicitly specified to a different value by a {pair_coeff 1 2
|
||||
...} command. The exception to this is elastic modulus, only
|
||||
applicable to {hertz/material}, {dmt} and {jkr} normal contact
|
||||
models. In that case, the effective elastic modulus is computed as:
|
||||
|
||||
\begin\{equation\}
|
||||
E_\{eff,ij\} = \left(\frac\{1-\nu_i^2\}\{E_i\} + \frac\{1-\nu_j^2\}\{E_j\}\right)^\{-1\}
|
||||
\end\{equation\}
|
||||
|
||||
If the {i-j} coefficients \(E_\{ij\}\) and \(\nu_\{ij\}\) are
|
||||
explicitly specified, the effective modulus is computed as:
|
||||
|
||||
\begin\{equation\}
|
||||
E_\{eff,ij\} = \left(\frac\{1-\nu_\{ij\}^2\}\{E_\{ij\}\} + \frac\{1-\nu_\{ij\}^2\}\{E_\{ij\}\}\right)^\{-1\}
|
||||
\end\{equation\}
|
||||
|
||||
or
|
||||
|
||||
\begin\{equation\}
|
||||
E_\{eff,ij\} = \frac\{E_\{ij\}\}\{2(1-\nu_\{ij\})\}
|
||||
\end\{equation\}
|
||||
|
||||
These pair styles write their information to "binary restart
|
||||
files"_restart.html, so a pair_style command does not need to be
|
||||
specified in an input script that reads a restart file.
|
||||
|
||||
These pair styles can only be used via the {pair} keyword of the
|
||||
"run_style respa"_run_style.html command. They do not support the
|
||||
{inner}, {middle}, {outer} keywords.
|
||||
|
||||
The single() function of these pair styles returns 0.0 for the energy
|
||||
of a pairwise interaction, since energy is not conserved in these
|
||||
dissipative potentials. It also returns only the normal component of
|
||||
the pairwise interaction force. However, the single() function also
|
||||
calculates 10 extra pairwise quantities. The first 3 are the
|
||||
components of the tangential force between particles I and J, acting
|
||||
on particle I. The 4th is the magnitude of this tangential force.
|
||||
The next 3 (5-7) are the components of the rolling torque acting on
|
||||
particle I. The next entry (8) is the magnitude of the rolling torque.
|
||||
The next entry (9) is the magnitude of the twisting torque acting
|
||||
about the vector connecting the two particle centers.
|
||||
The last 3 (10-12) are the components of the vector connecting
|
||||
the centers of the two particles (x_I - x_J).
|
||||
|
||||
These extra quantities can be accessed by the "compute
|
||||
pair/local"_compute_pair_local.html command, as {p1}, {p2}, ...,
|
||||
{p12}.
|
||||
|
||||
:line
|
||||
|
||||
[Restrictions:]
|
||||
|
||||
All the granular pair styles are part of the GRANULAR package. It is
|
||||
only enabled if LAMMPS was built with that package. See the "Build
|
||||
package"_Build_package.html doc page for more info.
|
||||
|
||||
These pair styles require that atoms store torque and angular velocity
|
||||
(omega) as defined by the "atom_style"_atom_style.html. They also
|
||||
require a per-particle radius is stored. The {sphere} atom style does
|
||||
all of this.
|
||||
|
||||
This pair style requires you to use the "comm_modify vel
|
||||
yes"_comm_modify.html command so that velocities are stored by ghost
|
||||
atoms.
|
||||
|
||||
These pair styles will not restart exactly when using the
|
||||
"read_restart"_read_restart.html command, though they should provide
|
||||
statistically similar results. This is because the forces they
|
||||
compute depend on atom velocities. See the
|
||||
"read_restart"_read_restart.html command for more details.
|
||||
|
||||
[Related commands:]
|
||||
|
||||
"pair_coeff"_pair_coeff.html
|
||||
"pair gran/*"_pair_gran.html
|
||||
|
||||
[Default:]
|
||||
|
||||
For the {pair_coeff} settings: {damping viscoelastic}, {rolling none},
|
||||
{twisting none}.
|
||||
|
||||
[References:]
|
||||
|
||||
:link(Brill1996)
|
||||
[(Brilliantov et al, 1996)] Brilliantov, N. V., Spahn, F., Hertzsch,
|
||||
J. M., & Poschel, T. (1996). Model for collisions in granular
|
||||
gases. Physical review E, 53(5), 5382.
|
||||
|
||||
:link(Tsuji1992)
|
||||
[(Tsuji et al, 1992)] Tsuji, Y., Tanaka, T., & Ishida,
|
||||
T. (1992). Lagrangian numerical simulation of plug flow of
|
||||
cohesionless particles in a horizontal pipe. Powder technology, 71(3),
|
||||
239-250.
|
||||
|
||||
:link(JKR1971)
|
||||
[(Johnson et al, 1971)] Johnson, K. L., Kendall, K., & Roberts,
|
||||
A. D. (1971). Surface energy and the contact of elastic
|
||||
solids. Proc. R. Soc. Lond. A, 324(1558), 301-313.
|
||||
|
||||
:link(DMT1975)
|
||||
[Derjaguin et al, 1975)] Derjaguin, B. V., Muller, V. M., & Toporov,
|
||||
Y. P. (1975). Effect of contact deformations on the adhesion of
|
||||
particles. Journal of Colloid and interface science, 53(2), 314-326.
|
||||
|
||||
:link(Luding2008)
|
||||
[(Luding, 2008)] Luding, S. (2008). Cohesive, frictional powders:
|
||||
contact models for tension. Granular matter, 10(4), 235.
|
||||
|
||||
:link(Marshall2009)
|
||||
[(Marshall, 2009)] Marshall, J. S. (2009). Discrete-element modeling
|
||||
of particulate aerosol flows. Journal of Computational Physics,
|
||||
228(5), 1541-1561.
|
||||
|
||||
:link(Silbert2001)
|
||||
[(Silbert, 2001)] Silbert, L. E., Ertas, D., Grest, G. S., Halsey,
|
||||
T. C., Levine, D., & Plimpton, S. J. (2001). Granular flow down an
|
||||
inclined plane: Bagnold scaling and rheology. Physical Review E,
|
||||
64(5), 051302.
|
||||
|
||||
:link(Kuhn2004)
|
||||
[(Kuhn and Bagi, 2005)] Kuhn, M. R., & Bagi, K. (2004). Contact
|
||||
rolling and deformation in granular media. International journal of
|
||||
solids and structures, 41(21), 5793-5820.
|
||||
|
||||
:link(Wang2015)
|
||||
[(Wang et al, 2015)] Wang, Y., Alonso-Marroquin, F., & Guo,
|
||||
W. W. (2015). Rolling and sliding in 3-D discrete element
|
||||
models. Particuology, 23, 49-55.
|
||||
|
||||
:link(Thornton1991)
|
||||
[(Thornton, 1991)] Thornton, C. (1991). Interparticle sliding in the
|
||||
presence of adhesion. J. Phys. D: Appl. Phys. 24 1942
|
||||
|
||||
:link(Mindlin1949)
|
||||
[(Mindlin, 1949)] Mindlin, R. D. (1949). Compliance of elastic bodies
|
||||
in contact. J. Appl. Mech., ASME 16, 259-268.
|
||||
|
||||
:link(Thornton2013)
|
||||
[(Thornton et al, 2013)] Thornton, C., Cummins, S. J., & Cleary,
|
||||
P. W. (2013). An investigation of the comparative behaviour of
|
||||
alternative contact force models during inelastic collisions. Powder
|
||||
Technology, 233, 30-46.
|
||||
|
||||
:link(WaltonPC)
|
||||
[(Otis R. Walton)] Walton, O.R., Personal Communication
|
||||
@ -42,6 +42,7 @@ Pair Styles :h1
|
||||
pair_gauss
|
||||
pair_gayberne
|
||||
pair_gran
|
||||
pair_granular
|
||||
pair_gromacs
|
||||
pair_gw
|
||||
pair_hbond_dreiding
|
||||
|
||||
@ -134,7 +134,7 @@ The {mom} and {rot} keywords are used by {create}. If mom = yes, the
|
||||
linear momentum of the newly created ensemble of velocities is zeroed;
|
||||
if rot = yes, the angular momentum is zeroed.
|
||||
|
||||
*line
|
||||
:line
|
||||
|
||||
If specified, the {temp} keyword is used by {create} and {scale} to
|
||||
specify a "compute"_compute.html that calculates temperature in a
|
||||
|
||||
Reference in New Issue
Block a user