whitespace cleanup: replace tabs and remove trailing whitespace

This commit is contained in:
Axel Kohlmeyer
2020-07-27 17:14:53 -04:00
parent 41535d8de3
commit 634f274a04
27 changed files with 1150 additions and 1150 deletions

View File

@ -26,7 +26,7 @@ Software Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*/
// Put together by John Smith john at arrows dot demon dot co dot uk,
// Put together by John Smith john at arrows dot demon dot co dot uk,
// using ideas by others.
//
// Calculate erf(z) for complex z.
@ -34,7 +34,7 @@ Software Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
//
// The code includes some hard coded constants that are intended to
// give about 14 decimal places of accuracy. This is appropriate for
// 64-bit floating point numbers.
// 64-bit floating point numbers.
//
// Oct 1999: Fixed a typo that in
// const Complex cerf_continued_fraction( const Complex z )
@ -46,14 +46,14 @@ Software Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
// Abramowitz and Stegun: (eqn: 7.1.14) gives this continued
// fraction for erfc(z)
//
// erfc(z) = sqrt(pi).exp(-z^2). 1 1/2 1 3/2 2 5/2
// erfc(z) = sqrt(pi).exp(-z^2). 1 1/2 1 3/2 2 5/2
// --- --- --- --- --- --- ...
// z + z + z + z + z + z +
//
// This is evaluated using Lentz's method, as described in the narative
// of Numerical Recipes in C.
//
// The continued fraction is true providing real(z)>0. In practice we
// The continued fraction is true providing real(z)>0. In practice we
// like real(z) to be significantly greater than 0, say greater than 0.5.
//
template< class Complex>
@ -63,9 +63,9 @@ const Complex cerfc_continued_fraction( const Complex z )
double eps = 1e-15 ; // large enough so that 1.0+eps > 1.0, when using
// the floating point arithmetic
//
// first calculate z+ 1/2 1
// first calculate z+ 1/2 1
// --- --- ...
// z + z +
// z + z +
Complex f(z) ;
Complex C(f) ;
Complex D(0.0) ;
@ -80,7 +80,7 @@ const Complex cerfc_continued_fraction( const Complex z )
C = z + a/C ;
if (D.real() == 0.0 && D.imag() == 0.0)
D = tiny ;
D = tiny ;
D = 1.0 / D ;
@ -134,9 +134,9 @@ const Complex cerf_series( const Complex z )
return sum * 2.0 / sqrt(M_PI) ;
}
//
// Numerical Recipes quotes a formula due to Rybicki for evaluating
// Numerical Recipes quotes a formula due to Rybicki for evaluating
// Dawson's Integral:
//
// exp(-x^2) integral exp(t^2).dt = 1/sqrt(pi) lim sum exp(-(z-n.h)^2) / n
@ -151,9 +151,9 @@ const Complex cerf_rybicki( const Complex z )
double h = 0.2 ; // numerical experiment suggests this is small enough
//
// choose an even n0, and then shift z->z-n0.h and n->n-h.
// n0 is chosen so that real((z-n0.h)^2) is as small as possible.
//
// choose an even n0, and then shift z->z-n0.h and n->n-h.
// n0 is chosen so that real((z-n0.h)^2) is as small as possible.
//
int n0 = 2*(int) (floor( z.imag()/(2*h) + 0.5 )) ;
Complex z0( 0.0, n0*h ) ;
@ -161,14 +161,14 @@ const Complex cerf_rybicki( const Complex z )
Complex sum(0.0,0.0) ;
//
// limits of sum chosen so that the end sums of the sum are
// fairly small. In this case exp(-(35.h)^2)=5e-22
// fairly small. In this case exp(-(35.h)^2)=5e-22
//
//
for (int np=-35; np<=35; np+=2)
{
Complex t( zp.real(), zp.imag()-np*h) ;
Complex b( exp(t*t) / (np+n0) ) ;
sum += b ;
sum += b ;
}
sum = sum * 2 * exp(-z*z) / M_PI ;
@ -180,7 +180,7 @@ template< class Complex>
const Complex cerf( const Complex z )
{
//
// Use the method appropriate to size of z -
// Use the method appropriate to size of z -
// there probably ought to be an extra option for NaN z, or infinite z
//
//
@ -194,20 +194,20 @@ const Complex cerf( const Complex z )
//
// Footnote:
//
//
// Using the definitions from Abramowitz and Stegun (7.3.1, 7.3.2)
// The fresnel intgerals defined as:
//
// / t=x
// C(x) = | cos(pi/2 t^2) dt
// /
// t=0
// t=0
//
// and
// / t=x
// S(x) = | sin(pi/2 t^2) dt
// /
// t=0
// t=0
//
// These can be derived from erf(x) using 7.3.22
//
@ -216,8 +216,8 @@ const Complex cerf( const Complex z )
// 2
//
// --------------------------------------------------------------------------
// Some test examples -
// comparative data taken from Abramowitz and Stegun table 7.9.
// Some test examples -
// comparative data taken from Abramowitz and Stegun table 7.9.
// Table 7.9 tabulates w(z), where w(z) = exp(-z*z) erfc(iz)
// I have copied twelve values of w(z) from the table, and separately
// calculated them using this code. The results are identical.

View File

@ -2,9 +2,9 @@
*
* Copyright (c), Ilya Valuev 2006 All Rights Reserved.
*
* Author : Ilya Valuev, MIPT, Moscow, Russia
* Author : Ilya Valuev, MIPT, Moscow, Russia
*
* Project : ivutils
* Project : ivutils
*
*****************************************************************************/
/*s****************************************************************************
@ -250,7 +250,7 @@ public:
if(man){
iterator it=base_t::begin();
for(;it!=base_t::end();++it)
if(*it)
if(*it)
delete (*it);
}
base_t::clear();
@ -427,7 +427,7 @@ class RefObject{
void *ref_data;
int ref_count;
public:
protected:
virtual void delete_data(void *data);
virtual void *new_data();
@ -437,7 +437,7 @@ protected:
class RefA: public RefObject{
public:
refA(){
ref_data = new A;

View File

@ -2,12 +2,12 @@
*
* Copyright (c), Ilya Valuev 2005 All Rights Reserved.
*
* Author : Ilya Valuev, MIPT, Moscow, Russia
* Author : Ilya Valuev, MIPT, Moscow, Russia
*
* Project : GridMD, ivutils
* Project : GridMD, ivutils
*
*****************************************************************************/
/*s****************************************************************************
* $Log: wpmd.h,v $
* Revision 1.4 2011/06/11 16:53:55 valuev
@ -134,8 +134,8 @@
*******************************************************************************/
# ifndef WPMD_H
# define WPMD_H
/** @file wpmd.h
/** @file wpmd.h
@brief Classes for Wave Packet Molecular Dynamics of two component plasma. */
# ifndef _USE_MATH_DEFINES
@ -143,7 +143,7 @@
# endif
# include <complex>
# include <vector>
# include <cmath>
# include <cmath>
# include "logexc.h"
# include "cvector_3.h"
# include "pairhash.h"
@ -168,7 +168,7 @@ const double h_plank2 = h_plank * 2.;
inline cdouble cerf_div(const cdouble &z, const cdouble &c=i_unit){
if((fabs(real(z))+fabs(imag(z)))<1e-8)
return c*two_over_sqr_pi;
else
else
return cerf(z*c)/z;
}
@ -176,7 +176,7 @@ inline cdouble cerf_div(const cdouble &z, const cdouble &c=i_unit){
inline double erf_div(const double &z, double c=1){
if(fabs(z)<1e-8)
return c*two_over_sqr_pi;
else
else
return erf(z*c)/z;
}
@ -247,7 +247,7 @@ public:
OverlapDeriv():I0(0),I1(0),IDD(10){}
void set1(const WavePacket& w1_) {
w1=w1_;
d1.set(w1);
@ -330,7 +330,7 @@ public:
enum {NORM_UNDEFINED, NORM_CALCULATED, NORM_FACTORIZED, NORM_INVERTED};
int norm_matrix_state[2];
// Arrays for temporal data
chmatrix IDD; // Second derivatives of the overlap integral (used in Norm matrix)
vector<cdouble> ID, IDYs; // First derivatives of the overlap integral (used in Norm matrix)
@ -346,7 +346,7 @@ public:
/// HARTREE Hartree product (no antisymmetrization) \n
/// DPRODUCT product of det0*det1 of antisymmetrized functions for spins 0, 1 \n
/// UHF unrestricted Hartree-Fock
enum APPROX {HARTREE, DPRODUCT, UHF } approx;
enum APPROX {HARTREE, DPRODUCT, UHF } approx;
///\em Sets overlap matrix element to zero if the overlap norm is less than this value
double ovl_tolerance;
@ -375,14 +375,14 @@ public:
///\en 0 -- indicates that the inter-partition force should be full, and energy half,\n
/// 1 -- inter-partition force and energy counts one half (LAMMPS compatibility)
int newton_pair;
int newton_pair;
//int myid; ///<\en id for partitions
///\en Partition arrays storing the tags of particles. The initial tags should be >0.
/// If the tag stored is <0, then the particle is ghost with -tag.
/// partition1[2] is for ions, 0, 1 for each electron spin
vector<int> partition1[3];
vector<int> partition1[3];
//vector<int> partition2[3]; ///<\en 2 for ions
@ -391,7 +391,7 @@ public:
}
///\en 1 -- all my, -1 all other, 2 -- my mixed term, -2 -- other mixed term
///\en 1 -- all my, -1 all other, 2 -- my mixed term, -2 -- other mixed term
int check_ee(int s1,int icj1,int ick2){
//printf(" (%d %d) ",partition1[s1][icj1],partition1[s1][ick2]);
int c1=(int)(partition1[s1][icj1]>0);
@ -402,8 +402,8 @@ public:
int tag2=abs(partition1[s1][ick2]);
int num=tag_index(tag1-1,tag2-1);
if(num<0){ // compare wave packets
int cmp= s1<2 ?
wp[s1][icj1].compare(wp[s1][ick2],1e-15) :
int cmp= s1<2 ?
wp[s1][icj1].compare(wp[s1][ick2],1e-15) :
compare_vec(xi[icj1],xi[ick2],1e-15);
if((cmp>0 && c1) || (cmp<0 && c2))
res= 2; // my mixed term
@ -421,12 +421,12 @@ public:
}
///\en Returns electron-electron inter-partition multipliers for energy (first) and force (second)
/// for a 4- and 2- electron additive terms (all inter-partition interactions are
/// for a 4- and 2- electron additive terms (all inter-partition interactions are
/// calculated only once based on particle tags)
/// If force multiplier is zero, then the term may be omitted (energy will also be zero).
/// NOW ASSIGNS BASED ON THE FIRST PAIR ONLY
pair<double, double> check_part1(int s1,int icj1,int ick2){
int res=check_ee(s1,icj1,ick2);
int res=check_ee(s1,icj1,ick2);
if(res==1){ // my term
//printf(" *\n");
return make_pair(1.,1.); // all at my partition
@ -439,7 +439,7 @@ public:
//printf(" *\n");
return make_pair(1.,1.); // my inter-partition
}
else if(res==-2){
else if(res==-2){
//printf(" \n");
return make_pair(0., newton_pair ? 0.0 : 1. ); // other inter-partition: must add force if newton comm is off
}
@ -447,18 +447,18 @@ public:
}
///\en Returns elctron-ion inter-partition multipliers for energy (first) and force (second)
/// for ion-electron additive terms (all inter-partition interactions are
/// for ion-electron additive terms (all inter-partition interactions are
/// calculated only once based on particle tags)
/// If force multiplier is zero, then the term may be omitted (energy will also be zero).
/// BASED ON ION ATTACHMENT
pair<double,double> check_part1ei(int s1,int icj1,int ick2, int ion){
//printf("%d ",partition1[2][ion]);
int ci=(int)(partition1[2][ion]>0);
if(!newton_pair){ // care about mixed terms
int cee=check_ee(s1,icj1,ick2);
if((cee==2 || cee==-2) || (ci && cee==-1) || (!ci && cee==1)) // all mixed variants
make_pair(0., 1. ); // other inter-partition: must add force if newton comm is off
make_pair(0., 1. ); // other inter-partition: must add force if newton comm is off
}
if(ci){
//printf(" *\n");
@ -471,7 +471,7 @@ public:
}
///\en Returns ion-ion inter-partition multipliers for energy (first) and force (second)
/// for ion-electron additive terms (all inter-partition interactions are
/// for ion-electron additive terms (all inter-partition interactions are
/// calculated only once based on particle tags)
/// If force multiplier is zero, then the term may be omitted (energy will also be zero).
pair<double,double> check_part1ii(int ion1, int ion2){
@ -485,7 +485,7 @@ public:
norm_matrix_state[0] = norm_matrix_state[1] = NORM_UNDEFINED;
ovl_tolerance=0.;
approx = DPRODUCT;
me=m_electron;
one_h=1./h_plank;
h2_me=h_sq/me;
@ -530,11 +530,11 @@ protected:
///\en resizes all internal arrays according to new electrons added
virtual void resize(int flag);
public:
///\en Prepares to setup a new system of particles using \ref add_ion() and add_electron().
/// There is no need to call this function when using
/// There is no need to call this function when using
/// \ref set_electrons() and \ref set_ions() to setup particles.
virtual void reset(){
for(int s=0;s<2;s++){
@ -556,10 +556,10 @@ public:
//e 0x4 -- PBC along Z
//e cell specifies the lengths of the simulation box in all directions
//e if PBCs are used, the corresponding coordinates of electrons and ions
//e in periodic directions must be within the range [0, cell[per_dir])
//e in periodic directions must be within the range [0, cell[per_dir])
//e @returns 1 if OK
int set_pbc(const Vector_3P pcell=NULL, int pbc_=0x7);
///\en Setup electrons: forms internal wave packet representations.
/// If PBCs are used the coords must be within a range [0, cell).
/// Default electron mass is AWPMD::me.
@ -572,9 +572,9 @@ public:
///\en Adds an ion with charge q and position x,
/// \return id of the ion starting from 0
/// The tags must be nonzero, >0 for the local particle, <0 for ghost particle.
/// The tags must be nonzero, >0 for the local particle, <0 for ghost particle.
/// Unique particle id is abs(tag).
/// Default tag (0) means inserting the current particle id as local particle.
/// Default tag (0) means inserting the current particle id as local particle.
int add_ion(double q, const Vector_3 &x, int tag=0){
qi.push_back(q);
xi.push_back(x);
@ -586,24 +586,24 @@ public:
}
//e calculates interaction in the system of ni ions + electrons
//e calculates interaction in the system of ni ions + electrons
//e the electonic subsystem must be previously setup by set_electrons, ionic by set_ions
//e the iterators are describing ionic system only
// 0x1 -- give back ion forces
// 0x2 -- add ion forces to the existing set
// 0x4 -- calculate derivatives for electronic time step (NOT IMPLEMENTED)
//e if PBCs are used the coords must be within a range [0, cell)
virtual int interaction(int flag=0, Vector_3P fi=NULL, Vector_3P fe_x=NULL,
virtual int interaction(int flag=0, Vector_3P fi=NULL, Vector_3P fe_x=NULL,
Vector_3P fe_p=NULL, double *fe_w=NULL, double *fe_pw=NULL, Vector_2P fe_c=NULL);
//e same as interaction, but using Hartee factorization (no antisymmetrization)
virtual int interaction_hartree(int flag=0, Vector_3P fi=NULL, Vector_3P fe_x=NULL,
virtual int interaction_hartree(int flag=0, Vector_3P fi=NULL, Vector_3P fe_x=NULL,
Vector_3P fe_p=NULL, double *fe_w=NULL, double *fe_pw=NULL, Vector_2P fe_c=NULL);
///\en Calculates ion-ion interactions and updates Eii and ion forces if requested. This function
/// is called form intaraction() and interaction_hartree if calc_ii is set.
virtual int interaction_ii(int flag,Vector_3P fi=NULL);
//e Calculates Norm matrix
//e The result is saved in AWPMD::Norm[s]
void norm_matrix(int s);
@ -642,7 +642,7 @@ public:
}
///\en Prepares force arrays according to \a flag setting for interaction()
virtual void clear_forces(int flagi,Vector_3P fi, Vector_3P fe_x,
virtual void clear_forces(int flagi,Vector_3P fi, Vector_3P fe_x,
Vector_3P fe_p, double *fe_w, double *fe_pw, Vector_2P fe_c=NULL);
@ -651,7 +651,7 @@ public:
/// Default mass (-1) is the electron mass AWPMD::me.
WavePacket create_wp(Vector_3 &x, Vector_3 &v, double &w, double &pw, double mass=-1);
};

View File

@ -77,7 +77,7 @@ void ArithmeticPathBase<element_type, scalar_type, path_type>::computeValue() {
exponent_tmp += weights[j_elem] * frame_element_distances[i_frame][j_elem] * weights[j_elem] * frame_element_distances[i_frame][j_elem];
}
exponent_tmp = exponent_tmp * -1.0 * lambda;
// prevent underflow if the argument of cvm::exp is less than -708.4
// prevent underflow if the argument of cvm::exp is less than -708.4
if (exponent_tmp > -708.4) {
exponent_tmp = cvm::exp(exponent_tmp);
} else {

View File

@ -210,7 +210,7 @@ public:
/// parameters from another grid, but doesn't reallocate stuff;
/// setup() must be called after that;
colvar_grid(colvar_grid<T> const &g) : colvarparse(),
nd(g.nd),
nd(g.nd),
nx(g.nx),
mult(g.mult),
data(),

View File

@ -3,13 +3,13 @@
// -------------------------------------------------------------
// $Revision: 3572$
// $Date: 2010-11-23 13:04:43 -0700 (Tue, 23 Nov 2010) $
// -------------------------------------------------------------
// -------------------------------------------------------------
// This source code is distributed under the terms of license.txt
// in the root directory of this source distribution.
// -------------------------------------------------------------
// -------------------------------------------------------------
#ifndef __CUDPP_PLAN_H__
#define __CUDPP_PLAN_H__
typedef void* KernelPointer;
extern "C" size_t getNumCTAs(KernelPointer kernel);
@ -30,10 +30,10 @@ void computeNumCTAs(T kernel, unsigned int bytesDynamicSharedMem, size_t threads
/** @brief Base class for CUDPP Plan data structures
*
* CUDPPPlan and its subclasses provide the internal (i.e. not visible to the
* library user) infrastructure for planning algorithm execution. They
* library user) infrastructure for planning algorithm execution. They
* own intermediate storage for CUDPP algorithms as well as, in some cases,
* information about optimal execution configuration for the present hardware.
*
*
*/
class CUDPPPlan
{
@ -91,7 +91,7 @@ public:
CUDPPScanPlan *m_scanPlan; //!< @internal Compact performs a scan of type unsigned int using this plan
unsigned int* m_d_outputIndices; //!< @internal Output address of compacted elements; this is the result of scan
};
class CUDPPRadixSortPlan : public CUDPPPlan
@ -99,7 +99,7 @@ class CUDPPRadixSortPlan : public CUDPPPlan
public:
CUDPPRadixSortPlan(CUDPPConfiguration config, size_t numElements);
virtual ~CUDPPRadixSortPlan();
bool m_bKeysOnly;
bool m_bManualCoalesce;
bool m_bUsePersistentCTAs;
@ -123,22 +123,22 @@ class CUDPPSparseMatrixVectorMultiplyPlan : public CUDPPPlan
public:
CUDPPSparseMatrixVectorMultiplyPlan(CUDPPConfiguration config, size_t numNZElts,
const void *A,
const unsigned int *rowindx,
const unsigned int *rowindx,
const unsigned int *indx, size_t numRows);
virtual ~CUDPPSparseMatrixVectorMultiplyPlan();
CUDPPSegmentedScanPlan *m_segmentedScanPlan; //!< @internal Performs a segmented scan of type T using this plan
void *m_d_prod; //!< @internal Vector of products (of an element in A and its corresponding (thats is
//! belongs to the same row) element in x; this is the input and output of
//! belongs to the same row) element in x; this is the input and output of
//! segmented scan
unsigned int *m_d_flags; //!< @internal Vector of flags where a flag is set if an element of A is the first element
//! of its row; this is the flags vector for segmented scan
unsigned int *m_d_rowFinalIndex; //!< @internal Vector of row end indices, which for each row specifies an index in A
//! which is the last element of that row. Resides in GPU memory.
//! which is the last element of that row. Resides in GPU memory.
unsigned int *m_d_rowIndex; //!< @internal Vector of row end indices, which for each row specifies an index in A
//! which is the first element of that row. Resides in GPU memory.
unsigned int *m_d_index; //!<@internal Vector of column numbers one for each element in A
void *m_d_A; //!<@internal The A matrix
//! which is the first element of that row. Resides in GPU memory.
unsigned int *m_d_index; //!<@internal Vector of column numbers one for each element in A
void *m_d_A; //!<@internal The A matrix
unsigned int *m_rowFinalIndex; //!< @internal Vector of row end indices, which for each row specifies an index in A
//! which is the last element of that row. Resides in CPU memory.
size_t m_numRows; //!< Number of rows

View File

@ -1,32 +1,32 @@
/*
* Copyright 1993-2006 NVIDIA Corporation. All rights reserved.
*
* NOTICE TO USER:
* NOTICE TO USER:
*
* This source code is subject to NVIDIA ownership rights under U.S. and
* international Copyright laws.
* This source code is subject to NVIDIA ownership rights under U.S. and
* international Copyright laws.
*
* NVIDIA MAKES NO REPRESENTATION ABOUT THE SUITABILITY OF THIS SOURCE
* CODE FOR ANY PURPOSE. IT IS PROVIDED "AS IS" WITHOUT EXPRESS OR
* IMPLIED WARRANTY OF ANY KIND. NVIDIA DISCLAIMS ALL WARRANTIES WITH
* REGARD TO THIS SOURCE CODE, INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY, NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE.
* IN NO EVENT SHALL NVIDIA BE LIABLE FOR ANY SPECIAL, INDIRECT, INCIDENTAL,
* OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS
* OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE
* OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE
* OR PERFORMANCE OF THIS SOURCE CODE.
* NVIDIA MAKES NO REPRESENTATION ABOUT THE SUITABILITY OF THIS SOURCE
* CODE FOR ANY PURPOSE. IT IS PROVIDED "AS IS" WITHOUT EXPRESS OR
* IMPLIED WARRANTY OF ANY KIND. NVIDIA DISCLAIMS ALL WARRANTIES WITH
* REGARD TO THIS SOURCE CODE, INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY, NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE.
* IN NO EVENT SHALL NVIDIA BE LIABLE FOR ANY SPECIAL, INDIRECT, INCIDENTAL,
* OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS
* OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE
* OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE
* OR PERFORMANCE OF THIS SOURCE CODE.
*
* U.S. Government End Users. This source code is a "commercial item" as
* that term is defined at 48 C.F.R. 2.101 (OCT 1995), consisting of
* "commercial computer software" and "commercial computer software
* documentation" as such terms are used in 48 C.F.R. 12.212 (SEPT 1995)
* and is provided to the U.S. Government only as a commercial end item.
* Consistent with 48 C.F.R.12.212 and 48 C.F.R. 227.7202-1 through
* 227.7202-4 (JUNE 1995), all U.S. Government End Users acquire the
* U.S. Government End Users. This source code is a "commercial item" as
* that term is defined at 48 C.F.R. 2.101 (OCT 1995), consisting of
* "commercial computer software" and "commercial computer software
* documentation" as such terms are used in 48 C.F.R. 12.212 (SEPT 1995)
* and is provided to the U.S. Government only as a commercial end item.
* Consistent with 48 C.F.R.12.212 and 48 C.F.R. 227.7202-1 through
* 227.7202-4 (JUNE 1995), all U.S. Government End Users acquire the
* source code with only those rights set forth herein.
*/
/* CUda UTility Library */
@ -36,7 +36,7 @@
#include <cuda_runtime.h>
#ifdef _WIN32
# pragma warning( disable : 4996 ) // disable deprecated warning
# pragma warning( disable : 4996 ) // disable deprecated warning
#endif
#ifdef __cplusplus
@ -50,8 +50,8 @@ extern "C" {
# else
# define DLL_MAPPING __declspec(dllimport)
# endif
#else
# define DLL_MAPPING
#else
# define DLL_MAPPING
#endif
#ifdef _WIN32
@ -64,7 +64,7 @@ extern "C" {
////////////////////////////////////////////////////////////////////////////
//! CUT bool type
////////////////////////////////////////////////////////////////////////////
enum CUTBoolean
enum CUTBoolean
{
CUTFalse = 0,
CUTTrue = 1
@ -72,11 +72,11 @@ extern "C" {
////////////////////////////////////////////////////////////////////////////
//! Deallocate memory allocated within Cutil
//! @param pointer to memory
//! @param pointer to memory
////////////////////////////////////////////////////////////////////////////
DLL_MAPPING
void CUTIL_API
cutFree( void* ptr);
cutFree( void* ptr);
////////////////////////////////////////////////////////////////////////////
//! Helper for bank conflict checking (should only be used with the
@ -95,7 +95,7 @@ extern "C" {
DLL_MAPPING
void CUTIL_API
cutCheckBankAccess( unsigned int tidx, unsigned int tidy, unsigned int tidz,
unsigned int bdimx, unsigned int bdimy,
unsigned int bdimx, unsigned int bdimy,
unsigned int bdimz, const char* file, const int line,
const char* aname, const int index);
@ -141,8 +141,8 @@ extern "C" {
//! deallocate the memory
////////////////////////////////////////////////////////////////////////////
DLL_MAPPING
CUTBoolean CUTIL_API
cutReadFilef( const char* filename, float** data, unsigned int* len,
CUTBoolean CUTIL_API
cutReadFilef( const char* filename, float** data, unsigned int* len,
bool verbose = false);
////////////////////////////////////////////////////////////////////////////
@ -157,8 +157,8 @@ extern "C" {
//! deallocate the memory
////////////////////////////////////////////////////////////////////////////
DLL_MAPPING
CUTBoolean CUTIL_API
cutReadFiled( const char* filename, double** data, unsigned int* len,
CUTBoolean CUTIL_API
cutReadFiled( const char* filename, double** data, unsigned int* len,
bool verbose = false);
////////////////////////////////////////////////////////////////////////////
@ -173,7 +173,7 @@ extern "C" {
//! deallocate the memory
////////////////////////////////////////////////////////////////////////////
DLL_MAPPING
CUTBoolean CUTIL_API
CUTBoolean CUTIL_API
cutReadFilei( const char* filename, int** data, unsigned int* len, bool verbose = false);
////////////////////////////////////////////////////////////////////////////
@ -183,13 +183,13 @@ extern "C" {
//! @param data uninitialized pointer, returned initialized and pointing to
//! the data read
//! @param len number of data elements in data, -1 on error
//! @note If a NULL pointer is passed to this function and it is
//! @note If a NULL pointer is passed to this function and it is
//! initialized within Cutil then cutFree() has to be used to
//! deallocate the memory
////////////////////////////////////////////////////////////////////////////
DLL_MAPPING
CUTBoolean CUTIL_API
cutReadFileui( const char* filename, unsigned int** data,
CUTBoolean CUTIL_API
cutReadFileui( const char* filename, unsigned int** data,
unsigned int* len, bool verbose = false);
////////////////////////////////////////////////////////////////////////////
@ -199,13 +199,13 @@ extern "C" {
//! @param data uninitialized pointer, returned initialized and pointing to
//! the data read
//! @param len number of data elements in data, -1 on error
//! @note If a NULL pointer is passed to this function and it is
//! @note If a NULL pointer is passed to this function and it is
//! initialized within Cutil then cutFree() has to be used to
//! deallocate the memory
////////////////////////////////////////////////////////////////////////////
DLL_MAPPING
CUTBoolean CUTIL_API
cutReadFileb( const char* filename, char** data, unsigned int* len,
CUTBoolean CUTIL_API
cutReadFileb( const char* filename, char** data, unsigned int* len,
bool verbose = false);
////////////////////////////////////////////////////////////////////////////
@ -220,12 +220,12 @@ extern "C" {
//! deallocate the memory
////////////////////////////////////////////////////////////////////////////
DLL_MAPPING
CUTBoolean CUTIL_API
cutReadFileub( const char* filename, unsigned char** data,
CUTBoolean CUTIL_API
cutReadFileub( const char* filename, unsigned char** data,
unsigned int* len, bool verbose = false);
////////////////////////////////////////////////////////////////////////////
//! Write a data file \filename containing single precision floating point
//! Write a data file \filename containing single precision floating point
//! data
//! @return CUTTrue if writing the file succeeded, otherwise false
//! @param filename name of the file to write
@ -234,12 +234,12 @@ extern "C" {
//! @param epsilon epsilon for comparison
////////////////////////////////////////////////////////////////////////////
DLL_MAPPING
CUTBoolean CUTIL_API
CUTBoolean CUTIL_API
cutWriteFilef( const char* filename, const float* data, unsigned int len,
const float epsilon, bool verbose = false);
////////////////////////////////////////////////////////////////////////////
//! Write a data file \filename containing double precision floating point
//! Write a data file \filename containing double precision floating point
//! data
//! @return CUTTrue if writing the file succeeded, otherwise false
//! @param filename name of the file to write
@ -248,7 +248,7 @@ extern "C" {
//! @param epsilon epsilon for comparison
////////////////////////////////////////////////////////////////////////////
DLL_MAPPING
CUTBoolean CUTIL_API
CUTBoolean CUTIL_API
cutWriteFiled( const char* filename, const float* data, unsigned int len,
const double epsilon, bool verbose = false);
@ -260,7 +260,7 @@ extern "C" {
//! @param len number of data elements in data, -1 on error
////////////////////////////////////////////////////////////////////////////
DLL_MAPPING
CUTBoolean CUTIL_API
CUTBoolean CUTIL_API
cutWriteFilei( const char* filename, const int* data, unsigned int len,
bool verbose = false);
@ -272,8 +272,8 @@ extern "C" {
//! @param len number of data elements in data, -1 on error
////////////////////////////////////////////////////////////////////////////
DLL_MAPPING
CUTBoolean CUTIL_API
cutWriteFileui( const char* filename,const unsigned int* data,
CUTBoolean CUTIL_API
cutWriteFileui( const char* filename,const unsigned int* data,
unsigned int len, bool verbose = false);
////////////////////////////////////////////////////////////////////////////
@ -284,8 +284,8 @@ extern "C" {
//! @param len number of data elements in data, -1 on error
////////////////////////////////////////////////////////////////////////////
DLL_MAPPING
CUTBoolean CUTIL_API
cutWriteFileb( const char* filename, const char* data, unsigned int len,
CUTBoolean CUTIL_API
cutWriteFileb( const char* filename, const char* data, unsigned int len,
bool verbose = false);
////////////////////////////////////////////////////////////////////////////
@ -296,7 +296,7 @@ extern "C" {
//! @param len number of data elements in data, -1 on error
////////////////////////////////////////////////////////////////////////////
DLL_MAPPING
CUTBoolean CUTIL_API
CUTBoolean CUTIL_API
cutWriteFileub( const char* filename,const unsigned char* data,
unsigned int len, bool verbose = false);
@ -307,7 +307,7 @@ extern "C" {
//! @param data handle to the data read
//! @param w width of the image
//! @param h height of the image
//! @note If a NULL pointer is passed to this function and it is
//! @note If a NULL pointer is passed to this function and it is
//! initialized within Cutil then cutFree() has to be used to
//! deallocate the memory
////////////////////////////////////////////////////////////////////////////
@ -326,11 +326,11 @@ extern "C" {
////////////////////////////////////////////////////////////////////////////
DLL_MAPPING
CUTBoolean CUTIL_API
cutLoadPPMub( const char* file, unsigned char** data,
cutLoadPPMub( const char* file, unsigned char** data,
unsigned int *w,unsigned int *h);
////////////////////////////////////////////////////////////////////////////
//! Load PPM image file (with unsigned char as data element type), padding
//! Load PPM image file (with unsigned char as data element type), padding
//! 4th component
//! @return CUTTrue if reading the file succeeded, otherwise false
//! @param file name of the image file
@ -340,7 +340,7 @@ extern "C" {
////////////////////////////////////////////////////////////////////////////
DLL_MAPPING
CUTBoolean CUTIL_API
cutLoadPPM4ub( const char* file, unsigned char** data,
cutLoadPPM4ub( const char* file, unsigned char** data,
unsigned int *w,unsigned int *h);
////////////////////////////////////////////////////////////////////////////
@ -350,13 +350,13 @@ extern "C" {
//! @param data handle to the data read
//! @param w width of the image
//! @param h height of the image
//! @note If a NULL pointer is passed to this function and it is
//! @note If a NULL pointer is passed to this function and it is
//! initialized within Cutil then cutFree() has to be used to
//! deallocate the memory
////////////////////////////////////////////////////////////////////////////
DLL_MAPPING
CUTBoolean CUTIL_API
cutLoadPGMi( const char* file, unsigned int** data,
cutLoadPGMi( const char* file, unsigned int** data,
unsigned int* w, unsigned int* h);
////////////////////////////////////////////////////////////////////////////
@ -366,13 +366,13 @@ extern "C" {
//! @param data handle to the data read
//! @param w width of the image
//! @param h height of the image
//! @note If a NULL pointer is passed to this function and it is
//! @note If a NULL pointer is passed to this function and it is
//! initialized within Cutil then cutFree() has to be used to
//! deallocate the memory
////////////////////////////////////////////////////////////////////////////
DLL_MAPPING
CUTBoolean CUTIL_API
cutLoadPGMs( const char* file, unsigned short** data,
cutLoadPGMs( const char* file, unsigned short** data,
unsigned int* w, unsigned int* h);
////////////////////////////////////////////////////////////////////////////
@ -381,7 +381,7 @@ extern "C" {
//! @param data handle to the data read
//! @param w width of the image
//! @param h height of the image
//! @note If a NULL pointer is passed to this function and it is
//! @note If a NULL pointer is passed to this function and it is
//! initialized within Cutil then cutFree() has to be used to
//! deallocate the memory
////////////////////////////////////////////////////////////////////////////
@ -399,7 +399,7 @@ extern "C" {
////////////////////////////////////////////////////////////////////////////
DLL_MAPPING
CUTBoolean CUTIL_API
cutSavePGMub( const char* file, unsigned char* data,
cutSavePGMub( const char* file, unsigned char* data,
unsigned int w, unsigned int h);
////////////////////////////////////////////////////////////////////////////
@ -411,11 +411,11 @@ extern "C" {
////////////////////////////////////////////////////////////////////////////
DLL_MAPPING
CUTBoolean CUTIL_API
cutSavePPMub( const char* file, unsigned char *data,
cutSavePPMub( const char* file, unsigned char *data,
unsigned int w, unsigned int h);
////////////////////////////////////////////////////////////////////////////
//! Save PPM image file (with unsigned char as data element type, padded to
//! Save PPM image file (with unsigned char as data element type, padded to
//! 4 bytes)
//! @param file name of the image file
//! @param data handle to the data read
@ -424,7 +424,7 @@ extern "C" {
////////////////////////////////////////////////////////////////////////////
DLL_MAPPING
CUTBoolean CUTIL_API
cutSavePPM4ub( const char* file, unsigned char *data,
cutSavePPM4ub( const char* file, unsigned char *data,
unsigned int w, unsigned int h);
////////////////////////////////////////////////////////////////////////////
@ -465,15 +465,15 @@ extern "C" {
////////////////////////////////////////////////////////////////////////////
// Command line arguments: General notes
// * All command line arguments begin with '--' followed by the token;
// * All command line arguments begin with '--' followed by the token;
// token and value are separated by '='; example --samples=50
// * Arrays have the form --model=[one.obj,two.obj,three.obj]
// * Arrays have the form --model=[one.obj,two.obj,three.obj]
// (without whitespaces)
////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////
//! Check if command line argument \a flag-name is given
//! @return CUTTrue if command line argument \a flag_name has been given,
//! @return CUTTrue if command line argument \a flag_name has been given,
//! otherwise 0
//! @param argc argc as passed to main()
//! @param argv argv as passed to main()
@ -481,7 +481,7 @@ extern "C" {
////////////////////////////////////////////////////////////////////////////
DLL_MAPPING
CUTBoolean CUTIL_API
cutCheckCmdLineFlag( const int argc, const char** argv,
cutCheckCmdLineFlag( const int argc, const char** argv,
const char* flag_name);
////////////////////////////////////////////////////////////////////////////
@ -495,7 +495,7 @@ extern "C" {
////////////////////////////////////////////////////////////////////////////
DLL_MAPPING
CUTBoolean CUTIL_API
cutGetCmdLineArgumenti( const int argc, const char** argv,
cutGetCmdLineArgumenti( const int argc, const char** argv,
const char* arg_name, int* val);
////////////////////////////////////////////////////////////////////////////
@ -509,7 +509,7 @@ extern "C" {
////////////////////////////////////////////////////////////////////////////
DLL_MAPPING
CUTBoolean CUTIL_API
cutGetCmdLineArgumentf( const int argc, const char** argv,
cutGetCmdLineArgumentf( const int argc, const char** argv,
const char* arg_name, float* val);
////////////////////////////////////////////////////////////////////////////
@ -523,7 +523,7 @@ extern "C" {
////////////////////////////////////////////////////////////////////////////
DLL_MAPPING
CUTBoolean CUTIL_API
cutGetCmdLineArgumentstr( const int argc, const char** argv,
cutGetCmdLineArgumentstr( const int argc, const char** argv,
const char* arg_name, char** val);
////////////////////////////////////////////////////////////////////////////
@ -538,8 +538,8 @@ extern "C" {
////////////////////////////////////////////////////////////////////////////
DLL_MAPPING
CUTBoolean CUTIL_API
cutGetCmdLineArgumentListstr( const int argc, const char** argv,
const char* arg_name, char** val,
cutGetCmdLineArgumentListstr( const int argc, const char** argv,
const char* arg_name, char** val,
unsigned int* len);
////////////////////////////////////////////////////////////////////////////
@ -556,46 +556,46 @@ extern "C" {
////////////////////////////////////////////////////////////////////////////
//! Compare two float arrays
//! @return CUTTrue if \a reference and \a data are identical,
//! @return CUTTrue if \a reference and \a data are identical,
//! otherwise CUTFalse
//! @param reference handle to the reference data / gold image
//! @param data handle to the computed data
//! @param len number of elements in reference and data
////////////////////////////////////////////////////////////////////////////
DLL_MAPPING
CUTBoolean CUTIL_API
CUTBoolean CUTIL_API
cutComparef( const float* reference, const float* data,
const unsigned int len);
////////////////////////////////////////////////////////////////////////////
//! Compare two integer arrays
//! @return CUTTrue if \a reference and \a data are identical,
//! @return CUTTrue if \a reference and \a data are identical,
//! otherwise CUTFalse
//! @param reference handle to the reference data / gold image
//! @param data handle to the computed data
//! @param len number of elements in reference and data
////////////////////////////////////////////////////////////////////////////
DLL_MAPPING
CUTBoolean CUTIL_API
cutComparei( const int* reference, const int* data,
const unsigned int len );
CUTBoolean CUTIL_API
cutComparei( const int* reference, const int* data,
const unsigned int len );
////////////////////////////////////////////////////////////////////////////
//! Compare two unsigned char arrays
//! @return CUTTrue if \a reference and \a data are identical,
//! @return CUTTrue if \a reference and \a data are identical,
//! otherwise CUTFalse
//! @param reference handle to the reference data / gold image
//! @param data handle to the computed data
//! @param len number of elements in reference and data
////////////////////////////////////////////////////////////////////////////
DLL_MAPPING
CUTBoolean CUTIL_API
CUTBoolean CUTIL_API
cutCompareub( const unsigned char* reference, const unsigned char* data,
const unsigned int len );
const unsigned int len );
////////////////////////////////////////////////////////////////////////////////
//! Compare two integer arrays witha n epsilon tolerance for equality
//! @return CUTTrue if \a reference and \a data are identical,
//! @return CUTTrue if \a reference and \a data are identical,
//! otherwise CUTFalse
//! @param reference handle to the reference data / gold image
//! @param data handle to the computed data
@ -609,7 +609,7 @@ extern "C" {
////////////////////////////////////////////////////////////////////////////
//! Compare two float arrays with an epsilon tolerance for equality
//! @return CUTTrue if \a reference and \a data are identical,
//! @return CUTTrue if \a reference and \a data are identical,
//! otherwise CUTFalse
//! @param reference handle to the reference data / gold image
//! @param data handle to the computed data
@ -617,14 +617,14 @@ extern "C" {
//! @param epsilon epsilon to use for the comparison
////////////////////////////////////////////////////////////////////////////
DLL_MAPPING
CUTBoolean CUTIL_API
CUTBoolean CUTIL_API
cutComparefe( const float* reference, const float* data,
const unsigned int len, const float epsilon );
////////////////////////////////////////////////////////////////////////////
//! Compare two float arrays using L2-norm with an epsilon tolerance for
//! Compare two float arrays using L2-norm with an epsilon tolerance for
//! equality
//! @return CUTTrue if \a reference and \a data are identical,
//! @return CUTTrue if \a reference and \a data are identical,
//! otherwise CUTFalse
//! @param reference handle to the reference data / gold image
//! @param data handle to the computed data
@ -632,7 +632,7 @@ extern "C" {
//! @param epsilon epsilon to use for the comparison
////////////////////////////////////////////////////////////////////////////
DLL_MAPPING
CUTBoolean CUTIL_API
CUTBoolean CUTIL_API
cutCompareL2fe( const float* reference, const float* data,
const unsigned int len, const float epsilon );
@ -645,7 +645,7 @@ extern "C" {
//! @param name of the new timer, 0 if the creation failed
////////////////////////////////////////////////////////////////////////////
DLL_MAPPING
CUTBoolean CUTIL_API
CUTBoolean CUTIL_API
cutCreateTimer( unsigned int* name);
////////////////////////////////////////////////////////////////////////////
@ -654,7 +654,7 @@ extern "C" {
//! @param name of the timer to delete
////////////////////////////////////////////////////////////////////////////
DLL_MAPPING
CUTBoolean CUTIL_API
CUTBoolean CUTIL_API
cutDeleteTimer( unsigned int name);
////////////////////////////////////////////////////////////////////////////
@ -662,7 +662,7 @@ extern "C" {
//! @param name name of the timer to start
////////////////////////////////////////////////////////////////////////////
DLL_MAPPING
CUTBoolean CUTIL_API
CUTBoolean CUTIL_API
cutStartTimer( const unsigned int name);
////////////////////////////////////////////////////////////////////////////
@ -670,7 +670,7 @@ extern "C" {
//! @param name name of the timer to stop
////////////////////////////////////////////////////////////////////////////
DLL_MAPPING
CUTBoolean CUTIL_API
CUTBoolean CUTIL_API
cutStopTimer( const unsigned int name);
////////////////////////////////////////////////////////////////////////////
@ -678,27 +678,27 @@ extern "C" {
//! @param name name of the timer to reset.
////////////////////////////////////////////////////////////////////////////
DLL_MAPPING
CUTBoolean CUTIL_API
CUTBoolean CUTIL_API
cutResetTimer( const unsigned int name);
////////////////////////////////////////////////////////////////////////////
//! Returns total execution time in milliseconds for the timer over all
//! Returns total execution time in milliseconds for the timer over all
//! runs since the last reset or timer creation.
//! @param name name of the timer to return the time of
////////////////////////////////////////////////////////////////////////////
DLL_MAPPING
float CUTIL_API
float CUTIL_API
cutGetTimerValue( const unsigned int name);
////////////////////////////////////////////////////////////////////////////
//! Return the average time in milliseconds for timer execution as the
//! Return the average time in milliseconds for timer execution as the
//! total time for the timer dividied by the number of completed (stopped)
//! runs the timer has made.
//! Excludes the current running time if the timer is currently running.
//! @param name name of the timer to return the time of
////////////////////////////////////////////////////////////////////////////
DLL_MAPPING
float CUTIL_API
float CUTIL_API
cutGetAverageTimerValue( const unsigned int name);
////////////////////////////////////////////////////////////////////////////
@ -764,7 +764,7 @@ extern "C" {
fprintf(stderr, "Cut error in file '%s' in line %i.\n", \
__FILE__, __LINE__); \
exit(EXIT_FAILURE); \
}
}
//! Check for CUDA error
# define CUT_CHECK_ERROR(errorMessage) do { \
@ -802,7 +802,7 @@ extern "C" {
// void macros for performance reasons
# define CUT_CHECK_ERROR(errorMessage)
# define CUT_CHECK_ERROR_GL()
# define CUT_CONDITION( val)
# define CUT_CONDITION( val)
# define CU_SAFE_CALL_NO_SYNC( call) call
# define CU_SAFE_CALL( call) call
# define CUDA_SAFE_CALL_NO_SYNC( call) call

View File

@ -44,28 +44,28 @@ static void MPI_Init(int *, char ***) {}
static MPI_Comm MPI_Comm_f2c(MPI_Comm world) {return world;}
static void MPI_Comm_rank(MPI_Comm, int *) {}
static void MPI_Comm_size(MPI_Comm, int *) {}
static void MPI_Open_port(MPI_Info, char *) {}
static void MPI_Close_port(const char *) {}
static void MPI_Comm_accept(const char *, MPI_Info, int,
static void MPI_Comm_accept(const char *, MPI_Info, int,
MPI_Comm, MPI_Comm *) {}
static void MPI_Comm_connect(const char *, MPI_Info, int,
static void MPI_Comm_connect(const char *, MPI_Info, int,
MPI_Comm, MPI_Comm *) {}
static void MPI_Comm_split(MPI_Comm, int, int, MPI_Comm *) {}
static void MPI_Comm_free(MPI_Comm *) {}
static void MPI_Send(const void *, int, MPI_Datatype, int, int, MPI_Comm) {}
static void MPI_Recv(void *, int, MPI_Datatype, int, int,
static void MPI_Recv(void *, int, MPI_Datatype, int, int,
MPI_Comm, MPI_Status *) {}
static void MPI_Allreduce(const void *in, void *out, int, MPI_Datatype type,
static void MPI_Allreduce(const void *in, void *out, int, MPI_Datatype type,
MPI_Op op, MPI_Comm)
{
if (type == MPI_INT) *((int *) out) = *((int *) in);
}
static void MPI_Scan(const void *in, void *out, int, MPI_Datatype intype,
MPI_Op op,MPI_Comm)
MPI_Op op,MPI_Comm)
{
if (intype == MPI_INT) *((int *) out) = *((int *) in);
}

View File

@ -3,7 +3,7 @@
* POEMS: PARALLELIZABLE OPEN SOURCE EFFICIENT MULTIBODY SOFTWARE *
* DESCRIPTION: SEE READ-ME *
* FILE NAME: PoemsChain.h *
* AUTHORS: See Author List *
* AUTHORS: See Author List *
* GRANTS: See Grants List *
* COPYRIGHT: (C) 2005 by Authors as listed in Author's List *
* LICENSE: Please see License Agreement *
@ -11,7 +11,7 @@
* ADMINISTRATOR: Prof. Kurt Anderson *
* Computational Dynamics Lab *
* Rensselaer Polytechnic Institute *
* 110 8th St. Troy NY 12180 *
* 110 8th St. Troy NY 12180 *
* CONTACT: anderk5@rpi.edu *
*_________________________________________________________________________*/
@ -21,54 +21,54 @@
#include "poemslist.h"
struct ChildRingData {
List<int> * childRing;
int entranceNodeId;
List<int> * childRing;
int entranceNodeId;
};
struct POEMSChain{
~POEMSChain(){
for(int i = 0; i < childChains.GetNumElements(); i++)
{
delete childChains(i);
}
~POEMSChain(){
for(int i = 0; i < childChains.GetNumElements(); i++)
{
delete childChains(i);
}
listOfNodes.DeleteValues();
}
//void printTreeStructure(int tabs);
//void getTreeAsList(List<int> * temp);
List<int> listOfNodes;
List<POEMSChain> childChains;
POEMSChain * parentChain;
List<ChildRingData> childRings;
void printTreeStructure(int tabs){
for(int i = 0; i < tabs; i++)
{
cout << "\t";
}
cout << "Chain: ";
for(int i = 0; i < listOfNodes.GetNumElements(); i++)
{
cout << *(listOfNodes(i)) << " ";
}
cout << endl;
for(int i = 0; i < childChains.GetNumElements(); i++)
{
childChains(i)->printTreeStructure(tabs + 1);
}
}
void getTreeAsList(List<int> * temp)
{
for(int i = 0; i < listOfNodes.GetNumElements(); i++)
{
int * integer = new int;
*integer = *(listOfNodes(i));
temp->Append(integer);
}
for(int i = 0; i < childChains.GetNumElements(); i++)
{
childChains(i)->getTreeAsList(temp);
}
}
}
//void printTreeStructure(int tabs);
//void getTreeAsList(List<int> * temp);
List<int> listOfNodes;
List<POEMSChain> childChains;
POEMSChain * parentChain;
List<ChildRingData> childRings;
void printTreeStructure(int tabs){
for(int i = 0; i < tabs; i++)
{
cout << "\t";
}
cout << "Chain: ";
for(int i = 0; i < listOfNodes.GetNumElements(); i++)
{
cout << *(listOfNodes(i)) << " ";
}
cout << endl;
for(int i = 0; i < childChains.GetNumElements(); i++)
{
childChains(i)->printTreeStructure(tabs + 1);
}
}
void getTreeAsList(List<int> * temp)
{
for(int i = 0; i < listOfNodes.GetNumElements(); i++)
{
int * integer = new int;
*integer = *(listOfNodes(i));
temp->Append(integer);
}
for(int i = 0; i < childChains.GetNumElements(); i++)
{
childChains(i)->getTreeAsList(temp);
}
}
};
#endif

View File

@ -3,7 +3,7 @@
* POEMS: PARALLELIZABLE OPEN SOURCE EFFICIENT MULTIBODY SOFTWARE *
* DESCRIPTION: SEE READ-ME *
* FILE NAME: SystemProcessor.h *
* AUTHORS: See Author List *
* AUTHORS: See Author List *
* GRANTS: See Grants List *
* COPYRIGHT: (C) 2005 by Authors as listed in Author's List *
* LICENSE: Please see License Agreement *
@ -11,7 +11,7 @@
* ADMINISTRATOR: Prof. Kurt Anderson *
* Computational Dynamics Lab *
* Rensselaer Polytechnic Institute *
* 110 8th St. Troy NY 12180 *
* 110 8th St. Troy NY 12180 *
* CONTACT: anderk5@rpi.edu *
*_________________________________________________________________________*/
@ -23,47 +23,47 @@
struct POEMSNode {
List<POEMSNode> links;
List<bool> taken;
int idNumber;
bool visited;
~POEMSNode(){
for(int i = 0; i < taken.GetNumElements(); i++)
{
delete taken(i);
}
};
List<POEMSNode> links;
List<bool> taken;
int idNumber;
bool visited;
~POEMSNode(){
for(int i = 0; i < taken.GetNumElements(); i++)
{
delete taken(i);
}
};
};
class SystemProcessor{
private:
Tree nodes;
static void POEMSNodeDelete_cb(void *node) {
delete (POEMSNode *) node;
}
List<POEMSChain> headsOfSystems;
List<List<int> > ringsInSystem;
POEMSNode * findSingleLink(TreeNode * aNode);
POEMSChain * AddNewChain(POEMSNode * currentNode);
bool setLinkVisited(POEMSNode * firstNode, POEMSNode * secondNode);
Tree nodes;
static void POEMSNodeDelete_cb(void *node) {
delete (POEMSNode *) node;
}
List<POEMSChain> headsOfSystems;
List<List<int> > ringsInSystem;
POEMSNode * findSingleLink(TreeNode * aNode);
POEMSChain * AddNewChain(POEMSNode * currentNode);
bool setLinkVisited(POEMSNode * firstNode, POEMSNode * secondNode);
public:
SystemProcessor(void);
~SystemProcessor(void) {
headsOfSystems.DeleteValues();
for(int i = 0; i < ringsInSystem.GetNumElements(); i++)
{
for(int k = 0; k < ringsInSystem(i)->GetNumElements(); i++)
{
delete (*ringsInSystem(i))(k);
}
}
};
void processArray(int** links, int numLinks);
List<POEMSChain> * getSystemData();
int getNumberOfHeadChains();
SystemProcessor(void);
~SystemProcessor(void) {
headsOfSystems.DeleteValues();
for(int i = 0; i < ringsInSystem.GetNumElements(); i++)
{
for(int k = 0; k < ringsInSystem(i)->GetNumElements(); i++)
{
delete (*ringsInSystem(i))(k);
}
}
};
void processArray(int** links, int numLinks);
List<POEMSChain> * getSystemData();
int getNumberOfHeadChains();
};
SystemProcessor::SystemProcessor(void){
@ -73,145 +73,145 @@ SystemProcessor::SystemProcessor(void){
void SystemProcessor::processArray(int** links, int numLinks)
{
bool * false_var; //holds the value false; needed because a constant cannot be put into a list; the list requires a
//reference.
for(int i = 0; i < numLinks; i++) //go through all the links in the input array
{
if(!nodes.Find(links[i][0])) //if the first node in the pair is not found in the storage tree
{
POEMSNode * newNode = new POEMSNode; //make a new node
// forDeletion.Append(newNode);
newNode->idNumber = links[i][0]; //set its ID to the value
newNode->visited = false; //set it to be unvisited
nodes.Insert(links[i][0], links[i][0], (void *) newNode); //and add it to the tree storage structure
}
if(!nodes.Find(links[i][1])) //repeat process for the other half of each link
{
POEMSNode * newNode = new POEMSNode;
// forDeletion.Append(newNode);
newNode->idNumber = links[i][1];
newNode->visited = false;
nodes.Insert(links[i][1], links[i][1], (void *) newNode);
}
POEMSNode * firstNode = (POEMSNode *)nodes.Find(links[i][0]); //now that we are sure both nodes exist,
POEMSNode * secondNode = (POEMSNode *)nodes.Find(links[i][1]); //we can get both of them out of the tree
firstNode->links.Append(secondNode); //and add the link from the first to the second...
false_var = new bool;
*false_var = false; //make a new false boolean to note that the link between these two
firstNode->taken.Append(false_var); //has not already been taken, and append it to the taken list
secondNode->links.Append(firstNode); //repeat process for link from second node to first
false_var = new bool;
*false_var = false;
secondNode->taken.Append(false_var);
}
TreeNode * temp = nodes.GetRoot(); //get the root node of the node storage tree
POEMSNode * currentNode;
do
{
currentNode = findSingleLink(temp); //find the start of the next available chain
if(currentNode != NULL)
{
headsOfSystems.Append(AddNewChain(currentNode)); //and add it to the headsOfSystems list of chains
}
}
while(currentNode != NULL); //repeat this until all chains have been added
bool * false_var; //holds the value false; needed because a constant cannot be put into a list; the list requires a
//reference.
for(int i = 0; i < numLinks; i++) //go through all the links in the input array
{
if(!nodes.Find(links[i][0])) //if the first node in the pair is not found in the storage tree
{
POEMSNode * newNode = new POEMSNode; //make a new node
// forDeletion.Append(newNode);
newNode->idNumber = links[i][0]; //set its ID to the value
newNode->visited = false; //set it to be unvisited
nodes.Insert(links[i][0], links[i][0], (void *) newNode); //and add it to the tree storage structure
}
if(!nodes.Find(links[i][1])) //repeat process for the other half of each link
{
POEMSNode * newNode = new POEMSNode;
// forDeletion.Append(newNode);
newNode->idNumber = links[i][1];
newNode->visited = false;
nodes.Insert(links[i][1], links[i][1], (void *) newNode);
}
POEMSNode * firstNode = (POEMSNode *)nodes.Find(links[i][0]); //now that we are sure both nodes exist,
POEMSNode * secondNode = (POEMSNode *)nodes.Find(links[i][1]); //we can get both of them out of the tree
firstNode->links.Append(secondNode); //and add the link from the first to the second...
false_var = new bool;
*false_var = false; //make a new false boolean to note that the link between these two
firstNode->taken.Append(false_var); //has not already been taken, and append it to the taken list
secondNode->links.Append(firstNode); //repeat process for link from second node to first
false_var = new bool;
*false_var = false;
secondNode->taken.Append(false_var);
}
TreeNode * temp = nodes.GetRoot(); //get the root node of the node storage tree
POEMSNode * currentNode;
do
{
currentNode = findSingleLink(temp); //find the start of the next available chain
if(currentNode != NULL)
{
headsOfSystems.Append(AddNewChain(currentNode)); //and add it to the headsOfSystems list of chains
}
}
while(currentNode != NULL); //repeat this until all chains have been added
}
POEMSChain * SystemProcessor::AddNewChain(POEMSNode * currentNode){
if(currentNode == NULL) //Termination condition; if the currentNode is null, then return null
{
return NULL;
}
int * tmp;
POEMSNode * nextNode = NULL; //nextNode stores the proposed next node to add to the chain. this will be checked to make sure no backtracking is occurring before being assigned as the current node.
POEMSChain * newChain = new POEMSChain; //make a new POEMSChain object. This will be the object returned
if(currentNode == NULL) //Termination condition; if the currentNode is null, then return null
{
return NULL;
}
int * tmp;
POEMSNode * nextNode = NULL; //nextNode stores the proposed next node to add to the chain. this will be checked to make sure no backtracking is occurring before being assigned as the current node.
POEMSChain * newChain = new POEMSChain; //make a new POEMSChain object. This will be the object returned
if(currentNode->links.GetNumElements() == 0) //if we have no links from this node, then the whole chain is only one node. Add this node to the chain and return it; mark node as visited for future reference
{
currentNode->visited = true;
tmp = new int;
*tmp = currentNode->idNumber;
newChain->listOfNodes.Append(tmp);
return newChain;
}
while(currentNode->links.GetNumElements() <= 2) //we go until we get to a node that branches, or both branches have already been taken both branches can already be taken if a loop with no spurs is found in the input data
{
currentNode->visited = true;
tmp = new int;
*tmp = currentNode->idNumber;
newChain->listOfNodes.Append(tmp); //append the current node to the chain & mark as visited
//cout << "Appending node " << currentNode->idNumber << " to chain" << endl;
nextNode = currentNode->links.GetHeadElement()->value; //the next node is the first or second value stored in the links array
//of the current node. We get the first value...
if(!setLinkVisited(currentNode, nextNode)) //...and see if it points back to where we came from. If it does...
{ //either way, we set this link as visited
if(currentNode->links.GetNumElements() == 1) //if it does, then if that is the only link to this node, we're done with the chain, so append the chain to the list and return the newly created chain
{
// headsOfSystems.Append(newChain);
return newChain;
}
nextNode = currentNode->links.GetHeadElement()->next->value;//follow the other link if there is one, so we go down the chain
if(!setLinkVisited(currentNode, nextNode)) //mark link as followed, so we know not to backtrack
{
// headsOfSystems.Append(newChain);
return newChain; //This condition, where no branches have occurred but both links have already
//been taken can only occur in a loop with no spurs; add this loop to the
//system (currently added as a chain for consistency), and return.
}
}
currentNode = nextNode; //set the current node to be the next node in the chain
}
currentNode->visited = true;
tmp = new int;
*tmp = currentNode->idNumber;
newChain->listOfNodes.Append(tmp); //append the last node before branch (node shared jointly with branch chains)
//re-mark as visited, just to make sure
ListElement<POEMSNode> * tempNode = currentNode->links.GetHeadElement(); //go through all of the links, one at a time that branch
POEMSChain * tempChain = NULL; //temporary variable to hold data
while(tempNode != NULL) //when we have followed all links, stop
{
if(setLinkVisited(tempNode->value, currentNode)) //dont backtrack, or create closed loops
{
tempChain = AddNewChain(tempNode->value); //Add a new chain created out of the next node down that link
tempChain->parentChain = newChain; //set the parent to be this chain
newChain->childChains.Append(tempChain); //append the chain to this chain's list of child chains
}
tempNode = tempNode->next; //go to process the next chain
}
//headsOfSystems.Append(newChain); //append this chain to the system list
return newChain;
if(currentNode->links.GetNumElements() == 0) //if we have no links from this node, then the whole chain is only one node. Add this node to the chain and return it; mark node as visited for future reference
{
currentNode->visited = true;
tmp = new int;
*tmp = currentNode->idNumber;
newChain->listOfNodes.Append(tmp);
return newChain;
}
while(currentNode->links.GetNumElements() <= 2) //we go until we get to a node that branches, or both branches have already been taken both branches can already be taken if a loop with no spurs is found in the input data
{
currentNode->visited = true;
tmp = new int;
*tmp = currentNode->idNumber;
newChain->listOfNodes.Append(tmp); //append the current node to the chain & mark as visited
//cout << "Appending node " << currentNode->idNumber << " to chain" << endl;
nextNode = currentNode->links.GetHeadElement()->value; //the next node is the first or second value stored in the links array
//of the current node. We get the first value...
if(!setLinkVisited(currentNode, nextNode)) //...and see if it points back to where we came from. If it does...
{ //either way, we set this link as visited
if(currentNode->links.GetNumElements() == 1) //if it does, then if that is the only link to this node, we're done with the chain, so append the chain to the list and return the newly created chain
{
// headsOfSystems.Append(newChain);
return newChain;
}
nextNode = currentNode->links.GetHeadElement()->next->value;//follow the other link if there is one, so we go down the chain
if(!setLinkVisited(currentNode, nextNode)) //mark link as followed, so we know not to backtrack
{
// headsOfSystems.Append(newChain);
return newChain; //This condition, where no branches have occurred but both links have already
//been taken can only occur in a loop with no spurs; add this loop to the
//system (currently added as a chain for consistency), and return.
}
}
currentNode = nextNode; //set the current node to be the next node in the chain
}
currentNode->visited = true;
tmp = new int;
*tmp = currentNode->idNumber;
newChain->listOfNodes.Append(tmp); //append the last node before branch (node shared jointly with branch chains)
//re-mark as visited, just to make sure
ListElement<POEMSNode> * tempNode = currentNode->links.GetHeadElement(); //go through all of the links, one at a time that branch
POEMSChain * tempChain = NULL; //temporary variable to hold data
while(tempNode != NULL) //when we have followed all links, stop
{
if(setLinkVisited(tempNode->value, currentNode)) //dont backtrack, or create closed loops
{
tempChain = AddNewChain(tempNode->value); //Add a new chain created out of the next node down that link
tempChain->parentChain = newChain; //set the parent to be this chain
newChain->childChains.Append(tempChain); //append the chain to this chain's list of child chains
}
tempNode = tempNode->next; //go to process the next chain
}
//headsOfSystems.Append(newChain); //append this chain to the system list
return newChain;
}
POEMSNode * SystemProcessor::findSingleLink(TreeNode * aNode)
//This function takes the root of a search tree containing POEMSNodes and returns a POEMSNode corresponding to the start of a chain in the
//system. It finds a node that has not been visited before, and only has one link; this node will be used as the head of the chain.
{
if(aNode == NULL)
{
return NULL;
}
POEMSNode * returnVal = (POEMSNode *)aNode->GetAuxData(); //get the poemsnode data out of the treenode
POEMSNode * detectLoneLoops = NULL; //is used to handle a loop that has no protruding chains
if(returnVal->visited == false)
{
detectLoneLoops = returnVal; //if we find any node that has not been visited yet, save it
}
if(returnVal->links.GetNumElements() == 1 && returnVal->visited == false) //see if it has one element and hasnt been visited already
{
return returnVal; //return the node is it meets this criteria
}
returnVal = findSingleLink(aNode->Left()); //otherwise, check the left subtree
if(returnVal == NULL) //and if we find nothing...
{
returnVal = findSingleLink(aNode->Right()); //check the right subtree
}
if(returnVal == NULL) //if we could not find any chains
{
returnVal = detectLoneLoops; //see if we found any nodes at all that havent been processed
}
return returnVal; //return what we find (will be NULL if no new chains are
//found)
if(aNode == NULL)
{
return NULL;
}
POEMSNode * returnVal = (POEMSNode *)aNode->GetAuxData(); //get the poemsnode data out of the treenode
POEMSNode * detectLoneLoops = NULL; //is used to handle a loop that has no protruding chains
if(returnVal->visited == false)
{
detectLoneLoops = returnVal; //if we find any node that has not been visited yet, save it
}
if(returnVal->links.GetNumElements() == 1 && returnVal->visited == false) //see if it has one element and hasnt been visited already
{
return returnVal; //return the node is it meets this criteria
}
returnVal = findSingleLink(aNode->Left()); //otherwise, check the left subtree
if(returnVal == NULL) //and if we find nothing...
{
returnVal = findSingleLink(aNode->Right()); //check the right subtree
}
if(returnVal == NULL) //if we could not find any chains
{
returnVal = detectLoneLoops; //see if we found any nodes at all that havent been processed
}
return returnVal; //return what we find (will be NULL if no new chains are
//found)
}
bool SystemProcessor::setLinkVisited(POEMSNode * firstNode, POEMSNode * secondNode)
@ -223,65 +223,65 @@ bool SystemProcessor::setLinkVisited(POEMSNode * firstNode, POEMSNode * secondNo
//value for that particular link. Because each link is represented twice, (once at each node in the link), both of the boolean values need
//to be set in the event that the link has to be set as visited.
{
//cout << "Checking link between nodes " << firstNode->idNumber << " and " << secondNode->idNumber << "... ";
ListElement<POEMSNode> * tmp = firstNode->links.GetHeadElement(); //get the head element of the list of pointers for node 1
ListElement<bool> * tmp2 = firstNode->taken.GetHeadElement(); //get the head element of the list of bool isVisited flags for node 1
while(tmp->value != NULL || tmp2->value != NULL) //go through until we reach the end of the lists
{
if(tmp->value == secondNode) //if we find the link to the other node
{
if(*(tmp2->value) == true) //if the link has already been visited
{
//cout << "visited already" << endl;
return false; //return false to indicate that the link has been visited before this attempt
}
else //otherwise, visit it
{
*tmp2->value = true;
}
break;
}
tmp = tmp->next; //go check next link
tmp2 = tmp2->next;
}
//cout << "Checking link between nodes " << firstNode->idNumber << " and " << secondNode->idNumber << "... ";
ListElement<POEMSNode> * tmp = firstNode->links.GetHeadElement(); //get the head element of the list of pointers for node 1
ListElement<bool> * tmp2 = firstNode->taken.GetHeadElement(); //get the head element of the list of bool isVisited flags for node 1
while(tmp->value != NULL || tmp2->value != NULL) //go through until we reach the end of the lists
{
if(tmp->value == secondNode) //if we find the link to the other node
{
if(*(tmp2->value) == true) //if the link has already been visited
{
//cout << "visited already" << endl;
return false; //return false to indicate that the link has been visited before this attempt
}
else //otherwise, visit it
{
*tmp2->value = true;
}
break;
}
tmp = tmp->next; //go check next link
tmp2 = tmp2->next;
}
tmp = secondNode->links.GetHeadElement(); //now, if the link was unvisited, we need to go set the other node's list such that
//it also knows this link is being visited
tmp2 = secondNode->taken.GetHeadElement();
while(tmp->value != NULL || tmp2->value != NULL) //go through the list
{
if(tmp->value == firstNode) //if we find the link
{
if(*(tmp2->value) == true) //and it has already been visited, then signal an error; this shouldnt ever happen
{
cout << "Error in parsing structure! Should never reach this condition! \n" <<
"Record of visited links out of synch between two adjacent nodes.\n";
return false;
}
else
{
*tmp2->value = true; //set the appropriate value to true to indicate this link has been visited
}
break;
}
tmp = tmp->next;
tmp2 = tmp2->next;
}
//cout << "not visited" << endl;
return true; //return true to indicate that this is the first time the link has been visited
tmp = secondNode->links.GetHeadElement(); //now, if the link was unvisited, we need to go set the other node's list such that
//it also knows this link is being visited
tmp2 = secondNode->taken.GetHeadElement();
while(tmp->value != NULL || tmp2->value != NULL) //go through the list
{
if(tmp->value == firstNode) //if we find the link
{
if(*(tmp2->value) == true) //and it has already been visited, then signal an error; this shouldnt ever happen
{
cout << "Error in parsing structure! Should never reach this condition! \n" <<
"Record of visited links out of synch between two adjacent nodes.\n";
return false;
}
else
{
*tmp2->value = true; //set the appropriate value to true to indicate this link has been visited
}
break;
}
tmp = tmp->next;
tmp2 = tmp2->next;
}
//cout << "not visited" << endl;
return true; //return true to indicate that this is the first time the link has been visited
}
List<POEMSChain> * SystemProcessor::getSystemData(void) //Gets the list of POEMSChains that comprise the system. Might eventually only
//return chains linked to the reference plane, but currently returns every chain
//in the system.
List<POEMSChain> * SystemProcessor::getSystemData(void) //Gets the list of POEMSChains that comprise the system. Might eventually only
//return chains linked to the reference plane, but currently returns every chain
//in the system.
{
return &headsOfSystems;
return &headsOfSystems;
}
int SystemProcessor::getNumberOfHeadChains(void) //This function isnt implemented yet, and might be taken out entirely; this was a holdover
//from when I intended to return an array of chain pointers, rather than a list of chains
//It will probably be deleted once I finish figuring out exactly what needs to be returned
//from when I intended to return an array of chain pointers, rather than a list of chains
//It will probably be deleted once I finish figuring out exactly what needs to be returned
{
return 0;
return 0;
}
#endif

View File

@ -2,8 +2,8 @@
*_________________________________________________________________________*
* POEMS: PARALLELIZABLE OPEN SOURCE EFFICIENT MULTIBODY SOFTWARE *
* DESCRIPTION: SEE READ-ME *
* FILE NAME: body23joint.h *
* AUTHORS: See Author List *
* FILE NAME: body23joint.h *
* AUTHORS: See Author List *
* GRANTS: See Grants List *
* COPYRIGHT: (C) 2005 by Authors as listed in Author's List *
* LICENSE: Please see License Agreement *
@ -11,7 +11,7 @@
* ADMINISTRATOR: Prof. Kurt Anderson *
* Computational Dynamics Lab *
* Rensselaer Polytechnic Institute *
* 110 8th St. Troy NY 12180 *
* 110 8th St. Troy NY 12180 *
* CONTACT: anderk5@rpi.edu *
*_________________________________________________________________________*/

View File

@ -3,7 +3,7 @@
* POEMS: PARALLELIZABLE OPEN SOURCE EFFICIENT MULTIBODY SOFTWARE *
* DESCRIPTION: SEE READ-ME *
* FILE NAME: colmatrix.h *
* AUTHORS: See Author List *
* AUTHORS: See Author List *
* GRANTS: See Grants List *
* COPYRIGHT: (C) 2005 by Authors as listed in Author's List *
* LICENSE: Please see License Agreement *
@ -11,7 +11,7 @@
* ADMINISTRATOR: Prof. Kurt Anderson *
* Computational Dynamics Lab *
* Rensselaer Polytechnic Institute *
* 110 8th St. Troy NY 12180 *
* 110 8th St. Troy NY 12180 *
* CONTACT: anderk5@rpi.edu *
*_________________________________________________________________________*/
@ -62,23 +62,23 @@ public:
void BasicMin(double& value, int& index);
// fast matrix operations
friend void FastQuaternions(ColMatrix& q, Mat3x3& C);
friend void FastInvQuaternions(Mat3x3& C, ColMatrix& q);
friend void FastQuaternionDerivatives(ColMatrix& q, ColMatrix& omega, ColMatrix& qdot);
friend void FastTMult(Matrix& A, Vect6& B, ColMatrix& C);
friend void FastMult(Matrix& A, ColMatrix& B, Vect6& C);
friend void FastAssign(ColMatrix& A, ColMatrix& C);
friend void FastQuaternions(ColMatrix& q, Mat3x3& C);
friend void FastInvQuaternions(Mat3x3& C, ColMatrix& q);
friend void FastQuaternionDerivatives(ColMatrix& q, ColMatrix& omega, ColMatrix& qdot);
friend void FastTMult(Matrix& A, Vect6& B, ColMatrix& C);
friend void FastMult(Matrix& A, ColMatrix& B, Vect6& C);
friend void FastAssign(ColMatrix& A, ColMatrix& C);
friend void FastMult(Mat3x3& A, ColMatrix& B, Vect3& C);
friend void FastMult(Mat3x3& A, Vect3& B, ColMatrix& C);
friend void FastAssign(ColMatrix&A, Vect3& C);
friend void EP_Derivatives(ColMatrix& q, ColMatrix& u, ColMatrix& qdot);
friend void EP_Transformation(ColMatrix& q, Mat3x3& C);
friend void EP_FromTransformation(ColMatrix& q, Mat3x3& C);
friend void EP_Normalize(ColMatrix& q);
friend void EPdotdot_udot(ColMatrix& Audot, ColMatrix& Aqdot, ColMatrix& Aq,ColMatrix& Aqddot);
friend void qdot_to_u(ColMatrix& q, ColMatrix& u, ColMatrix& qdot);
friend void FastMult(Mat3x3& A, ColMatrix& B, Vect3& C);
friend void FastMult(Mat3x3& A, Vect3& B, ColMatrix& C);
friend void FastAssign(ColMatrix&A, Vect3& C);
friend void EP_Derivatives(ColMatrix& q, ColMatrix& u, ColMatrix& qdot);
friend void EP_Transformation(ColMatrix& q, Mat3x3& C);
friend void EP_FromTransformation(ColMatrix& q, Mat3x3& C);
friend void EP_Normalize(ColMatrix& q);
friend void EPdotdot_udot(ColMatrix& Audot, ColMatrix& Aqdot, ColMatrix& Aq,ColMatrix& Aqddot);
friend void qdot_to_u(ColMatrix& q, ColMatrix& u, ColMatrix& qdot);
};
#endif

View File

@ -2,8 +2,8 @@
*_________________________________________________________________________*
* POEMS: PARALLELIZABLE OPEN SOURCE EFFICIENT MULTIBODY SOFTWARE *
* DESCRIPTION: SEE READ-ME *
* FILE NAME: defines.h *
* AUTHORS: See Author List *
* FILE NAME: defines.h *
* AUTHORS: See Author List *
* GRANTS: See Grants List *
* COPYRIGHT: (C) 2005 by Authors as listed in Author's List *
* LICENSE: Please see License Agreement *
@ -11,7 +11,7 @@
* ADMINISTRATOR: Prof. Kurt Anderson *
* Computational Dynamics Lab *
* Rensselaer Polytechnic Institute *
* 110 8th St. Troy NY 12180 *
* 110 8th St. Troy NY 12180 *
* CONTACT: anderk5@rpi.edu *
*_________________________________________________________________________*/

View File

@ -3,7 +3,7 @@
* POEMS: PARALLELIZABLE OPEN SOURCE EFFICIENT MULTIBODY SOFTWARE *
* DESCRIPTION: SEE READ-ME *
* FILE NAME: joint.h *
* AUTHORS: See Author List *
* AUTHORS: See Author List *
* GRANTS: See Grants List *
* COPYRIGHT: (C) 2005 by Authors as listed in Author's List *
* LICENSE: Please see License Agreement *
@ -11,7 +11,7 @@
* ADMINISTRATOR: Prof. Kurt Anderson *
* Computational Dynamics Lab *
* Rensselaer Polytechnic Institute *
* 110 8th St. Troy NY 12180 *
* 110 8th St. Troy NY 12180 *
* CONTACT: anderk5@rpi.edu *
*_________________________________________________________________________*/
@ -29,7 +29,7 @@ enum JointType {
PRISMATICJOINT = 3,
SPHERICALJOINT = 4,
BODY23JOINT = 5,
MIXEDJOINT = 6
MIXEDJOINT = 6
};
class Body;
@ -51,7 +51,7 @@ protected:
ColMatrix qdot; // generalized coordinate derivatives
ColMatrix udot; // generalized speed derivatives
ColMatrix qdotdot;
Mat3x3 pk_C_ko; // transformation relationship for q = 0
Mat3x3 pk_C_k; // local transform
@ -94,14 +94,14 @@ public:
Mat3x3* Get_pkCk();
Mat3x3* Get_kCpk();
//void SetInitialState(VirtualMatrix& q, VirtualMatrix& u);
void SetInitialState(ColMatrix& q, ColMatrix& u);
//void SetInitialState(VirtualMatrix& q, VirtualMatrix& u);
void SetInitialState(ColMatrix& q, ColMatrix& u);
void SetZeroOrientation(VirtualMatrix& C);
void ResetQdot();
void ResetQ();
bool ReadIn(std::istream& in);
bool ReadIn(std::istream& in);
void WriteOut(std::ostream& out);
virtual void WriteOutJointData(std::ostream& out) = 0;
virtual bool ReadInJointData(std::istream& in) = 0;
virtual Matrix GetForward_sP();

View File

@ -3,7 +3,7 @@
* POEMS: PARALLELIZABLE OPEN SOURCE EFFICIENT MULTIBODY SOFTWARE *
* DESCRIPTION: SEE READ-ME *
* FILE NAME: matrixfun.h *
* AUTHORS: See Author List *
* AUTHORS: See Author List *
* GRANTS: See Grants List *
* COPYRIGHT: (C) 2005 by Authors as listed in Author's List *
* LICENSE: Please see License Agreement *
@ -11,10 +11,10 @@
* ADMINISTRATOR: Prof. Kurt Anderson *
* Computational Dynamics Lab *
* Rensselaer Polytechnic Institute *
* 110 8th St. Troy NY 12180 *
* 110 8th St. Troy NY 12180 *
* CONTACT: anderk5@rpi.edu *
*_________________________________________________________________________*/
#ifndef MATRIXFUN_H
#define MATRIXFUN_H
@ -44,22 +44,22 @@ Mat4x4 Inverse(Mat4x4& A);
Mat6x6 Inverse(Mat6x6& A);
// overloaded addition
Matrix operator+ (const VirtualMatrix &A, const VirtualMatrix &B); // addition
//Mat3x3 operator+ (const Mat3x3 &A, const Mat3x3 &B); // addition
//Matrix operator+ (const VirtualMatrix &A, const VirtualMatrix &B); // addition
Matrix operator+ (const VirtualMatrix &A, const VirtualMatrix &B); // addition
//Mat3x3 operator+ (const Mat3x3 &A, const Mat3x3 &B); // addition
//Matrix operator+ (const VirtualMatrix &A, const VirtualMatrix &B); // addition
// overloaded subtraction
Matrix operator- (const VirtualMatrix &A, const VirtualMatrix &B); // subtraction
Matrix operator- (const VirtualMatrix &A, const VirtualMatrix &B); // subtraction
// overloaded matrix multiplication
Matrix operator* (const VirtualMatrix &A, const VirtualMatrix &B); // multiplication
// overloaded scalar-matrix multiplication
Matrix operator* (const VirtualMatrix &A, double b); // overloaded *
Matrix operator* (double b, const VirtualMatrix &A); // overloaded *
Matrix operator* (const VirtualMatrix &A, double b); // overloaded *
Matrix operator* (double b, const VirtualMatrix &A); // overloaded *
// overloaded negative
Matrix operator- (const VirtualMatrix &A); // negative
Matrix operator- (const VirtualMatrix &A); // negative
Vect3 Cross(Vect3& a, Vect3& b);
Mat3x3 CrossMat(Vect3& a);

View File

@ -2,8 +2,8 @@
*_________________________________________________________________________*
* POEMS: PARALLELIZABLE OPEN SOURCE EFFICIENT MULTIBODY SOFTWARE *
* DESCRIPTION: SEE READ-ME *
* FILE NAME: mixedjoint.h *
* AUTHORS: See Author List *
* FILE NAME: mixedjoint.h *
* AUTHORS: See Author List *
* GRANTS: See Grants List *
* COPYRIGHT: (C) 2005 by Authors as listed in Author's List *
* LICENSE: Please see License Agreement *
@ -11,7 +11,7 @@
* ADMINISTRATOR: Prof. Kurt Anderson *
* Computational Dynamics Lab *
* Rensselaer Polytechnic Institute *
* 110 8th St. Troy NY 12180 *
* 110 8th St. Troy NY 12180 *
* CONTACT: anderk5@rpi.edu *
*_________________________________________________________________________*/
@ -26,10 +26,10 @@ class MixedJoint : public Joint{
int numrots;
int numtrans;
Vect6 dofs;
public:
public:
MixedJoint();
~MixedJoint();
JointType GetType();
bool ReadInJointData(std::istream& in);
void WriteOutJointData(std::ostream& out);

View File

@ -3,7 +3,7 @@
* POEMS: PARALLELIZABLE OPEN SOURCE EFFICIENT MULTIBODY SOFTWARE *
* DESCRIPTION: SEE READ-ME *
* FILE NAME: onbody.h *
* AUTHORS: See Author List *
* AUTHORS: See Author List *
* GRANTS: See Grants List *
* COPYRIGHT: (C) 2005 by Authors as listed in Author's List *
* LICENSE: Please see License Agreement *
@ -11,7 +11,7 @@
* ADMINISTRATOR: Prof. Kurt Anderson *
* Computational Dynamics Lab *
* Rensselaer Polytechnic Institute *
* 110 8th St. Troy NY 12180 *
* 110 8th St. Troy NY 12180 *
* CONTACT: anderk5@rpi.edu *
*_________________________________________________________________________*/
@ -46,7 +46,7 @@ class OnBody {
Vect3* gamma; // pointer to gamma vector
Mat3x3* pk_C_k; // pointer to transformation
Mat6x6 sI; // spatial inertias
Mat6x6 sIhat; // recursive spatial inertias
Mat6x6 sSC; // spatial shift
@ -68,16 +68,16 @@ class OnBody {
ColMatrix* qdot;
ColMatrix* udot;
ColMatrix* qdotdot;
ColMatrix* r;
ColMatrix* r;
ColMatrix* acc;
ColMatrix* ang;
// friend classes
friend class OnSolver;
public:
public:
OnBody();
~OnBody();
int RecursiveSetup(InertialFrame* basebody);
@ -88,11 +88,11 @@ public:
Mat3x3 GetN_C_K();
Vect3 LocalCart();
int GetBodyID();
void CalculateAcceleration();
void CalculateAcceleration();
void Setup();
void SetupInertialFrame();
void LocalKinematics();
void LocalTriangularization(Vect3& Torque, Vect3& Force);
void LocalKinematics();
void LocalTriangularization(Vect3& Torque, Vect3& Force);
void LocalForwardSubstitution();
};

View File

@ -3,7 +3,7 @@
* POEMS: PARALLELIZABLE OPEN SOURCE EFFICIENT MULTIBODY SOFTWARE *
* DESCRIPTION: SEE READ-ME *
* FILE NAME: onsolver.h *
* AUTHORS: See Author List *
* AUTHORS: See Author List *
* GRANTS: See Grants List *
* COPYRIGHT: (C) 2005 by Authors as listed in Author's List *
* LICENSE: Please see License Agreement *
@ -11,7 +11,7 @@
* ADMINISTRATOR: Prof. Kurt Anderson *
* Computational Dynamics Lab *
* Rensselaer Polytechnic Institute *
* 110 8th St. Troy NY 12180 *
* 110 8th St. Troy NY 12180 *
* CONTACT: anderk5@rpi.edu *
*_________________________________________________________________________*/
@ -24,28 +24,28 @@
#include <fstream>
class OnSolver : public Solver {
OnBody inertialframe;
OnBody inertialframe;
int numbodies;
OnBody** bodyarray;
ColMatrix** q;
OnBody** bodyarray;
ColMatrix** q;
ColMatrix** qdot;
ColMatrix** qdotdot;
ColMatrix** qdotdot;
ColMatrix** u;
ColMatrix** udot;
void DeleteModel();
int CreateTopologyArray(int i, OnBody* body);
void CreateStateMatrixMaps();
void GetType();
public:
void GetType();
public:
OnSolver();
~OnSolver();
void CreateModel();
void Solve(double time, Matrix& FF);
void Solve(double time, Matrix& FF);
};
#endif

View File

@ -3,7 +3,7 @@
* POEMS: PARALLELIZABLE OPEN SOURCE EFFICIENT MULTIBODY SOFTWARE *
* DESCRIPTION: SEE READ-ME *
* FILE NAME: poemslist.h *
* AUTHORS: See Author List *
* AUTHORS: See Author List *
* GRANTS: See Grants List *
* COPYRIGHT: (C) 2005 by Authors as listed in Author's List *
* LICENSE: Please see License Agreement *
@ -11,7 +11,7 @@
* ADMINISTRATOR: Prof. Kurt Anderson *
* Computational Dynamics Lab *
* Rensselaer Polytechnic Institute *
* 110 8th St. Troy NY 12180 *
* 110 8th St. Troy NY 12180 *
* CONTACT: anderk5@rpi.edu *
*_________________________________________________________________________*/
@ -51,7 +51,7 @@ public:
S* operator()(int id);
void Append(List<S> * listToAppend);
void DeleteValues();
void RemoveElementAndDeleteValue(ListElement<S>* ele);
void RemoveElementAndDeleteValue(ListElement<S>* ele);
void PrintList();
};
@ -90,9 +90,9 @@ template<class S> List<S>::~List(){
template<class S> void List<S>::Append(List<S> * listToAppend)
{
tail->next = listToAppend->head;
listToAppend->head->prev = tail;
tail = listToAppend->tail;
tail->next = listToAppend->head;
listToAppend->head->prev = tail;
tail = listToAppend->tail;
}
template<class S> int List<S>::GetNumElements(){
@ -104,7 +104,7 @@ template<class S> ListElement<S>* List<S>::GetHeadElement(){
}
template<class S> ListElement<S>* List<S>::GetTailElement(){
return tail;
return tail;
}
@ -145,16 +145,16 @@ template<class S> ListElement<S>* List<S>::Append(S* v){
if(numelements==1)
head = tail = ele;
else{
/*
/*
tail->next = ele;
ele->prev = tail;
tail = ele;*/
ele->prev = tail;
tail = ele;
ele->prev->next = ele;
}
tail = ele;*/
ele->prev = tail;
tail = ele;
ele->prev->next = ele;
}
return ele;
}
@ -170,9 +170,9 @@ template<class S> ListElement<S>* List<S>::Prepend(S* v){
if(numelements==1)
head = tail = ele;
else{
ele->next = head;
head = ele;
ele->next->prev = ele;
ele->next = head;
head = ele;
ele->next->prev = ele;
}
return ele;
}
@ -193,12 +193,12 @@ template<class S> S* List<S>::operator()(int id){
cerr << "ERROR: subscript out of bounds" << endl;
exit(0);
}
ListElement<S>* ele = head;
for(int i=0;i<id;i++){
ele = ele->next;
}
return ele->value;
}
@ -214,15 +214,15 @@ template<class S> void List<S>::RemoveElementAndDeleteValue(ListElement<S>* ele)
}
template<class S> void List<S>::PrintList(){
cout<<"Printing List "<<endl;
ListElement<S>* ele = head;
cout<<*(ele->value)<<" ";
ele = ele->next;
for(int k =2; k<numelements; k++){
cout<<*(ele->value)<<" ";
ele = ele->next;
}
cout<<*(ele->value)<<endl;
cout<<"Printing List "<<endl;
ListElement<S>* ele = head;
cout<<*(ele->value)<<" ";
ele = ele->next;
for(int k =2; k<numelements; k++){
cout<<*(ele->value)<<" ";
ele = ele->next;
}
cout<<*(ele->value)<<endl;
}

View File

@ -3,7 +3,7 @@
* POEMS: PARALLELIZABLE OPEN SOURCE EFFICIENT MULTIBODY SOFTWARE *
* DESCRIPTION: SEE READ-ME *
* FILE NAME: poemsnodelib.h *
* AUTHORS: See Author List *
* AUTHORS: See Author List *
* GRANTS: See Grants List *
* COPYRIGHT: (C) 2005 by Authors as listed in Author's List *
* LICENSE: Please see License Agreement *
@ -11,7 +11,7 @@
* ADMINISTRATOR: Prof. Kurt Anderson *
* Computational Dynamics Lab *
* Rensselaer Polytechnic Institute *
* 110 8th St. Troy NY 12180 *
* 110 8th St. Troy NY 12180 *
* CONTACT: anderk5@rpi.edu *
*_________________________________________________________________________*/
@ -23,7 +23,7 @@
using namespace std;
TreeNode *GetTreeNode(int item,TreeNode *lptr = NULL,TreeNode *rptr =NULL);
TreeNode *GetTreeNode(int item,TreeNode *lptr = NULL,TreeNode *rptr =NULL);
void FreeTreeNode(TreeNode *p);
@ -45,26 +45,26 @@ void PrintTree (TreeNode *t, int level);
// postorder recursive scan of the nodes in a tree
void Postorder (TreeNode *t, void visit(TreeNode* &t))
{
// the recursive scan terminates on a empty subtree
if (t != NULL)
{
Postorder(t->Left(), visit); // descend left
Postorder(t->Right(), visit); // descend right
visit(t); // visit the node
}
// the recursive scan terminates on a empty subtree
if (t != NULL)
{
Postorder(t->Left(), visit); // descend left
Postorder(t->Right(), visit); // descend right
visit(t); // visit the node
}
}
// preorder recursive scan of the nodes in a tree
void Preorder (TreeNode *t, void visit(TreeNode* &t))
{
// the recursive scan terminates on a empty subtree
if (t != NULL)
{
visit(t); // visit the node
Preorder(t->Left(), visit); // descend left
Preorder(t->Right(), visit); // descend right
}
// the recursive scan terminates on a empty subtree
if (t != NULL)
{
visit(t); // visit the node
Preorder(t->Left(), visit); // descend left
Preorder(t->Right(), visit); // descend right
}
}
@ -72,21 +72,21 @@ void Preorder (TreeNode *t, void visit(TreeNode* &t))
// The pointers have default value NULL
TreeNode *GetTreeNode(int item,TreeNode *lptr,TreeNode *rptr)
{
TreeNode *p;
TreeNode *p;
// call new to allocate the new node
// pass parameters lptr and rptr to the function
p = new TreeNode(item, lptr, rptr);
// call new to allocate the new node
// pass parameters lptr and rptr to the function
p = new TreeNode(item, lptr, rptr);
// if insufficient memory, terminatewith an error message
if (p == NULL)
{
cerr << "Memory allocation failure!\n";
exit(1);
}
// if insufficient memory, terminatewith an error message
if (p == NULL)
{
cerr << "Memory allocation failure!\n";
exit(1);
}
// return the pointer to the system generated memory
return p;
// return the pointer to the system generated memory
return p;
}
@ -94,7 +94,7 @@ TreeNode *GetTreeNode(int item,TreeNode *lptr,TreeNode *rptr)
void FreeTreeNode(TreeNode *p)
{
delete p;
delete p;
}
@ -102,61 +102,61 @@ void FreeTreeNode(TreeNode *p)
// tests whether the node is a leaf node
void CountLeaf (TreeNode *t, int& count)
{
//use postorder descent
if(t !=NULL)
{
CountLeaf(t->Left(), count); // descend left
CountLeaf(t->Right(), count); // descend right
//use postorder descent
if(t !=NULL)
{
CountLeaf(t->Left(), count); // descend left
CountLeaf(t->Right(), count); // descend right
// check if node t is a leaf node (no descendants)
// if so, increment the variable count
if (t->Left() == NULL && t->Right() == NULL)
count++;
}
// check if node t is a leaf node (no descendants)
// if so, increment the variable count
if (t->Left() == NULL && t->Right() == NULL)
count++;
}
}
// the function uses the postorder scan. it computes the
// depth of the left and right subtrees of a node and
// depth of the left and right subtrees of a node and
// returns the depth as 1 + max(depthLeft,depthRight).
// the depth of an empty tree is -1
int Depth (TreeNode *t)
{
int depthLeft, depthRight, depthval;
int depthLeft, depthRight, depthval;
if (t == NULL)
depthval = -1;
else
{
depthLeft = Depth(t->Left());
depthRight = Depth(t->Right());
depthval = 1+(depthLeft > depthRight?depthLeft:depthRight);
}
return depthval;
if (t == NULL)
depthval = -1;
else
{
depthLeft = Depth(t->Left());
depthRight = Depth(t->Right());
depthval = 1+(depthLeft > depthRight?depthLeft:depthRight);
}
return depthval;
}
void IndentBlanks(int num)
{
// const int indentblock = 6;
// const int indentblock = 6;
for(int i = 0; i < num; i++)
cout << " ";
for(int i = 0; i < num; i++)
cout << " ";
}
void PrintTree (TreeNode *t, int level)
{
//print tree with root t, as long as t!=NULL
if (t != NULL)
{
int indentUnit = 5;
// print right branch of tree t
PrintTree(t->Right(),level + 1);
// indent to current level; output node data
IndentBlanks(indentUnit*level);
cout << t->GetData() << endl;
// print left branch of tree t
PrintTree(t->Left(),level + 1);
}
//print tree with root t, as long as t!=NULL
if (t != NULL)
{
int indentUnit = 5;
// print right branch of tree t
PrintTree(t->Right(),level + 1);
// indent to current level; output node data
IndentBlanks(indentUnit*level);
cout << t->GetData() << endl;
// print left branch of tree t
PrintTree(t->Left(),level + 1);
}
}
#endif

View File

@ -3,7 +3,7 @@
* POEMS: PARALLELIZABLE OPEN SOURCE EFFICIENT MULTIBODY SOFTWARE *
* DESCRIPTION: SEE READ-ME *
* FILE NAME: poemstree.h *
* AUTHORS: See Author List *
* AUTHORS: See Author List *
* GRANTS: See Grants List *
* COPYRIGHT: (C) 2005 by Authors as listed in Author's List *
* LICENSE: Please see License Agreement *
@ -11,7 +11,7 @@
* ADMINISTRATOR: Prof. Kurt Anderson *
* Computational Dynamics Lab *
* Rensselaer Polytechnic Institute *
* 110 8th St. Troy NY 12180 *
* 110 8th St. Troy NY 12180 *
* CONTACT: anderk5@rpi.edu *
*_________________________________________________________________________*/
@ -31,74 +31,74 @@ const int rightheavy = 1;
class Tree{
protected:
// pointer to tree root and node most recently accessed
TreeNode *root;
TreeNode *current;
// pointer to tree root and node most recently accessed
TreeNode *root;
TreeNode *current;
// number of elements in the tree
int size;
// used by the copy constructor and assignment operator
TreeNode *CopyTree(TreeNode *t);
// number of elements in the tree
int size;
// used by the copy constructor and assignment operator
TreeNode *CopyTree(TreeNode *t);
// callback function to delete aux data
void (*DeleteAuxData)(void *);
// used by insert and delete method to re-establish
// the avl conditions after a node is added or deleted
// from a subtree
void SingleRotateLeft (TreeNode* &p);
void SingleRotateRight (TreeNode* &p);
void DoubleRotateLeft (TreeNode* &p);
void DoubleRotateRight (TreeNode* &p);
void UpdateLeftTree (TreeNode* &p, int &reviseBalanceFactor);
void UpdateRightTree (TreeNode* &p, int &reviseBalanceFactor);
// used by insert and delete method to re-establish
// the avl conditions after a node is added or deleted
// from a subtree
void SingleRotateLeft (TreeNode* &p);
void SingleRotateRight (TreeNode* &p);
void DoubleRotateLeft (TreeNode* &p);
void DoubleRotateRight (TreeNode* &p);
void UpdateLeftTree (TreeNode* &p, int &reviseBalanceFactor);
void UpdateRightTree (TreeNode* &p, int &reviseBalanceFactor);
// used by destructor, assignment operator and ClearList
void DeleteTree(TreeNode *t);
void ClearTree(TreeNode * &t);
// used by destructor, assignment operator and ClearList
void DeleteTree(TreeNode *t);
void ClearTree(TreeNode * &t);
// locate a node with data item and its parent in tree
// used by Find and Delete
TreeNode *FindNode(const int& item, TreeNode* & parent) const;
// locate a node with data item and its parent in tree
// used by Find and Delete
TreeNode *FindNode(const int& item, TreeNode* & parent) const;
public:
// constructor, destructor
Tree(void);
~Tree(void)
{
ClearTree(root);
};
// constructor, destructor
Tree(void);
~Tree(void)
{
ClearTree(root);
};
// assignment operator
Tree& operator= (const Tree& rhs);
// assignment operator
Tree& operator= (const Tree& rhs);
// standard list handling methods
void * Find(int& item);
void * GetAuxData(int item) {
// standard list handling methods
void * Find(int& item);
void * GetAuxData(int item) {
return (void *)(FindNode(item, root)->GetAuxData());
}
void SetDeleteAuxData(void (*callback)(void *)) {
DeleteAuxData = callback;
}
void Insert(const int& item, const int& data, void * AuxData = NULL);
void Delete(const int& item);
void AVLInsert(TreeNode* &tree, TreeNode* newNode, int &reviseBalanceFactor);
void ClearList(void);
// tree specific methods
void Update(const int& item);
TreeNode *GetRoot(void) const;
void Insert(const int& item, const int& data, void * AuxData = NULL);
void Delete(const int& item);
void AVLInsert(TreeNode* &tree, TreeNode* newNode, int &reviseBalanceFactor);
void ClearList(void);
// tree specific methods
void Update(const int& item);
TreeNode *GetRoot(void) const;
};
// constructor
Tree::Tree(void)
{
root = 0;
current = 0;
size = 0;
root = 0;
current = 0;
size = 0;
DeleteAuxData = NULL;
}
@ -107,418 +107,418 @@ Tree::Tree(void)
// return root pointer
TreeNode *Tree::GetRoot(void) const
{
return root;
return root;
}
// assignment operator
Tree& Tree::operator = (const Tree& rhs)
{
// can't copy a tree to itself
if (this == &rhs)
return *this;
// can't copy a tree to itself
if (this == &rhs)
return *this;
// clear current tree. copy new tree into current object
ClearList();
root = CopyTree(rhs.root);
// clear current tree. copy new tree into current object
ClearList();
root = CopyTree(rhs.root);
// assign current to root and set the tree size
current = root;
size = rhs.size;
// assign current to root and set the tree size
current = root;
size = rhs.size;
// return reference to current object
return *this;
// return reference to current object
return *this;
}
// search for data item in the tree. if found, return its node
// address and a pointer to its parent; otherwise, return NULL
TreeNode *Tree::FindNode(const int& item,
TreeNode* & parent) const
TreeNode* & parent) const
{
// cycle t through the tree starting with root
TreeNode *t = root;
// cycle t through the tree starting with root
TreeNode *t = root;
// the parent of the root is NULL
parent = NULL;
// the parent of the root is NULL
parent = NULL;
// terminate on empty subtree
while(t != NULL)
{
// stop on a match
if (item == t->data)
break;
else
{
// update the parent pointer and move right of left
parent = t;
if (item < t->data)
t = t->left;
else
t = t->right;
}
}
// terminate on empty subtree
while(t != NULL)
{
// stop on a match
if (item == t->data)
break;
else
{
// update the parent pointer and move right of left
parent = t;
if (item < t->data)
t = t->left;
else
t = t->right;
}
}
// return pointer to node; NULL if not found
return t;
// return pointer to node; NULL if not found
return t;
}
// search for item. if found, assign the node data to item
void * Tree::Find(int& item)
{
// we use FindNode, which requires a parent parameter
TreeNode *parent;
// we use FindNode, which requires a parent parameter
TreeNode *parent;
// search tree for item. assign matching node to current
current = FindNode (item, parent);
// search tree for item. assign matching node to current
current = FindNode (item, parent);
// if item found, assign data to item and return True
if (current != NULL)
{
item = current->data;
// if item found, assign data to item and return True
if (current != NULL)
{
item = current->data;
return current->GetAuxData();
}
else
// item not found in the tree. return False
return NULL;
}
else
// item not found in the tree. return False
return NULL;
}
void Tree::Insert(const int& item, const int& data, void * AuxData)
{
// declare AVL tree node pointer; using base class method
// GetRoot. cast to larger node and assign root pointer
TreeNode *treeRoot, *newNode;
treeRoot = GetRoot();
// declare AVL tree node pointer; using base class method
// GetRoot. cast to larger node and assign root pointer
TreeNode *treeRoot, *newNode;
treeRoot = GetRoot();
// flag used by AVLInsert to rebalance nodes
int reviseBalanceFactor = 0;
// flag used by AVLInsert to rebalance nodes
int reviseBalanceFactor = 0;
// get a new AVL tree node with empty pointer fields
newNode = GetTreeNode(item,NULL,NULL);
newNode->data = data;
newNode->SetAuxData(AuxData);
// call recursive routine to actually insert the element
AVLInsert(treeRoot, newNode, reviseBalanceFactor);
// get a new AVL tree node with empty pointer fields
newNode = GetTreeNode(item,NULL,NULL);
newNode->data = data;
newNode->SetAuxData(AuxData);
// call recursive routine to actually insert the element
AVLInsert(treeRoot, newNode, reviseBalanceFactor);
// assign new values to data members in the base class
root = treeRoot;
current = newNode;
size++;
// assign new values to data members in the base class
root = treeRoot;
current = newNode;
size++;
}
void Tree::AVLInsert(TreeNode *&tree, TreeNode *newNode, int &reviseBalanceFactor)
{
// flag indicates change node's balanceFactor will occur
int rebalanceCurrNode;
// flag indicates change node's balanceFactor will occur
int rebalanceCurrNode;
// scan reaches an empty tree; time to insert the new node
if (tree == NULL)
{
// update the parent to point at newNode
tree = newNode;
// scan reaches an empty tree; time to insert the new node
if (tree == NULL)
{
// update the parent to point at newNode
tree = newNode;
// assign balanceFactor = 0 to new node
tree->balanceFactor = balanced;
// broadcast message; balanceFactor value is modified
reviseBalanceFactor = 1;
}
// recursively move left if new data < current data
else if (newNode->data < tree->data)
{
AVLInsert(tree->left,newNode,rebalanceCurrNode);
// check if balanceFactor must be updated.
if (rebalanceCurrNode)
{
// went left from node that is left heavy. will
// violate AVL condition; use rotation (case 3)
if (tree->balanceFactor == leftheavy)
UpdateLeftTree(tree,reviseBalanceFactor);
// assign balanceFactor = 0 to new node
tree->balanceFactor = balanced;
// broadcast message; balanceFactor value is modified
reviseBalanceFactor = 1;
}
// recursively move left if new data < current data
else if (newNode->data < tree->data)
{
AVLInsert(tree->left,newNode,rebalanceCurrNode);
// check if balanceFactor must be updated.
if (rebalanceCurrNode)
{
// went left from node that is left heavy. will
// violate AVL condition; use rotation (case 3)
if (tree->balanceFactor == leftheavy)
UpdateLeftTree(tree,reviseBalanceFactor);
// went left from balanced node. will create
// node left on the left. AVL condition OK (case 1)
else if (tree->balanceFactor == balanced)
{
tree->balanceFactor = leftheavy;
reviseBalanceFactor = 1;
}
// went left from node that is right heavy. will
// balance the node. AVL condition OK (case 2)
else
{
tree->balanceFactor = balanced;
reviseBalanceFactor = 0;
}
}
else
// went left from balanced node. will create
// node left on the left. AVL condition OK (case 1)
else if (tree->balanceFactor == balanced)
{
tree->balanceFactor = leftheavy;
reviseBalanceFactor = 1;
}
// went left from node that is right heavy. will
// balance the node. AVL condition OK (case 2)
else
{
tree->balanceFactor = balanced;
reviseBalanceFactor = 0;
}
}
else
// no balancing occurs; do not ask previous nodes
reviseBalanceFactor = 0;
}
reviseBalanceFactor = 0;
}
// otherwise recursively move right
else
{
AVLInsert(tree->right, newNode, rebalanceCurrNode);
// check if balanceFactor must be updated.
if (rebalanceCurrNode)
{
// went right from node that is left heavy. wil;
// balance the node. AVL condition OK (case 2)
if (tree->balanceFactor == leftheavy)
{
// scanning right subtree. node heavy on left.
// the node will become balanced
tree->balanceFactor = balanced;
reviseBalanceFactor = 0;
}
// went right from balanced node. will create
// node heavy on the right. AVL condition OK (case 1)
else if (tree->balanceFactor == balanced)
{
// node is balanced; will become heavy on right
tree->balanceFactor = rightheavy;
reviseBalanceFactor = 1;
}
// went right from node that is right heavy. will
// violate AVL condition; use rotation (case 3)
else
UpdateRightTree(tree, reviseBalanceFactor);
}
else
reviseBalanceFactor = 0;
}
{
AVLInsert(tree->right, newNode, rebalanceCurrNode);
// check if balanceFactor must be updated.
if (rebalanceCurrNode)
{
// went right from node that is left heavy. wil;
// balance the node. AVL condition OK (case 2)
if (tree->balanceFactor == leftheavy)
{
// scanning right subtree. node heavy on left.
// the node will become balanced
tree->balanceFactor = balanced;
reviseBalanceFactor = 0;
}
// went right from balanced node. will create
// node heavy on the right. AVL condition OK (case 1)
else if (tree->balanceFactor == balanced)
{
// node is balanced; will become heavy on right
tree->balanceFactor = rightheavy;
reviseBalanceFactor = 1;
}
// went right from node that is right heavy. will
// violate AVL condition; use rotation (case 3)
else
UpdateRightTree(tree, reviseBalanceFactor);
}
else
reviseBalanceFactor = 0;
}
}
void Tree::UpdateLeftTree (TreeNode* &p, int &reviseBalanceFactor)
{
TreeNode *lc;
TreeNode *lc;
lc = p->Left(); // left subtree is also heavy
if (lc->balanceFactor == leftheavy)
{
SingleRotateRight(p);
reviseBalanceFactor = 0;
}
// is right subtree heavy?
else if (lc->balanceFactor == rightheavy)
{
// make a double rotation
DoubleRotateRight(p);
// root is now balance
reviseBalanceFactor = 0;
}
lc = p->Left(); // left subtree is also heavy
if (lc->balanceFactor == leftheavy)
{
SingleRotateRight(p);
reviseBalanceFactor = 0;
}
// is right subtree heavy?
else if (lc->balanceFactor == rightheavy)
{
// make a double rotation
DoubleRotateRight(p);
// root is now balance
reviseBalanceFactor = 0;
}
}
void Tree::UpdateRightTree (TreeNode* &p, int &reviseBalanceFactor)
{
TreeNode *lc;
TreeNode *lc;
lc = p->Right(); // right subtree is also heavy
if (lc->balanceFactor == rightheavy)
{
SingleRotateLeft(p);
reviseBalanceFactor = 0;
}
// is left subtree heavy?
else if (lc->balanceFactor == leftheavy)
{
// make a double rotation
DoubleRotateLeft(p);
// root is now balance
reviseBalanceFactor = 0;
}
lc = p->Right(); // right subtree is also heavy
if (lc->balanceFactor == rightheavy)
{
SingleRotateLeft(p);
reviseBalanceFactor = 0;
}
// is left subtree heavy?
else if (lc->balanceFactor == leftheavy)
{
// make a double rotation
DoubleRotateLeft(p);
// root is now balance
reviseBalanceFactor = 0;
}
}
void Tree::SingleRotateRight (TreeNode* &p)
{
// the left subtree of p is heavy
TreeNode *lc;
// the left subtree of p is heavy
TreeNode *lc;
// assign the left subtree to lc
lc = p->Left();
// assign the left subtree to lc
lc = p->Left();
// update the balance factor for parent and left child
p->balanceFactor = balanced;
lc->balanceFactor = balanced;
// update the balance factor for parent and left child
p->balanceFactor = balanced;
lc->balanceFactor = balanced;
// any right subtree st of lc must continue as right
// subtree of lc. do by making it a left subtree of p
p->left = lc->Right();
// any right subtree st of lc must continue as right
// subtree of lc. do by making it a left subtree of p
p->left = lc->Right();
// rotate p (larger node) into right subtree of lc
// make lc the pivot node
lc->right = p;
p = lc;
// rotate p (larger node) into right subtree of lc
// make lc the pivot node
lc->right = p;
p = lc;
}
void Tree::SingleRotateLeft (TreeNode* &p)
{
// the right subtree of p is heavy
TreeNode *lc;
// the right subtree of p is heavy
TreeNode *lc;
// assign the left subtree to lc
lc = p->Right();
// assign the left subtree to lc
lc = p->Right();
// update the balance factor for parent and left child
p->balanceFactor = balanced;
lc->balanceFactor = balanced;
// update the balance factor for parent and left child
p->balanceFactor = balanced;
lc->balanceFactor = balanced;
// any right subtree st of lc must continue as right
// subtree of lc. do by making it a left subtree of p
p->right = lc->Left();
// any right subtree st of lc must continue as right
// subtree of lc. do by making it a left subtree of p
p->right = lc->Left();
// rotate p (larger node) into right subtree of lc
// make lc the pivot node
lc->left = p;
p = lc;
// rotate p (larger node) into right subtree of lc
// make lc the pivot node
lc->left = p;
p = lc;
}
// double rotation right about node p
void Tree::DoubleRotateRight (TreeNode* &p)
{
// two subtrees that are rotated
TreeNode *lc, *np;
// two subtrees that are rotated
TreeNode *lc, *np;
// in the tree, node(lc) <= node(np) < node(p)
lc = p->Left(); // lc is left child of parent
np = lc->Right(); // np is right child of lc
// update balance factors for p, lc, and np
if (np->balanceFactor == rightheavy)
{
p->balanceFactor = balanced;
lc->balanceFactor = rightheavy;
}
else if (np->balanceFactor == balanced)
{
p->balanceFactor = balanced;
lc->balanceFactor = balanced;
}
else
{
p->balanceFactor = rightheavy;
lc->balanceFactor = balanced;
}
np->balanceFactor = balanced;
// in the tree, node(lc) <= node(np) < node(p)
lc = p->Left(); // lc is left child of parent
np = lc->Right(); // np is right child of lc
// before np replaces the parent p, take care of subtrees
// detach old children and attach new children
lc->right = np->Left();
np->left = lc;
p->left = np->Right();
np->right = p;
p = np;
// update balance factors for p, lc, and np
if (np->balanceFactor == rightheavy)
{
p->balanceFactor = balanced;
lc->balanceFactor = rightheavy;
}
else if (np->balanceFactor == balanced)
{
p->balanceFactor = balanced;
lc->balanceFactor = balanced;
}
else
{
p->balanceFactor = rightheavy;
lc->balanceFactor = balanced;
}
np->balanceFactor = balanced;
// before np replaces the parent p, take care of subtrees
// detach old children and attach new children
lc->right = np->Left();
np->left = lc;
p->left = np->Right();
np->right = p;
p = np;
}
void Tree::DoubleRotateLeft (TreeNode* &p)
{
// two subtrees that are rotated
TreeNode *lc, *np;
// two subtrees that are rotated
TreeNode *lc, *np;
// in the tree, node(lc) <= node(np) < node(p)
lc = p->Right(); // lc is right child of parent
np = lc->Left(); // np is left child of lc
// update balance factors for p, lc, and np
if (np->balanceFactor == leftheavy)
{
p->balanceFactor = balanced;
lc->balanceFactor = leftheavy;
}
else if (np->balanceFactor == balanced)
{
p->balanceFactor = balanced;
lc->balanceFactor = balanced;
}
else
{
p->balanceFactor = leftheavy;
lc->balanceFactor = balanced;
}
np->balanceFactor = balanced;
// in the tree, node(lc) <= node(np) < node(p)
lc = p->Right(); // lc is right child of parent
np = lc->Left(); // np is left child of lc
// before np replaces the parent p, take care of subtrees
// detach old children and attach new children
lc->left = np->Right();
np->right = lc;
p->right = np->Left();
np->left = p;
p = np;
// update balance factors for p, lc, and np
if (np->balanceFactor == leftheavy)
{
p->balanceFactor = balanced;
lc->balanceFactor = leftheavy;
}
else if (np->balanceFactor == balanced)
{
p->balanceFactor = balanced;
lc->balanceFactor = balanced;
}
else
{
p->balanceFactor = leftheavy;
lc->balanceFactor = balanced;
}
np->balanceFactor = balanced;
// before np replaces the parent p, take care of subtrees
// detach old children and attach new children
lc->left = np->Right();
np->right = lc;
p->right = np->Left();
np->left = p;
p = np;
}
// if item is in the tree, delete it
void Tree::Delete(const int& item)
{
// DNodePtr = pointer to node D that is deleted
// PNodePtr = pointer to parent P of node D
// RNodePtr = pointer to node R that replaces D
TreeNode *DNodePtr, *PNodePtr, *RNodePtr;
// DNodePtr = pointer to node D that is deleted
// PNodePtr = pointer to parent P of node D
// RNodePtr = pointer to node R that replaces D
TreeNode *DNodePtr, *PNodePtr, *RNodePtr;
// search for a node containing data value item. obtain its
// node address and that of its parent
if ((DNodePtr = FindNode (item, PNodePtr)) == NULL)
return;
// search for a node containing data value item. obtain its
// node address and that of its parent
if ((DNodePtr = FindNode (item, PNodePtr)) == NULL)
return;
// If D has NULL pointer, the
// replacement node is the one on the other branch
if (DNodePtr->right == NULL)
RNodePtr = DNodePtr->left;
else if (DNodePtr->left == NULL)
RNodePtr = DNodePtr->right;
// Both pointers of DNodePtr are non-NULL
else
{
// Find and unlink replacement node for D
// Starting on the left branch of node D,
// find node whose data value is the largest of all
// nodes whose values are less than the value in D
// Unlink the node from the tree
// If D has NULL pointer, the
// replacement node is the one on the other branch
if (DNodePtr->right == NULL)
RNodePtr = DNodePtr->left;
else if (DNodePtr->left == NULL)
RNodePtr = DNodePtr->right;
// Both pointers of DNodePtr are non-NULL
else
{
// Find and unlink replacement node for D
// Starting on the left branch of node D,
// find node whose data value is the largest of all
// nodes whose values are less than the value in D
// Unlink the node from the tree
// PofRNodePtr = pointer to parent of replacement node
TreeNode *PofRNodePtr = DNodePtr;
// PofRNodePtr = pointer to parent of replacement node
TreeNode *PofRNodePtr = DNodePtr;
// frist possible replacement is left child D
RNodePtr = DNodePtr->left;
// frist possible replacement is left child D
RNodePtr = DNodePtr->left;
// descend down right subtree of the left child of D
// keeping a record of current node and its parent.
// when we stop, we have found the replacement
while (RNodePtr->right != NULL)
{
PofRNodePtr = RNodePtr;
RNodePtr = RNodePtr;
}
// descend down right subtree of the left child of D
// keeping a record of current node and its parent.
// when we stop, we have found the replacement
while (RNodePtr->right != NULL)
{
PofRNodePtr = RNodePtr;
RNodePtr = RNodePtr;
}
if (PofRNodePtr == DNodePtr)
// left child of deleted node is the replacement
// assign right subtree of D to R
RNodePtr->right = DNodePtr->right;
else
{
// we moved at least one node down a right brance
// delete replacement node from tree by assigning
// its left branc to its parent
PofRNodePtr->right = RNodePtr->left;
if (PofRNodePtr == DNodePtr)
// left child of deleted node is the replacement
// assign right subtree of D to R
RNodePtr->right = DNodePtr->right;
else
{
// we moved at least one node down a right brance
// delete replacement node from tree by assigning
// its left branc to its parent
PofRNodePtr->right = RNodePtr->left;
// put replacement node in place of DNodePtr.
RNodePtr->left = DNodePtr->left;
RNodePtr->right = DNodePtr->right;
}
}
// put replacement node in place of DNodePtr.
RNodePtr->left = DNodePtr->left;
RNodePtr->right = DNodePtr->right;
}
}
// complete the link to the parent node
// deleting the root node. assign new root
if (PNodePtr == NULL)
root = RNodePtr;
// attach R to the correct branch of P
else if (DNodePtr->data < PNodePtr->data)
PNodePtr->left = RNodePtr;
else
PNodePtr->right = RNodePtr;
// complete the link to the parent node
// deleting the root node. assign new root
if (PNodePtr == NULL)
root = RNodePtr;
// attach R to the correct branch of P
else if (DNodePtr->data < PNodePtr->data)
PNodePtr->left = RNodePtr;
else
PNodePtr->right = RNodePtr;
// delete the node from memory and decrement list size
FreeTreeNode(DNodePtr); // this says FirstTreeNode in the book, should be a typo
size--;
// delete the node from memory and decrement list size
FreeTreeNode(DNodePtr); // this says FirstTreeNode in the book, should be a typo
size--;
}
@ -529,49 +529,49 @@ void Tree::Delete(const int& item)
// assign node value to item; otherwise, insert item in tree
void Tree::Update(const int& item)
{
if (current !=NULL && current->data == item)
current->data = item;
else
Insert(item, item);
if (current !=NULL && current->data == item)
current->data = item;
else
Insert(item, item);
}
// create duplicate of tree t; return the new root
TreeNode *Tree::CopyTree(TreeNode *t)
{
// variable newnode points at each new node that is
// created by a call to GetTreeNode and later attached to
// the new tree. newlptr and newrptr point to the child of
// newnode and are passed as parameters to GetTreeNode
TreeNode *newlptr, *newrptr, *newnode;
// variable newnode points at each new node that is
// created by a call to GetTreeNode and later attached to
// the new tree. newlptr and newrptr point to the child of
// newnode and are passed as parameters to GetTreeNode
TreeNode *newlptr, *newrptr, *newnode;
// stop the recursive scan when we arrive at an empty tree
if (t == NULL)
return NULL;
// stop the recursive scan when we arrive at an empty tree
if (t == NULL)
return NULL;
// CopyTree builds a new tree by scanning the nodes of t.
// At each node in t, CopyTree checks for a left child. if
// present it makes a copy of left child or returns NULL.
// the algorithm similarly checks for a right child.
// CopyTree builds a copy of node using GetTreeNode and
// appends copy of left and right children to node.
// CopyTree builds a new tree by scanning the nodes of t.
// At each node in t, CopyTree checks for a left child. if
// present it makes a copy of left child or returns NULL.
// the algorithm similarly checks for a right child.
// CopyTree builds a copy of node using GetTreeNode and
// appends copy of left and right children to node.
if (t->Left() !=NULL)
newlptr = CopyTree(t->Left());
else
newlptr = NULL;
if (t->Left() !=NULL)
newlptr = CopyTree(t->Left());
else
newlptr = NULL;
if (t->Right() !=NULL)
newrptr = CopyTree(t->Right());
else
newrptr = NULL;
if (t->Right() !=NULL)
newrptr = CopyTree(t->Right());
else
newrptr = NULL;
// Build new tree from the bottom up by building the two
// children and then building the parent
newnode = GetTreeNode(t->data, newlptr, newrptr);
// Build new tree from the bottom up by building the two
// children and then building the parent
newnode = GetTreeNode(t->data, newlptr, newrptr);
// return a pointer to the newly created node
return newnode;
// return a pointer to the newly created node
return newnode;
}
@ -598,16 +598,16 @@ void Tree::DeleteTree(TreeNode *t)
// set the root pointer back to NULL
void Tree::ClearTree(TreeNode * &t)
{
DeleteTree(t);
t = NULL; // root now NULL
DeleteTree(t);
t = NULL; // root now NULL
}
// delete all nodes in list
void Tree::ClearList(void)
{
delete root;
delete current;
size = 0;
delete root;
delete current;
size = 0;
}
#endif

View File

@ -3,7 +3,7 @@
* POEMS: PARALLELIZABLE OPEN SOURCE EFFICIENT MULTIBODY SOFTWARE *
* DESCRIPTION: SEE READ-ME *
* FILE NAME: poemstreenode.h *
* AUTHORS: See Author List *
* AUTHORS: See Author List *
* GRANTS: See Grants List *
* COPYRIGHT: (C) 2005 by Authors as listed in Author's List *
* LICENSE: Please see License Agreement *
@ -11,7 +11,7 @@
* ADMINISTRATOR: Prof. Kurt Anderson *
* Computational Dynamics Lab *
* Rensselaer Polytechnic Institute *
* 110 8th St. Troy NY 12180 *
* 110 8th St. Troy NY 12180 *
* CONTACT: anderk5@rpi.edu *
*_________________________________________________________________________*/
@ -29,23 +29,23 @@ class TreeNode{
private:
// points to the left and right children of the node
TreeNode *left;
TreeNode *right;
TreeNode *left;
TreeNode *right;
int balanceFactor;
int data;
void * aux_data;
public:
// make Tree a friend because it needs access to left and right pointer fields of a node
friend class Tree;
TreeNode * Left();
TreeNode * Right();
int GetData();
void * GetAuxData() {return aux_data;};
void SetAuxData(void * AuxData) {aux_data = AuxData;};
int GetBalanceFactor();
TreeNode(const int &item, TreeNode *lptr, TreeNode *rptr, int balfac = 0);
//friend class DCASolver;
int balanceFactor;
int data;
void * aux_data;
public:
// make Tree a friend because it needs access to left and right pointer fields of a node
friend class Tree;
TreeNode * Left();
TreeNode * Right();
int GetData();
void * GetAuxData() {return aux_data;};
void SetAuxData(void * AuxData) {aux_data = AuxData;};
int GetBalanceFactor();
TreeNode(const int &item, TreeNode *lptr, TreeNode *rptr, int balfac = 0);
//friend class DCASolver;
};
#endif

View File

@ -2,8 +2,8 @@
*_________________________________________________________________________*
* POEMS: PARALLELIZABLE OPEN SOURCE EFFICIENT MULTIBODY SOFTWARE *
* DESCRIPTION: SEE READ-ME *
* FILE NAME: points.h *
* AUTHORS: See Author List *
* FILE NAME: points.h *
* AUTHORS: See Author List *
* GRANTS: See Grants List *
* COPYRIGHT: (C) 2005 by Authors as listed in Author's List *
* LICENSE: Please see License Agreement *
@ -11,7 +11,7 @@
* ADMINISTRATOR: Prof. Kurt Anderson *
* Computational Dynamics Lab *
* Rensselaer Polytechnic Institute *
* 110 8th St. Troy NY 12180 *
* 110 8th St. Troy NY 12180 *
* CONTACT: anderk5@rpi.edu *
*_________________________________________________________________________*/

View File

@ -3,7 +3,7 @@
* POEMS: PARALLELIZABLE OPEN SOURCE EFFICIENT MULTIBODY SOFTWARE *
* DESCRIPTION: SEE READ-ME *
* FILE NAME: system.h *
* AUTHORS: See Author List *
* AUTHORS: See Author List *
* GRANTS: See Grants List *
* COPYRIGHT: (C) 2005 by Authors as listed in Author's List *
* LICENSE: Please see License Agreement *
@ -11,7 +11,7 @@
* ADMINISTRATOR: Prof. Kurt Anderson *
* Computational Dynamics Lab *
* Rensselaer Polytechnic Institute *
* 110 8th St. Troy NY 12180 *
* 110 8th St. Troy NY 12180 *
* CONTACT: anderk5@rpi.edu *
*_________________________________________________________________________*/
@ -22,8 +22,8 @@
#include <iostream>
#include <fstream>
#include <string>
#include <cstdio>
#include <iomanip>
#include <cstdio>
#include <iomanip>
#include "poemslist.h"
#include "matrices.h"
@ -47,42 +47,42 @@
class Joint;
class System{
private:
int * mappings;
private:
int * mappings;
public:
double time;
List<Body> bodies;
List<Joint> joints;
System();
~System();
void Delete();
int GetNumBodies();
int * GetMappings();
int * GetMappings();
void AddBody(Body* body);
void AddJoint(Joint* joint);
void SetTime(double t);
double GetTime();
void ComputeForces();
bool ReadIn(std::istream& in);
void WriteOut(std::ostream& out);
void ClearBodyIDs();
void ClearJointIDs();
void ClearJointIDs();
void Create_System_LAMMPS(int numbodies, double *mass,double **inertia, double ** xcm, double ** xjoint,double **vh1,double **omega,double **ex_space, double **ey_space, double **ez_space, int b, int * mapping, int count);
void Create_DegenerateSystem(int& nfree, int*freelist, double *&masstotal, double **&inertia, double **&xcm, double **&vcm, double **&omega, double **&ex_space, double **&ey_space, double **&ez_space);
};

View File

@ -3,7 +3,7 @@
* POEMS: PARALLELIZABLE OPEN SOURCE EFFICIENT MULTIBODY SOFTWARE *
* DESCRIPTION: SEE READ-ME *
* FILE NAME: virtualcolmatrix.h *
* AUTHORS: See Author List *
* AUTHORS: See Author List *
* GRANTS: See Grants List *
* COPYRIGHT: (C) 2005 by Authors as listed in Author's List *
* LICENSE: Please see License Agreement *
@ -11,7 +11,7 @@
* ADMINISTRATOR: Prof. Kurt Anderson *
* Computational Dynamics Lab *
* Rensselaer Polytechnic Institute *
* 110 8th St. Troy NY 12180 *
* 110 8th St. Troy NY 12180 *
* CONTACT: anderk5@rpi.edu *
*_________________________________________________________________________*/
@ -23,22 +23,22 @@
class VirtualColMatrix : public VirtualMatrix {
public:
VirtualColMatrix();
~VirtualColMatrix();
double& operator_2int (int i, int j); // array access
double Get_2int (int i, int j) const;
void Set_2int (int i, int j, double value);
double BasicGet_2int(int i, int j) const;
void BasicSet_2int(int i, int j, double value);
void BasicIncrement_2int(int i, int j, double value);
public:
VirtualColMatrix();
~VirtualColMatrix();
double& operator_2int (int i, int j); // array access
double Get_2int (int i, int j) const;
void Set_2int (int i, int j, double value);
double BasicGet_2int(int i, int j) const;
void BasicSet_2int(int i, int j, double value);
void BasicIncrement_2int(int i, int j, double value);
virtual double& operator_1int (int i) = 0; // array access
virtual double Get_1int(int i) const = 0;
virtual void Set_1int(int i, double value) = 0;
virtual double BasicGet_1int(int i) const = 0;
virtual void BasicSet_1int(int i, double value) = 0;
virtual void BasicIncrement_1int(int i, double value) = 0;
virtual double& operator_1int (int i) = 0; // array access
virtual double Get_1int(int i) const = 0;
virtual void Set_1int(int i, double value) = 0;
virtual double BasicGet_1int(int i) const = 0;
virtual void BasicSet_1int(int i, double value) = 0;
virtual void BasicIncrement_1int(int i, double value) = 0;
};

View File

@ -3,7 +3,7 @@
* POEMS: PARALLELIZABLE OPEN SOURCE EFFICIENT MULTIBODY SOFTWARE *
* DESCRIPTION: SEE READ-ME *
* FILE NAME: virtualmatrix.h *
* AUTHORS: See Author List *
* AUTHORS: See Author List *
* GRANTS: See Grants List *
* COPYRIGHT: (C) 2005 by Authors as listed in Author's List *
* LICENSE: Please see License Agreement *
@ -11,7 +11,7 @@
* ADMINISTRATOR: Prof. Kurt Anderson *
* Computational Dynamics Lab *
* Rensselaer Polytechnic Institute *
* 110 8th St. Troy NY 12180 *
* 110 8th St. Troy NY 12180 *
* CONTACT: anderk5@rpi.edu *
*_________________________________________________________________________*/
@ -21,62 +21,62 @@
#include <iostream>
enum MatrixType {
MATRIX = 0,
COLMATRIX = 1,
ROWMATRIX = 2,
MAT3X3 = 3,
VECT3 = 4,
MAT6X6 = 5,
VECT6 = 6,
COLMATMAP = 7,
VECT4 = 8,
MAT4X4 = 9
MATRIX = 0,
COLMATRIX = 1,
ROWMATRIX = 2,
MAT3X3 = 3,
VECT3 = 4,
MAT6X6 = 5,
VECT6 = 6,
COLMATMAP = 7,
VECT4 = 8,
MAT4X4 = 9
};
class VirtualMatrix {
protected:
int numrows, numcols;
int numrows, numcols;
public:
VirtualMatrix();
virtual ~VirtualMatrix();
int GetNumRows() const;
int GetNumCols() const;
VirtualMatrix();
virtual ~VirtualMatrix();
int GetNumRows() const;
int GetNumCols() const;
double& operator() (int i, int j); // array access
double Get(int i, int j) const;
void Set(int i, int j, double value);
double BasicGet(int i, int j) const;
void BasicSet(int i, int j, double value);
void BasicIncrement(int i, int j, double value);
double& operator() (int i, int j); // array access
double Get(int i, int j) const;
void Set(int i, int j, double value);
double BasicGet(int i, int j) const;
void BasicSet(int i, int j, double value);
void BasicIncrement(int i, int j, double value);
double& operator() (int i); // array access
double Get(int i) const;
void Set(int i, double value);
double BasicGet(int i) const;
void BasicSet(int i, double value);
void BasicIncrement(int i, double value);
double& operator() (int i); // array access
double Get(int i) const;
void Set(int i, double value);
double BasicGet(int i) const;
void BasicSet(int i, double value);
void BasicIncrement(int i, double value);
virtual void Const(double value) = 0;
virtual MatrixType GetType() const = 0;
virtual void AssignVM(const VirtualMatrix& A) = 0;
void Zeros();
void Ones();
virtual std::ostream& WriteData(std::ostream& c) const;
virtual std::istream& ReadData(std::istream& c);
virtual void Const(double value) = 0;
virtual MatrixType GetType() const = 0;
virtual void AssignVM(const VirtualMatrix& A) = 0;
void Zeros();
void Ones();
virtual std::ostream& WriteData(std::ostream& c) const;
virtual std::istream& ReadData(std::istream& c);
protected:
virtual double& operator_2int(int i, int j) = 0;
virtual double& operator_1int(int i);
virtual double Get_2int(int i, int j) const = 0;
virtual double Get_1int(int i) const ;
virtual void Set_2int(int i, int j, double value) = 0;
virtual void Set_1int(int i, double value);
virtual double BasicGet_2int(int i, int j) const = 0;
virtual double BasicGet_1int(int i) const ;
virtual void BasicSet_2int(int i, int j, double value) = 0;
virtual void BasicSet_1int(int i, double value);
virtual void BasicIncrement_2int(int i, int j, double value) = 0;
virtual void BasicIncrement_1int(int i, double value);
virtual double& operator_2int(int i, int j) = 0;
virtual double& operator_1int(int i);
virtual double Get_2int(int i, int j) const = 0;
virtual double Get_1int(int i) const ;
virtual void Set_2int(int i, int j, double value) = 0;
virtual void Set_1int(int i, double value);
virtual double BasicGet_2int(int i, int j) const = 0;
virtual double BasicGet_1int(int i) const ;
virtual void BasicSet_2int(int i, int j, double value) = 0;
virtual void BasicSet_1int(int i, double value);
virtual void BasicIncrement_2int(int i, int j, double value) = 0;
virtual void BasicIncrement_1int(int i, double value);
};

View File

@ -3,7 +3,7 @@
* POEMS: PARALLELIZABLE OPEN SOURCE EFFICIENT MULTIBODY SOFTWARE *
* DESCRIPTION: SEE READ-ME *
* FILE NAME: workspace.h *
* AUTHORS: See Author List *
* AUTHORS: See Author List *
* GRANTS: See Grants List *
* COPYRIGHT: (C) 2005 by Authors as listed in Author's List *
* LICENSE: Please see License Agreement *
@ -11,7 +11,7 @@
* ADMINISTRATOR: Prof. Kurt Anderson *
* Computational Dynamics Lab *
* Rensselaer Polytechnic Institute *
* 110 8th St. Troy NY 12180 *
* 110 8th St. Troy NY 12180 *
* CONTACT: anderk5@rpi.edu *
*_________________________________________________________________________*/
@ -23,8 +23,8 @@
#include <iostream>
#include <fstream>
#include <string>
#include <cstdio>
#include <iomanip>
#include <cstdio>
#include <iomanip>
#include <vector>
@ -32,57 +32,57 @@ class System;
class Solver;
struct SysData{
System * system;
int solver;
int integrator;
System * system;
int solver;
int integrator;
};
class Workspace {
SysData * system; // the multibody systems data
int currentIndex;
int maxAlloc;
SysData * system; // the multibody systems data
int currentIndex;
int maxAlloc;
public:
Workspace();
~Workspace();
double Thalf;
double Tfull;
double ConFac;
double KE_val;
int FirstTime;
int FirstTime;
bool LoadFile(char* filename);
bool SaveFile(char* filename, int index = -1);
System* GetSystem(int index = -1);
void AddSolver(Solver* s, int index = -1);
void LobattoOne(double **&xcm, double **&vcm,double **&omega,double **&torque, double **&fcm, double **&ex_space, double **&ey_space, double **&ez_space);
void LobattoTwo(double **&vcm,double **&omega,double **&torque, double **&fcm);
void AddSolver(Solver* s, int index = -1);
void LobattoOne(double **&xcm, double **&vcm,double **&omega,double **&torque, double **&fcm, double **&ex_space, double **&ey_space, double **&ez_space);
void LobattoTwo(double **&vcm,double **&omega,double **&torque, double **&fcm);
bool MakeSystem(int& nbody, double *&masstotal, double **&inertia, double **&xcm, double **&vcm, double **&omega, double **&ex_space, double **&ey_space, double **&ez_space, int &njoint, int **&jointbody, double **&xjoint, int& nfree, int*freelist, double dthalf, double dtv, double tempcon, double KE);
bool SaveSystem(int& nbody, double *&masstotal, double **&inertia, double **&xcm, double **&xjoint, double **&vcm, double **&omega, double **&ex_space, double **&ey_space, double **&ez_space, double **&acm, double **&alpha, double **&torque, double **&fcm, int **&jointbody, int &njoint);
bool MakeDegenerateSystem(int& nfree, int*freelist, double *&masstotal, double **&inertia, double **&xcm, double **&vcm, double **&omega, double **&ex_space, double **&ey_space, double **&ez_space);
bool SaveSystem(int& nbody, double *&masstotal, double **&inertia, double **&xcm, double **&xjoint, double **&vcm, double **&omega, double **&ex_space, double **&ey_space, double **&ez_space, double **&acm, double **&alpha, double **&torque, double **&fcm, int **&jointbody, int &njoint);
bool MakeDegenerateSystem(int& nfree, int*freelist, double *&masstotal, double **&inertia, double **&xcm, double **&vcm, double **&omega, double **&ex_space, double **&ey_space, double **&ez_space);
int getNumberOfSystems();
void SetLammpsValues(double dtv, double dthalf, double tempcon);
void SetKE(int temp, double SysKE);
void RKStep(double **&xcm, double **&vcm,double **&omega,double **&torque, double **&fcm, double **&ex_space, double **&ey_space, double **&ez_space);
void WriteFile(char* filename);
void RKStep(double **&xcm, double **&vcm,double **&omega,double **&torque, double **&fcm, double **&ex_space, double **&ey_space, double **&ez_space);
void WriteFile(char* filename);
private:
void allocateNewSystem(); //helper function to handle vector resizing and such for the array of system pointers
void allocateNewSystem(); //helper function to handle vector resizing and such for the array of system pointers
};
#endif