Merge branch 'develop' of github.com:lammps/lammps into fix_viscous_kokkos
This commit is contained in:
3
.github/CODEOWNERS
vendored
3
.github/CODEOWNERS
vendored
@ -37,6 +37,7 @@ src/MESONT/* @iafoss
|
||||
src/ML-HDNNP/* @singraber
|
||||
src/ML-IAP/* @athomps
|
||||
src/ML-PACE/* @yury-lysogorskiy
|
||||
src/ML-POD/* @exapde @rohskopf
|
||||
src/MOFFF/* @hheenen
|
||||
src/MOLFILE/* @akohlmey
|
||||
src/NETCDF/* @pastewka
|
||||
@ -63,6 +64,8 @@ src/MANYBODY/pair_atm.* @sergeylishchuk
|
||||
src/REPLICA/*_grem.* @dstelter92
|
||||
src/EXTRA-COMPUTE/compute_stress_mop*.* @RomainVermorel
|
||||
src/MISC/*_tracker.* @jtclemm
|
||||
src/MC/fix_gcmc.* @athomps
|
||||
src/MC/fix_sgcmc.* @athomps
|
||||
|
||||
# core LAMMPS classes
|
||||
src/lammps.* @sjplimp
|
||||
|
||||
4
.github/workflows/compile-msvc.yml
vendored
4
.github/workflows/compile-msvc.yml
vendored
@ -26,7 +26,7 @@ jobs:
|
||||
- name: Select Python version
|
||||
uses: actions/setup-python@v4
|
||||
with:
|
||||
python-version: '3.10'
|
||||
python-version: '3.11'
|
||||
|
||||
- name: Building LAMMPS via CMake
|
||||
shell: bash
|
||||
@ -37,6 +37,8 @@ jobs:
|
||||
nuget install MSMPIDIST
|
||||
cmake -C cmake/presets/windows.cmake \
|
||||
-D PKG_PYTHON=on \
|
||||
-D WITH_PNG=off \
|
||||
-D WITH_JPEG=off \
|
||||
-S cmake -B build \
|
||||
-D BUILD_SHARED_LIBS=on \
|
||||
-D LAMMPS_EXCEPTIONS=on \
|
||||
|
||||
@ -266,6 +266,7 @@ set(STANDARD_PACKAGES
|
||||
ML-QUIP
|
||||
ML-RANN
|
||||
ML-SNAP
|
||||
ML-POD
|
||||
MOFFF
|
||||
MOLECULE
|
||||
MOLFILE
|
||||
@ -432,7 +433,7 @@ if(BUILD_OMP)
|
||||
target_link_libraries(lmp PRIVATE OpenMP::OpenMP_CXX)
|
||||
endif()
|
||||
|
||||
if(PKG_MSCG OR PKG_ATC OR PKG_AWPMD OR PKG_ML-QUIP OR PKG_LATTE OR PKG_ELECTRODE)
|
||||
if(PKG_MSCG OR PKG_ATC OR PKG_AWPMD OR PKG_ML-QUIP OR PKG_ML-POD OR PKG_LATTE OR PKG_ELECTRODE)
|
||||
enable_language(C)
|
||||
if (NOT USE_INTERNAL_LINALG)
|
||||
find_package(LAPACK)
|
||||
@ -638,7 +639,7 @@ foreach(PKG_LIB POEMS ATC AWPMD H5MD MESONT)
|
||||
endif()
|
||||
endforeach()
|
||||
|
||||
if(PKG_ELECTRODE)
|
||||
if(PKG_ELECTRODE OR PKG_ML-POD)
|
||||
target_link_libraries(lammps PRIVATE ${LAPACK_LIBRARIES})
|
||||
endif()
|
||||
|
||||
@ -667,7 +668,7 @@ endif()
|
||||
# packages which selectively include variants based on enabled styles
|
||||
# e.g. accelerator packages
|
||||
######################################################################
|
||||
foreach(PKG_WITH_INCL CORESHELL DPD-SMOOTH MISC PHONON QEQ OPENMP KOKKOS OPT INTEL GPU)
|
||||
foreach(PKG_WITH_INCL CORESHELL DPD-SMOOTH MC MISC PHONON QEQ OPENMP KOKKOS OPT INTEL GPU)
|
||||
if(PKG_${PKG_WITH_INCL})
|
||||
include(Packages/${PKG_WITH_INCL})
|
||||
endif()
|
||||
|
||||
9
cmake/Modules/Packages/MC.cmake
Normal file
9
cmake/Modules/Packages/MC.cmake
Normal file
@ -0,0 +1,9 @@
|
||||
# fix sgcmc may only be installed if also the EAM pair style from MANYBODY is installed
|
||||
if(NOT PKG_MANYBODY)
|
||||
get_property(LAMMPS_FIX_HEADERS GLOBAL PROPERTY FIX)
|
||||
list(REMOVE_ITEM LAMMPS_FIX_HEADERS ${LAMMPS_SOURCE_DIR}/MC/fix_sgcmc.h)
|
||||
set_property(GLOBAL PROPERTY FIX "${LAMMPS_FIX_HEADERS}")
|
||||
get_target_property(LAMMPS_SOURCES lammps SOURCES)
|
||||
list(REMOVE_ITEM LAMMPS_SOURCES ${LAMMPS_SOURCE_DIR}/MC/fix_sgcmc.cpp)
|
||||
set_property(TARGET lammps PROPERTY SOURCES "${LAMMPS_SOURCES}")
|
||||
endif()
|
||||
@ -56,6 +56,7 @@ set(ALL_PACKAGES
|
||||
ML-HDNNP
|
||||
ML-IAP
|
||||
ML-PACE
|
||||
ML-POD
|
||||
ML-QUIP
|
||||
ML-RANN
|
||||
ML-SNAP
|
||||
|
||||
@ -58,6 +58,7 @@ set(ALL_PACKAGES
|
||||
ML-HDNNP
|
||||
ML-IAP
|
||||
ML-PACE
|
||||
ML-POD
|
||||
ML-QUIP
|
||||
ML-RANN
|
||||
ML-SNAP
|
||||
|
||||
@ -47,6 +47,7 @@ set(WIN_PACKAGES
|
||||
MISC
|
||||
ML-HDNNP
|
||||
ML-IAP
|
||||
ML-POD
|
||||
ML-RANN
|
||||
ML-SNAP
|
||||
MOFFF
|
||||
|
||||
@ -41,6 +41,7 @@ set(ALL_PACKAGES
|
||||
MEAM
|
||||
MISC
|
||||
ML-IAP
|
||||
ML-POD
|
||||
ML-SNAP
|
||||
MOFFF
|
||||
MOLECULE
|
||||
|
||||
@ -36,6 +36,7 @@ This is the list of packages that may require additional steps.
|
||||
* :ref:`AWPMD <awpmd>`
|
||||
* :ref:`COLVARS <colvars>`
|
||||
* :ref:`COMPRESS <compress>`
|
||||
* :ref:`ELECTRODE <electrode>`
|
||||
* :ref:`GPU <gpu>`
|
||||
* :ref:`H5MD <h5md>`
|
||||
* :ref:`INTEL <intel>`
|
||||
@ -48,6 +49,7 @@ This is the list of packages that may require additional steps.
|
||||
* :ref:`ML-HDNNP <ml-hdnnp>`
|
||||
* :ref:`ML-IAP <mliap>`
|
||||
* :ref:`ML-PACE <ml-pace>`
|
||||
* :ref:`ML-POD <ml-pod>`
|
||||
* :ref:`ML-QUIP <ml-quip>`
|
||||
* :ref:`MOLFILE <molfile>`
|
||||
* :ref:`MSCG <mscg>`
|
||||
@ -1411,6 +1413,49 @@ at: `https://github.com/ICAMS/lammps-user-pace/ <https://github.com/ICAMS/lammps
|
||||
|
||||
----------
|
||||
|
||||
.. _ml-pod:
|
||||
|
||||
ML-POD package
|
||||
-----------------------------
|
||||
|
||||
.. tabs::
|
||||
|
||||
.. tab:: CMake build
|
||||
|
||||
No additional settings are needed besides ``-D PKG_ML-POD=yes``.
|
||||
|
||||
.. tab:: Traditional make
|
||||
|
||||
Before building LAMMPS, you must configure the ML-POD support
|
||||
settings in ``lib/mlpod``. You can do this manually, if you
|
||||
prefer, or do it in one step from the ``lammps/src`` dir, using a
|
||||
command like the following, which simply invoke the
|
||||
``lib/mlpod/Install.py`` script with the specified args:
|
||||
|
||||
.. code-block:: bash
|
||||
|
||||
$ make lib-mlpod # print help message
|
||||
$ make lib-mlpod args="-m serial" # build with GNU g++ compiler and MPI STUBS (settings as with "make serial")
|
||||
$ make lib-mlpod args="-m mpi" # build with default MPI compiler (settings as with "make mpi")
|
||||
$ make lib-mlpod args="-m mpi -e linalg" # same as above but use the bundled linalg lib
|
||||
|
||||
Note that the ``Makefile.lammps`` file has settings to use the BLAS
|
||||
and LAPACK linear algebra libraries. These can either exist on
|
||||
your system, or you can use the files provided in ``lib/linalg``.
|
||||
In the latter case you also need to build the library in
|
||||
``lib/linalg`` with a command like these:
|
||||
|
||||
.. code-block:: bash
|
||||
|
||||
$ make lib-linalg # print help message
|
||||
$ make lib-linalg args="-m serial" # build with GNU Fortran compiler (settings as with "make serial")
|
||||
$ make lib-linalg args="-m mpi" # build with default MPI Fortran compiler (settings as with "make mpi")
|
||||
$ make lib-linalg args="-m gfortran" # build with GNU Fortran compiler
|
||||
|
||||
The package itself is activated with ``make yes-ML-POD``.
|
||||
|
||||
----------
|
||||
|
||||
.. _plumed:
|
||||
|
||||
PLUMED package
|
||||
|
||||
@ -31,7 +31,6 @@ table above.
|
||||
* :doc:`bond_style <bond_style>`
|
||||
* :doc:`bond_write <bond_write>`
|
||||
* :doc:`boundary <boundary>`
|
||||
* :doc:`box <box>`
|
||||
* :doc:`change_box <change_box>`
|
||||
* :doc:`clear <clear>`
|
||||
* :doc:`comm_modify <comm_modify>`
|
||||
@ -90,8 +89,7 @@ table above.
|
||||
* :doc:`region <region>`
|
||||
* :doc:`replicate <replicate>`
|
||||
* :doc:`rerun <rerun>`
|
||||
* :doc:`reset_atom_ids <reset_atom_ids>`
|
||||
* :doc:`reset_mol_ids <reset_mol_ids>`
|
||||
* :doc:`reset_atoms <reset_atoms>`
|
||||
* :doc:`reset_timestep <reset_timestep>`
|
||||
* :doc:`restart <restart>`
|
||||
* :doc:`run <run>`
|
||||
@ -127,6 +125,7 @@ additional letter in parenthesis: k = KOKKOS.
|
||||
* :doc:`group2ndx <group2ndx>`
|
||||
* :doc:`hyper <hyper>`
|
||||
* :doc:`kim <kim_commands>`
|
||||
* :doc:`fitpod <fitpod_command>`
|
||||
* :doc:`mdi <mdi>`
|
||||
* :doc:`ndx2group <group2ndx>`
|
||||
* :doc:`neb <neb>`
|
||||
|
||||
@ -25,7 +25,6 @@ Setup simulation box:
|
||||
:columns: 4
|
||||
|
||||
* :doc:`boundary <boundary>`
|
||||
* :doc:`box <box>`
|
||||
* :doc:`change_box <change_box>`
|
||||
* :doc:`create_box <create_box>`
|
||||
* :doc:`dimension <dimension>`
|
||||
|
||||
@ -69,9 +69,9 @@ OPT.
|
||||
* :doc:`edpd/source <fix_dpd_source>`
|
||||
* :doc:`efield <fix_efield>`
|
||||
* :doc:`ehex <fix_ehex>`
|
||||
* :doc:`electrode/conp (i) <fix_electrode_conp>`
|
||||
* :doc:`electrode/conq (i) <fix_electrode_conp>`
|
||||
* :doc:`electrode/thermo (i) <fix_electrode_conp>`
|
||||
* :doc:`electrode/conp (i) <fix_electrode>`
|
||||
* :doc:`electrode/conq (i) <fix_electrode>`
|
||||
* :doc:`electrode/thermo (i) <fix_electrode>`
|
||||
* :doc:`electron/stopping <fix_electron_stopping>`
|
||||
* :doc:`electron/stopping/fit <fix_electron_stopping>`
|
||||
* :doc:`enforce2d (k) <fix_enforce2d>`
|
||||
@ -213,6 +213,7 @@ OPT.
|
||||
* :doc:`saed/vtk <fix_saed_vtk>`
|
||||
* :doc:`setforce (k) <fix_setforce>`
|
||||
* :doc:`setforce/spin <fix_setforce>`
|
||||
* :doc:`sgcmc <fix_sgcmc>`
|
||||
* :doc:`shake (k) <fix_shake>`
|
||||
* :doc:`shardlow (k) <fix_shardlow>`
|
||||
* :doc:`smd <fix_smd>`
|
||||
|
||||
@ -237,6 +237,7 @@ OPT.
|
||||
* :doc:`oxrna2/coaxstk <pair_oxrna2>`
|
||||
* :doc:`pace (k) <pair_pace>`
|
||||
* :doc:`pace/extrapolation <pair_pace>`
|
||||
* :doc:`pod <pair_pod>`
|
||||
* :doc:`peri/eps <pair_peri>`
|
||||
* :doc:`peri/lps (o) <pair_peri>`
|
||||
* :doc:`peri/pmb (o) <pair_peri>`
|
||||
|
||||
@ -2,14 +2,17 @@ Removed commands and packages
|
||||
=============================
|
||||
|
||||
This page lists LAMMPS commands and packages that have been removed from
|
||||
the distribution and provides suggestions for alternatives or replacements.
|
||||
LAMMPS has special dummy styles implemented, that will stop LAMMPS and
|
||||
print a suitable error message in most cases, when a style/command is used
|
||||
that has been removed.
|
||||
the distribution and provides suggestions for alternatives or
|
||||
replacements. LAMMPS has special dummy styles implemented, that will
|
||||
stop LAMMPS and print a suitable error message in most cases, when a
|
||||
style/command is used that has been removed or will replace the command
|
||||
with the direct alternative (if available) and print a warning.
|
||||
|
||||
Fix ave/spatial and fix ave/spatial/sphere
|
||||
------------------------------------------
|
||||
|
||||
.. deprecated:: 11Dec2015
|
||||
|
||||
The fixes ave/spatial and ave/spatial/sphere have been removed from LAMMPS
|
||||
since they were superseded by the more general and extensible "chunk
|
||||
infrastructure". Here the system is partitioned in one of many possible
|
||||
@ -17,10 +20,23 @@ ways through the :doc:`compute chunk/atom <compute_chunk_atom>` command
|
||||
and then averaging is done using :doc:`fix ave/chunk <fix_ave_chunk>`.
|
||||
Please refer to the :doc:`chunk HOWTO <Howto_chunk>` section for an overview.
|
||||
|
||||
Reset_ids command
|
||||
-----------------
|
||||
Box command
|
||||
-----------
|
||||
|
||||
The reset_ids command has been renamed to :doc:`reset_atom_ids <reset_atom_ids>`.
|
||||
.. deprecated:: TBD
|
||||
|
||||
The *box* command has been removed and the LAMMPS code changed so it won't
|
||||
be needed. If present, LAMMPS will ignore the command and print a warning.
|
||||
|
||||
Reset_ids, reset_atom_ids, reset_mol_ids commands
|
||||
-------------------------------------------------
|
||||
|
||||
.. deprecated:: TBD
|
||||
|
||||
The *reset_ids*, *reset_atom_ids*, and *reset_mol_ids* commands have
|
||||
been folded into the :doc:`reset_atoms <reset_atoms>` command. If
|
||||
present, LAMMPS will replace the commands accordingly and print a
|
||||
warning.
|
||||
|
||||
MEAM package
|
||||
------------
|
||||
@ -30,18 +46,21 @@ The code in the :ref:`MEAM package <PKG-MEAM>` is a translation of the
|
||||
Fortran code of MEAM into C++, which removes several restrictions
|
||||
(e.g. there can be multiple instances in hybrid pair styles) and allows
|
||||
for some optimizations leading to better performance. The pair style
|
||||
:doc:`meam <pair_meam>` has the exact same syntax.
|
||||
:doc:`meam <pair_meam>` has the exact same syntax. For a transition
|
||||
period the C++ version of MEAM was called USER-MEAMC so it could
|
||||
coexist with the Fortran version.
|
||||
|
||||
REAX package
|
||||
------------
|
||||
|
||||
The REAX package has been removed since it was superseded by the
|
||||
:ref:`REAXFF package <PKG-REAXFF>`. The REAXFF
|
||||
package has been tested to yield equivalent results to the REAX package,
|
||||
offers better performance, supports OpenMP multi-threading via OPENMP,
|
||||
and GPU and threading parallelization through KOKKOS. The new pair styles
|
||||
are not syntax compatible with the removed reax pair style, so input
|
||||
files will have to be adapted.
|
||||
:ref:`REAXFF package <PKG-REAXFF>`. The REAXFF package has been tested
|
||||
to yield equivalent results to the REAX package, offers better
|
||||
performance, supports OpenMP multi-threading via OPENMP, and GPU and
|
||||
threading parallelization through KOKKOS. The new pair styles are not
|
||||
syntax compatible with the removed reax pair style, so input files will
|
||||
have to be adapted. The REAXFF package was originally called
|
||||
USER-REAXC.
|
||||
|
||||
USER-CUDA package
|
||||
-----------------
|
||||
@ -60,5 +79,6 @@ restart2data tool
|
||||
The functionality of the restart2data tool has been folded into the
|
||||
LAMMPS executable directly instead of having a separate tool. A
|
||||
combination of the commands :doc:`read_restart <read_restart>` and
|
||||
:doc:`write_data <write_data>` can be used to the same effect. For added
|
||||
convenience this conversion can also be triggered by :doc:`command line flags <Run_options>`
|
||||
:doc:`write_data <write_data>` can be used to the same effect. For
|
||||
added convenience this conversion can also be triggered by
|
||||
:doc:`command line flags <Run_options>`
|
||||
|
||||
@ -50,7 +50,7 @@ parallel each MPI process creates such an instance. This can be seen
|
||||
in the ``main.cpp`` file where the core steps of running a LAMMPS
|
||||
simulation are the following 3 lines of code:
|
||||
|
||||
.. code-block:: C++
|
||||
.. code-block:: c++
|
||||
|
||||
LAMMPS *lammps = new LAMMPS(argc, argv, lammps_comm);
|
||||
lammps->input->file();
|
||||
@ -78,7 +78,7 @@ LAMMPS makes extensive use of the object oriented programming (OOP)
|
||||
principles of *compositing* and *inheritance*. Classes like the
|
||||
``LAMMPS`` class are a **composite** containing pointers to instances
|
||||
of other classes like ``Atom``, ``Comm``, ``Force``, ``Neighbor``,
|
||||
``Modify``, and so on. Each of these classes implement certain
|
||||
``Modify``, and so on. Each of these classes implements certain
|
||||
functionality by storing and manipulating data related to the
|
||||
simulation and providing member functions that trigger certain
|
||||
actions. Some of those classes like ``Force`` are themselves
|
||||
@ -87,9 +87,9 @@ interactions. Similarly the ``Modify`` class contains a list of
|
||||
``Fix`` and ``Compute`` classes. If the input commands that
|
||||
correspond to these classes include the word *style*, then LAMMPS
|
||||
stores only a single instance of that class. E.g. *atom_style*,
|
||||
*comm_style*, *pair_style*, *bond_style*. It the input command does
|
||||
not include the word *style*, there can be many instances of that
|
||||
class defined. E.g. *region*, *fix*, *compute*, *dump*.
|
||||
*comm_style*, *pair_style*, *bond_style*. If the input command does
|
||||
**not** include the word *style*, then there may be many instances of
|
||||
that class defined, for example *region*, *fix*, *compute*, *dump*.
|
||||
|
||||
**Inheritance** enables creation of *derived* classes that can share
|
||||
common functionality in their base class while providing a consistent
|
||||
@ -232,7 +232,7 @@ macro ``PairStyle()`` will associate the style name "lj/cut"
|
||||
with a factory function creating an instance of the ``PairLJCut``
|
||||
class.
|
||||
|
||||
.. code-block:: C++
|
||||
.. code-block:: c++
|
||||
|
||||
// from force.h
|
||||
typedef Pair *(*PairCreator)(LAMMPS *);
|
||||
@ -360,7 +360,7 @@ characters; "{:<8}" would do this as left aligned, "{:^8}" as centered,
|
||||
argument type must be compatible or else the {fmt} formatting code will
|
||||
throw an exception. Some format string examples are given below:
|
||||
|
||||
.. code-block:: C
|
||||
.. code-block:: c++
|
||||
|
||||
auto mesg = fmt::format(" CPU time: {:4d}:{:02d}:{:02d}\n", cpuh, cpum, cpus);
|
||||
mesg = fmt::format("{:<8s}| {:<10.5g} | {:<10.5g} | {:<10.5g} |{:6.1f} |{:6.2f}\n",
|
||||
|
||||
@ -105,7 +105,7 @@ list, where each pair of atoms is listed only once (except when the
|
||||
pairs straddling sub-domains or periodic boundaries will be listed twice).
|
||||
Thus these are the default settings when a neighbor list request is created in:
|
||||
|
||||
.. code-block:: C++
|
||||
.. code-block:: c++
|
||||
|
||||
void Pair::init_style()
|
||||
{
|
||||
@ -129,7 +129,7 @@ neighbor list request to the specific needs of a style an additional
|
||||
request flag is needed. The :doc:`tersoff <pair_tersoff>` pair style,
|
||||
for example, needs a "full" neighbor list:
|
||||
|
||||
.. code-block:: C++
|
||||
.. code-block:: c++
|
||||
|
||||
void PairTersoff::init_style()
|
||||
{
|
||||
@ -141,7 +141,7 @@ When a pair style supports r-RESPA time integration with different cutoff region
|
||||
the request flag may depend on the corresponding r-RESPA settings. Here an example
|
||||
from pair style lj/cut:
|
||||
|
||||
.. code-block:: C++
|
||||
.. code-block:: c++
|
||||
|
||||
void PairLJCut::init_style()
|
||||
{
|
||||
@ -160,7 +160,7 @@ Granular pair styles need neighbor lists based on particle sizes and not cutoff
|
||||
and also may require to have the list of previous neighbors available ("history").
|
||||
For example with:
|
||||
|
||||
.. code-block:: C++
|
||||
.. code-block:: c++
|
||||
|
||||
if (use_history) neighbor->add_request(this, NeighConst::REQ_SIZE | NeighConst::REQ_HISTORY);
|
||||
else neighbor->add_request(this, NeighConst::REQ_SIZE);
|
||||
@ -170,7 +170,7 @@ settings each request can set an id which is then used in the corresponding
|
||||
``init_list()`` function to assign it to the suitable pointer variable. This is
|
||||
done for example by the :doc:`pair style meam <pair_meam>`:
|
||||
|
||||
.. code-block:: C++
|
||||
.. code-block:: c++
|
||||
|
||||
void PairMEAM::init_style()
|
||||
{
|
||||
@ -189,7 +189,7 @@ just once) and this can also be indicated by a flag. As an example here
|
||||
is the request from the ``FixPeriNeigh`` class which is created
|
||||
internally by :doc:`Peridynamics pair styles <pair_peri>`:
|
||||
|
||||
.. code-block:: C++
|
||||
.. code-block:: c++
|
||||
|
||||
neighbor->add_request(this, NeighConst::REQ_FULL | NeighConst::REQ_OCCASIONAL);
|
||||
|
||||
@ -198,7 +198,7 @@ than what is usually inferred from the pair style settings (largest cutoff of
|
||||
all pair styles plus neighbor list skin). The following is used in the
|
||||
:doc:`compute rdf <compute_rdf>` command implementation:
|
||||
|
||||
.. code-block:: C++
|
||||
.. code-block:: c++
|
||||
|
||||
if (cutflag)
|
||||
neighbor->add_request(this, NeighConst::REQ_OCCASIONAL)->set_cutoff(mycutneigh);
|
||||
@ -212,7 +212,7 @@ for printing the neighbor list summary the name of the requesting command
|
||||
should be set. Below is the request from the :doc:`delete atoms <delete_atoms>`
|
||||
command:
|
||||
|
||||
.. code-block:: C++
|
||||
.. code-block:: c++
|
||||
|
||||
neighbor->add_request(this, "delete_atoms", NeighConst::REQ_FULL);
|
||||
|
||||
|
||||
@ -95,7 +95,7 @@ a class ``PairMorse2`` in the files ``pair_morse2.h`` and
|
||||
``pair_morse2.cpp`` with the factory function and initialization
|
||||
function would look like this:
|
||||
|
||||
.. code-block:: C++
|
||||
.. code-block:: c++
|
||||
|
||||
#include "lammpsplugin.h"
|
||||
#include "version.h"
|
||||
@ -141,7 +141,7 @@ list of argument strings), then the pointer type is ``lammpsplugin_factory2``
|
||||
and it must be assigned to the *creator.v2* member of the plugin struct.
|
||||
Below is an example for that:
|
||||
|
||||
.. code-block:: C++
|
||||
.. code-block:: c++
|
||||
|
||||
#include "lammpsplugin.h"
|
||||
#include "version.h"
|
||||
@ -176,7 +176,7 @@ demonstrated in the following example, which also shows that the
|
||||
implementation of the plugin class may be within the same source
|
||||
file as the plugin interface code:
|
||||
|
||||
.. code-block:: C++
|
||||
.. code-block:: c++
|
||||
|
||||
#include "lammpsplugin.h"
|
||||
|
||||
|
||||
@ -194,7 +194,7 @@ macro. These tests operate by capturing the screen output when executing
|
||||
the failing command and then comparing that with a provided regular
|
||||
expression string pattern. Example:
|
||||
|
||||
.. code-block:: C++
|
||||
.. code-block:: c++
|
||||
|
||||
TEST_F(SimpleCommandsTest, UnknownCommand)
|
||||
{
|
||||
@ -226,9 +226,9 @@ The following test programs are currently available:
|
||||
* - ``test_kim_commands.cpp``
|
||||
- KimCommands
|
||||
- Tests for several commands from the :ref:`KIM package <PKG-KIM>`
|
||||
* - ``test_reset_ids.cpp``
|
||||
- ResetIDs
|
||||
- Tests to validate the :doc:`reset_atom_ids <reset_atom_ids>` and :doc:`reset_mol_ids <reset_mol_ids>` commands
|
||||
* - ``test_reset_atoms.cpp``
|
||||
- ResetAtoms
|
||||
- Tests to validate the :doc:`reset_atoms <reset_atoms>` sub-commands
|
||||
|
||||
|
||||
Tests for the C-style library interface
|
||||
@ -249,7 +249,7 @@ MPI support. These include tests where LAMMPS is run in multi-partition
|
||||
mode or only on a subset of the MPI world communicator. The CMake
|
||||
script code for adding this kind of test looks like this:
|
||||
|
||||
.. code-block:: CMake
|
||||
.. code-block:: cmake
|
||||
|
||||
if (BUILD_MPI)
|
||||
add_executable(test_library_mpi test_library_mpi.cpp)
|
||||
|
||||
@ -61,7 +61,7 @@ header file needs to be updated accordingly.
|
||||
|
||||
Old:
|
||||
|
||||
.. code-block:: C++
|
||||
.. code-block:: c++
|
||||
|
||||
int PairEAM::pack_comm(int n, int *list, double *buf, int pbc_flag, int *pbc)
|
||||
{
|
||||
@ -75,7 +75,7 @@ Old:
|
||||
|
||||
New:
|
||||
|
||||
.. code-block:: C++
|
||||
.. code-block:: c++
|
||||
|
||||
int PairEAM::pack_forward_comm(int n, int *list, double *buf, int pbc_flag, int *pbc)
|
||||
{
|
||||
@ -112,14 +112,14 @@ Example from a pair style:
|
||||
|
||||
Old:
|
||||
|
||||
.. code-block:: C++
|
||||
.. code-block:: c++
|
||||
|
||||
if (eflag || vflag) ev_setup(eflag, vflag);
|
||||
else evflag = vflag_fdotr = eflag_global = eflag_atom = 0;
|
||||
|
||||
New:
|
||||
|
||||
.. code-block:: C++
|
||||
.. code-block:: c++
|
||||
|
||||
ev_init(eflag, vflag);
|
||||
|
||||
@ -142,14 +142,14 @@ when they are called from only one or a subset of the MPI processes.
|
||||
|
||||
Old:
|
||||
|
||||
.. code-block:: C++
|
||||
.. code-block:: c++
|
||||
|
||||
val = force->numeric(FLERR, arg[1]);
|
||||
num = force->inumeric(FLERR, arg[2]);
|
||||
|
||||
New:
|
||||
|
||||
.. code-block:: C++
|
||||
.. code-block:: c++
|
||||
|
||||
val = utils::numeric(FLERR, true, arg[1], lmp);
|
||||
num = utils::inumeric(FLERR, false, arg[2], lmp);
|
||||
@ -183,14 +183,14 @@ copy them around for simulations.
|
||||
|
||||
Old:
|
||||
|
||||
.. code-block:: C++
|
||||
.. code-block:: c++
|
||||
|
||||
fp = force->open_potential(filename);
|
||||
fp = fopen(filename, "r");
|
||||
|
||||
New:
|
||||
|
||||
.. code-block:: C++
|
||||
.. code-block:: c++
|
||||
|
||||
fp = utils::open_potential(filename, lmp);
|
||||
|
||||
@ -207,7 +207,7 @@ Example:
|
||||
|
||||
Old:
|
||||
|
||||
.. code-block:: C++
|
||||
.. code-block:: c++
|
||||
|
||||
if (fptr == NULL) {
|
||||
char str[128];
|
||||
@ -217,7 +217,7 @@ Old:
|
||||
|
||||
New:
|
||||
|
||||
.. code-block:: C++
|
||||
.. code-block:: c++
|
||||
|
||||
if (fptr == nullptr)
|
||||
error->one(FLERR, "Cannot open AEAM potential file {}: {}", filename, utils::getsyserror());
|
||||
@ -237,7 +237,7 @@ an example from the ``FixWallReflect`` class:
|
||||
|
||||
Old:
|
||||
|
||||
.. code-block:: C++
|
||||
.. code-block:: c++
|
||||
|
||||
FixWallReflect(class LAMMPS *, int, char **);
|
||||
virtual ~FixWallReflect();
|
||||
@ -247,7 +247,7 @@ Old:
|
||||
|
||||
New:
|
||||
|
||||
.. code-block:: C++
|
||||
.. code-block:: c++
|
||||
|
||||
FixWallReflect(class LAMMPS *, int, char **);
|
||||
~FixWallReflect() override;
|
||||
@ -271,7 +271,7 @@ the type of the "this" pointer argument.
|
||||
|
||||
Old:
|
||||
|
||||
.. code-block:: C++
|
||||
.. code-block:: c++
|
||||
|
||||
comm->forward_comm_pair(this);
|
||||
comm->forward_comm_fix(this);
|
||||
@ -284,7 +284,7 @@ Old:
|
||||
|
||||
New:
|
||||
|
||||
.. code-block:: C++
|
||||
.. code-block:: c++
|
||||
|
||||
comm->forward_comm(this);
|
||||
comm->reverse_comm(this);
|
||||
@ -304,7 +304,7 @@ requests can be :doc:`found here <Developer_notes>`. Example from the
|
||||
|
||||
Old:
|
||||
|
||||
.. code-block:: C++
|
||||
.. code-block:: c++
|
||||
|
||||
int irequest = neighbor->request(this,instance_me);
|
||||
neighbor->requests[irequest]->pair = 0;
|
||||
@ -317,7 +317,7 @@ Old:
|
||||
|
||||
New:
|
||||
|
||||
.. code-block:: C++
|
||||
.. code-block:: c++
|
||||
|
||||
auto req = neighbor->add_request(this, NeighConst::REQ_OCCASIONAL);
|
||||
if (cutflag) req->set_cutoff(mycutneigh);
|
||||
@ -340,7 +340,7 @@ these are internal fixes, there is no user visible change.
|
||||
|
||||
Old:
|
||||
|
||||
.. code-block:: C++
|
||||
.. code-block:: c++
|
||||
|
||||
#include "fix_store.h"
|
||||
|
||||
@ -351,7 +351,7 @@ Old:
|
||||
|
||||
New:
|
||||
|
||||
.. code-block:: C++
|
||||
.. code-block:: c++
|
||||
|
||||
#include "fix_store_peratom.h"
|
||||
|
||||
@ -362,7 +362,7 @@ New:
|
||||
|
||||
Old:
|
||||
|
||||
.. code-block:: C++
|
||||
.. code-block:: c++
|
||||
|
||||
#include "fix_store.h"
|
||||
|
||||
@ -373,7 +373,7 @@ Old:
|
||||
|
||||
New:
|
||||
|
||||
.. code-block:: C++
|
||||
.. code-block:: c++
|
||||
|
||||
#include "fix_store_global.h"
|
||||
|
||||
@ -396,7 +396,7 @@ the dump directly. Example:
|
||||
|
||||
Old:
|
||||
|
||||
.. code-block:: C++
|
||||
.. code-block:: c++
|
||||
|
||||
int idump = output->find_dump(arg[iarg+1]);
|
||||
if (idump < 0)
|
||||
@ -412,7 +412,7 @@ Old:
|
||||
|
||||
New:
|
||||
|
||||
.. code-block:: C++
|
||||
.. code-block:: c++
|
||||
|
||||
auto idump = output->get_dump_by_id(arg[iarg+1]);
|
||||
if (!idump) error->all(FLERR,"Dump ID {} in hyper command does not exist", arg[iarg+1]);
|
||||
|
||||
@ -133,6 +133,9 @@ and parsing files or arguments.
|
||||
.. doxygenfunction:: trim_comment
|
||||
:project: progguide
|
||||
|
||||
.. doxygenfunction:: strip_style_suffix
|
||||
:project: progguide
|
||||
|
||||
.. doxygenfunction:: star_subst
|
||||
:project: progguide
|
||||
|
||||
@ -317,7 +320,7 @@ are all "whitespace" characters, i.e. the space character, the tabulator
|
||||
character, the carriage return character, the linefeed character, and
|
||||
the form feed character.
|
||||
|
||||
.. code-block:: C++
|
||||
.. code-block:: c++
|
||||
:caption: Tokenizer class example listing entries of the PATH environment variable
|
||||
|
||||
#include "tokenizer.h"
|
||||
@ -349,7 +352,7 @@ tokenizer into a ``try`` / ``catch`` block to handle errors. The
|
||||
when a (type of) number is requested as next token that is not
|
||||
compatible with the string representing the next word.
|
||||
|
||||
.. code-block:: C++
|
||||
.. code-block:: c++
|
||||
:caption: ValueTokenizer class example with exception handling
|
||||
|
||||
#include "tokenizer.h"
|
||||
@ -427,7 +430,7 @@ one or two array indices "[<number>]" with numbers > 0.
|
||||
|
||||
A typical code segment would look like this:
|
||||
|
||||
.. code-block:: C++
|
||||
.. code-block:: c++
|
||||
:caption: Usage example for ArgInfo class
|
||||
|
||||
int nvalues = 0;
|
||||
@ -476,7 +479,7 @@ open the file, and will call the :cpp:class:`LAMMPS_NS::Error` class in
|
||||
case of failures to read or to convert numbers, so that LAMMPS will be
|
||||
aborted.
|
||||
|
||||
.. code-block:: C++
|
||||
.. code-block:: c++
|
||||
:caption: Use of PotentialFileReader class in pair style coul/streitz
|
||||
|
||||
PotentialFileReader reader(lmp, file, "coul/streitz");
|
||||
@ -555,7 +558,7 @@ chunk size needs to be known in advance, 2) with :cpp:func:`MyPage::vget()
|
||||
its size is registered later with :cpp:func:`MyPage::vgot()
|
||||
<LAMMPS_NS::MyPage::vgot>`.
|
||||
|
||||
.. code-block:: C++
|
||||
.. code-block:: c++
|
||||
:caption: Example of using :cpp:class:`MyPage <LAMMPS_NS::MyPage>`
|
||||
|
||||
#include "my_page.h"
|
||||
|
||||
@ -26,7 +26,7 @@ constructor with the signature: ``FixPrintVel(class LAMMPS *, int, char **)``.
|
||||
Every fix must be registered in LAMMPS by writing the following lines
|
||||
of code in the header before include guards:
|
||||
|
||||
.. code-block:: c
|
||||
.. code-block:: c++
|
||||
|
||||
#ifdef FIX_CLASS
|
||||
// clang-format off
|
||||
@ -47,7 +47,7 @@ keyword when it parses the input script.
|
||||
Let's write a simple fix which will print the average velocity at the end
|
||||
of each timestep. First of all, implement a constructor:
|
||||
|
||||
.. code-block:: C++
|
||||
.. code-block:: c++
|
||||
|
||||
FixPrintVel::FixPrintVel(LAMMPS *lmp, int narg, char **arg)
|
||||
: Fix(lmp, narg, arg)
|
||||
@ -72,7 +72,7 @@ in the Fix class called ``nevery`` which specifies how often the method
|
||||
|
||||
The next method we need to implement is ``setmask()``:
|
||||
|
||||
.. code-block:: C++
|
||||
.. code-block:: c++
|
||||
|
||||
int FixPrintVel::setmask()
|
||||
{
|
||||
@ -87,7 +87,7 @@ during execution. The constant ``END_OF_STEP`` corresponds to the
|
||||
are called during a timestep and the order in which they are called
|
||||
are shown in the previous section.
|
||||
|
||||
.. code-block:: C++
|
||||
.. code-block:: c++
|
||||
|
||||
void FixPrintVel::end_of_step()
|
||||
{
|
||||
@ -143,7 +143,7 @@ The group membership information of an atom is contained in the *mask*
|
||||
property of and atom and the bit corresponding to a given group is
|
||||
stored in the groupbit variable which is defined in Fix base class:
|
||||
|
||||
.. code-block:: C++
|
||||
.. code-block:: c++
|
||||
|
||||
for (int i = 0; i < nlocal; ++i) {
|
||||
if (atom->mask[i] & groupbit) {
|
||||
@ -174,7 +174,7 @@ to store positions of atoms from previous timestep, we need to add
|
||||
``double** xold`` to the header file. Than add allocation code
|
||||
to the constructor:
|
||||
|
||||
.. code-block:: C++
|
||||
.. code-block:: c++
|
||||
|
||||
FixSavePos::FixSavePos(LAMMPS *lmp, int narg, char **arg), xold(nullptr)
|
||||
{
|
||||
@ -190,7 +190,7 @@ to the constructor:
|
||||
|
||||
Implement the aforementioned methods:
|
||||
|
||||
.. code-block:: C++
|
||||
.. code-block:: c++
|
||||
|
||||
double FixSavePos::memory_usage()
|
||||
{
|
||||
|
||||
@ -152,14 +152,14 @@ Creating a new instance of PyLammps
|
||||
To create a PyLammps object you need to first import the class from the lammps
|
||||
module. By using the default constructor, a new *lammps* instance is created.
|
||||
|
||||
.. code-block:: Python
|
||||
.. code-block:: python
|
||||
|
||||
from lammps import PyLammps
|
||||
L = PyLammps()
|
||||
|
||||
You can also initialize PyLammps on top of this existing *lammps* object:
|
||||
|
||||
.. code-block:: Python
|
||||
.. code-block:: python
|
||||
|
||||
from lammps import lammps, PyLammps
|
||||
lmp = lammps()
|
||||
@ -180,14 +180,14 @@ For instance, let's take the following LAMMPS command:
|
||||
In the original interface this command can be executed with the following
|
||||
Python code if *L* was a lammps instance:
|
||||
|
||||
.. code-block:: Python
|
||||
.. code-block:: python
|
||||
|
||||
L.command("region box block 0 10 0 5 -0.5 0.5")
|
||||
|
||||
With the PyLammps interface, any command can be split up into arbitrary parts
|
||||
separated by white-space, passed as individual arguments to a region method.
|
||||
|
||||
.. code-block:: Python
|
||||
.. code-block:: python
|
||||
|
||||
L.region("box block", 0, 10, 0, 5, -0.5, 0.5)
|
||||
|
||||
@ -199,14 +199,14 @@ The benefit of this approach is avoiding redundant command calls and easier
|
||||
parameterization. In the original interface parameterization needed to be done
|
||||
manually by creating formatted strings.
|
||||
|
||||
.. code-block:: Python
|
||||
.. code-block:: python
|
||||
|
||||
L.command("region box block %f %f %f %f %f %f" % (xlo, xhi, ylo, yhi, zlo, zhi))
|
||||
|
||||
In contrast, methods of PyLammps accept parameters directly and will convert
|
||||
them automatically to a final command string.
|
||||
|
||||
.. code-block:: Python
|
||||
.. code-block:: python
|
||||
|
||||
L.region("box block", xlo, xhi, ylo, yhi, zlo, zhi)
|
||||
|
||||
@ -256,7 +256,7 @@ LAMMPS variables can be both defined and accessed via the PyLammps interface.
|
||||
|
||||
To define a variable you can use the :doc:`variable <variable>` command:
|
||||
|
||||
.. code-block:: Python
|
||||
.. code-block:: python
|
||||
|
||||
L.variable("a index 2")
|
||||
|
||||
@ -265,14 +265,14 @@ A dictionary of all variables is returned by L.variables
|
||||
you can access an individual variable by retrieving a variable object from the
|
||||
L.variables dictionary by name
|
||||
|
||||
.. code-block:: Python
|
||||
.. code-block:: python
|
||||
|
||||
a = L.variables['a']
|
||||
|
||||
The variable value can then be easily read and written by accessing the value
|
||||
property of this object.
|
||||
|
||||
.. code-block:: Python
|
||||
.. code-block:: python
|
||||
|
||||
print(a.value)
|
||||
a.value = 4
|
||||
@ -284,7 +284,7 @@ LAMMPS expressions can be immediately evaluated by using the eval method. The
|
||||
passed string parameter can be any expression containing global thermo values,
|
||||
variables, compute or fix data.
|
||||
|
||||
.. code-block:: Python
|
||||
.. code-block:: python
|
||||
|
||||
result = L.eval("ke") # kinetic energy
|
||||
result = L.eval("pe") # potential energy
|
||||
@ -298,7 +298,7 @@ All atoms in the current simulation can be accessed by using the L.atoms list.
|
||||
Each element of this list is an object which exposes its properties (id, type,
|
||||
position, velocity, force, etc.).
|
||||
|
||||
.. code-block:: Python
|
||||
.. code-block:: python
|
||||
|
||||
# access first atom
|
||||
L.atoms[0].id
|
||||
@ -311,7 +311,7 @@ position, velocity, force, etc.).
|
||||
|
||||
Some properties can also be used to set:
|
||||
|
||||
.. code-block:: Python
|
||||
.. code-block:: python
|
||||
|
||||
# set position in 2D simulation
|
||||
L.atoms[0].position = (1.0, 0.0)
|
||||
@ -328,7 +328,7 @@ after a run via the L.runs list. This list contains a growing list of run data.
|
||||
The first element is the output of the first run, the second element that of
|
||||
the second run.
|
||||
|
||||
.. code-block:: Python
|
||||
.. code-block:: python
|
||||
|
||||
L.run(1000)
|
||||
L.runs[0] # data of first 1000 time steps
|
||||
@ -339,14 +339,14 @@ the second run.
|
||||
Each run contains a dictionary of all trajectories. Each trajectory is
|
||||
accessible through its thermo name:
|
||||
|
||||
.. code-block:: Python
|
||||
.. code-block:: python
|
||||
|
||||
L.runs[0].thermo.Step # list of time steps in first run
|
||||
L.runs[0].thermo.Ke # list of kinetic energy values in first run
|
||||
|
||||
Together with matplotlib plotting data out of LAMMPS becomes simple:
|
||||
|
||||
.. code-block:: Python
|
||||
.. code-block:: python
|
||||
|
||||
import matplotlib.plot as plt
|
||||
steps = L.runs[0].thermo.Step
|
||||
@ -406,7 +406,7 @@ Four atoms are placed in the simulation and the dihedral potential is applied on
|
||||
them using a datafile. Then one of the atoms is rotated along the central axis by
|
||||
setting its position from Python, which changes the dihedral angle.
|
||||
|
||||
.. code-block:: Python
|
||||
.. code-block:: python
|
||||
|
||||
phi = [d \* math.pi / 180 for d in range(360)]
|
||||
|
||||
@ -439,7 +439,7 @@ Initially, a 2D system is created in a state with minimal energy.
|
||||
|
||||
It is then disordered by moving each atom by a random delta.
|
||||
|
||||
.. code-block:: Python
|
||||
.. code-block:: python
|
||||
|
||||
random.seed(27848)
|
||||
deltaperturb = 0.2
|
||||
@ -458,7 +458,7 @@ It is then disordered by moving each atom by a random delta.
|
||||
Finally, the Monte Carlo algorithm is implemented in Python. It continuously
|
||||
moves random atoms by a random delta and only accepts certain moves.
|
||||
|
||||
.. code-block:: Python
|
||||
.. code-block:: python
|
||||
|
||||
estart = L.eval("pe")
|
||||
elast = estart
|
||||
@ -517,7 +517,7 @@ PyLammps can be run in parallel using mpi4py. This python package can be install
|
||||
The following is a short example which reads in an existing LAMMPS input file and
|
||||
executes it in parallel. You can find in.melt in the examples/melt folder.
|
||||
|
||||
.. code-block:: Python
|
||||
.. code-block:: python
|
||||
|
||||
from mpi4py import MPI
|
||||
from lammps import PyLammps
|
||||
|
||||
@ -43,7 +43,7 @@ JSON
|
||||
"ke": $(ke)
|
||||
}""" file current_state.json screen no
|
||||
|
||||
.. code-block:: JSON
|
||||
.. code-block:: json
|
||||
:caption: current_state.json
|
||||
|
||||
{
|
||||
|
||||
@ -144,11 +144,6 @@ does not change the atom positions due to non-periodicity. In this
|
||||
mode, if you tilt the system to extreme angles, the simulation will
|
||||
simply become inefficient, due to the highly skewed simulation box.
|
||||
|
||||
The limitation on not creating a simulation box with a tilt factor
|
||||
skewing the box more than half the distance of the parallel box length
|
||||
can be overridden via the :doc:`box <box>` command. Setting the *tilt*
|
||||
keyword to *large* allows any tilt factors to be specified.
|
||||
|
||||
Box flips that may occur using the :doc:`fix deform <fix_deform>` or
|
||||
:doc:`fix npt <fix_nh>` commands can be turned off using the *flip no*
|
||||
option with either of the commands.
|
||||
|
||||
@ -39,7 +39,7 @@ crashes within LAMMPS may be recovered from by enabling
|
||||
:ref:`exceptions <exceptions>`, avoiding them proactively is a safer
|
||||
approach.
|
||||
|
||||
.. code-block:: C
|
||||
.. code-block:: c
|
||||
:caption: Example for using configuration settings functions
|
||||
|
||||
#include "library.h"
|
||||
|
||||
@ -22,7 +22,7 @@ as the "handle" argument in subsequent function calls until that
|
||||
instance is destroyed by calling :cpp:func:`lammps_close`. Here is a
|
||||
simple example demonstrating its use:
|
||||
|
||||
.. code-block:: C
|
||||
.. code-block:: c
|
||||
|
||||
#include "library.h"
|
||||
#include <stdio.h>
|
||||
|
||||
@ -30,7 +30,7 @@ be included in the file or strings, and expansion of variables with
|
||||
``${name}`` or ``$(expression)`` syntax is performed.
|
||||
Below is a short example using some of these functions.
|
||||
|
||||
.. code-block:: C
|
||||
.. code-block:: c
|
||||
|
||||
/* define to make the otherwise hidden prototype for "lammps_open()" visible */
|
||||
#define LAMMPS_LIB_MPI
|
||||
|
||||
@ -32,7 +32,7 @@ indexed accordingly. Per-atom data can change sizes and ordering at
|
||||
every neighbor list rebuild or atom sort event as atoms migrate between
|
||||
sub-domains and processors.
|
||||
|
||||
.. code-block:: C
|
||||
.. code-block:: c
|
||||
|
||||
#include "library.h"
|
||||
#include <stdio.h>
|
||||
|
||||
@ -13,24 +13,65 @@ Here is a brief description of common methods you define in your
|
||||
new derived class. See bond.h, angle.h, dihedral.h, and improper.h
|
||||
for details and specific additional methods.
|
||||
|
||||
+-----------------------+---------------------------------------------------------------------------------------+
|
||||
| init | check if all coefficients are set, calls *init_style* (optional) |
|
||||
+-----------------------+---------------------------------------------------------------------------------------+
|
||||
| init_style | check if style specific conditions are met (optional) |
|
||||
+-----------------------+---------------------------------------------------------------------------------------+
|
||||
| compute | compute the molecular interactions (required) |
|
||||
+-----------------------+---------------------------------------------------------------------------------------+
|
||||
| settings | apply global settings for all types (optional) |
|
||||
+-----------------------+---------------------------------------------------------------------------------------+
|
||||
| coeff | set coefficients for one type (required) |
|
||||
+-----------------------+---------------------------------------------------------------------------------------+
|
||||
| equilibrium_distance | length of bond, used by SHAKE (required, bond only) |
|
||||
+-----------------------+---------------------------------------------------------------------------------------+
|
||||
| equilibrium_angle | opening of angle, used by SHAKE (required, angle only) |
|
||||
+-----------------------+---------------------------------------------------------------------------------------+
|
||||
| write & read_restart | writes/reads coeffs to restart files (required) |
|
||||
+-----------------------+---------------------------------------------------------------------------------------+
|
||||
| single | force (bond only) and energy of a single bond or angle (required, bond or angle only) |
|
||||
+-----------------------+---------------------------------------------------------------------------------------+
|
||||
| memory_usage | tally memory allocated by the style (optional) |
|
||||
+-----------------------+---------------------------------------------------------------------------------------+
|
||||
+-----------------------+---------------------------------------------------------------------+
|
||||
| Required | "pure" methods that *must* be overridden in a derived class |
|
||||
+=======================+=====================================================================+
|
||||
| compute | compute the molecular interactions for all listed items |
|
||||
+-----------------------+---------------------------------------------------------------------+
|
||||
| coeff | set coefficients for one type |
|
||||
+-----------------------+---------------------------------------------------------------------+
|
||||
| equilibrium_distance | length of bond, used by SHAKE (bond styles only) |
|
||||
+-----------------------+---------------------------------------------------------------------+
|
||||
| equilibrium_angle | opening of angle, used by SHAKE (angle styles only) |
|
||||
+-----------------------+---------------------------------------------------------------------+
|
||||
| write & read_restart | writes/reads coeffs to restart files |
|
||||
+-----------------------+---------------------------------------------------------------------+
|
||||
| single | force/r (bond styles only) and energy of a single bond or angle |
|
||||
+-----------------------+---------------------------------------------------------------------+
|
||||
|
||||
|
||||
+--------------------------------+----------------------------------------------------------------------+
|
||||
| Optional | methods that have a default or dummy implementation |
|
||||
+================================+======================================================================+
|
||||
| init | check if all coefficients are set, calls init_style() |
|
||||
+--------------------------------+----------------------------------------------------------------------+
|
||||
| init_style | check if style specific conditions are met |
|
||||
+--------------------------------+----------------------------------------------------------------------+
|
||||
| settings | apply global settings for all types |
|
||||
+--------------------------------+----------------------------------------------------------------------+
|
||||
| write & read_restart_settings | writes/reads global style settings to restart files |
|
||||
+--------------------------------+----------------------------------------------------------------------+
|
||||
| write_data | write corresponding Coeffs section(s) in data file |
|
||||
+--------------------------------+----------------------------------------------------------------------+
|
||||
| memory_usage | tally memory allocated by the style |
|
||||
+--------------------------------+----------------------------------------------------------------------+
|
||||
| extract | provide access to internal data (bond or angle styles only) |
|
||||
+--------------------------------+----------------------------------------------------------------------+
|
||||
| reinit | reset all type-based parameters, called by fix adapt (bonds only) |
|
||||
+--------------------------------+----------------------------------------------------------------------+
|
||||
| pack & unpack_forward_comm | copy data to and from buffer in forward communication (bonds only) |
|
||||
+--------------------------------+----------------------------------------------------------------------+
|
||||
| pack & unpack_reverse_comm | copy data to and from buffer in reverse communication (bonds only) |
|
||||
+--------------------------------+----------------------------------------------------------------------+
|
||||
|
||||
Here is a list of flags or settings that should be set in the
|
||||
constructor of the derived class when they differ from the default
|
||||
setting.
|
||||
|
||||
+---------------------------------+------------------------------------------------------------------------------+---------+
|
||||
| Name of flag | Description | default |
|
||||
+=================================+==============================================================================+=========+
|
||||
| writedata | 1 if write_data() is implemented | 1 |
|
||||
+---------------------------------+------------------------------------------------------------------------------+---------+
|
||||
| single_extra | number of extra single values calculated (bond styles only) | 0 |
|
||||
+---------------------------------+------------------------------------------------------------------------------+---------+
|
||||
| partial_flag | 1 if bond type can be set to 0 and deleted (bond styles only) | 0 |
|
||||
+---------------------------------+------------------------------------------------------------------------------+---------+
|
||||
| reinitflag | 1 if style has reinit() and is compatible with fix adapt | 1 |
|
||||
+---------------------------------+------------------------------------------------------------------------------+---------+
|
||||
| comm_forward | size of buffer (in doubles) for forward communication (bond styles only) | 0 |
|
||||
+---------------------------------+------------------------------------------------------------------------------+---------+
|
||||
| comm_reverse | size of buffer (in doubles) for reverse communication (bond styles only) | 0 |
|
||||
+---------------------------------+------------------------------------------------------------------------------+---------+
|
||||
| comm_reverse_off | size of buffer for reverse communication with newton off (bond styles only) | 0 |
|
||||
+---------------------------------+------------------------------------------------------------------------------+---------+
|
||||
|
||||
@ -1,35 +1,121 @@
|
||||
Pair styles
|
||||
===========
|
||||
|
||||
Classes that compute pairwise interactions are derived from the Pair
|
||||
class. In LAMMPS, pairwise calculation include many-body potentials
|
||||
such as EAM or Tersoff where particles interact without a static bond
|
||||
topology. New styles can be created to add new pair potentials to
|
||||
LAMMPS.
|
||||
Classes that compute pairwise non-bonded interactions are derived from
|
||||
the Pair class. In LAMMPS, pairwise calculation include many-body
|
||||
potentials such as EAM, Tersoff, or ReaxFF where particles interact
|
||||
without an explicit bond topology but include interactions beyond
|
||||
pairwise non-bonded contributions. New styles can be created to add
|
||||
support for additional pair potentials to LAMMPS. When the
|
||||
modifications are small, sometimes it is more effective to derive from
|
||||
an existing pair style class. This latter approach is also used by
|
||||
:doc:`Accelerator packages <Speed_packages>` where the accelerated style
|
||||
names differ from their base classes by an appended suffix.
|
||||
|
||||
Pair_lj_cut.cpp is a simple example of a Pair class, though it
|
||||
includes some optional methods to enable its use with rRESPA.
|
||||
The file ``src/pair_lj_cut.cpp`` is an example of a Pair class with a
|
||||
very simple potential function. It includes several optional methods to
|
||||
enable its use with :doc:`run_style respa <run_style>` and :doc:`compute
|
||||
group/group <compute_group_group>`.
|
||||
|
||||
Here is a brief description of the class methods in pair.h:
|
||||
Here is a brief list of some the class methods in the Pair class that
|
||||
*must* be or *may* be overridden in a derived class.
|
||||
|
||||
+---------------------------------+---------------------------------------------------------------------+
|
||||
| Required | "pure" methods that *must* be overridden in a derived class |
|
||||
+=================================+=====================================================================+
|
||||
| compute | workhorse routine that computes pairwise interactions |
|
||||
+---------------------------------+---------------------------------------------------------------------+
|
||||
| settings | reads the input script line with arguments you define |
|
||||
| settings | processes the arguments to the pair_style command |
|
||||
+---------------------------------+---------------------------------------------------------------------+
|
||||
| coeff | set coefficients for one i,j type pair |
|
||||
+---------------------------------+---------------------------------------------------------------------+
|
||||
| init_one | perform initialization for one i,j type pair |
|
||||
+---------------------------------+---------------------------------------------------------------------+
|
||||
| init_style | initialization specific to this pair style |
|
||||
+---------------------------------+---------------------------------------------------------------------+
|
||||
| write & read_restart | write/read i,j pair coeffs to restart files |
|
||||
+---------------------------------+---------------------------------------------------------------------+
|
||||
| write & read_restart_settings | write/read global settings to restart files |
|
||||
+---------------------------------+---------------------------------------------------------------------+
|
||||
| single | force/r and energy of a single pairwise interaction between 2 atoms |
|
||||
+---------------------------------+---------------------------------------------------------------------+
|
||||
| compute_inner/middle/outer | versions of compute used by rRESPA |
|
||||
| coeff | set coefficients for one i,j type pair, called from pair_coeff |
|
||||
+---------------------------------+---------------------------------------------------------------------+
|
||||
|
||||
The inner/middle/outer routines are optional.
|
||||
+---------------------------------+----------------------------------------------------------------------+
|
||||
| Optional | methods that have a default or dummy implementation |
|
||||
+=================================+======================================================================+
|
||||
| init_one | perform initialization for one i,j type pair |
|
||||
+---------------------------------+----------------------------------------------------------------------+
|
||||
| init_style | style initialization: request neighbor list(s), error checks |
|
||||
+---------------------------------+----------------------------------------------------------------------+
|
||||
| init_list | Neighbor class callback function to pass neighbor list to pair style |
|
||||
+---------------------------------+----------------------------------------------------------------------+
|
||||
| single | force/r and energy of a single pairwise interaction between 2 atoms |
|
||||
+---------------------------------+----------------------------------------------------------------------+
|
||||
| compute_inner/middle/outer | versions of compute used by rRESPA |
|
||||
+---------------------------------+----------------------------------------------------------------------+
|
||||
| memory_usage | return estimated amount of memory used by the pair style |
|
||||
+---------------------------------+----------------------------------------------------------------------+
|
||||
| modify_params | process arguments to pair_modify command |
|
||||
+---------------------------------+----------------------------------------------------------------------+
|
||||
| extract | provide access to internal scalar or per-type data like cutoffs |
|
||||
+---------------------------------+----------------------------------------------------------------------+
|
||||
| extract_peratom | provide access to internal per-atom data |
|
||||
+---------------------------------+----------------------------------------------------------------------+
|
||||
| setup | initialization at the beginning of a run |
|
||||
+---------------------------------+----------------------------------------------------------------------+
|
||||
| finish | called at the end of a run, e.g. to print |
|
||||
+---------------------------------+----------------------------------------------------------------------+
|
||||
| write & read_restart | write/read i,j pair coeffs to restart files |
|
||||
+---------------------------------+----------------------------------------------------------------------+
|
||||
| write & read_restart_settings | write/read global settings to restart files |
|
||||
+---------------------------------+----------------------------------------------------------------------+
|
||||
| write_data | write Pair Coeffs section to data file |
|
||||
+---------------------------------+----------------------------------------------------------------------+
|
||||
| write_data_all | write PairIJ Coeffs section to data file |
|
||||
+---------------------------------+----------------------------------------------------------------------+
|
||||
| pack & unpack_forward_comm | copy data to and from buffer if style uses forward communication |
|
||||
+---------------------------------+----------------------------------------------------------------------+
|
||||
| pack & unpack_reverse_comm | copy data to and from buffer if style uses reverse communication |
|
||||
+---------------------------------+----------------------------------------------------------------------+
|
||||
| reinit | reset all type-based parameters, called by fix adapt for example |
|
||||
+---------------------------------+----------------------------------------------------------------------+
|
||||
| reset_dt | called when the time step is changed by timestep or fix reset/dt |
|
||||
+---------------------------------+----------------------------------------------------------------------+
|
||||
|
||||
Here is a list of flags or settings that should be set in the
|
||||
constructor of the derived pair class when they differ from the default
|
||||
setting.
|
||||
|
||||
+---------------------------------+-------------------------------------------------------------+---------+
|
||||
| Name of flag | Description | default |
|
||||
+=================================+=============================================================+=========+
|
||||
| single_enable | 1 if single() method is implemented, 0 if missing | 1 |
|
||||
+---------------------------------+-------------------------------------------------------------+---------+
|
||||
| respa_enable | 1 if pair style has compute_inner/middle/outer() | 0 |
|
||||
+---------------------------------+-------------------------------------------------------------+---------+
|
||||
| restartinfo | 1 if pair style writes its settings to a restart | 1 |
|
||||
+---------------------------------+-------------------------------------------------------------+---------+
|
||||
| one_coeff | 1 if only a pair_coeff * * command is allowed | 0 |
|
||||
+---------------------------------+-------------------------------------------------------------+---------+
|
||||
| manybody_flag | 1 if pair style is a manybody potential | 0 |
|
||||
+---------------------------------+-------------------------------------------------------------+---------+
|
||||
| unit_convert_flag | value != 0 indicates support for unit conversion | 0 |
|
||||
+---------------------------------+-------------------------------------------------------------+---------+
|
||||
| no_virial_fdotr_compute | 1 if pair style does not call virial_fdotr_compute() | 0 |
|
||||
+---------------------------------+-------------------------------------------------------------+---------+
|
||||
| writedata | 1 if write_data() and write_data_all() are implemented | 0 |
|
||||
+---------------------------------+-------------------------------------------------------------+---------+
|
||||
| comm_forward | size of buffer (in doubles) for forward communication | 0 |
|
||||
+---------------------------------+-------------------------------------------------------------+---------+
|
||||
| comm_reverse | size of buffer (in doubles) for reverse communication | 0 |
|
||||
+---------------------------------+-------------------------------------------------------------+---------+
|
||||
| ghostneigh | 1 if cutghost is set and style uses neighbors of ghosts | 0 |
|
||||
+---------------------------------+-------------------------------------------------------------+---------+
|
||||
| finitecutflag | 1 if cutoff depends on diameter of atoms | 0 |
|
||||
+---------------------------------+-------------------------------------------------------------+---------+
|
||||
| reinitflag | 1 if style has reinit() and is compatible with fix adapt | 0 |
|
||||
+---------------------------------+-------------------------------------------------------------+---------+
|
||||
| ewaldflag | 1 if compatible with kspace_style ewald | 0 |
|
||||
+---------------------------------+-------------------------------------------------------------+---------+
|
||||
| pppmflag | 1 if compatible with kspace_style pppm | 0 |
|
||||
+---------------------------------+-------------------------------------------------------------+---------+
|
||||
| msmflag | 1 if compatible with kspace_style msm | 0 |
|
||||
+---------------------------------+-------------------------------------------------------------+---------+
|
||||
| dispersionflag | 1 if compatible with ewald/disp or pppm/disp | 0 |
|
||||
+---------------------------------+-------------------------------------------------------------+---------+
|
||||
| tip4pflag | 1 if compatible with kspace_style pppm/tip4p | 0 |
|
||||
+---------------------------------+-------------------------------------------------------------+---------+
|
||||
| dipoleflag | 1 if compatible with dipole kspace_style | 0 |
|
||||
+---------------------------------+-------------------------------------------------------------+---------+
|
||||
| spinflag | 1 if compatible with spin kspace_style | 0 |
|
||||
+---------------------------------+-------------------------------------------------------------+---------+
|
||||
|
||||
@ -80,6 +80,7 @@ page gives those details.
|
||||
* :ref:`ML-HDNNP <PKG-ML-HDNNP>`
|
||||
* :ref:`ML-IAP <PKG-ML-IAP>`
|
||||
* :ref:`ML-PACE <PKG-ML-PACE>`
|
||||
* :ref:`ML-POD <PKG-ML-POD>`
|
||||
* :ref:`ML-QUIP <PKG-ML-QUIP>`
|
||||
* :ref:`ML-RANN <PKG-ML-RANN>`
|
||||
* :ref:`ML-SNAP <PKG-ML-SNAP>`
|
||||
@ -865,7 +866,7 @@ ELECTRODE package
|
||||
The ELECTRODE package allows the user to enforce a constant potential method for
|
||||
groups of atoms that interact with the remaining atoms as electrolyte.
|
||||
|
||||
**Authors:** The ELECTRODE library is written and maintained by Ludwig
|
||||
**Authors:** The ELECTRODE package is written and maintained by Ludwig
|
||||
Ahrens-Iwers (TUHH, Hamburg, Germany), Shern Tee (UQ, Brisbane, Australia) and
|
||||
Robert Meissner (TUHH, Hamburg, Germany).
|
||||
|
||||
@ -878,7 +879,7 @@ This package has :ref:`specific installation instructions <electrode>` on the
|
||||
|
||||
**Supporting info:**
|
||||
|
||||
* :doc:`fix electrode/conp <fix_electrode_conp>`
|
||||
* :doc:`fix electrode/conp <fix_electrode>`
|
||||
|
||||
----------
|
||||
|
||||
@ -1485,8 +1486,9 @@ MC package
|
||||
|
||||
Several fixes and a pair style that have Monte Carlo (MC) or MC-like
|
||||
attributes. These include fixes for creating, breaking, and swapping
|
||||
bonds, for performing atomic swaps, and performing grand-canonical MC
|
||||
(GCMC) or similar processes in conjunction with dynamics.
|
||||
bonds, for performing atomic swaps, and performing grand canonical
|
||||
MC (GCMC), semi-grand canonical MC (SGCMC), or similar processes in
|
||||
conjunction with molecular dynamics (MD).
|
||||
|
||||
**Supporting info:**
|
||||
|
||||
@ -1498,6 +1500,7 @@ bonds, for performing atomic swaps, and performing grand-canonical MC
|
||||
* :doc:`fix bond/swap <fix_bond_swap>`
|
||||
* :doc:`fix charge/regulation <fix_charge_regulation>`
|
||||
* :doc:`fix gcmc <fix_gcmc>`
|
||||
* :doc:`fix sgcmc <fix_sgcmc>`
|
||||
* :doc:`fix tfmc <fix_tfmc>`
|
||||
* :doc:`fix widom <fix_widom>`
|
||||
* :doc:`pair_style dsmc <pair_dsmc>`
|
||||
@ -1796,6 +1799,39 @@ This package has :ref:`specific installation instructions <ml-pace>` on the
|
||||
|
||||
----------
|
||||
|
||||
.. _PKG-ML-POD:
|
||||
|
||||
ML-POD package
|
||||
-------------------
|
||||
|
||||
**Contents:**
|
||||
|
||||
A pair style and fitpod style for Proper Orthogonal Descriptors
|
||||
(POD). POD is a methodology for deriving descriptors based on the proper
|
||||
orthogonal decomposition. The ML-POD package provides an efficient
|
||||
implementation for running simulations with POD potentials, along with
|
||||
fitting the potentials natively in LAMMPS.
|
||||
|
||||
**Authors:**
|
||||
|
||||
Ngoc Cuong Nguyen (MIT), Andrew Rohskopf (Sandia)
|
||||
|
||||
.. versionadded:: TBD
|
||||
|
||||
**Install:**
|
||||
|
||||
This package has :ref:`specific installation instructions <ml-pod>` on the
|
||||
:doc:`Build extras <Build_extras>` page.
|
||||
|
||||
**Supporting info:**
|
||||
|
||||
* src/ML-POD: filenames -> commands
|
||||
* :doc:`pair_style pod <pair_pod>`
|
||||
* :doc:`command_style fitpod <fitpod_command>`
|
||||
* examples/PACKAGES/pod
|
||||
|
||||
----------
|
||||
|
||||
.. _PKG-ML-QUIP:
|
||||
|
||||
ML-QUIP package
|
||||
|
||||
@ -155,7 +155,7 @@ whether an extra library is needed to build and use the package:
|
||||
- no
|
||||
* - :ref:`ELECTRODE <PKG-ELECTRODE>`
|
||||
- electrode charges to match potential
|
||||
- :doc:`fix electrode/conp <fix_electrode_conp>`
|
||||
- :doc:`fix electrode/conp <fix_electrode>`
|
||||
- PACKAGES/electrode
|
||||
- no
|
||||
* - :ref:`EXTRA-COMPUTE <PKG-EXTRA-COMPUTE>`
|
||||
@ -298,6 +298,11 @@ whether an extra library is needed to build and use the package:
|
||||
- :doc:`pair pace <pair_pace>`
|
||||
- PACKAGES/pace
|
||||
- ext
|
||||
* - :ref:`ML-POD <PKG-ML-POD>`
|
||||
- Proper orthogonal decomposition potentials
|
||||
- :doc:`pair pod <pair_pod>`
|
||||
- pod
|
||||
- ext
|
||||
* - :ref:`ML-QUIP <PKG-ML-QUIP>`
|
||||
- QUIP/libatoms interface
|
||||
- :doc:`pair_style quip <pair_quip>`
|
||||
|
||||
@ -58,7 +58,7 @@ against invalid accesses.
|
||||
Each element of this list is a :py:class:`Atom <lammps.Atom>` or :py:class:`Atom2D <lammps.Atom2D>` object. The attributes of
|
||||
these objects provide access to their data (id, type, position, velocity, force, etc.):
|
||||
|
||||
.. code-block:: Python
|
||||
.. code-block:: python
|
||||
|
||||
# access first atom
|
||||
L.atoms[0].id
|
||||
@ -71,7 +71,7 @@ against invalid accesses.
|
||||
|
||||
Some attributes can be changed:
|
||||
|
||||
.. code-block:: Python
|
||||
.. code-block:: python
|
||||
|
||||
# set position in 2D simulation
|
||||
L.atoms[0].position = (1.0, 0.0)
|
||||
|
||||
@ -4,7 +4,7 @@ Configuration information
|
||||
The following methods can be used to query the LAMMPS library
|
||||
about compile time settings and included packages and styles.
|
||||
|
||||
.. code-block:: Python
|
||||
.. code-block:: python
|
||||
:caption: Example for using configuration settings functions
|
||||
|
||||
from lammps import lammps
|
||||
|
||||
@ -74,7 +74,7 @@ Here are simple examples using all three Python interfaces:
|
||||
:py:class:`PyLammps <lammps.PyLammps>` objects can also be created on top of an existing
|
||||
:py:class:`lammps <lammps.lammps>` object:
|
||||
|
||||
.. code-block:: Python
|
||||
.. code-block:: python
|
||||
|
||||
from lammps import lammps, PyLammps
|
||||
...
|
||||
@ -113,7 +113,7 @@ Here are simple examples using all three Python interfaces:
|
||||
|
||||
You can also initialize IPyLammps on top of an existing :py:class:`lammps` or :py:class:`PyLammps` object:
|
||||
|
||||
.. code-block:: Python
|
||||
.. code-block:: python
|
||||
|
||||
from lammps import lammps, IPyLammps
|
||||
...
|
||||
@ -142,7 +142,7 @@ the MPI and/or Kokkos environment if enabled and active.
|
||||
Note that you can create multiple LAMMPS objects in your Python
|
||||
script, and coordinate and run multiple simulations, e.g.
|
||||
|
||||
.. code-block:: Python
|
||||
.. code-block:: python
|
||||
|
||||
from lammps import lammps
|
||||
lmp1 = lammps()
|
||||
|
||||
@ -7,7 +7,7 @@ current Python process with an error message. C++ exceptions allow capturing
|
||||
them on the C++ side and rethrowing them on the Python side. This way
|
||||
LAMMPS errors can be handled through the Python exception handling mechanism.
|
||||
|
||||
.. code-block:: Python
|
||||
.. code-block:: python
|
||||
|
||||
from lammps import lammps, MPIAbortException
|
||||
|
||||
|
||||
@ -60,7 +60,7 @@ it is possible to "compute" what the next LAMMPS command should be.
|
||||
can be executed using with the lammps API with the following Python code if ``lmp`` is an
|
||||
instance of :py:class:`lammps <lammps.lammps>`:
|
||||
|
||||
.. code-block:: Python
|
||||
.. code-block:: python
|
||||
|
||||
from lammps import lammps
|
||||
|
||||
@ -73,7 +73,7 @@ it is possible to "compute" what the next LAMMPS command should be.
|
||||
The arguments of the command can be passed as one string, or
|
||||
individually.
|
||||
|
||||
.. code-block:: Python
|
||||
.. code-block:: python
|
||||
|
||||
from lammps import PyLammps
|
||||
|
||||
@ -93,14 +93,14 @@ it is possible to "compute" what the next LAMMPS command should be.
|
||||
parameterization. In the lammps API parameterization needed to be done
|
||||
manually by creating formatted command strings.
|
||||
|
||||
.. code-block:: Python
|
||||
.. code-block:: python
|
||||
|
||||
lmp.command("region box block %f %f %f %f %f %f" % (xlo, xhi, ylo, yhi, zlo, zhi))
|
||||
|
||||
In contrast, methods of PyLammps accept parameters directly and will convert
|
||||
them automatically to a final command string.
|
||||
|
||||
.. code-block:: Python
|
||||
.. code-block:: python
|
||||
|
||||
L.region("box block", xlo, xhi, ylo, yhi, zlo, zhi)
|
||||
|
||||
|
||||
@ -56,7 +56,7 @@ and you should see the same output as if you had typed
|
||||
|
||||
Note that without the mpi4py specific lines from ``test.py``
|
||||
|
||||
.. code-block:: Python
|
||||
.. code-block:: python
|
||||
|
||||
from lammps import lammps
|
||||
lmp = lammps()
|
||||
|
||||
@ -76,7 +76,7 @@ computes, fixes, or variables in LAMMPS using the :py:mod:`lammps` module.
|
||||
|
||||
To define a variable you can use the :doc:`variable <variable>` command:
|
||||
|
||||
.. code-block:: Python
|
||||
.. code-block:: python
|
||||
|
||||
L.variable("a index 2")
|
||||
|
||||
@ -85,14 +85,14 @@ computes, fixes, or variables in LAMMPS using the :py:mod:`lammps` module.
|
||||
you can access an individual variable by retrieving a variable object from the
|
||||
``L.variables`` dictionary by name
|
||||
|
||||
.. code-block:: Python
|
||||
.. code-block:: python
|
||||
|
||||
a = L.variables['a']
|
||||
|
||||
The variable value can then be easily read and written by accessing the value
|
||||
property of this object.
|
||||
|
||||
.. code-block:: Python
|
||||
.. code-block:: python
|
||||
|
||||
print(a.value)
|
||||
a.value = 4
|
||||
|
||||
@ -105,7 +105,7 @@ against invalid accesses.
|
||||
variables, compute or fix data (see :doc:`Howto_output`):
|
||||
|
||||
|
||||
.. code-block:: Python
|
||||
.. code-block:: python
|
||||
|
||||
result = L.eval("ke") # kinetic energy
|
||||
result = L.eval("pe") # potential energy
|
||||
|
||||
@ -1,7 +1,7 @@
|
||||
Scatter/gather operations
|
||||
=========================
|
||||
|
||||
.. code-block:: Python
|
||||
.. code-block:: python
|
||||
|
||||
data = lmp.gather_atoms(name,type,count) # return per-atom property of all atoms gathered into data, ordered by atom ID
|
||||
# name = "x", "charge", "type", etc
|
||||
@ -42,7 +42,7 @@ For the scatter methods, the array of coordinates passed to must be a
|
||||
ctypes vector of ints or doubles, allocated and initialized something
|
||||
like this:
|
||||
|
||||
.. code-block:: Python
|
||||
.. code-block:: python
|
||||
|
||||
from ctypes import c_double
|
||||
natoms = lmp.get_natoms()
|
||||
|
||||
@ -262,6 +262,8 @@ Disable generating a citation reminder (see above) at all.
|
||||
|
||||
**-nonbuf**
|
||||
|
||||
.. versionadded:: 15Sep2022
|
||||
|
||||
Turn off buffering for screen and logfile output. For performance
|
||||
reasons, output to the screen and logfile is usually buffered, i.e.
|
||||
output is only written to a file if its buffer - typically 4096 bytes -
|
||||
|
||||
@ -57,7 +57,7 @@ Pre-processing tools
|
||||
* :ref:`msi2lmp <msi>`
|
||||
* :ref:`polybond <polybond>`
|
||||
* :ref:`stl_bin2txt <stlconvert>`
|
||||
|
||||
* :ref:`tabulate <tabulate>`
|
||||
|
||||
Post-processing tools
|
||||
=====================
|
||||
@ -1159,13 +1159,27 @@ For illustration purposes below is a part of the Tcl example script.
|
||||
|
||||
----------
|
||||
|
||||
.. _tabulate:
|
||||
|
||||
tabulate tool
|
||||
--------------
|
||||
|
||||
.. versionadded:: TBD
|
||||
|
||||
The ``tabulate`` folder contains Python scripts scripts to generate tabulated
|
||||
potential files for LAMMPS. The bulk of the code is in the ``tabulate`` module
|
||||
in the ``tabulate.py`` file. Some example files demonstrating its use are
|
||||
included. See the README file for more information.
|
||||
|
||||
----------
|
||||
|
||||
.. _vim:
|
||||
|
||||
vim tool
|
||||
------------------
|
||||
|
||||
The files in the tools/vim directory are add-ons to the VIM editor
|
||||
that allow easier editing of LAMMPS input scripts. See the README.txt
|
||||
The files in the ``tools/vim`` directory are add-ons to the VIM editor
|
||||
that allow easier editing of LAMMPS input scripts. See the ``README.txt``
|
||||
file for details.
|
||||
|
||||
These files were provided by Gerolf Ziegenhain (gerolf at
|
||||
|
||||
@ -25,23 +25,25 @@ The *gaussian* angle style uses the potential:
|
||||
|
||||
.. math::
|
||||
|
||||
E = -k_B T ln\left(\sum_{i=1}^{n} \frac{A_i}{w_i \sqrt{\pi/2}} exp\left( \frac{-(\theta-\theta_{i})^2}{w_i^2})\right) \right)
|
||||
E = -k_B T ln\left(\sum_{i=1}^{n} \frac{A_i}{w_i \sqrt{\pi/2}} exp\left( \frac{-2(\theta-\theta_{i})^2}{w_i^2}\right) \right)
|
||||
|
||||
This analytical form is a suitable potential for obtaining mesoscale
|
||||
effective force fields which can reproduce target atomistic
|
||||
distributions :ref:`(Milano) <Milano1>`.
|
||||
|
||||
This analytical form is a suitable potential for obtaining
|
||||
mesoscale effective force fields which can reproduce target atomistic distributions :ref:`(Milano) <Milano1>`
|
||||
The following coefficients must be defined for each angle type via the
|
||||
:doc:`angle_coeff <angle_coeff>` command as in the example above, or in
|
||||
the data file or restart files read by the :doc:`read_data <read_data>`
|
||||
or :doc:`read_restart <read_restart>` commands:
|
||||
|
||||
* T temperature at which the potential was derived
|
||||
* :math:`T` temperature at which the potential was derived
|
||||
* :math:`n` (integer >=1)
|
||||
* :math:`A_1` (-)
|
||||
* :math:`w_1` (-)
|
||||
* :math:`A_1` (> 0, radians)
|
||||
* :math:`w_1` (> 0, radians)
|
||||
* :math:`\theta_1` (degrees)
|
||||
* ...
|
||||
* :math:`A_n` (-)
|
||||
* :math:`w_n` (-)
|
||||
* :math:`A_n` (> 0, radians)
|
||||
* :math:`w_n` (> 0, radians)
|
||||
* :math:`\theta_n` (degrees)
|
||||
|
||||
|
||||
|
||||
@ -59,6 +59,10 @@ format of this file is described below.
|
||||
|
||||
----------
|
||||
|
||||
Suitable tables for use with this angle style can be created using the
|
||||
Python code in the ``tools/tabulate`` folder of the LAMMPS source code
|
||||
distribution.
|
||||
|
||||
The format of a tabulated file is as follows (without the
|
||||
parenthesized comments):
|
||||
|
||||
|
||||
@ -69,7 +69,7 @@ which is proportional to the tangential shear displacement with a
|
||||
stiffness of :math:`k_s`. This tangential force also induces a torque.
|
||||
In addition, bending and twisting torques are also applied to
|
||||
particles which are proportional to angular bending and twisting
|
||||
displacements with stiffnesses of :math`k_b` and :math:`k_t',
|
||||
displacements with stiffnesses of :math:`k_b` and :math:`k_t`,
|
||||
respectively. Details on the calculations of shear displacements and
|
||||
angular displacements can be found in :ref:`(Wang) <Wang2009>` and
|
||||
:ref:`(Wang and Mora) <Wang2009b>`.
|
||||
|
||||
@ -25,33 +25,34 @@ The *gaussian* bond style uses the potential:
|
||||
|
||||
.. math::
|
||||
|
||||
E = -k_B T ln\left(\sum_{i=1}^{n} \frac{A_i}{w_i \sqrt{\pi/2}} exp\left( \frac{-(r-r_{i})^2}{w_i^2})\right) \right)
|
||||
E = -k_B T ln\left(\sum_{i=1}^{n} \frac{A_i}{w_i \sqrt{\pi/2}} exp\left( \frac{-2(r-r_{i})^2}{w_i^2}\right)\right)
|
||||
|
||||
This analytical form is a suitable potential for obtaining
|
||||
mesoscale effective force fields which can reproduce target atomistic distributions :ref:`(Milano) <Milano0>`
|
||||
This analytical form is a suitable potential for obtaining mesoscale
|
||||
effective force fields which can reproduce target atomistic
|
||||
distributions :ref:`(Milano) <Milano0>`
|
||||
|
||||
The following coefficients must be defined for each bond type via the
|
||||
:doc:`bond_coeff <bond_coeff>` command as in the example above, or in
|
||||
the data file or restart files read by the :doc:`read_data <read_data>`
|
||||
or :doc:`read_restart <read_restart>` commands:
|
||||
|
||||
* T temperature at which the potential was derived
|
||||
* :math:`T` temperature at which the potential was derived
|
||||
* :math:`n` (integer >=1)
|
||||
* :math:`A_1` (-)
|
||||
* :math:`w_1` (-)
|
||||
* :math:`r_1` (length)
|
||||
* :math:`A_1` (> 0, distance)
|
||||
* :math:`w_1` (> 0, distance)
|
||||
* :math:`r_1` (>= 0, distance)
|
||||
* ...
|
||||
* :math:`A_n` (-)
|
||||
* :math:`w_n` (-)
|
||||
* :math:`r_n` (length)
|
||||
* :math:`A_n` (> 0, distance)
|
||||
* :math:`w_n` (> 0, distance)
|
||||
* :math:`r_n` (>= 0, distance)
|
||||
|
||||
|
||||
Restrictions
|
||||
""""""""""""
|
||||
|
||||
This bond style can only be used if LAMMPS was built with the
|
||||
EXTRA-MOLECULE package. See the :doc:`Build package <Build_package>` doc
|
||||
page for more info.
|
||||
EXTRA-MOLECULE package. See the :doc:`Build package <Build_package>`
|
||||
doc page for more info.
|
||||
|
||||
Related commands
|
||||
""""""""""""""""
|
||||
|
||||
@ -59,6 +59,13 @@ this file is described below.
|
||||
|
||||
----------
|
||||
|
||||
Suitable tables for use with this bond style can be created by LAMMPS
|
||||
itself from existing bond styles using the :doc:`bond_write
|
||||
<bond_write>` command. This can be useful to have a template file for
|
||||
testing the bond style settings and to build a compatible custom file.
|
||||
Another option to generate tables is the Python code in the
|
||||
``tools/tabulate`` folder of the LAMMPS source code distribution.
|
||||
|
||||
The format of a tabulated file is as follows (without the
|
||||
parenthesized comments):
|
||||
|
||||
@ -149,7 +156,8 @@ info.
|
||||
Related commands
|
||||
""""""""""""""""
|
||||
|
||||
:doc:`bond_coeff <bond_coeff>`, :doc:`delete_bonds <delete_bonds>`
|
||||
:doc:`bond_coeff <bond_coeff>`, :doc:`delete_bonds <delete_bonds>`,
|
||||
:doc:`bond_write <bond_write>`
|
||||
|
||||
Default
|
||||
"""""""
|
||||
|
||||
@ -1,70 +0,0 @@
|
||||
.. index:: box
|
||||
|
||||
box command
|
||||
===========
|
||||
|
||||
Syntax
|
||||
""""""
|
||||
|
||||
.. code-block:: LAMMPS
|
||||
|
||||
box keyword value ...
|
||||
|
||||
* one or more keyword/value pairs may be appended
|
||||
* keyword = *tilt*
|
||||
|
||||
.. parsed-literal::
|
||||
|
||||
*tilt* value = *small* or *large*
|
||||
|
||||
Examples
|
||||
""""""""
|
||||
|
||||
.. code-block:: LAMMPS
|
||||
|
||||
box tilt large
|
||||
box tilt small
|
||||
|
||||
Description
|
||||
"""""""""""
|
||||
|
||||
Set attributes of the simulation box.
|
||||
|
||||
For triclinic (non-orthogonal) simulation boxes, the *tilt* keyword
|
||||
allows simulation domains to be created with arbitrary tilt factors,
|
||||
e.g. via the :doc:`create_box <create_box>` or
|
||||
:doc:`read_data <read_data>` commands. Tilt factors determine how
|
||||
skewed the triclinic box is; see the :doc:`Howto triclinic <Howto_triclinic>` page for a discussion of triclinic
|
||||
boxes in LAMMPS.
|
||||
|
||||
LAMMPS normally requires that no tilt factor can skew the box more
|
||||
than half the distance of the parallel box length, which is the first
|
||||
dimension in the tilt factor (x for xz). If *tilt* is set to
|
||||
*small*, which is the default, then an error will be
|
||||
generated if a box is created which exceeds this limit. If *tilt*
|
||||
is set to *large*, then no limit is enforced. You can create
|
||||
a box with any tilt factors you wish.
|
||||
|
||||
Note that if a simulation box has a large tilt factor, LAMMPS will run
|
||||
less efficiently, due to the large volume of communication needed to
|
||||
acquire ghost atoms around a processor's irregular-shaped sub-domain.
|
||||
For extreme values of tilt, LAMMPS may also lose atoms and generate an
|
||||
error.
|
||||
|
||||
Restrictions
|
||||
""""""""""""
|
||||
|
||||
This command cannot be used after the simulation box is defined by a
|
||||
:doc:`read_data <read_data>` or :doc:`create_box <create_box>` command or
|
||||
:doc:`read_restart <read_restart>` command.
|
||||
|
||||
Related commands
|
||||
""""""""""""""""
|
||||
|
||||
none
|
||||
|
||||
|
||||
Default
|
||||
"""""""
|
||||
|
||||
The default value is tilt = small.
|
||||
@ -13,7 +13,6 @@ Commands
|
||||
bond_style
|
||||
bond_write
|
||||
boundary
|
||||
box
|
||||
change_box
|
||||
clear
|
||||
comm_modify
|
||||
@ -43,6 +42,7 @@ Commands
|
||||
echo
|
||||
fix
|
||||
fix_modify
|
||||
fitpod_command
|
||||
group
|
||||
group2ndx
|
||||
hyper
|
||||
@ -90,8 +90,7 @@ Commands
|
||||
region
|
||||
replicate
|
||||
rerun
|
||||
reset_atom_ids
|
||||
reset_mol_ids
|
||||
reset_atoms
|
||||
reset_timestep
|
||||
restart
|
||||
run
|
||||
|
||||
@ -59,7 +59,7 @@ commands.
|
||||
The value *dist* is the distance between the pair of atoms.
|
||||
The values *dx*, *dy*, and *dz* are the :math:`(x,y,z)` components of the
|
||||
*distance* between the pair of atoms. This value is always the
|
||||
distance from the atom of lower to the one with the higher id.
|
||||
distance from the atom of higher to the one with the lower atom ID.
|
||||
|
||||
The value *eng* is the interaction energy for the pair of atoms.
|
||||
|
||||
|
||||
@ -66,20 +66,21 @@ positive or negative values and are called "tilt factors" because they
|
||||
are the amount of displacement applied to faces of an originally
|
||||
orthogonal box to transform it into the parallelepiped.
|
||||
|
||||
By default, a *prism* region used with the create_box command must
|
||||
have tilt factors :math:`(xy,xz,yz)` that do not skew the box more than half
|
||||
By default, a *prism* region used with the create_box command must have
|
||||
tilt factors :math:`(xy,xz,yz)` that do not skew the box more than half
|
||||
the distance of the parallel box length. For example, if
|
||||
:math:`x_\text{lo} = 2` and :math:`x_\text{hi} = 12`, then the :math:`x`
|
||||
box length is 10 and the :math:`xy` tilt factor must be between :math:`-5` and
|
||||
:math:`5`. Similarly, both :math:`xz` and :math:`yz` must be between
|
||||
:math:`-(x_\text{hi}-x_\text{lo})/2` and :math:`+(y_\text{hi}-y_\text{lo})/2`.
|
||||
Note that this is not a limitation, since if the maximum tilt factor is 5 (as
|
||||
in this example), then configurations with tilt :math:`= \dots, -15`,
|
||||
:math:`-5`, :math:`5`, :math:`15`, :math:`25, \dots`
|
||||
are all geometrically equivalent. If you wish to define a box with tilt
|
||||
factors that exceed these limits, you can use the :doc:`box tilt <box>`
|
||||
command, with a setting of *large*\ ; a setting of *small* is the
|
||||
default.
|
||||
box length is 10 and the :math:`xy` tilt factor must be between
|
||||
:math:`-5` and :math:`5`. Similarly, both :math:`xz` and :math:`yz`
|
||||
must be between :math:`-(x_\text{hi}-x_\text{lo})/2` and
|
||||
:math:`+(y_\text{hi}-y_\text{lo})/2`. Note that this is not a
|
||||
limitation, since if the maximum tilt factor is 5 (as in this example),
|
||||
then configurations with tilt :math:`= \dots, -15`, :math:`-5`,
|
||||
:math:`5`, :math:`15`, :math:`25, \dots` are all geometrically
|
||||
equivalent. Simulations with large tilt factors will run inefficiently,
|
||||
since they require more ghost atoms and thus more communication. With
|
||||
very large tilt factors, LAMMPS will eventually produce incorrect
|
||||
trajectories and stop with errors due to lost atoms or similar.
|
||||
|
||||
See the :doc:`Howto triclinic <Howto_triclinic>` page for a
|
||||
geometric description of triclinic boxes, as defined by LAMMPS, and
|
||||
|
||||
@ -135,7 +135,7 @@ number of atoms in the system. Note that this is not done for
|
||||
molecular systems (see the :doc:`atom_style <atom_style>` command),
|
||||
regardless of the *compress* setting, since it would foul up the bond
|
||||
connectivity that has already been assigned. However, the
|
||||
:doc:`reset_atom_ids <reset_atom_ids>` command can be used after this
|
||||
:doc:`reset_atoms id <reset_atoms>` command can be used after this
|
||||
command to accomplish the same thing.
|
||||
|
||||
Note that the re-assignment of IDs is not really a compression, where
|
||||
@ -203,7 +203,7 @@ using molecule template files via the :doc:`molecule <molecule>` and
|
||||
Related commands
|
||||
""""""""""""""""
|
||||
|
||||
:doc:`create_atoms <create_atoms>`, :doc:`reset_atom_ids <reset_atom_ids>`
|
||||
:doc:`create_atoms <create_atoms>`, :doc:`reset_atoms id <reset_atoms>`
|
||||
|
||||
Default
|
||||
"""""""
|
||||
|
||||
@ -114,6 +114,10 @@ below.
|
||||
|
||||
----------
|
||||
|
||||
Suitable tables for use with this dihedral style can be created using
|
||||
the Python code in the ``tools/tabulate`` folder of the LAMMPS source
|
||||
code distribution.
|
||||
|
||||
The format of a tabulated file is as follows (without the
|
||||
parenthesized comments). It can begin with one or more comment
|
||||
or blank lines.
|
||||
|
||||
@ -69,7 +69,7 @@ Syntax
|
||||
yes/no = do or do not draw simulation box lines
|
||||
diam = diameter of box lines as fraction of shortest box length
|
||||
*axes* values = axes length diam = draw xyz axes
|
||||
axes = *yes* or *no = do or do not draw xyz axes lines next to simulation box
|
||||
axes = *yes* or *no* = do or do not draw xyz axes lines next to simulation box
|
||||
length = length of axes lines as fraction of respective box lengths
|
||||
diam = diameter of axes lines as fraction of shortest box length
|
||||
*subbox* values = lines diam = draw outline of processor sub-domains
|
||||
|
||||
745
doc/src/fitpod_command.rst
Normal file
745
doc/src/fitpod_command.rst
Normal file
@ -0,0 +1,745 @@
|
||||
.. index:: fitpod
|
||||
|
||||
fitpod command
|
||||
======================
|
||||
|
||||
Syntax
|
||||
""""""
|
||||
|
||||
.. parsed-literal::
|
||||
|
||||
fitpod Ta_param.pod Ta_data.pod
|
||||
|
||||
* fitpod = style name of this command
|
||||
* Ta_param.pod = an input file that describes proper orthogonal descriptors (PODs)
|
||||
* Ta_data.pod = an input file that specifies DFT data used to fit a POD potential
|
||||
|
||||
Examples
|
||||
""""""""
|
||||
|
||||
.. code-block:: LAMMPS
|
||||
|
||||
fitpod Ta_param.pod Ta_data.pod
|
||||
|
||||
Description
|
||||
"""""""""""
|
||||
.. versionadded:: TBD
|
||||
|
||||
Fit a machine-learning interatomic potential (ML-IAP) based on proper
|
||||
orthogonal descriptors (POD). Two input files are required for this
|
||||
command. The first input file describes a POD potential parameter
|
||||
settings, while the second input file specifies the DFT data used for
|
||||
the fitting procedure.
|
||||
|
||||
The table below has one-line descriptions of all the keywords that can
|
||||
be used in the first input file (i.e. ``Ta_param.pod`` in the example
|
||||
above):
|
||||
|
||||
.. list-table::
|
||||
:header-rows: 1
|
||||
:widths: auto
|
||||
|
||||
* - Keyword
|
||||
- Default
|
||||
- Type
|
||||
- Description
|
||||
* - species
|
||||
- (none)
|
||||
- STRING
|
||||
- Chemical symbols for all elements in the system and have to match XYZ training files.
|
||||
* - pbc
|
||||
- 1 1 1
|
||||
- INT
|
||||
- three integer constants specify boundary conditions
|
||||
* - rin
|
||||
- 1.0
|
||||
- REAL
|
||||
- a real number specifies the inner cut-off radius
|
||||
* - rcut
|
||||
- 5.0
|
||||
- REAL
|
||||
- a real number specifies the outer cut-off radius
|
||||
* - bessel_polynomial_degree
|
||||
- 3
|
||||
- INT
|
||||
- the maximum degree of Bessel polynomials
|
||||
* - inverse_polynomial_degree
|
||||
- 6
|
||||
- INT
|
||||
- the maximum degree of inverse radial basis functions
|
||||
* - onebody
|
||||
- 1
|
||||
- BOOL
|
||||
- turns on/off one-body potential
|
||||
* - twobody_number_radial_basis_functions
|
||||
- 6
|
||||
- INT
|
||||
- number of radial basis functions for two-body potential
|
||||
* - threebody_number_radial_basis_functions
|
||||
- 5
|
||||
- INT
|
||||
- number of radial basis functions for three-body potential
|
||||
* - threebody_number_angular_basis_functions
|
||||
- 5
|
||||
- INT
|
||||
- number of angular basis functions for three-body potential
|
||||
* - fourbody_snap_twojmax
|
||||
- 0
|
||||
- INT
|
||||
- band limit for SNAP bispectrum components (0,2,4,6,8... allowed)
|
||||
* - fourbody_snap_chemflag
|
||||
- 0
|
||||
- BOOL
|
||||
- turns on/off the explicit multi-element variant of the SNAP bispectrum components
|
||||
* - quadratic_pod_potential
|
||||
- 0
|
||||
- BOOL
|
||||
- turns on/off quadratic POD potential
|
||||
|
||||
All keywords except *species* have default values. If a keyword is not
|
||||
set in the input file, its default value is used. The next table
|
||||
describes all keywords that can be used in the second input file
|
||||
(i.e. ``Ta_data.pod`` in the example above):
|
||||
|
||||
.. list-table::
|
||||
:header-rows: 1
|
||||
:widths: auto
|
||||
|
||||
* - Keyword
|
||||
- Default
|
||||
- Type
|
||||
- Description
|
||||
* - file_format
|
||||
- extxyz
|
||||
- STRING
|
||||
- only the extended xyz format (extxyz) is currently supported
|
||||
* - file_extension
|
||||
- xyz
|
||||
- STRING
|
||||
- extension of the data files
|
||||
* - path_to_training_data_set
|
||||
- (none)
|
||||
- STRING
|
||||
- specifies the path to training data files in double quotes
|
||||
* - path_to_test_data_set
|
||||
- ""
|
||||
- STRING
|
||||
- specifies the path to test data files in double quotes
|
||||
* - fraction_training_data_set
|
||||
- 1.0
|
||||
- REAL
|
||||
- a real number (<= 1.0) specifies the fraction of the training set used to fit POD
|
||||
* - randomize_training_data_set
|
||||
- 0
|
||||
- BOOL
|
||||
- turns on/off randomization of the training set
|
||||
* - fitting_weight_energy
|
||||
- 100.0
|
||||
- REAL
|
||||
- a real constant specifies the weight for energy in the least-squares fit
|
||||
* - fitting_weight_force
|
||||
- 1.0
|
||||
- REAL
|
||||
- a real constant specifies the weight for force in the least-squares fit
|
||||
* - fitting_regularization_parameter
|
||||
- 1.0e-10
|
||||
- REAL
|
||||
- a real constant specifies the regularization parameter in the least-squares fit
|
||||
* - error_analysis_for_training_data_set
|
||||
- 0
|
||||
- BOOL
|
||||
- turns on/off error analysis for the training data set
|
||||
* - error_analysis_for_test_data_set
|
||||
- 0
|
||||
- BOOL
|
||||
- turns on/off error analysis for the test data set
|
||||
* - basename_for_output_files
|
||||
- pod
|
||||
- STRING
|
||||
- a basename string added to the output files
|
||||
* - precision_for_pod_coefficients
|
||||
- 8
|
||||
- INT
|
||||
- number of digits after the decimal points for numbers in the coefficient file
|
||||
|
||||
All keywords except *path_to_training_data_set* have default values. If
|
||||
a keyword is not set in the input file, its default value is used. After
|
||||
successful training, a number of output files are produced, if enabled:
|
||||
|
||||
* ``<basename>_training_errors.pod`` reports the errors in energy and forces for the training data set
|
||||
* ``<basename>_training_analysis.pod`` reports detailed errors for all training configurations
|
||||
* ``<basename>_test_errors.pod`` reports errors for the test data set
|
||||
* ``<basename>_test_analysis.pod`` reports detailed errors for all test configurations
|
||||
* ``<basename>_coefficients.pod`` contains the coefficients of the POD potential
|
||||
|
||||
After training the POD potential, ``Ta_param.pod`` and ``<basename>_coefficients.pod``
|
||||
are the two files needed to use the POD potential in LAMMPS. See
|
||||
:doc:`pair_style pod <pair_pod>` for using the POD potential. Examples
|
||||
about training and using POD potentials are found in the directory
|
||||
lammps/examples/PACKAGES/pod.
|
||||
|
||||
Parameterized Potential Energy Surface
|
||||
""""""""""""""""""""""""""""""""""""""
|
||||
|
||||
We consider a multi-element system of *N* atoms with :math:`N_{\rm e}`
|
||||
unique elements. We denote by :math:`\boldsymbol r_n` and :math:`Z_n`
|
||||
position vector and type of an atom *n* in the system,
|
||||
respectively. Note that we have :math:`Z_n \in \{1, \ldots, N_{\rm e}
|
||||
\}`, :math:`\boldsymbol R = (\boldsymbol r_1, \boldsymbol r_2, \ldots,
|
||||
\boldsymbol r_N) \in \mathbb{R}^{3N}`, and :math:`\boldsymbol Z = (Z_1,
|
||||
Z_2, \ldots, Z_N) \in \mathbb{N}^{N}`. The potential energy surface
|
||||
(PES) of the system can be expressed as a many-body expansion of the
|
||||
form
|
||||
|
||||
.. math::
|
||||
|
||||
E(\boldsymbol R, \boldsymbol Z, \boldsymbol{\eta}, \boldsymbol{\mu}) \ = \ & \sum_{i} V^{(1)}(\boldsymbol r_i, Z_i, \boldsymbol \mu^{(1)} ) + \frac12 \sum_{i,j} V^{(2)}(\boldsymbol r_i, \boldsymbol r_j, Z_i, Z_j, \boldsymbol \eta, \boldsymbol \mu^{(2)}) \\
|
||||
& + \frac16 \sum_{i,j,k} V^{(3)}(\boldsymbol r_i, \boldsymbol r_j, \boldsymbol r_k, Z_i, Z_j, Z_k, \boldsymbol \eta, \boldsymbol \mu^{(3)}) + \ldots
|
||||
|
||||
where :math:`V^{(1)}` is the one-body potential often used for
|
||||
representing external field or energy of isolated elements, and the
|
||||
higher-body potentials :math:`V^{(2)}, V^{(3)}, \ldots` are symmetric,
|
||||
uniquely defined, and zero if two or more indices take identical values.
|
||||
The superscript on each potential denotes its body order. Each *q*-body
|
||||
potential :math:`V^{(q)}` depends on :math:`\boldsymbol \mu^{(q)}` which
|
||||
are sets of parameters to fit the PES. Note that :math:`\boldsymbol \mu`
|
||||
is a collection of all potential parameters :math:`\boldsymbol
|
||||
\mu^{(1)}`, :math:`\boldsymbol \mu^{(2)}`, :math:`\boldsymbol
|
||||
\mu^{(3)}`, etc, and that :math:`\boldsymbol \eta` is a set of
|
||||
hyper-parameters such as inner cut-off radius :math:`r_{\rm in}` and
|
||||
outer cut-off radius :math:`r_{\rm cut}`.
|
||||
|
||||
Interatomic potentials rely on parameters to learn relationship between
|
||||
atomic environments and interactions. Since interatomic potentials are
|
||||
approximations by nature, their parameters need to be set to some
|
||||
reference values or fitted against data by necessity. Typically,
|
||||
potential fitting finds optimal parameters, :math:`\boldsymbol \mu^*`,
|
||||
to minimize a certain loss function of the predicted quantities and
|
||||
data. Since the fitted potential depends on the data set used to fit it,
|
||||
different data sets will yield different optimal parameters and thus
|
||||
different fitted potentials. When fitting the same functional form on
|
||||
*Q* different data sets, we would obtain *Q* different optimized
|
||||
potentials, :math:`E(\boldsymbol R,\boldsymbol Z, \boldsymbol \eta,
|
||||
\boldsymbol \mu_q^*), 1 \le q \le Q`. Consequently, there exist many
|
||||
different sets of optimized parameters for empirical interatomic
|
||||
potentials.
|
||||
|
||||
Instead of optimizing the potential parameters, inspired by the reduced
|
||||
basis method :ref:`(Grepl) <Grepl20072>` for parameterized partial
|
||||
differential equations, we view the parameterized PES as a parametric
|
||||
manifold of potential energies
|
||||
|
||||
.. math::
|
||||
|
||||
\mathcal{M} = \{E(\boldsymbol R, \boldsymbol Z, \boldsymbol \eta, \boldsymbol \mu) \ | \ \boldsymbol \mu \in \Omega^{\boldsymbol \mu} \}
|
||||
|
||||
where :math:`\Omega^{\boldsymbol \mu}` is a parameter domain in which
|
||||
:math:`\boldsymbol \mu` resides. The parametric manifold
|
||||
:math:`\mathcal{M}` contains potential energy surfaces for all values of
|
||||
:math:`\boldsymbol \mu \in \Omega^{\boldsymbol \mu}`. Therefore, the
|
||||
parametric manifold yields a much richer and more transferable atomic
|
||||
representation than any particular individual PES :math:`E(\boldsymbol
|
||||
R, \boldsymbol Z, \boldsymbol \eta, \boldsymbol \mu^*)`.
|
||||
|
||||
We propose specific forms of the parameterized potentials for one-body,
|
||||
two-body, and three-body interactions. We apply the Karhunen-Loeve
|
||||
expansion to snapshots of the parameterized potentials to obtain sets of
|
||||
orthogonal basis functions. These basis functions are aggregated
|
||||
according to the chemical elements of atoms, thus leading to
|
||||
multi-element proper orthogonal descriptors.
|
||||
|
||||
Proper Orthogonal Descriptors
|
||||
"""""""""""""""""""""""""""""
|
||||
|
||||
Proper orthogonal descriptors are finger prints characterizing the
|
||||
radial and angular distribution of a system of atoms. The detailed
|
||||
mathematical definition is given in the paper by Nguyen and Rohskopf
|
||||
:ref:`(Nguyen) <Nguyen20222>`.
|
||||
|
||||
The descriptors for the one-body interaction are used to capture energy
|
||||
of isolated elements and defined as follows
|
||||
|
||||
.. math::
|
||||
|
||||
D_{ip}^{(1)} = \left\{
|
||||
\begin{array}{ll}
|
||||
1, & \mbox{if } Z_i = p \\
|
||||
0, & \mbox{if } Z_i \neq p
|
||||
\end{array}
|
||||
\right.
|
||||
|
||||
for :math:`1 \le i \le N, 1 \le p \le N_{\rm e}`. The number of one-body
|
||||
descriptors per atom is equal to the number of elements. The one-body
|
||||
descriptors are independent of atom positions, but dependent on atom
|
||||
types. The one-body descriptors are active only when the keyword
|
||||
*onebody* is set to 1.
|
||||
|
||||
We adopt the usual assumption that the direct interaction between two
|
||||
atoms vanishes smoothly when their distance is greater than the outer
|
||||
cutoff distance :math:`r_{\rm cut}`. Furthermore, we assume that two
|
||||
atoms can not get closer than the inner cutoff distance :math:`r_{\rm
|
||||
in}` due to the Pauli repulsion principle. Let :math:`r \in (r_{\rm in},
|
||||
r_{\rm cut})`, we introduce the following parameterized radial functions
|
||||
|
||||
.. math::
|
||||
|
||||
\phi(r, r_{\rm in}, r_{\rm cut}, \alpha, \beta) = \frac{\sin (\alpha \pi x) }{r - r_{\rm in}}, \qquad \varphi(r, \gamma) = \frac{1}{r^\gamma} ,
|
||||
|
||||
where the scaled distance function :math:`x` is defined below to enrich the two-body manifold
|
||||
|
||||
.. math::
|
||||
|
||||
x(r, r_{\rm in}, r_{\rm cut}, \beta) = \frac{e^{-\beta(r - r_{\rm in})/(r_{\rm cut} - r_{\rm in})} - 1}{e^{-\beta} - 1} .
|
||||
|
||||
We introduce the following function as a convex combination of the two functions
|
||||
|
||||
.. math::
|
||||
|
||||
\psi(r, r_{\rm in}, r_{\rm cut}, \alpha, \beta, \gamma, \kappa) = \kappa \phi(r, r_{\rm in}, r_{\rm cut}, \alpha, \beta) + (1- \kappa) \varphi(r, \gamma) .
|
||||
|
||||
We see that :math:`\psi` is a function of distance :math:`r`, cut-off
|
||||
distances :math:`r_{\rm in}` and :math:`r_{\rm cut}`, and parameters
|
||||
:math:`\alpha, \beta, \gamma, \kappa`. Together these parameters allow
|
||||
the function :math:`\psi` to characterize a diverse spectrum of two-body
|
||||
interactions within the cut-off interval :math:`(r_{\rm in}, r_{\rm
|
||||
cut})`.
|
||||
|
||||
Next, we introduce the following parameterized potential
|
||||
|
||||
.. math::
|
||||
|
||||
W^{(2)}(r_{ij}, \boldsymbol \eta, \boldsymbol \mu^{(2)}) = f_{\rm c}(r_{ij}, \boldsymbol \eta) \psi(r_{ij}, \boldsymbol \eta, \boldsymbol \mu^{(2)})
|
||||
|
||||
where :math:`\eta_1 = r_{\rm in}, \eta_2 = r_{\rm cut}, \mu_1^{(2)} =
|
||||
\alpha, \mu_2^{(2)} = \beta, \mu_3^{(2)} = \gamma`, and
|
||||
:math:`\mu_4^{(2)} = \kappa`. Here the cut-off function :math:`f_{\rm
|
||||
c}(r_{ij}, \boldsymbol \eta)` proposed in [refs] is used to ensure the
|
||||
smooth vanishing of the potential and its derivative for :math:`r_{ij}
|
||||
\ge r_{\rm cut}`:
|
||||
|
||||
.. math::
|
||||
|
||||
f_{\rm c}(r_{ij}, r_{\rm in}, r_{\rm cut}) = \exp \left(1 -\frac{1}{\sqrt{\left(1 - \frac{(r-r_{\rm in})^3}{(r_{\rm cut} - r_{\rm in})^3} \right)^2 + 10^{-6}}} \right)
|
||||
|
||||
Based on the parameterized potential, we form a set of snapshots as
|
||||
follows. We assume that we are given :math:`N_{\rm s}` parameter tuples
|
||||
:math:`\boldsymbol \mu^{(2)}_\ell, 1 \le \ell \le N_{\rm s}`. We
|
||||
introduce the following set of snapshots on :math:`(r_{\rm in}, r_{\rm
|
||||
cut})`:
|
||||
|
||||
.. math::
|
||||
|
||||
\xi_\ell(r_{ij}, \boldsymbol \eta) = W^{(2)}(r_{ij}, \boldsymbol \eta, \boldsymbol \mu^{(2)}_\ell), \quad \ell = 1, \ldots, N_{\rm s} .
|
||||
|
||||
To ensure adequate sampling of the PES for different parameters, we
|
||||
choose :math:`N_{\rm s}` parameter points :math:`\boldsymbol
|
||||
\mu^{(2)}_\ell = (\alpha_\ell, \beta_\ell, \gamma_\ell, \kappa_\ell), 1
|
||||
\le \ell \le N_{\rm s}` as follows. The parameters :math:`\alpha \in [1,
|
||||
N_\alpha]` and :math:`\gamma \in [1, N_\gamma]` are integers, where
|
||||
:math:`N_\alpha` and :math:`N_\gamma` are the highest degrees for
|
||||
:math:`\alpha` and :math:`\gamma`, respectively. We next choose
|
||||
:math:`N_\beta` different values of :math:`\beta` in the interval
|
||||
:math:`[\beta_{\min}, \beta_{\max}]`, where :math:`\beta_{\min} = 0` and
|
||||
:math:`\beta_{\max} = 4`. The parameter :math:`\kappa` can be set either
|
||||
0 or 1. Hence, the total number of parameter points is :math:`N_{\rm s}
|
||||
= N_\alpha N_\beta + N_\gamma`. Although :math:`N_\alpha, N_\beta,
|
||||
N_\gamma` can be chosen conservatively large, we find that
|
||||
:math:`N_\alpha = 6, N_\beta = 3, N_\gamma = 8` are adequate for most
|
||||
problems. Note that :math:`N_\alpha` and :math:`N_\gamma` correspond to
|
||||
*bessel_polynomial_degree* and *inverse_polynomial_degree*,
|
||||
respectively.
|
||||
|
||||
We employ the Karhunen-Loeve (KL) expansion to generate an orthogonal
|
||||
basis set which is known to be optimal for representation of the
|
||||
snapshot family :math:`\{\xi_\ell\}_{\ell=1}^{N_{\rm s}}`. The two-body
|
||||
orthogonal basis functions are computed as follows
|
||||
|
||||
.. math::
|
||||
|
||||
U^{(2)}_m(r_{ij}, \boldsymbol \eta) = \sum_{\ell = 1}^{N_{\rm s}} A_{\ell m}(\boldsymbol \eta) \, \xi_\ell(r_{ij}, \boldsymbol \eta), \qquad m = 1, \ldots, N_{\rm 2b} ,
|
||||
|
||||
where the matrix :math:`\boldsymbol A \in \mathbb{R}^{N_{\rm s} \times
|
||||
N_{\rm s}}` consists of eigenvectors of the eigenvalue problem
|
||||
|
||||
.. math::
|
||||
|
||||
\boldsymbol C \boldsymbol a = \lambda \boldsymbol a
|
||||
|
||||
with the entries of :math:`\boldsymbol C \in \mathbb{R}^{N_{\rm s} \times N_{\rm s}}` being given by
|
||||
|
||||
.. math::
|
||||
|
||||
C_{ij} = \frac{1}{N_{\rm s}} \int_{r_{\rm in}}^{r_{\rm cut}} \xi_i(x, \boldsymbol \eta) \xi_j(x, \boldsymbol \eta) dx, \quad 1 \le i, j \le N_{\rm s}
|
||||
|
||||
Note that the eigenvalues :math:`\lambda_\ell, 1 \le \ell \le N_{\rm
|
||||
s}`, are ordered such that :math:`\lambda_1 \ge \lambda_2 \ge \ldots \ge
|
||||
\lambda_{N_{\rm s}}`, and that the matrix :math:`\boldsymbol A` is
|
||||
pe-computed and stored for any given :math:`\boldsymbol \eta`. Owing to
|
||||
the rapid convergence of the KL expansion, only a small number of
|
||||
orthogonal basis functions is needed to obtain accurate
|
||||
approximation. The value of :math:`N_{\rm 2b}` corresponds to
|
||||
*twobody_number_radial_basis_functions*.
|
||||
|
||||
The two-body proper orthogonal descriptors at each atom *i* are computed
|
||||
by summing the orthogonal basis functions over the neighbors of atom *i*
|
||||
and numerating on the atom types as follows
|
||||
|
||||
.. math::
|
||||
|
||||
D^{(2)}_{im l(p, q) }(\boldsymbol \eta) = \left\{
|
||||
\begin{array}{ll}
|
||||
\displaystyle \sum_{\{j | Z_j = q\}} U^{(2)}_m(r_{ij}, \boldsymbol \eta), & \mbox{if } Z_i = p \\
|
||||
0, & \mbox{if } Z_i \neq p
|
||||
\end{array}
|
||||
\right.
|
||||
|
||||
for :math:`1 \le i \le N, 1 \le m \le N_{\rm 2b}, 1 \le q, p \le N_{\rm
|
||||
e}`. Here :math:`l(p,q)` is a symmetric index mapping such that
|
||||
|
||||
.. math::
|
||||
|
||||
l(p,q) = \left\{
|
||||
\begin{array}{ll}
|
||||
q + (p-1) N_{\rm e} - p(p-1)/2, & \mbox{if } q \ge p \\
|
||||
p + (q-1) N_{\rm e} - q(q-1)/2, & \mbox{if } q < p .
|
||||
\end{array}
|
||||
\right.
|
||||
|
||||
The number of two-body descriptors per atom is thus :math:`N_{\rm 2b}
|
||||
N_{\rm e}(N_{\rm e}+1)/2`.
|
||||
|
||||
It is important to note that the orthogonal basis functions do not
|
||||
depend on the atomic numbers :math:`Z_i` and :math:`Z_j`. Therefore, the
|
||||
cost of evaluating the basis functions and their derivatives with
|
||||
respect to :math:`r_{ij}` is independent of the number of elements
|
||||
:math:`N_{\rm e}`. Consequently, even though the two-body proper
|
||||
orthogonal descriptors depend on :math:`\boldsymbol Z`, their
|
||||
computational complexity is independent of :math:`N_{\rm e}`.
|
||||
|
||||
In order to provide proper orthogonal descriptors for three-body
|
||||
interactions, we need to introduce a three-body parameterized
|
||||
potential. In particular, the three-body potential is defined as a
|
||||
product of radial and angular functions as follows
|
||||
|
||||
.. math::
|
||||
|
||||
W^{(3)}(r_{ij}, r_{ik}, \theta_{ijk}, \boldsymbol \eta, \boldsymbol \mu^{(3)}) = \psi(r_{ij}, r_{\rm min}, r_{\rm max}, \alpha, \beta, \gamma, \kappa) f_{\rm c}(r_{ij}, r_{\rm min}, r_{\rm max}) \\
|
||||
\psi(r_{ik}, r_{\rm min}, r_{\rm max}, \alpha, \beta, \gamma, \kappa) f_{\rm c}(r_{ik}, r_{\rm min}, r_{\rm max}) \\
|
||||
\cos (\sigma \theta_{ijk} + \zeta)
|
||||
|
||||
where :math:`\sigma` is the periodic multiplicity, :math:`\zeta` is the
|
||||
equilibrium angle, :math:`\boldsymbol \mu^{(3)} = (\alpha, \beta,
|
||||
\gamma, \kappa, \sigma, \zeta)`. The three-body potential provides an
|
||||
angular fingerprint of the atomic environment through the bond angles
|
||||
:math:`\theta_{ijk}` formed with each pair of neighbors :math:`j` and
|
||||
:math:`k`. Compared to the two-body potential, the three-body potential
|
||||
has two extra parameters :math:`(\sigma, \zeta)` associated with the
|
||||
angular component.
|
||||
|
||||
Let :math:`\boldsymbol \varrho = (\alpha, \beta, \gamma, \kappa)`. We
|
||||
assume that we are given :math:`L_{\rm r}` parameter tuples
|
||||
:math:`\boldsymbol \varrho_\ell, 1 \le \ell \le L_{\rm r}`. We
|
||||
introduce the following set of snapshots on :math:`(r_{\min},
|
||||
r_{\max})`:
|
||||
|
||||
.. math::
|
||||
|
||||
\zeta_\ell(r_{ij}, r_{\rm min}, r_{\rm max} ) = \psi(r_{ij}, r_{\rm min}, r_{\rm max}, \boldsymbol \varrho_\ell) f_{\rm c}(r_{ij}, r_{\rm min}, r_{\rm max}), \quad 1 \le \ell \le L_{\rm r} .
|
||||
|
||||
We apply the Karhunen-Loeve (KL) expansion to this set of snapshots to
|
||||
obtain orthogonal basis functions as follows
|
||||
|
||||
.. math::
|
||||
|
||||
U^{r}_m(r_{ij}, r_{\rm min}, r_{\rm max} ) = \sum_{\ell = 1}^{L_{\rm r}} A_{\ell m} \, \zeta_\ell(r_{ij}, r_{\rm min}, r_{\rm max} ), \qquad m = 1, \ldots, N_{\rm r} ,
|
||||
|
||||
where the matrix :math:`\boldsymbol A \in \mathbb{R}^{L_{\rm r} \times L_{\rm r}}` consists
|
||||
of eigenvectors of the eigenvalue problem. For the parameterized angular function,
|
||||
we consider angular basis functions
|
||||
|
||||
.. math::
|
||||
|
||||
U^{a}_n(\theta_{ijk}) = \cos ((n-1) \theta_{ijk}), \qquad n = 1,\ldots, N_{\rm a},
|
||||
|
||||
where :math:`N_{\rm a}` is the number of angular basis functions. The orthogonal
|
||||
basis functions for the parameterized potential are computed as follows
|
||||
|
||||
.. math::
|
||||
|
||||
U^{(3)}_{mn}(r_{ij}, r_{ik}, \theta_{ijk}, \boldsymbol \eta) = U^{r}_m(r_{ij}, \boldsymbol \eta) U^{r}_m(r_{ik}, \boldsymbol \eta) U^{a}_n(\theta_{ijk}),
|
||||
|
||||
for :math:`1 \le m \le N_{\rm r}, 1 \le n \le N_{\rm a}`. The number of three-body
|
||||
orthogonal basis functions is equal to :math:`N_{\rm 3b} = N_{\rm r} N_{\rm a}` and
|
||||
independent of the number of elements. The value of :math:`N_{\rm r}` corresponds to
|
||||
*threebody_number_radial_basis_functions*, while that of :math:`N_{\rm a}` to
|
||||
*threebody_number_angular_basis_functions*.
|
||||
|
||||
The three-body proper orthogonal descriptors at each atom *i*
|
||||
are obtained by summing over the neighbors *j* and *k* of atom *i* as
|
||||
|
||||
.. math::
|
||||
|
||||
D^{(3)}_{imn \ell(p, q, s)}(\boldsymbol \eta) = \left\{
|
||||
\begin{array}{ll}
|
||||
\displaystyle \sum_{\{j | Z_j = q\}} \sum_{\{k | Z_k = s\}} U^{(3)}_{mn}(r_{ij}, r_{ik}, \theta_{ijk}, \boldsymbol \eta), & \mbox{if } Z_i = p \\
|
||||
0, & \mbox{if } Z_i \neq p
|
||||
\end{array}
|
||||
\right.
|
||||
|
||||
for :math:`1 \le i \le N, 1 \le m \le N_{\rm r}, 1 \le n \le N_{\rm a}, 1 \le q, p, s \le N_{\rm e}`,
|
||||
where
|
||||
|
||||
.. math::
|
||||
|
||||
\ell(p,q,s) = \left\{
|
||||
\begin{array}{ll}
|
||||
s + (q-1) N_{\rm e} - q(q-1)/2 + (p-1)N_{\rm e}(1+N_{\rm e})/2 , & \mbox{if } s \ge q \\
|
||||
q + (s-1) N_{\rm e} - s(s-1)/2 + (p-1)N_{\rm e}(1+N_{\rm e})/2, & \mbox{if } s < q .
|
||||
\end{array}
|
||||
\right.
|
||||
|
||||
The number of three-body descriptors per atom is thus :math:`N_{\rm 3b} N_{\rm e}^2(N_{\rm e}+1)/2`.
|
||||
While the number of three-body PODs is cubic function of the number of elements,
|
||||
the computational complexity of the three-body PODs is independent of the number of elements.
|
||||
|
||||
Four-Body SNAP Descriptors
|
||||
""""""""""""""""""""""""""
|
||||
|
||||
In addition to the proper orthogonal descriptors described above, we also employ
|
||||
the spectral neighbor analysis potential (SNAP) descriptors. SNAP uses bispectrum components
|
||||
to characterize the local neighborhood of each atom in a very general way. The mathematical definition
|
||||
of the bispectrum calculation and its derivatives w.r.t. atom positions is described in
|
||||
:doc:`compute snap <compute_sna_atom>`. In SNAP, the
|
||||
total energy is decomposed into a sum over atom energies. The energy of
|
||||
atom *i* is expressed as a weighted sum over bispectrum components.
|
||||
|
||||
.. math::
|
||||
|
||||
E_i^{\rm SNAP} = \sum_{k=1}^{N_{\rm 4b}} \sum_{p=1}^{N_{\rm e}} c_{kp}^{(4)} D_{ikp}^{(4)}
|
||||
|
||||
|
||||
where the SNAP descriptors are related to the bispectrum components by
|
||||
|
||||
.. math::
|
||||
|
||||
D^{(4)}_{ikp} = \left\{
|
||||
\begin{array}{ll}
|
||||
\displaystyle B_{ik}, & \mbox{if } Z_i = p \\
|
||||
0, & \mbox{if } Z_i \neq p
|
||||
\end{array}
|
||||
\right.
|
||||
|
||||
Here :math:`B_{ik}` is the *k*\ -th bispectrum component of atom *i*. The number of
|
||||
bispectrum components :math:`N_{\rm 4b}` depends on the value of *fourbody_snap_twojmax* :math:`= 2 J_{\rm max}`
|
||||
and *fourbody_snap_chemflag*. If *fourbody_snap_chemflag* = 0
|
||||
then :math:`N_{\rm 4b} = (J_{\rm max}+1)(J_{\rm max}+2)(J_{\rm max}+1.5)/3`.
|
||||
If *fourbody_snap_chemflag* = 1 then :math:`N_{\rm 4b} = N_{\rm e}^3 (J_{\rm max}+1)(J_{\rm max}+2)(J_{\rm max}+1.5)/3`.
|
||||
The bispectrum calculation is described in more detail in :doc:`compute sna/atom <compute_sna_atom>`.
|
||||
|
||||
Linear Proper Orthogonal Descriptor Potentials
|
||||
""""""""""""""""""""""""""""""""""""""""""""""
|
||||
|
||||
The proper orthogonal descriptors and SNAP descriptors are used to define the atomic energies
|
||||
in the following expansion
|
||||
|
||||
.. math::
|
||||
|
||||
E_{i}(\boldsymbol \eta) = \sum_{p=1}^{N_{\rm e}} c^{(1)}_p D^{(1)}_{ip} + \sum_{m=1}^{N_{\rm 2b}} \sum_{l=1}^{N_{\rm e}(N_{\rm e}+1)/2} c^{(2)}_{ml} D^{(2)}_{iml}(\boldsymbol \eta) + \sum_{m=1}^{N_{\rm r}} \sum_{n=1}^{N_{\rm a}} \sum_{\ell=1}^{N_{\rm e}^2(N_{\rm e}+1)/2} c^{(3)}_{mn\ell} D^{(3)}_{imn\ell}(\boldsymbol \eta) + \sum_{k=1}^{N_{\rm 4b}} \sum_{p=1}^{N_{\rm e}} c_{kp}^{(4)} D_{ikp}^{(4)}(\boldsymbol \eta),
|
||||
|
||||
where :math:`D^{(1)}_{ip}, D^{(2)}_{iml}, D^{(3)}_{imn\ell}, D^{(4)}_{ikp}` are the one-body, two-body, three-body, four-body descriptors,
|
||||
respectively, and :math:`c^{(1)}_p, c^{(2)}_{ml}, c^{(3)}_{mn\ell}, c^{(4)}_{kp}` are their respective expansion
|
||||
coefficients. In a more compact notation that implies summation over descriptor indices
|
||||
the atomic energies can be written as
|
||||
|
||||
.. math::
|
||||
|
||||
E_i(\boldsymbol \eta) = \sum_{m=1}^{N_{\rm e}} c^{(1)}_m D^{(1)}_{im} + \sum_{m=1}^{N_{\rm d}^{(2)}} c^{(2)}_k D^{(2)}_{im} + \sum_{m=1}^{N_{\rm d}^{(3)}} c^{(3)}_m D^{(3)}_{im} + \sum_{m=1}^{N_{\rm d}^{(4)}} c^{(4)}_m D^{(4)}_{im}
|
||||
|
||||
where :math:`N_{\rm d}^{(2)} = N_{\rm 2b} N_{\rm e} (N_{\rm e}+1)/2`,
|
||||
:math:`N_{\rm d}^{(3)} = N_{\rm 3b} N_{\rm e}^2 (N_{\rm e}+1)/2`, and
|
||||
:math:`N_{\rm d}^{(4)} = N_{\rm 4b} N_{\rm e}` are
|
||||
the number of two-body, three-body, and four-body descriptors, respectively.
|
||||
|
||||
The potential energy is then obtained by summing local atomic energies :math:`E_i`
|
||||
for all atoms :math:`i` in the system
|
||||
|
||||
.. math::
|
||||
|
||||
E(\boldsymbol \eta) = \sum_{i}^N E_{i}(\boldsymbol \eta)
|
||||
|
||||
Because the descriptors are one-body, two-body, and three-body terms,
|
||||
the resulting POD potential is a three-body PES. We can express the potential
|
||||
energy as a linear combination of the global descriptors as follows
|
||||
|
||||
.. math::
|
||||
|
||||
E(\boldsymbol \eta) = \sum_{m=1}^{N_{\rm e}} c^{(1)}_m d^{(1)}_{m} + \sum_{m=1}^{N_{\rm d}^{(2)}} c^{(2)}_m d^{(2)}_{m} + \sum_{m=1}^{N_{\rm d}^{(3)}} c^{(3)}_m d^{(3)}_{m} + \sum_{m=1}^{N_{\rm d}^{(4)}} c^{(4)}_m d^{(4)}_{m}
|
||||
|
||||
where the global descriptors are given by
|
||||
|
||||
.. math::
|
||||
|
||||
d_{m}^{(1)}(\boldsymbol \eta) = \sum_{i=1}^N D_{im}^{(1)}(\boldsymbol \eta), \quad d_{m}^{(2)}(\boldsymbol \eta) = \sum_{i=1}^N D_{im}^{(2)}(\boldsymbol \eta), \quad d_{m}^{(3)}(\boldsymbol \eta) = \sum_{i=1}^N D_{im}^{(3)}(\boldsymbol \eta), \quad d_{m}^{(4)}(\boldsymbol \eta) = \sum_{i=1}^N D_{im}^{(4)}(\boldsymbol \eta)
|
||||
|
||||
Hence, we obtain the atomic forces as
|
||||
|
||||
.. math::
|
||||
|
||||
\boldsymbol F = -\nabla E(\boldsymbol \eta) = - \sum_{m=1}^{N_{\rm d}^{(2)}} c^{(2)}_m \nabla d_m^{(2)} - \sum_{m=1}^{N_{\rm d}^{(3)}} c^{(3)}_m \nabla d_m^{(3)} - \sum_{m=1}^{N_{\rm d}^{(4)}} c^{(4)}_m \nabla d_m^{(4)}
|
||||
|
||||
where :math:`\nabla d_m^{(2)}`, :math:`\nabla d_m^{(3)}` and :math:`\nabla d_m^{(4)}` are derivatives of the two-body
|
||||
three-body, and four-body global descriptors with respect to atom positions, respectively.
|
||||
Note that since the first-body global descriptors are constant, their derivatives are zero.
|
||||
|
||||
Quadratic Proper Orthogonal Descriptor Potentials
|
||||
"""""""""""""""""""""""""""""""""""""""""""""""""
|
||||
|
||||
We recall two-body PODs :math:`D^{(2)}_{ik}, 1 \le k \le N_{\rm d}^{(2)}`,
|
||||
and three-body PODs :math:`D^{(3)}_{im}, 1 \le m \le N_{\rm d}^{(3)}`,
|
||||
with :math:`N_{\rm d}^{(2)} = N_{\rm 2b} N_{\rm e} (N_{\rm e}+1)/2` and
|
||||
:math:`N_{\rm d}^{(3)} = N_{\rm 3b} N_{\rm e}^2 (N_{\rm e}+1)/2` being
|
||||
the number of descriptors per atom for the two-body PODs and three-body PODs,
|
||||
respectively. We employ them to define a new set of atomic descriptors as follows
|
||||
|
||||
.. math::
|
||||
|
||||
D^{(2*3)}_{ikm} = \frac{1}{2N}\left( D^{(2)}_{ik} \sum_{j=1}^N D^{(3)}_{jm} + D^{(3)}_{im} \sum_{j=1}^N D^{(2)}_{jk} \right)
|
||||
|
||||
for :math:`1 \le i \le N, 1 \le k \le N_{\rm d}^{(2)}, 1 \le m \le N_{\rm d}^{(3)}`.
|
||||
The new descriptors are four-body because they involve central atom :math:`i` together
|
||||
with three neighbors :math:`j, k` and :math:`l`. The total number of new descriptors per atom is equal to
|
||||
|
||||
.. math::
|
||||
|
||||
N_{\rm d}^{(2*3)} = N_{\rm d}^{(2)} * N_{\rm d}^{(3)} = N_{\rm 2b} N_{\rm 3b} N_{\rm e}^3 (N_{\rm e}+1)^2/4 .
|
||||
|
||||
The new global descriptors are calculated as
|
||||
|
||||
.. math::
|
||||
|
||||
d^{(2*3)}_{km} = \sum_{i=1}^N D^{(2*3)}_{ikm} = \left( \sum_{i=1}^N D^{(2)}_{ik} \right) \left( \sum_{i=1}^N D^{(3)}_{im} \right) = d^{(2)}_{k} d^{(3)}_m,
|
||||
|
||||
for :math:`1 \le k \le N_{\rm d}^{(2)}, 1 \le m \le N_{\rm d}^{(3)}`. Hence, the gradient
|
||||
of the new global descriptors with respect to atom positions is calculated as
|
||||
|
||||
.. math::
|
||||
|
||||
\nabla d^{(2*3)}_{km} = d^{(3)}_m \nabla d^{(2)}_{k} + d^{(2)}_{k} \nabla d^{(3)}_m, \quad 1 \le k \le N_{\rm d}^{(2)}, 1 \le m \le N_{\rm d}^{(3)} .
|
||||
|
||||
The quadratic POD potential is defined as a linear combination of the
|
||||
original and new global descriptors as follows
|
||||
|
||||
.. math::
|
||||
|
||||
E^{(2*3)} = \sum_{k=1}^{N_{\rm 2d}^{(2*3)}} \sum_{m=1}^{N_{\rm 3d}^{(2*3)}} c^{(2*3)}_{km} d^{(2*3)}_{km} .
|
||||
|
||||
It thus follows that
|
||||
|
||||
.. math::
|
||||
|
||||
E^{(2*3)} = 0.5 \sum_{k=1}^{N_{\rm 2d}^{(2*3)}} \left( \sum_{m=1}^{N_{\rm 3d}^{(2*3)}} c^{(2*3)}_{km} d_m^{(3)} \right) d_k^{(2)} + 0.5 \sum_{m=1}^{N_{\rm 3d}^{(2*3)}} \left( \sum_{k=1}^{N_{\rm 2d}^{(2*3)}} c^{(2*3)}_{km} d_k^{(2)} \right) d_m^{(3)} ,
|
||||
|
||||
which is simplified to
|
||||
|
||||
.. math::
|
||||
|
||||
E^{(2*3)} = 0.5 \sum_{k=1}^{N_{\rm 2d}^{(2*3)}} b_k^{(2)} d_k^{(2)} + 0.5 \sum_{m=1}^{N_{\rm 3d}^{(2*3)}} b_m^{(3)} d_m^{(3)}
|
||||
|
||||
where
|
||||
|
||||
.. math::
|
||||
|
||||
b_k^{(2)} & = \sum_{m=1}^{N_{\rm 3d}^{(2*3)}} c^{(2*3)}_{km} d_m^{(3)}, \quad k = 1,\ldots, N_{\rm 2d}^{(2*3)}, \\
|
||||
b_m^{(3)} & = \sum_{k=1}^{N_{\rm 2d}^{(2*3)}} c^{(2*3)}_{km} d_k^{(2)}, \quad m = 1,\ldots, N_{\rm 3d}^{(2*3)} .
|
||||
|
||||
The quadratic POD potential results in the following atomic forces
|
||||
|
||||
.. math::
|
||||
|
||||
\boldsymbol F^{(2*3)} = - \sum_{k=1}^{N_{\rm 2d}^{(2*3)}} \sum_{m=1}^{N_{\rm 3d}^{(2*3)}} c^{(2*3)}_{km} \nabla d^{(2*3)}_{km} .
|
||||
|
||||
It can be shown that
|
||||
|
||||
.. math::
|
||||
|
||||
\boldsymbol F^{(2*3)} = - \sum_{k=1}^{N_{\rm 2d}^{(2*3)}} b^{(2)}_k \nabla d_k^{(2)} - \sum_{m=1}^{N_{\rm 3d}^{(2*3)}} b^{(3)}_m \nabla d_m^{(3)} .
|
||||
|
||||
The calculation of the atomic forces for the quadratic POD potential
|
||||
only requires the extra calculation of :math:`b_k^{(2)}` and :math:`b_m^{(3)}` which can be negligible.
|
||||
As a result, the quadratic POD potential does not increase the computational complexity.
|
||||
|
||||
|
||||
Training
|
||||
""""""""
|
||||
|
||||
POD potentials are trained using the least-squares regression against
|
||||
density functional theory (DFT) data. Let :math:`J` be the number of
|
||||
training configurations, with :math:`N_j` being the number of atoms in
|
||||
the j-th configuration. Let :math:`\{E^{\star}_j\}_{j=1}^{J}` and
|
||||
:math:`\{\boldsymbol F^{\star}_j\}_{j=1}^{J}` be the DFT energies and
|
||||
forces for :math:`J` configurations. Next, we calculate the global
|
||||
descriptors and their derivatives for all training configurations. Let
|
||||
:math:`d_{jm}, 1 \le m \le M`, be the global descriptors associated with
|
||||
the j-th configuration, where :math:`M` is the number of global
|
||||
descriptors. We then form a matrix :math:`\boldsymbol A \in
|
||||
\mathbb{R}^{J \times M}` with entries :math:`A_{jm} = d_{jm}/ N_j` for
|
||||
:math:`j=1,\ldots,J` and :math:`m=1,\ldots,M`. Moreover, we form a
|
||||
matrix :math:`\boldsymbol B \in \mathbb{R}^{\mathcal{N} \times M}` by
|
||||
stacking the derivatives of the global descriptors for all training
|
||||
configurations from top to bottom, where :math:`\mathcal{N} =
|
||||
3\sum_{j=1}^{J} N_j`.
|
||||
|
||||
The coefficient vector :math:`\boldsymbol c` of the POD potential is
|
||||
found by solving the following least-squares problem
|
||||
|
||||
.. math::
|
||||
|
||||
{\min}_{\boldsymbol c \in \mathbb{R}^{M}} \ w_E \|\boldsymbol A(\boldsymbol \eta) \boldsymbol c - \bar{\boldsymbol E}^{\star} \|^2 + w_F \|\boldsymbol B(\boldsymbol \eta) \boldsymbol c + \boldsymbol F^{\star} \|^2 + w_R \|\boldsymbol c \|^2,
|
||||
|
||||
where :math:`w_E` and :math:`w_F` are weights for the energy
|
||||
(*fitting_weight_energy*) and force (*fitting_weight_force*),
|
||||
respectively; and :math:`w_R` is the regularization parameter (*fitting_regularization_parameter*). Here :math:`\bar{\boldsymbol E}^{\star} \in
|
||||
\mathbb{R}^{J}` is a vector of with entries :math:`\bar{E}^{\star}_j =
|
||||
E^{\star}_j/N_j` and :math:`\boldsymbol F^{\star}` is a vector of
|
||||
:math:`\mathcal{N}` entries obtained by stacking :math:`\{\boldsymbol
|
||||
F^{\star}_j\}_{j=1}^{J}` from top to bottom.
|
||||
|
||||
The training procedure is the same for both the linear and quadratic POD
|
||||
potentials. However, since the quadratic POD potential has a
|
||||
significantly larger number of the global descriptors, it is more
|
||||
expensive to train the linear POD potential. This is because the
|
||||
training of the quadratic POD potential still requires us to calculate
|
||||
and store the quadratic global descriptors and their
|
||||
gradient. Furthermore, the quadratic POD potential may require more
|
||||
training data in order to prevent over-fitting. In order to reduce the
|
||||
computational cost of fitting the quadratic POD potential and avoid
|
||||
over-fitting, we can use subsets of two-body and three-body PODs for
|
||||
constructing the new descriptors.
|
||||
|
||||
|
||||
Restrictions
|
||||
""""""""""""
|
||||
|
||||
This command is part of the ML-POD package. It is only enabled if
|
||||
LAMMPS was built with that package. See the :doc:`Build package
|
||||
<Build_package>` page for more info.
|
||||
|
||||
Related commands
|
||||
""""""""""""""""
|
||||
|
||||
:doc:`pair_style pod <pair_pod>`
|
||||
|
||||
Default
|
||||
"""""""
|
||||
|
||||
The keyword defaults are also given in the description of the input files.
|
||||
|
||||
----------
|
||||
|
||||
.. _Grepl20072:
|
||||
|
||||
**(Grepl)** Grepl, Maday, Nguyen, and Patera, ESAIM: Mathematical Modelling and Numerical Analysis 41(3), 575-605, (2007).
|
||||
|
||||
.. _Nguyen20222:
|
||||
|
||||
**(Nguyen)** Nguyen and Rohskopf, arXiv preprint arXiv:2209.02362 (2022).
|
||||
@ -216,9 +216,9 @@ accelerated styles exist.
|
||||
* :doc:`edpd/source <fix_dpd_source>` - add heat source to eDPD simulations
|
||||
* :doc:`efield <fix_efield>` - impose electric field on system
|
||||
* :doc:`ehex <fix_ehex>` - enhanced heat exchange algorithm
|
||||
* :doc:`electrode/conp <fix_electrode_conp>` - impose electric potential
|
||||
* :doc:`electrode/conq <fix_electrode_conp>` - impose total electric charge
|
||||
* :doc:`electrode/thermo <fix_electrode_conp>` - apply thermo-potentiostat
|
||||
* :doc:`electrode/conp <fix_electrode>` - impose electric potential
|
||||
* :doc:`electrode/conq <fix_electrode>` - impose total electric charge
|
||||
* :doc:`electrode/thermo <fix_electrode>` - apply thermo-potentiostat
|
||||
* :doc:`electron/stopping <fix_electron_stopping>` - electronic stopping power as a friction force
|
||||
* :doc:`electron/stopping/fit <fix_electron_stopping>` - electronic stopping power as a friction force
|
||||
* :doc:`enforce2d <fix_enforce2d>` - zero out *z*-dimension velocity and force
|
||||
@ -360,6 +360,7 @@ accelerated styles exist.
|
||||
* :doc:`saed/vtk <fix_saed_vtk>` - time-average the intensities from :doc:`compute saed <compute_saed>`
|
||||
* :doc:`setforce <fix_setforce>` - set the force on each atom
|
||||
* :doc:`setforce/spin <fix_setforce>` - set magnetic precession vectors on each atom
|
||||
* :doc:`sgcmc <fix_sgcmc>` - fix for hybrid semi-grand canonical MD/MC simulations
|
||||
* :doc:`shake <fix_shake>` - SHAKE constraints on bonds and/or angles
|
||||
* :doc:`shardlow <fix_shardlow>` - integration of DPD equations of motion using the Shardlow splitting
|
||||
* :doc:`smd <fix_smd>` - applied a steered MD force to a group
|
||||
|
||||
9
doc/src/fix_ave_spatial.rst
Normal file
9
doc/src/fix_ave_spatial.rst
Normal file
@ -0,0 +1,9 @@
|
||||
Fix ave/spatial command
|
||||
=======================
|
||||
|
||||
.. meta::
|
||||
:http-equiv=Refresh: 5; url='https://docs.lammps.org/Commands_removed.html#fix-ave-spatial-and-fix-ave-spatial-sphere'
|
||||
|
||||
.. deprecated:: 11Dec2015
|
||||
|
||||
The `fix ave/spatial` command has been superseded by :doc:`fix ave/chunk <fix_ave_chunk>`.
|
||||
9
doc/src/fix_ave_spatial_sphere.rst
Normal file
9
doc/src/fix_ave_spatial_sphere.rst
Normal file
@ -0,0 +1,9 @@
|
||||
Fix ave/spatial command
|
||||
=======================
|
||||
|
||||
.. meta::
|
||||
:http-equiv=Refresh: 5; url='https://docs.lammps.org/Commands_removed.html#fix-ave-spatial-and-fix-ave-spatial-sphere'
|
||||
|
||||
.. deprecated:: 11Dec2015
|
||||
|
||||
The `fix ave/spatial/sphere` command has been superseded by :doc:`fix ave/chunk <fix_ave_chunk>`.
|
||||
@ -42,13 +42,16 @@ Syntax
|
||||
* template-ID(post-reacted) = ID of a molecule template containing post-reaction topology
|
||||
* map_file = name of file specifying corresponding atom-IDs in the pre- and post-reacted templates
|
||||
* zero or more individual keyword/value pairs may be appended to each react argument
|
||||
* individual_keyword = *prob* or *max_rxn* or *stabilize_steps* or *custom_charges* or *molecule* or *modify_create*
|
||||
* individual_keyword = *prob* or *rate_limit* or *max_rxn* or *stabilize_steps* or *custom_charges* or *rescale_charges* or *molecule* or *modify_create*
|
||||
|
||||
.. parsed-literal::
|
||||
|
||||
*prob* values = fraction seed
|
||||
fraction = initiate reaction with this probability if otherwise eligible
|
||||
seed = random number seed (positive integer)
|
||||
*rate_limit* = Nlimit Nsteps
|
||||
Nlimit = maximum number of reactions allowed to occur within interval
|
||||
Nsteps = the interval (number of timesteps) over which to count reactions
|
||||
*max_rxn* value = N
|
||||
N = maximum number of reactions allowed to occur
|
||||
*stabilize_steps* value = timesteps
|
||||
@ -56,6 +59,9 @@ Syntax
|
||||
*custom_charges* value = *no* or fragment-ID
|
||||
*no* = update all atomic charges (default)
|
||||
fragment-ID = ID of molecule fragment whose charges are updated
|
||||
*rescale_charges* value = *no* or *yes*
|
||||
*no* = do not rescale atomic charges (default)
|
||||
*yes* = rescale charges such that total charge does not change during reaction
|
||||
*molecule* value = *off* or *inter* or *intra*
|
||||
*off* = allow both inter- and intramolecular reactions (default)
|
||||
*inter* = search for reactions between molecules with different IDs
|
||||
@ -171,12 +177,12 @@ due to the internal dynamic grouping performed by fix bond/react.
|
||||
If the group-ID is an existing static group, react-group-IDs
|
||||
should also be specified as this static group or a subset.
|
||||
|
||||
The *reset_mol_ids* keyword invokes the :doc:`reset_mol_ids <reset_mol_ids>`
|
||||
command after a reaction occurs, to ensure that molecule IDs are
|
||||
consistent with the new bond topology. The group-ID used for
|
||||
:doc:`reset_mol_ids <reset_mol_ids>` is the group-ID for this fix.
|
||||
Resetting molecule IDs is necessarily a global operation, so it can
|
||||
be slow for very large systems.
|
||||
The *reset_mol_ids* keyword invokes the :doc:`reset_atoms mol
|
||||
<reset_atoms>` command after a reaction occurs, to ensure that
|
||||
molecule IDs are consistent with the new bond topology. The group-ID
|
||||
used for :doc:`reset_atoms mol <reset_atoms>` is the group-ID for this
|
||||
fix. Resetting molecule IDs is necessarily a global operation, so it
|
||||
can be slow for very large systems.
|
||||
|
||||
The following comments pertain to each *react* argument (in other
|
||||
words, they can be customized for each reaction, or reaction step):
|
||||
@ -514,28 +520,40 @@ example, the molecule fragment could consist of only the backbone
|
||||
atoms of a polymer chain. This constraint can be used to enforce a
|
||||
specific relative position and orientation between reacting molecules.
|
||||
|
||||
.. versionchanged:: TBD
|
||||
|
||||
The constraint of type "custom" has the following syntax:
|
||||
|
||||
.. parsed-literal::
|
||||
|
||||
custom *varstring*
|
||||
|
||||
where "custom" is the required keyword, and *varstring* is a
|
||||
variable expression. The expression must be a valid equal-style
|
||||
variable formula that can be read by the :doc:`variable <variable>` command,
|
||||
where 'custom' is the required keyword, and *varstring* is a variable
|
||||
expression. The expression must be a valid equal-style variable
|
||||
formula that can be read by the :doc:`variable <variable>` command,
|
||||
after any special reaction functions are evaluated. If the resulting
|
||||
expression is zero, the reaction is prevented from occurring;
|
||||
otherwise, it is permitted to occur. There are two special reaction
|
||||
functions available, "rxnsum" and "rxnave". These functions operate
|
||||
over the atoms in a given reaction site, and have one mandatory
|
||||
argument and one optional argument. The mandatory argument is the
|
||||
identifier for an atom-style variable. The second, optional argument
|
||||
is the name of a molecule fragment in the pre-reaction template, and
|
||||
can be used to operate over a subset of atoms in the reaction site.
|
||||
The "rxnsum" function sums the atom-style variable over the reaction
|
||||
site, while the "rxnave" returns the average value. For example, a
|
||||
constraint on the total potential energy of atoms involved in the
|
||||
reaction can be imposed as follows:
|
||||
otherwise, it is permitted to occur. There are three special reaction
|
||||
functions available, 'rxnbond', 'rxnsum', and 'rxnave'. The 'rxnbond'
|
||||
function allows per-bond values to be included in the variable strings
|
||||
of the custom constraint. The 'rxnbond' function has two mandatory
|
||||
arguments. The first argument is the ID of a previously defined
|
||||
'compute bond/local' command. This 'compute bond/local' must compute
|
||||
only one value, e.g. bond force. This value is returned by the
|
||||
'rxnbond' function. The second argument is the name of a molecule
|
||||
fragment in the pre-reaction template. The fragment must contain
|
||||
exactly two atoms, corresponding to the atoms involved in the bond
|
||||
whose value should be calculated. An example of a constraint that uses
|
||||
the force experienced by a bond is provided below. The 'rxnsum' and
|
||||
'rxnave' functions operate over the atoms in a given reaction site,
|
||||
and have one mandatory argument and one optional argument. The
|
||||
mandatory argument is the identifier for an atom-style variable. The
|
||||
second, optional argument is the name of a molecule fragment in the
|
||||
pre-reaction template, and can be used to operate over a subset of
|
||||
atoms in the reaction site. The 'rxnsum' function sums the atom-style
|
||||
variable over the reaction site, while the 'rxnave' returns the
|
||||
average value. For example, a constraint on the total potential energy
|
||||
of atoms involved in the reaction can be imposed as follows:
|
||||
|
||||
.. code-block:: LAMMPS
|
||||
|
||||
@ -547,11 +565,32 @@ reaction can be imposed as follows:
|
||||
custom "rxnsum(v_my_pe) > 100" # in Constraints section of map file
|
||||
|
||||
The above example prevents the reaction from occurring unless the
|
||||
total potential energy of the reaction site is above 100. The variable
|
||||
expression can be interpreted as the probability of the reaction
|
||||
occurring by using an inequality and the :doc:`random(x,y,z) <variable>`
|
||||
function available for equal-style variables, similar to the 'arrhenius'
|
||||
constraint above.
|
||||
total potential energy of the reaction site is above 100. As a second
|
||||
example, this time using the 'rxnbond' function, consider a modified
|
||||
Arrhenius constraint that depends on the bond force of a specific bond:
|
||||
|
||||
.. code-block:: LAMMPS
|
||||
|
||||
# in LAMMPS input script
|
||||
|
||||
compute bondforce all bond/local force
|
||||
|
||||
compute ke_atom all ke/atom
|
||||
variable ke atom c_ke_atom
|
||||
|
||||
variable E_a equal 100.0 # activation energy
|
||||
variable l0 equal 1.0 # characteristic length
|
||||
|
||||
|
||||
.. code-block:: LAMMPS
|
||||
|
||||
# in Constraints section of map file
|
||||
|
||||
custom "exp(-(v_E_a-rxnbond(c_bondforce,bond1frag)*v_l0)/(2/3*rxnave(v_ke))) < random(0,1,12345)"
|
||||
|
||||
By using an inequality and the 'random(x,y,z)' function, the left-hand
|
||||
side can be interpreted as the probability of the reaction occurring,
|
||||
similar to the 'arrhenius' constraint above.
|
||||
|
||||
By default, all constraints must be satisfied for the reaction to
|
||||
occur. In other words, constraints are evaluated as a series of
|
||||
@ -598,6 +637,15 @@ eligible reaction only occurs if the random number is less than the
|
||||
fraction. Up to :math:`N` reactions are permitted to occur, as optionally
|
||||
specified by the *max_rxn* keyword.
|
||||
|
||||
.. versionadded:: TBD
|
||||
|
||||
The *rate_limit* keyword can enforce an upper limit on the overall
|
||||
rate of the reaction. The number of reaction occurrences is limited to
|
||||
Nlimit within an interval of Nsteps timesteps. No reactions are
|
||||
permitted to occur within the first Nsteps timesteps of the first run
|
||||
after reading a data file. Nlimit can be specified with an equal-style
|
||||
:doc:`variable <variable>`.
|
||||
|
||||
The *stabilize_steps* keyword allows for the specification of how many
|
||||
time steps a reaction site is stabilized before being returned to the
|
||||
overall system thermostat. In order to produce the most physical
|
||||
@ -616,6 +664,19 @@ charges are updated to those specified by the post-reaction template
|
||||
fragment defined in the pre-reaction molecule template. In this case,
|
||||
only the atomic charges of atoms in the molecule fragment are updated.
|
||||
|
||||
.. versionadded:: TBD
|
||||
|
||||
The *rescale_charges* keyword can be used to ensure the total charge
|
||||
of the system does not change as reactions occur. When the argument is
|
||||
set to *yes*\ , a fixed value is added to the charges of post-reaction
|
||||
atoms such that their total charge equals that of the pre-reaction
|
||||
site. If only a subset of atomic charges are updated via the
|
||||
*custom_charges* keyword, this rescaling is applied to the subset.
|
||||
This keyword could be useful for systems that contain different
|
||||
molecules with the same reactive site, if the partial charges on the
|
||||
reaction site vary from molecule to molecule, or when removing
|
||||
reaction by-products.
|
||||
|
||||
The *molecule* keyword can be used to force the reaction to be
|
||||
intermolecular, intramolecular or either. When the value is set to
|
||||
*off*\ , molecule IDs are not considered when searching for reactions
|
||||
|
||||
421
doc/src/fix_electrode.rst
Normal file
421
doc/src/fix_electrode.rst
Normal file
@ -0,0 +1,421 @@
|
||||
.. index:: fix electrode/conp
|
||||
.. index:: fix electrode/conq
|
||||
.. index:: fix electrode/thermo
|
||||
.. index:: fix electrode/conp/intel
|
||||
.. index:: fix electrode/conq/intel
|
||||
.. index:: fix electrode/thermo/intel
|
||||
|
||||
fix electrode/conp command
|
||||
==========================
|
||||
|
||||
Accelerator Variant: *electrode/conp/intel*
|
||||
|
||||
fix electrode/conq command
|
||||
==========================
|
||||
|
||||
Accelerator Variant: *electrode/conq/intel*
|
||||
|
||||
fix electrode/thermo command
|
||||
============================
|
||||
|
||||
Accelerator Variant: *electrode/thermo/intel*
|
||||
|
||||
Syntax
|
||||
""""""
|
||||
|
||||
.. code-block:: LAMMPS
|
||||
|
||||
fix ID group-ID style args keyword value ...
|
||||
|
||||
* ID, group-ID are documented in :doc:`fix <fix>` command
|
||||
* style = *electrode/conp* or *electrode/conq* or *electrode/thermo*
|
||||
* args = arguments used by a particular style
|
||||
|
||||
.. parsed-literal::
|
||||
|
||||
*electrode/conp* args = potential eta
|
||||
*electrode/conq* args = charge eta
|
||||
*electrode/thermo* args = potential eta *temp* values
|
||||
potential = electrode potential
|
||||
charge = electrode charge
|
||||
eta = reciprocal width of electrode charge smearing
|
||||
*temp* values = T_v tau_v rng_v
|
||||
T_v = temperature of thermo-potentiostat
|
||||
tau_v = time constant of thermo-potentiostat
|
||||
rng_v = integer used to initialize random number generator
|
||||
|
||||
* zero or more keyword/value pairs may be appended
|
||||
* keyword = *algo* or *symm* or *couple* or *etypes* or *ffield* or *write_mat* or *write_inv* or *read_mat* or *read_inv*
|
||||
|
||||
.. parsed-literal::
|
||||
|
||||
*algo* values = *mat_inv* or *mat_cg* tol or *cg* tol
|
||||
specify the algorithm used to compute the electrode charges
|
||||
*symm* value = *on* or *off*
|
||||
turn on/off charge neutrality constraint for the electrodes
|
||||
*couple* values = group-ID val
|
||||
group-ID = group of atoms treated as additional electrode
|
||||
val = electric potential or charge on this electrode
|
||||
*etypes* value = *on* or *off*
|
||||
turn on/off type-based optimized neighbor lists (electrode and electrolyte types may not overlap)
|
||||
*ffield* value = *on* or *off*
|
||||
turn on/off finite-field implementation
|
||||
*write_mat* value = filename
|
||||
filename = file to which to write elastance matrix
|
||||
*write_inv* value = filename
|
||||
filename = file to which to write inverted matrix
|
||||
*read_mat* value = filename
|
||||
filename = file from which to read elastance matrix
|
||||
*read_inv* value = filename
|
||||
filename = file from which to read inverted matrix
|
||||
|
||||
Examples
|
||||
""""""""
|
||||
|
||||
.. code-block:: LAMMPS
|
||||
|
||||
fix fxconp bot electrode/conp -1.0 1.805 couple top 1.0 couple ref 0.0 write_inv inv.csv symm on
|
||||
fix fxconp electrodes electrode/conq 0.0 1.805 algo cg 1e-5
|
||||
fix fxconp bot electrode/thermo -1.0 1.805 temp 298 100 couple top 1.0
|
||||
|
||||
Description
|
||||
"""""""""""
|
||||
|
||||
The *electrode* fixes implement the constant potential method (CPM)
|
||||
(:ref:`Siepmann <Siepmann>`, :ref:`Reed <Reed3>`), and modern variants,
|
||||
to accurately model electrified, conductive electrodes. This is
|
||||
primarily useful for studying electrode-electrolyte interfaces,
|
||||
especially at high potential differences or ionicities, with non-planar
|
||||
electrodes such as nanostructures or nanopores, and to study dynamic
|
||||
phenomena such as charging or discharging time scales or conductivity or
|
||||
ionic diffusivities.
|
||||
|
||||
Each *electrode* fix allows users to set additional electrostatic
|
||||
relationships between the specified groups which model useful
|
||||
electrostatic configurations:
|
||||
|
||||
* *electrode/conp* sets potentials or potential differences between electrodes
|
||||
|
||||
* (resulting in changing electrode total charges)
|
||||
|
||||
* *electrode/conq* sets the total charge on each electrode
|
||||
|
||||
* (resulting in changing electrode potentials)
|
||||
|
||||
* *electrode/thermo* sets a thermopotentiostat
|
||||
:ref:`(Deissenbeck)<Deissenbeck>` between two electrodes
|
||||
|
||||
* (resulting in changing charges and potentials with appropriate
|
||||
average potential difference and thermal variance)
|
||||
|
||||
The first group-ID provided to each fix specifies the first electrode
|
||||
group, and more group(s) are added using the *couple* keyword for each
|
||||
additional group. While *electrode/thermo* only accepts two groups,
|
||||
*electrode/conp* and *electrode/conq* accept any number of groups, up to
|
||||
LAMMPS's internal restrictions (see Restrictions below). Electrode
|
||||
groups must not overlap, i.e. the fix will issue an error if any
|
||||
particle is detected to belong to at least two electrode groups.
|
||||
|
||||
CPM involves updating charges on groups of electrode particles, per time
|
||||
step, so that the system's total energy is minimized with respect to
|
||||
those charges. From basic electrostatics, this is equivalent to making
|
||||
each group conductive, or imposing an equal electrostatic potential on
|
||||
every particle in the same group (hence the name CPM). The charges are
|
||||
usually modelled as a Gaussian distribution to make the charge-charge
|
||||
interaction matrix invertible (:ref:`Gingrich <Gingrich>`). The keyword
|
||||
*eta* specifies the distribution's width in units of inverse length.
|
||||
|
||||
.. versionadded:: TBD
|
||||
|
||||
Three algorithms are available to minimize the energy, varying in how
|
||||
matrices are pre-calculated before a run to provide computational
|
||||
speedup. These algorithms can be selected using the keyword *algo*:
|
||||
|
||||
* *algo mat_inv* pre-calculates the capacitance matrix and obtains the
|
||||
charge configuration in one matrix-vector calculation per time step
|
||||
|
||||
* *algo mat_cg* pre-calculates the elastance matrix (inverse of
|
||||
capacitance matrix) and obtains the charge configuration using a
|
||||
conjugate gradient solver in multiple matrix-vector calculations per
|
||||
time step
|
||||
|
||||
* *algo cg* does not perform any pre-calculation and obtains the charge
|
||||
configuration using a conjugate gradient solver and multiple
|
||||
calculations of the electric potential per time step.
|
||||
|
||||
For both *cg* methods, the command must specify the conjugate gradient
|
||||
tolerance. *fix electrode/thermo* currently only supports the *mat_inv*
|
||||
algorithm.
|
||||
|
||||
The keyword *symm* can be set *on* (or *off*) to turn on (or turn off)
|
||||
the capacitance matrix constraint that sets total electrode charge to be
|
||||
zero. This has slightly different effects for each *fix electrode*
|
||||
variant. For *fix electrode/conp*, with *symm off*, the potentials
|
||||
specified are absolute potentials, but the charge configurations
|
||||
satisfying them may add up to an overall non-zero, varying charge for
|
||||
the electrodes (and thus the simulation box). With *symm on*, the total
|
||||
charge over all electrode groups is constrained to zero, and potential
|
||||
differences rather than absolute potentials are the physically relevant
|
||||
quantities.
|
||||
|
||||
For *fix electrode/conq*, with *symm off*, overall neutrality is
|
||||
explicitly obeyed or violated by the user input (which is not
|
||||
checked!). With *symm on*, overall neutrality is ensured by ignoring the
|
||||
user-input charge for the last listed electrode (instead, its charge
|
||||
will always be minus the total sum of all other electrode charges). For
|
||||
*fix electrode/thermo*, overall neutrality is always automatically
|
||||
imposed for any setting of *symm*, but *symm on* allows finite-field
|
||||
mode (*ffield on*, described below) for faster simulations.
|
||||
|
||||
For all three fixes, any potential (or charge for *conq*) can be
|
||||
specified as an equal-style variable prefixed with "v\_". For example,
|
||||
the following code will ramp the potential difference between electrodes
|
||||
from 0.0V to 2.0V over the course of the simulation:
|
||||
|
||||
.. code-block:: LAMMPS
|
||||
|
||||
fix fxconp bot electrode/conp 0.0 1.805 couple top v_v symm on
|
||||
variable v equal ramp(0.0, 2.0)
|
||||
|
||||
Note that these fixes only parse their supplied variable name when
|
||||
starting a run, and so these fixes will accept equal-style variables
|
||||
defined *after* the fix definition, including variables dependent on the
|
||||
fix's own output. This is useful, for example, in the fix's internal
|
||||
finite-field commands (see below). For an advanced example of this see
|
||||
the in.conq2 input file in the directory
|
||||
``examples/PACKAGES/electrode/graph-il``.
|
||||
|
||||
This fix necessitates the use of a long range solver that calculates and
|
||||
provides the matrix of electrode-electrode interactions and a vector of
|
||||
electrode-electrolyte interactions. The Kspace styles
|
||||
*ewald/electrode*, *pppm/electrode* and *pppm/electrode/intel* are
|
||||
created specifically for this task :ref:`(Ahrens-Iwers) <Ahrens-Iwers>`.
|
||||
|
||||
For systems with non-periodic boundaries in one or two directions dipole
|
||||
corrections are available with the :doc:`kspace_modify <kspace_modify>`.
|
||||
For ewald/electrode a two-dimensional Ewald summation :ref:`(Hu) <Hu>`
|
||||
can be used by setting "slab ew2d":
|
||||
|
||||
.. code-block:: LAMMPS
|
||||
|
||||
kspace_modify slab <slab_factor>
|
||||
kspace_modify wire <wire_factor>
|
||||
kspace_modify slab ew2d
|
||||
|
||||
Two implementations for the calculation of the elastance matrix are
|
||||
available with pppm and can be selected using the *amat onestep/twostep*
|
||||
keyword. *onestep* is the default; *twostep* can be faster for large
|
||||
electrodes and a moderate mesh size but requires more memory.
|
||||
|
||||
.. code-block:: LAMMPS
|
||||
|
||||
kspace_modify amat onestep/twostep
|
||||
|
||||
For all versions of the fix, the keyword-value *ffield on* enables the
|
||||
finite-field mode (:ref:`Dufils <Dufils>`, :ref:`Tee <Tee>`), which uses
|
||||
an electric field across a periodic cell instead of non-periodic
|
||||
boundary conditions to impose a potential difference between the two
|
||||
electrodes bounding the cell. The fix (with name *fix-ID*) detects which
|
||||
of the two electrodes is "on top" (has the larger maximum *z*-coordinate
|
||||
among all particles). Assuming the first electrode group is on top, it
|
||||
then issues the following commands internally:
|
||||
|
||||
.. code-block:: LAMMPS
|
||||
|
||||
variable fix-ID_ffield_zfield equal (f_fix-ID[2]-f_fix-ID[1])/lz
|
||||
efield fix-ID_efield all efield 0.0 0.0 v_fix-ID_ffield_zfield
|
||||
|
||||
which implements the required electric field as the potential difference
|
||||
divided by cell length. The internal commands use variable so that the
|
||||
electric field will correctly vary with changing potentials in the
|
||||
correct way (for example with equal-style potential difference or with
|
||||
*fix electrode/conq*). This keyword requires two electrodes and will
|
||||
issue an error with any other number of electrodes. This keyword
|
||||
requires electroneutrality to be imposed (*symm on*) and will issue an
|
||||
error otherwise.
|
||||
|
||||
.. versionchanged:: TBD
|
||||
|
||||
For all versions of the fix, the keyword-value *etypes on* enables
|
||||
type-based optimized neighbor lists. With this feature enabled, LAMMPS
|
||||
provides the fix with an occasional neighbor list restricted to
|
||||
electrode-electrode interactions for calculating the electrode matrix,
|
||||
and a perpetual neighbor list restricted to electrode-electrolyte
|
||||
interactions for calculating the electrode potentials, using particle
|
||||
types to list only desired interactions, and typically resulting in
|
||||
5--10\% less computational time. Without this feature the fix will
|
||||
simply use the active pair style's neighbor list. This feature cannot
|
||||
be enabled if any electrode particle has the same type as any
|
||||
electrolyte particle (which would be unusual in a typical simulation)
|
||||
and the fix will issue an error in that case.
|
||||
|
||||
Restart, fix_modify, output, run start/stop, minimize info
|
||||
"""""""""""""""""""""""""""""""""""""""""""""""""""""""""""
|
||||
|
||||
This fix currently does not write any information to restart files.
|
||||
|
||||
The *fix_modify tf* option enables the Thomas-Fermi metallicity model
|
||||
(:ref:`Scalfi <Scalfi>`) and allows parameters to be set for each atom type.
|
||||
|
||||
.. code-block:: LAMMPS
|
||||
|
||||
fix_modify ID tf type length voronoi
|
||||
|
||||
|
||||
If this option is used parameters must be set for all atom types of the
|
||||
electrode.
|
||||
|
||||
The *fix_modify timer* option turns on (off) additional timer outputs in the log
|
||||
file, for code developers to track optimization.
|
||||
|
||||
.. code-block:: LAMMPS
|
||||
|
||||
fix_modify ID timer on/off
|
||||
|
||||
----------
|
||||
|
||||
These fixes compute a global (extensive) scalar, a global (intensive)
|
||||
vector, and a global array, which can be accessed by various
|
||||
:doc:`output commands <Howto_output>`.
|
||||
|
||||
The global scalar outputs the energy added to the system by this fix,
|
||||
which is the negative of the total charge on each electrode multiplied
|
||||
by that electrode's potential.
|
||||
|
||||
The global vector outputs the potential on each electrode (and thus has
|
||||
*N* entries if the fix manages *N* electrode groups), in :doc:`units
|
||||
<units>` of electric field multiplied by distance (thus volts for *real*
|
||||
and *metal* units). The electrode groups' ordering follows the order in
|
||||
which they were input in the fix command using *couple*. The global
|
||||
vector output is useful for *fix electrode/conq* and *fix
|
||||
electrode/thermo*, where potential is dynamically updated based on
|
||||
electrolyte configuration instead of being directly set.
|
||||
|
||||
The global array has *N* rows and *2N+1* columns, where the fix manages
|
||||
*N* electrode groups managed by the fix. For the *I*-th row of the
|
||||
array, the elements are:
|
||||
|
||||
* array[I][1] = total charge that group *I* would have had *if it were
|
||||
at 0 V applied potential* * array[I][2 to *N* + 1] = the *N* entries
|
||||
of the *I*-th row of the electrode capacitance matrix (definition
|
||||
follows) * array[I][*N* + 2 to *2N* + 1] = the *N* entries of the
|
||||
*I*-th row of the electrode elastance matrix (the inverse of the
|
||||
electrode capacitance matrix)
|
||||
|
||||
The :math:`N \times N` electrode capacitance matrix, denoted :math:`\mathbf{C}`
|
||||
in the following equation, summarizes how the total charge induced on each
|
||||
electrode (:math:`\mathbf{Q}` as an *N*-vector) is related to the potential on
|
||||
each electrode, :math:`\mathbf{V}`, and the charge-at-0V :math:`\mathbf{Q}_{0V}`
|
||||
(which is influenced by the local electrolyte structure):
|
||||
|
||||
.. math::
|
||||
|
||||
\mathbf{Q} = \mathbf{Q}_{0V} + \mathbf{C} \cdot \mathbf{V}
|
||||
|
||||
The charge-at-0V, electrode capacitance and elastance matrices are internally
|
||||
used to calculate the potentials required to induce the specified total
|
||||
electrode charges in *fix electrode/conq* and *fix electrode/thermo*. With the
|
||||
*symm on* option, the electrode capacitance matrix would be singular, and thus
|
||||
its last row is replaced with *N* copies of its top-left entry
|
||||
(:math:`\mathbf{C}_{11}`) for invertibility.
|
||||
|
||||
The global array output is mainly useful for quickly determining the 'vacuum
|
||||
capacitance' of the system (capacitance with only electrodes, no electrolyte),
|
||||
and can also be used for advanced simulations setting the potential as some
|
||||
function of the charge-at-0V (such as the ``in.conq2`` example mentioned above).
|
||||
|
||||
Please cite :ref:`(Ahrens-Iwers2022) <Ahrens-Iwers2>` in any publication that
|
||||
uses this implementation. Please cite also the publication on the combination
|
||||
of the CPM with PPPM if you use *pppm/electrode* :ref:`(Ahrens-Iwers)
|
||||
<Ahrens-Iwers>`.
|
||||
|
||||
----------
|
||||
|
||||
Restrictions
|
||||
""""""""""""
|
||||
|
||||
For algorithms that use a matrix for the electrode-electrode
|
||||
interactions, positions of electrode particles have to be immobilized at
|
||||
all times.
|
||||
|
||||
With *ffield off* (i.e. the default), the box geometry is expected to be
|
||||
*z*-non-periodic (i.e. *boundary p p f*), and this fix will issue an
|
||||
error if the box is *z*-periodic. With *ffield on*, the box geometry is
|
||||
expected to be *z*-periodic, and this fix will issue an error if the box
|
||||
is *z*-non-periodic.
|
||||
|
||||
The parallelization for the fix works best if electrode atoms are evenly
|
||||
distributed across processors. For a system with two electrodes at the bottom
|
||||
and top of the cell this can be achieved with *processors * * 2*, or with the
|
||||
line
|
||||
|
||||
.. code-block:: LAMMPS
|
||||
|
||||
if "$(extract_setting(world_size) % 2) == 0" then "processors * * 2"
|
||||
|
||||
which avoids an error if the script is run on an odd number of
|
||||
processors (such as on just one processor for testing).
|
||||
|
||||
The fix creates an additional group named *[fix-ID]_group* which is the
|
||||
union of all electrode groups supplied to LAMMPS. This additional group
|
||||
counts towards LAMMPS's limitation on the total number of groups
|
||||
(currently 32), which may not allow scripts that use that many groups to
|
||||
run with this fix.
|
||||
|
||||
The matrix-based algorithms (*algo mat_inv* and *algo mat_cg*) currently
|
||||
store an interaction matrix (either elastance or capacitance) of *N* by
|
||||
*N* doubles for each MPI process. This memory requirement may be
|
||||
prohibitive for large electrode groups. The fix will issue a warning if
|
||||
it expects to use more than 0.5 GiB of memory.
|
||||
|
||||
Default
|
||||
"""""""
|
||||
|
||||
The default keyword-option settings are *algo mat_inv*, *symm off*,
|
||||
*etypes off* and *ffield off*.
|
||||
|
||||
----------
|
||||
|
||||
.. include:: accel_styles.rst
|
||||
|
||||
----------
|
||||
|
||||
.. _Siepmann:
|
||||
|
||||
**(Siepmann)** Siepmann and Sprik, J. Chem. Phys. 102, 511 (1995).
|
||||
|
||||
.. _Reed3:
|
||||
|
||||
**(Reed)** Reed *et al.*, J. Chem. Phys. 126, 084704 (2007).
|
||||
|
||||
.. _Deissenbeck:
|
||||
|
||||
**(Deissenbeck)** Deissenbeck *et al.*, Phys. Rev. Letters 126, 136803 (2021).
|
||||
|
||||
.. _Gingrich:
|
||||
|
||||
**(Gingrich)** Gingrich, `MSc thesis` <https://gingrich.chem.northwestern.edu/papers/ThesiswCorrections.pdf>` (2010).
|
||||
|
||||
.. _Ahrens-Iwers:
|
||||
|
||||
**(Ahrens-Iwers)** Ahrens-Iwers and Meissner, J. Chem. Phys. 155, 104104 (2021).
|
||||
|
||||
.. _Hu:
|
||||
|
||||
**(Hu)** Hu, J. Chem. Theory Comput. 10, 5254 (2014).
|
||||
|
||||
.. _Dufils:
|
||||
|
||||
**(Dufils)** Dufils *et al.*, Phys. Rev. Letters 123, 195501 (2019).
|
||||
|
||||
.. _Tee:
|
||||
|
||||
**(Tee)** Tee and Searles, J. Chem. Phys. 156, 184101 (2022).
|
||||
|
||||
.. _Scalfi:
|
||||
|
||||
**(Scalfi)** Scalfi *et al.*, J. Chem. Phys., 153, 174704 (2020).
|
||||
|
||||
.. _Ahrens-Iwers2:
|
||||
|
||||
**(Ahrens-Iwers2022)** Ahrens-Iwers *et al.*, J. Chem. Phys. 157, 084801 (2022).
|
||||
@ -1,230 +0,0 @@
|
||||
.. index:: fix electrode/conp
|
||||
.. index:: fix electrode/conq
|
||||
.. index:: fix electrode/thermo
|
||||
.. index:: fix electrode/conp/intel
|
||||
.. index:: fix electrode/conq/intel
|
||||
.. index:: fix electrode/thermo/intel
|
||||
|
||||
fix electrode/conp command
|
||||
==========================
|
||||
|
||||
Accelerator Variant: *electrode/conp/intel*
|
||||
|
||||
fix electrode/conq command
|
||||
==========================
|
||||
|
||||
Accelerator Variant: *electrode/conq/intel*
|
||||
|
||||
fix electrode/thermo command
|
||||
============================
|
||||
|
||||
Accelerator Variant: *electrode/thermo/intel*
|
||||
|
||||
Syntax
|
||||
""""""
|
||||
|
||||
.. parsed-literal::
|
||||
|
||||
fix ID group-ID style args keyword value ...
|
||||
|
||||
* ID, group-ID are documented in :doc:`fix <fix>` command
|
||||
* style = *electrode/conp* or *electrode/conq* or *electrode/thermo*
|
||||
* args = arguments used by a particular style
|
||||
|
||||
.. parsed-literal::
|
||||
|
||||
*electrode/conp* args = potential eta
|
||||
*electrode/conq* args = charge eta
|
||||
*electrode/thermo* args = potential eta *temp* values
|
||||
potential = electrode potential
|
||||
charge = electrode charge
|
||||
eta = reciprocal width of electrode charge smearing
|
||||
*temp* values = T_v tau_v rng_v
|
||||
T_v = temperature of thermo-potentiostat
|
||||
tau_v = time constant of thermo-potentiostat
|
||||
rng_v = integer used to initialize random number generator
|
||||
|
||||
* zero or more keyword/value pairs may be appended
|
||||
* keyword = *symm* or *couple* or *etypes* or *ffield* or *write_mat* or *write_inv* or *read_mat* or *read_inv*
|
||||
|
||||
.. parsed-literal::
|
||||
|
||||
*symm* value = *on* or *off*
|
||||
turn on/off charge neutrality constraint for the electrodes
|
||||
*couple* values = group-ID val
|
||||
group-ID = group of atoms treated as additional electrode
|
||||
val = electric potential or charge on this electrode
|
||||
*etypes* values = type
|
||||
type = atom type (can be a range) exclusive to the electrode for optimized neighbor lists
|
||||
*ffield* value = *on* or *off*
|
||||
turn on/off finite-field implementation
|
||||
*write_mat* value = filename
|
||||
filename = file to which to write elastance matrix
|
||||
*write_inv* value = filename
|
||||
filename = file to which to write inverted matrix
|
||||
*read_mat* value = filename
|
||||
filename = file from which to read elastance matrix
|
||||
*read_inv* value = filename
|
||||
filename = file from which to read inverted matrix
|
||||
|
||||
Examples
|
||||
""""""""
|
||||
|
||||
.. code-block:: LAMMPS
|
||||
|
||||
fix fxconp bot electrode/conp -1.0 1.805 couple top 1.0 couple ref 0.0 write_inv inv.csv symm on
|
||||
fix fxconp electrodes electrode/conq 0.0 1.805
|
||||
fix fxconp bot electrode/thermo -1.0 1.805 temp 298 100 couple top 1.0
|
||||
|
||||
Description
|
||||
"""""""""""
|
||||
|
||||
fix electrode/conp mode implements a constant potential method (CPM)
|
||||
(:ref:`Siepmann <Siepmann>`, :ref:`Reed <Reed3>`). Charges of groups specified
|
||||
via group-ID and optionally with the `couple` keyword are adapted to meet their respective
|
||||
potential at every time step. An arbitrary number of electrodes can be set but
|
||||
the respective groups may not overlap. Electrode charges have a Gaussian charge
|
||||
distribution with reciprocal width eta. The energy minimization is achieved via
|
||||
matrix inversion :ref:`(Wang) <Wang5>`.
|
||||
|
||||
fix electrode/conq enforces a total charge specified in the input on each electrode. The energy is
|
||||
minimized w.r.t. the charge distribution within the electrode.
|
||||
|
||||
fix electrode/thermo implements a thermo-potentiostat :ref:`(Deissenbeck)
|
||||
<Deissenbeck>`. Temperature and time constant of the thermo-potentiostat need
|
||||
to be specified using the temp keyword. Currently, only two electrodes are possible with
|
||||
this style.
|
||||
|
||||
This fix necessitates the use of a long range solver that calculates and provides the matrix
|
||||
of electrode-electrode interactions and a vector of electrode-electrolyte
|
||||
interactions. The Kspace styles *ewald/electrode*, *pppm/electrode* and
|
||||
*pppm/electrode/intel* are created specifically for this task
|
||||
:ref:`(Ahrens-Iwers) <Ahrens-Iwers>`.
|
||||
|
||||
For systems with non-periodic boundaries in one or two directions dipole
|
||||
corrections are available with the :doc:`kspace_modify <kspace_modify>`. For
|
||||
ewald/electrode a two-dimensional Ewald summation :ref:`(Hu) <Hu>` can be used
|
||||
by setting "slab ew2d":
|
||||
|
||||
.. code-block:: LAMMPS
|
||||
|
||||
kspace_modify slab <slab_factor>
|
||||
kspace_modify wire <wire_factor>
|
||||
kspace_modify slab ew2d
|
||||
|
||||
Two implementations for the calculation of the elastance matrix are available
|
||||
with pppm and can be selected using the *amat onestep/twostep* keyword.
|
||||
*onestep* is the default; *twostep* can be faster for large electrodes and a
|
||||
moderate mesh size but requires more memory.
|
||||
|
||||
.. code-block:: LAMMPS
|
||||
|
||||
kspace_modify amat onestep/twostep
|
||||
|
||||
|
||||
The *fix_modify tf* option enables the Thomas-Fermi metallicity model
|
||||
(:ref:`Scalfi <Scalfi>`) and allows parameters to be set for each atom type.
|
||||
|
||||
.. code-block:: LAMMPS
|
||||
|
||||
fix_modify ID tf type length voronoi
|
||||
|
||||
|
||||
If this option is used parameters must be set for all atom types of the electrode.
|
||||
|
||||
The *fix_modify timer* option turns on (off) additional timer outputs in the log
|
||||
file, for code developers to track optimization.
|
||||
|
||||
.. code-block:: LAMMPS
|
||||
|
||||
fix_modify ID timer on/off
|
||||
|
||||
The *fix_modify set* options allow calculated quantities to be accessed via
|
||||
internal variables. Currently four types of quantities can be accessed:
|
||||
|
||||
.. code-block:: LAMMPS
|
||||
|
||||
fix-modify ID set v group-ID variablename
|
||||
fix-modify ID set qsb group-ID variablename
|
||||
fix-modify ID set mc group-ID1 group-ID2 variablename
|
||||
fix-modify ID set me group-ID1 group-ID2 variablename
|
||||
|
||||
One use case is to output the potential that is internally calculated and
|
||||
applied to each electrode group by *fix electrode/conq* or *fix electrode/thermo*.
|
||||
For that case the *v* option makes *fix electrode* update the variable
|
||||
*variablename* with the potential applied to group *group-ID*, where *group-ID*
|
||||
must be a group whose charges are updated by *fix electrode* and *variablename*
|
||||
must be an internal-style variable:
|
||||
|
||||
.. code-block:: LAMMPS
|
||||
|
||||
fix conq bot electrode/conq -1.0 1.979 couple top 1.0
|
||||
variable vbot internal 0.0
|
||||
fix_modify conq set v bot vbot
|
||||
|
||||
The *qsb* option similarly outputs the total updated charge of the group if its
|
||||
potential were 0.0V. The *mc* option requires two *group-IDs*, and outputs the
|
||||
entry \{*group-ID1*, *group-ID2*\} of the (symmetric) *macro-capacitance* matrix
|
||||
(MC) which relates the electrodes' applied potentials (V), total charges (Q), and
|
||||
total charges at 0.0 V (Qsb):
|
||||
|
||||
.. math::
|
||||
|
||||
\mathbf{Q} = \mathbf{Q}_{SB} + \mathbf{MC} \cdot \mathbf{V}
|
||||
|
||||
Lastly, the *me* option also requires two *group-IDs* and outputs the entry
|
||||
\{*group-ID1*, *group-ID2*\} of the *macro-elastance* matrix, which is the
|
||||
inverse of the macro-capacitance matrix. (As the names denote, the
|
||||
macro-capacitance matrix gives electrode charges from potentials, and the
|
||||
macro-elastance matrix gives electrode potentials from charges).
|
||||
|
||||
.. warning::
|
||||
|
||||
Positions of electrode particles have to be immobilized at all times.
|
||||
|
||||
The parallelization for the fix works best if electrode atoms are evenly
|
||||
distributed across processors. For a system with two electrodes at the bottom
|
||||
and top of the cell this can be achieved with *processors * * 2*, or with the
|
||||
line
|
||||
|
||||
.. code-block:: LAMMPS
|
||||
|
||||
if "$(extract_setting(world_size) % 2) == 0" then "processors * * 2"
|
||||
|
||||
which avoids an error if the script is run on an odd number of processors (such
|
||||
as on just one processor for testing).
|
||||
|
||||
----------
|
||||
|
||||
.. include:: accel_styles.rst
|
||||
|
||||
----------
|
||||
|
||||
.. _Siepmann:
|
||||
|
||||
**(Siepmann)** Siepmann and Sprik, J. Chem. Phys. 102, 511 (1995).
|
||||
|
||||
.. _Reed3:
|
||||
|
||||
**(Reed)** Reed *et al.*, J. Chem. Phys. 126, 084704 (2007).
|
||||
|
||||
.. _Wang5:
|
||||
|
||||
**(Wang)** Wang *et al.*, J. Chem. Phys. 141, 184102 (2014).
|
||||
|
||||
.. _Deissenbeck:
|
||||
|
||||
**(Deissenbeck)** Deissenbeck *et al.*, Phys. Rev. Letters 126, 136803 (2021).
|
||||
|
||||
.. _Ahrens-Iwers:
|
||||
|
||||
**(Ahrens-Iwers)** Ahrens-Iwers and Meissner, J. Chem. Phys. 155, 104104 (2021).
|
||||
|
||||
.. _Hu:
|
||||
|
||||
**(Hu)** Hu, J. Chem. Theory Comput. 10, 5254 (2014).
|
||||
|
||||
.. _Scalfi:
|
||||
|
||||
**(Scalfi)** Scalfi *et al.*, J. Chem. Phys., 153, 174704 (2020).
|
||||
|
||||
@ -90,6 +90,12 @@ coordinates are transferred. However, one could use this strategy to
|
||||
define an external potential acting on the atoms that are moved by
|
||||
i-PI.
|
||||
|
||||
Since the i-PI code uses atomic units internally, this fix needs to
|
||||
convert LAMMPS data to and from its :doc:`specified units <units>`
|
||||
accordingly when communicating with i-PI. This is not possible for
|
||||
reduced units ("units lj") and thus *fix ipi* will stop with an error in
|
||||
this case.
|
||||
|
||||
This fix is part of the MISC package. It is only enabled if
|
||||
LAMMPS was built with that package. See the
|
||||
:doc:`Build package <Build_package>` page for more info.
|
||||
|
||||
@ -44,19 +44,23 @@ Examples
|
||||
Description
|
||||
"""""""""""
|
||||
|
||||
This fix can be used to simulate non-equilibrium molecular dynamics
|
||||
(NEMD) under diagonal flow fields, including uniaxial and bi-axial
|
||||
flow. Simulations under continuous extensional flow may be carried
|
||||
out for an indefinite amount of time. It is an implementation of the
|
||||
boundary conditions from :ref:`(Dobson) <Dobson>`, and also uses numerical
|
||||
These fixes can be used to simulate non-equilibrium molecular dynamics
|
||||
(NEMD) under diagonal flow fields, including uniaxial and bi-axial flow.
|
||||
Simulations under continuous extensional flow may be carried out for an
|
||||
indefinite amount of time. It is an implementation of the boundary
|
||||
conditions from :ref:`(Dobson) <Dobson>`, and also uses numerical
|
||||
lattice reduction as was proposed by :ref:`(Hunt) <Hunt>`. The lattice
|
||||
reduction algorithm is from :ref:`(Semaev) <Semaev>`. The fix is intended for
|
||||
simulations of homogeneous flows, and integrates the SLLOD equations
|
||||
of motion, originally proposed by Hoover and Ladd (see :ref:`(Evans and Morriss) <Sllod>`). Additional detail about this implementation can be
|
||||
found in :ref:`(Nicholson and Rutledge) <Nicholson>`.
|
||||
reduction algorithm is from :ref:`(Semaev) <Semaev>`. The fix is
|
||||
intended for simulations of homogeneous flows, and integrates the SLLOD
|
||||
equations of motion, originally proposed by Hoover and Ladd (see
|
||||
:ref:`(Evans and Morriss) <Sllod>`). Additional detail about this
|
||||
implementation can be found in :ref:`(Nicholson and Rutledge)
|
||||
<Nicholson>`.
|
||||
|
||||
Note that NEMD simulations of a continuously strained system can be
|
||||
performed using the :doc:`fix deform <fix_deform>`, :doc:`fix nvt/sllod <fix_nvt_sllod>`, and :doc:`compute temp/deform <compute_temp_deform>` commands.
|
||||
performed using the :doc:`fix deform <fix_deform>`, :doc:`fix nvt/sllod
|
||||
<fix_nvt_sllod>`, and :doc:`compute temp/deform <compute_temp_deform>`
|
||||
commands.
|
||||
|
||||
The applied flow field is set by the *eps* keyword. The values
|
||||
*edot_x* and *edot_y* correspond to the strain rates in the xx and yy
|
||||
@ -73,11 +77,11 @@ to -(*edot_x* + *edot_y*).
|
||||
The boundary conditions require a simulation box that does not have a
|
||||
consistent alignment relative to the applied flow field. Since LAMMPS
|
||||
utilizes an upper-triangular simulation box, it is not possible to
|
||||
express the evolving simulation box in the same coordinate system as
|
||||
the flow field. This fix keeps track of two coordinate systems: the
|
||||
flow frame, and the upper triangular LAMMPS frame. The coordinate
|
||||
systems are related to each other through the QR decomposition, as is
|
||||
illustrated in the image below.
|
||||
express the evolving simulation box in the same coordinate system as the
|
||||
flow field. These fixes keep track of two coordinate systems: the flow
|
||||
frame, and the upper triangular LAMMPS frame. The coordinate systems are
|
||||
related to each other through the QR decomposition, as is illustrated in
|
||||
the image below.
|
||||
|
||||
.. image:: JPG/uef_frames.jpg
|
||||
:align: center
|
||||
@ -99,12 +103,12 @@ using the dump command will be in the LAMMPS frame unless the
|
||||
----------
|
||||
|
||||
Temperature control is achieved with the default Nose-Hoover style
|
||||
thermostat documented in :doc:`fix npt <fix_nh>`. When this fix is
|
||||
thermostat documented in :doc:`fix nvt <fix_nh>`. When this fix is
|
||||
active, only the peculiar velocity of each atom is stored, defined as
|
||||
the velocity relative to the streaming velocity. This is in contrast
|
||||
to :doc:`fix nvt/sllod <fix_nvt_sllod>`, which uses a lab-frame
|
||||
velocity, and removes the contribution from the streaming velocity in
|
||||
order to compute the temperature.
|
||||
the velocity relative to the streaming velocity. This is in contrast to
|
||||
:doc:`fix nvt/sllod <fix_nvt_sllod>`, which uses a lab-frame velocity,
|
||||
and removes the contribution from the streaming velocity in order to
|
||||
compute the temperature.
|
||||
|
||||
Pressure control is achieved using the default Nose-Hoover barostat
|
||||
documented in :doc:`fix npt <fix_nh>`. There are two ways to control the
|
||||
@ -156,8 +160,8 @@ The following commands will not work:
|
||||
|
||||
----------
|
||||
|
||||
These fix computes a temperature and pressure each timestep. To do
|
||||
this, it creates its own computes of style "temp/uef" and
|
||||
These fixes compute a temperature and pressure each timestep. To do
|
||||
this, they create their own computes of style "temp/uef" and
|
||||
"pressure/uef", as if one of these two sets of commands had been
|
||||
issued:
|
||||
|
||||
@ -169,18 +173,19 @@ issued:
|
||||
compute fix-ID_temp all temp/uef
|
||||
compute fix-ID_press all pressure/uef fix-ID_temp
|
||||
|
||||
See the :doc:`compute temp/uef <compute_temp_uef>` and :doc:`compute pressure/uef <compute_pressure_uef>` commands for details. Note
|
||||
that the IDs of the new computes are the fix-ID + underscore + "temp"
|
||||
or fix_ID + underscore + "press".
|
||||
See the :doc:`compute temp/uef <compute_temp_uef>` and :doc:`compute
|
||||
pressure/uef <compute_pressure_uef>` commands for details. Note that
|
||||
the IDs of the new computes are the fix-ID + underscore + "temp" or
|
||||
fix_ID + underscore + "press".
|
||||
|
||||
Restart, fix_modify, output, run start/stop, minimize info
|
||||
"""""""""""""""""""""""""""""""""""""""""""""""""""""""""""
|
||||
|
||||
The fix writes the state of all the thermostat and barostat variables,
|
||||
as well as the cumulative strain applied, to :doc:`binary restart files <restart>`. See the :doc:`read_restart <read_restart>` command
|
||||
for info on how to re-specify a fix in an input script that reads a
|
||||
restart file, so that the operation of the fix continues in an
|
||||
uninterrupted fashion.
|
||||
as well as the cumulative strain applied, to :doc:`binary restart files
|
||||
<restart>`. See the :doc:`read_restart <read_restart>` command for info
|
||||
on how to re-specify a fix in an input script that reads a restart file,
|
||||
so that the operation of the fix continues in an uninterrupted fashion.
|
||||
|
||||
.. note::
|
||||
|
||||
@ -189,43 +194,41 @@ uninterrupted fashion.
|
||||
not contain the cumulative applied strain, will this keyword be
|
||||
necessary.
|
||||
|
||||
This fix can be used with the :doc:`fix_modify <fix_modify>` *temp* and
|
||||
*press* options. The temperature and pressure computes used must be of
|
||||
type *temp/uef* and *pressure/uef*\ .
|
||||
These fixes can be used with the :doc:`fix_modify <fix_modify>` *temp*
|
||||
and *press* options. The temperature and pressure computes used must be
|
||||
of type *temp/uef* and *pressure/uef*\ .
|
||||
|
||||
This fix computes the same global scalar and vector quantities as :doc:`fix npt <fix_nh>`.
|
||||
These fixes compute the same global scalar and vector quantities as
|
||||
:doc:`fix nvt andnpt <fix_nh>`.
|
||||
|
||||
The fix is not invoked during :doc:`energy minimization <minimize>`.
|
||||
These fixes are not invoked during :doc:`energy minimization <minimize>`.
|
||||
|
||||
Restrictions
|
||||
""""""""""""
|
||||
|
||||
This fix is part of the UEF package. It is only enabled if LAMMPS
|
||||
was built with that package. See the :doc:`Build package <Build_package>` page for more info.
|
||||
These fixes are part of the UEF package. They are only enabled if LAMMPS
|
||||
was built with that package. See the :doc:`Build package
|
||||
<Build_package>` page for more info.
|
||||
|
||||
Due to requirements of the boundary conditions, when the *strain*
|
||||
keyword is set to zero (or unset), the initial simulation box must be
|
||||
cubic and have style triclinic. If the box is initially of type ortho,
|
||||
use :doc:`change_box <change_box>` before invoking the fix.
|
||||
|
||||
.. note::
|
||||
|
||||
When resuming from restart files, you may need to use :doc:`box tilt
|
||||
large <box>` since LAMMPS has internal criteria from lattice
|
||||
reduction that are not the same as the criteria in the numerical
|
||||
lattice reduction algorithm.
|
||||
|
||||
Related commands
|
||||
""""""""""""""""
|
||||
|
||||
:doc:`fix nvt <fix_nh>`, :doc:`fix nvt/sllod <fix_nvt_sllod>`, :doc:`compute temp/uef <compute_temp_uef>`, :doc:`compute pressure/uef <compute_pressure_uef>`, :doc:`dump cfg/uef <dump_cfg_uef>`
|
||||
:doc:`fix nvt <fix_nh>`, :doc:`fix npt <fix_nh>`, `fix nvt/sllod
|
||||
:doc:<fix_nvt_sllod>`, `compute temp/uef <compute_temp_uef>`,
|
||||
:doc::doc:`compute pressure/uef <compute_pressure_uef>`, `dump cfg/uef
|
||||
:doc:<dump_cfg_uef>`
|
||||
|
||||
Default
|
||||
"""""""
|
||||
|
||||
The default keyword values specific to this fix are exy = xyz, strain
|
||||
= 0 0. The remaining defaults are the same as for :doc:`fix npt <fix_nh>`
|
||||
except tchain = 1. The reason for this change is given in
|
||||
The default keyword values specific to these fixes are exy = xyz, strain
|
||||
= 0 0. The remaining defaults are the same as for :doc:`fix nvt or npt
|
||||
<fix_nh>` except tchain = 1. The reason for this change is given in
|
||||
:doc:`fix nvt/sllod <fix_nvt_sllod>`.
|
||||
|
||||
----------
|
||||
|
||||
@ -156,6 +156,8 @@ This fix is part of the REPLICA package. It is only enabled if
|
||||
LAMMPS was built with that package. See the
|
||||
:doc:`Build package <Build_package>` page for more info.
|
||||
|
||||
Fix pid cannot be used with :doc:`lj units <units>`.
|
||||
|
||||
A PIMD simulation can be initialized with a single data file read via
|
||||
the :doc:`read_data <read_data>` command. However, this means all
|
||||
quasi-beads in a ring polymer will have identical positions and
|
||||
|
||||
188
doc/src/fix_sgcmc.rst
Normal file
188
doc/src/fix_sgcmc.rst
Normal file
@ -0,0 +1,188 @@
|
||||
.. index:: fix sgcmc
|
||||
|
||||
fix sgcmc command
|
||||
=================
|
||||
|
||||
Syntax
|
||||
""""""
|
||||
|
||||
.. parsed-literal::
|
||||
|
||||
fix ID group-ID sgcmc every_nsteps swap_fraction temperature deltamu ...
|
||||
|
||||
* ID, group-ID are documented in :doc:`fix <fix>` command
|
||||
* sgcmc = style name of this fix command
|
||||
* every_nsteps = number of MD steps between MC cycles
|
||||
* swap_fraction = fraction of a full MC cycle carried out at each call (a value of 1.0 will perform as many trial moves as there are atoms)
|
||||
* temperature = temperature that enters Boltzmann factor in Metropolis criterion (usually the same as MD temperature)
|
||||
* deltamu = chemical potential difference(s) (`N-1` values must be provided, with `N` being the number of elements)
|
||||
* Zero or more keyword/value pairs may be appended to fix definition line:
|
||||
|
||||
.. parsed-literal::
|
||||
|
||||
keyword = *variance* or *randseed* or *window_moves* or *window_size*
|
||||
*variance* kappa conc1 [conc2] ... [concN]
|
||||
kappa = variance constraint parameter
|
||||
conc1,conc2,... = target concentration(s) in the range 0.0-1.0 (*N-1* values must be provided, with *N* being the number of elements)
|
||||
*randseed* N
|
||||
N = seed for pseudo random number generator
|
||||
*window_moves* N
|
||||
N = number of times sampling window is moved during one MC cycle
|
||||
*window_size* frac
|
||||
frac = size of sampling window (must be between 0.5 and 1.0)
|
||||
|
||||
|
||||
Examples
|
||||
""""""""
|
||||
|
||||
.. code-block:: LAMMPS
|
||||
|
||||
fix mc all sgcmc 50 0.1 400.0 -0.55
|
||||
fix vc all sgcmc 20 0.2 700.0 -0.7 randseed 324234 variance 2000.0 0.05
|
||||
fix 2 all sgcmc 20 0.1 700.0 -0.7 window_moves 20
|
||||
|
||||
Description
|
||||
"""""""""""
|
||||
|
||||
.. versionadded:: TBD
|
||||
|
||||
This command allows to carry out parallel hybrid molecular
|
||||
dynamics/Monte Carlo (MD/MC) simulations using the algorithms described
|
||||
in :ref:`(Sadigh1) <Sadigh1>`. Simulations can be carried out in either
|
||||
the semi-grand canonical (SGC) or variance constrained semi-grand
|
||||
canonical (VC-SGC) ensemble :ref:`(Sadigh2) <Sadigh2>`. Only atom type
|
||||
swaps are performed by the SGCMC fix. Relaxations are accounted for by
|
||||
the molecular dynamics integration steps.
|
||||
|
||||
This fix can be used with standard multi-element EAM potentials
|
||||
(:doc:`pair styles eam/alloy or eam/fs <pair_eam>`)
|
||||
|
||||
The SGCMC fix can handle Finnis/Sinclair type EAM potentials where
|
||||
:math:`\rho(r)` is atom-type specific, such that different elements can
|
||||
contribute differently to the total electron density at an atomic site
|
||||
depending on the identity of the element at that atomic site.
|
||||
|
||||
------------
|
||||
|
||||
If this fix is applied, the regular MD simulation will be interrupted in
|
||||
defined intervals to carry out a fraction of a Monte Carlo (MC)
|
||||
cycle. The interval is set using the parameter *every_nsteps* which
|
||||
determines how many MD integrator steps are taken between subsequent
|
||||
calls to the MC routine.
|
||||
|
||||
It is possible to carry out pure lattice MC simulations by setting
|
||||
*every_nsteps* to 1 and not defining an integration fix such as NVE,
|
||||
NPT etc. In that case, the particles will not move and only the MC
|
||||
routine will be called to perform atom type swaps.
|
||||
|
||||
The parameter *swap_fraction* determines how many MC trial steps are carried
|
||||
out every time the MC routine is entered. It is measured in units of full MC
|
||||
cycles where one full cycle, *swap_fraction=1*, corresponds to as many MC
|
||||
trial steps as there are atoms.
|
||||
|
||||
------------
|
||||
|
||||
The parameter *temperature* specifies the temperature that is used
|
||||
to evaluate the Metropolis acceptance criterion. While it usually
|
||||
should be set to the same value as the MD temperature there are cases
|
||||
when it can be useful to use two different values for at least part of
|
||||
the simulation, e.g., to speed up equilibration at low temperatures.
|
||||
|
||||
------------
|
||||
|
||||
The parameter *deltamu* is used to set the chemical potential difference
|
||||
in the SGC MC algorithm (see Eq. 16 in :ref:`Sadigh1 <Sadigh1>`). By
|
||||
convention it is the difference of the chemical potentials of elements
|
||||
`B`, `C` ..., with respect to element A. When the simulation includes
|
||||
`N` elements, `N-1` values must be specified.
|
||||
|
||||
------------
|
||||
|
||||
The variance-constrained SGC MC algorithm is activated if the keyword
|
||||
*variance* is used. In that case the fix parameter *deltamu* determines
|
||||
the effective average constraint in the parallel VC-SGC MC algorithm
|
||||
(parameter :math:`\delta\mu_0` in Eq. (20) of :ref:`Sadigh1
|
||||
<Sadigh1>`). The parameter *kappa* specifies the variance constraint
|
||||
(see Eqs. (20-21) in :ref:`Sadigh1 <Sadigh1>`).
|
||||
|
||||
The parameter *conc* sets the target concentration (parameter
|
||||
:math:`c_0` in Eqs. (20-21) of :ref:`Sadigh1 <Sadigh1>`). The atomic
|
||||
concentrations refer to components `B`, `C` ..., with `A` being set
|
||||
automatically. When the simulation includes `N` elements, `N-1`
|
||||
concentration values must be specified.
|
||||
|
||||
------------
|
||||
|
||||
There are several technical parameters that can be set via optional flags.
|
||||
|
||||
*randseed* is expected to be a positive integer number and is used
|
||||
to initialize the random number generator on each processor.
|
||||
|
||||
*window_size* controls the size of the sampling window in a parallel MC
|
||||
simulation. The size has to lie between 0.5 and 1.0. Normally, this
|
||||
parameter should be left unspecified which instructs the code to choose
|
||||
the optimal window size automatically (see Sect. III.B and Figure 6 in
|
||||
:ref:`Sadigh1 <Sadigh1>` for details).
|
||||
|
||||
The number of times the window is moved during a MC cycle is set using
|
||||
the parameter *window_moves* (see Sect. III.B in :ref:`Sadigh1
|
||||
<Sadigh1>` for details).
|
||||
|
||||
------------
|
||||
|
||||
Restart, fix_modify, output, run start/stop, minimize info
|
||||
==========================================================
|
||||
|
||||
No information about this fix is written to restart files.
|
||||
|
||||
The MC routine keeps track of the global concentration(s) as well as the
|
||||
number of accepted and rejected trial swaps during each MC step. These
|
||||
values are provided by the sgcmc fix in the form of a global vector that
|
||||
can be accessed by various :doc:`output commands <Howto_output>`
|
||||
components of the vector represent the following quantities:
|
||||
|
||||
* 1 = The absolute number of accepted trial swaps during the last MC step
|
||||
* 2 = The absolute number of rejected trial swaps during the last MC step
|
||||
* 3 = The current global concentration of species *A* (= number of atoms of type 1 / total number of atoms)
|
||||
* 4 = The current global concentration of species *B* (= number of atoms of type 2 / total number of atoms)
|
||||
* ...
|
||||
* N+2: The current global concentration of species *X* (= number of atoms of type *N* / total number of atoms)
|
||||
|
||||
Restrictions
|
||||
============
|
||||
|
||||
This fix is part of the MC package. It is only enabled if LAMMPS was
|
||||
built with that package. See the :doc:`Build package <Build_package>`
|
||||
page for more info.
|
||||
|
||||
At present the fix provides optimized subroutines for EAM type
|
||||
potentials (see above) that calculate potential energy changes due to
|
||||
*local* atom type swaps very efficiently. Other potentials are
|
||||
supported by using the generic potential functions. This, however, will
|
||||
lead to exceedingly slow simulations since it implies that the
|
||||
energy of the *entire* system is recomputed at each MC trial step. If
|
||||
other potentials are to be used it is strongly recommended to modify and
|
||||
optimize the existing generic potential functions for this purpose.
|
||||
Also, the generic energy calculation can not be used for parallel
|
||||
execution i.e. it only works with a single MPI process.
|
||||
|
||||
------------
|
||||
|
||||
Default
|
||||
=======
|
||||
|
||||
The optional parameters default to the following values:
|
||||
|
||||
* *randseed* = 324234
|
||||
* *window_moves* = 8
|
||||
* *window_size* = automatic
|
||||
|
||||
------------
|
||||
|
||||
.. _Sadigh1:
|
||||
|
||||
**(Sadigh1)** B. Sadigh, P. Erhart, A. Stukowski, A. Caro, E. Martinez, and L. Zepeda-Ruiz, Phys. Rev. B **85**, 184203 (2012)
|
||||
|
||||
.. _Sadigh2:
|
||||
|
||||
**(Sadigh2)** B. Sadigh and P. Erhart, Phys. Rev. B **86**, 134204 (2012)
|
||||
@ -283,7 +283,7 @@ parameters and how to choose them is described in
|
||||
----------
|
||||
|
||||
The *electrode* styles add methods that are required for the constant potential
|
||||
method implemented in :doc:`fix electrode/* <fix_electrode_conp>`. The styles
|
||||
method implemented in :doc:`fix electrode/* <fix_electrode>`. The styles
|
||||
*ewald/electrode*, *pppm/electrode* and *pppm/electrode/intel* are available.
|
||||
These styles do not support the `kspace_modify slab nozforce` command.
|
||||
|
||||
|
||||
@ -174,11 +174,11 @@ shifted force model described in :ref:`Fennell <Fennell1>`, given by:
|
||||
E = q_iq_j \left[ \frac{\mbox{erfc} (\alpha r)}{r} - \frac{\mbox{erfc} (\alpha r_c)}{r_c} +
|
||||
\left( \frac{\mbox{erfc} (\alpha r_c)}{r_c^2} + \frac{2\alpha}{\sqrt{\pi}}\frac{\exp (-\alpha^2 r^2_c)}{r_c} \right)(r-r_c) \right] \qquad r < r_c
|
||||
|
||||
where :math:`\alpha` is the damping parameter and erfc() is the
|
||||
complementary error-function. The potential corrects issues in the
|
||||
Wolf model (described below) to provide consistent forces and energies
|
||||
(the Wolf potential is not differentiable at the cutoff) and smooth
|
||||
decay to zero.
|
||||
where :math:`\alpha` is the damping parameter and *erfc()* is the
|
||||
complementary error-function. The potential corrects issues in the Wolf
|
||||
model (described below) to provide consistent forces and energies (the
|
||||
Wolf potential is not differentiable at the cutoff) and smooth decay to
|
||||
zero.
|
||||
|
||||
----------
|
||||
|
||||
@ -192,30 +192,32 @@ summation method, described in :ref:`Wolf <Wolf1>`, given by:
|
||||
\frac{1}{2} \sum_{j \neq i}
|
||||
\frac{q_i q_j {\rm erf}(\alpha r_{ij})}{r_{ij}} \qquad r < r_c
|
||||
|
||||
where :math:`\alpha` is the damping parameter, and erc() and erfc() are
|
||||
error-function and complementary error-function terms. This potential
|
||||
is essentially a short-range, spherically-truncated,
|
||||
where :math:`\alpha` is the damping parameter, and *erf()* and *erfc()*
|
||||
are error-function and complementary error-function terms. This
|
||||
potential is essentially a short-range, spherically-truncated,
|
||||
charge-neutralized, shifted, pairwise *1/r* summation. With a
|
||||
manipulation of adding and subtracting a self term (for i = j) to the
|
||||
first and second term on the right-hand-side, respectively, and a
|
||||
small enough :math:`\alpha` damping parameter, the second term shrinks and
|
||||
the potential becomes a rapidly-converging real-space summation. With
|
||||
a long enough cutoff and small enough :math:`\alpha` parameter, the energy and
|
||||
forces calculated by the Wolf summation method approach those of the
|
||||
first and second term on the right-hand-side, respectively, and a small
|
||||
enough :math:`\alpha` damping parameter, the second term shrinks and the
|
||||
potential becomes a rapidly-converging real-space summation. With a
|
||||
long enough cutoff and small enough :math:`\alpha` parameter, the energy
|
||||
and forces calculated by the Wolf summation method approach those of the
|
||||
Ewald sum. So it is a means of getting effective long-range
|
||||
interactions with a short-range potential.
|
||||
|
||||
----------
|
||||
|
||||
Style *coul/streitz* is the Coulomb pair interaction defined as part
|
||||
of the Streitz-Mintmire potential, as described in :ref:`this paper <Streitz2>`, in which charge distribution about an atom is modeled
|
||||
as a Slater 1\ *s* orbital. More details can be found in the referenced
|
||||
Style *coul/streitz* is the Coulomb pair interaction defined as part of
|
||||
the Streitz-Mintmire potential, as described in :ref:`this paper
|
||||
<Streitz2>`, in which charge distribution about an atom is modeled as a
|
||||
Slater 1\ *s* orbital. More details can be found in the referenced
|
||||
paper. To fully reproduce the published Streitz-Mintmire potential,
|
||||
which is a variable charge potential, style *coul/streitz* must be
|
||||
used with :doc:`pair_style eam/alloy <pair_eam>` (or some other
|
||||
short-range potential that has been parameterized appropriately) via
|
||||
the :doc:`pair_style hybrid/overlay <pair_hybrid>` command. Likewise,
|
||||
charge equilibration must be performed via the :doc:`fix qeq/slater <fix_qeq>` command. For example:
|
||||
which is a variable charge potential, style *coul/streitz* must be used
|
||||
with :doc:`pair_style eam/alloy <pair_eam>` (or some other short-range
|
||||
potential that has been parameterized appropriately) via the
|
||||
:doc:`pair_style hybrid/overlay <pair_hybrid>` command. Likewise,
|
||||
charge equilibration must be performed via the :doc:`fix qeq/slater
|
||||
<fix_qeq>` command. For example:
|
||||
|
||||
.. code-block:: LAMMPS
|
||||
|
||||
|
||||
97
doc/src/pair_pod.rst
Normal file
97
doc/src/pair_pod.rst
Normal file
@ -0,0 +1,97 @@
|
||||
.. index:: pair_style pod
|
||||
|
||||
pair_style pod command
|
||||
========================
|
||||
|
||||
Syntax
|
||||
""""""
|
||||
|
||||
.. code-block:: LAMMPS
|
||||
|
||||
pair_style pod
|
||||
|
||||
Examples
|
||||
""""""""
|
||||
|
||||
.. code-block:: LAMMPS
|
||||
|
||||
pair_style pod
|
||||
pair_coeff * * Ta_param.pod Ta_coefficients.pod Ta
|
||||
|
||||
Description
|
||||
"""""""""""
|
||||
|
||||
.. versionadded:: TBD
|
||||
|
||||
Pair style *pod* defines the proper orthogonal descriptor (POD)
|
||||
potential :ref:`(Nguyen) <Nguyen20221>`. The mathematical definition of
|
||||
the POD potential is described from :doc:`fitpod <fitpod_command>`, which is
|
||||
used to fit the POD potential to *ab initio* energy and force data.
|
||||
|
||||
Only a single pair_coeff command is used with the *pod* style which
|
||||
specifies a POD parameter file followed by a coefficient file.
|
||||
|
||||
The coefficient file (``Ta_coefficients.pod``) contains coefficients for the
|
||||
POD potential. The top of the coefficient file can contain any number of
|
||||
blank and comment lines (start with #), but follows a strict format
|
||||
after that. The first non-blank non-comment line must contain:
|
||||
|
||||
* POD_coefficients: *ncoeff*
|
||||
|
||||
This is followed by *ncoeff* coefficients, one per line. The coefficient
|
||||
file is generated after training the POD potential using :doc:`fitpod
|
||||
<fitpod_command>`.
|
||||
|
||||
The POD parameter file (``Ta_param.pod``) can contain blank and comment lines
|
||||
(start with #) anywhere. Each non-blank non-comment line must contain
|
||||
one keyword/value pair. See :doc:`fitpod <fitpod_command>` for the description
|
||||
of all the keywords that can be assigned in the parameter file.
|
||||
|
||||
As an example, if a LAMMPS indium phosphide simulation has 4 atoms
|
||||
types, with the first two being indium and the third and fourth being
|
||||
phophorous, the pair_coeff command would look like this:
|
||||
|
||||
.. code-block:: LAMMPS
|
||||
|
||||
pair_coeff * * pod InP_param.pod InP_coefficients.pod In In P P
|
||||
|
||||
The first 2 arguments must be \* \* so as to span all LAMMPS atom types.
|
||||
The two filenames are for the parameter and coefficient files, respectively.
|
||||
The two trailing 'In' arguments map LAMMPS atom types 1 and 2 to the
|
||||
POD 'In' element. The two trailing 'P' arguments map LAMMPS atom types
|
||||
3 and 4 to the POD 'P' element.
|
||||
|
||||
If a POD mapping value is specified as NULL, the mapping is not
|
||||
performed. This can be used when a *pod* potential is used as part of
|
||||
the *hybrid* pair style. The NULL values are placeholders for atom
|
||||
types that will be used with other potentials.
|
||||
|
||||
Examples about training and using POD potentials are found in the
|
||||
directory lammps/examples/PACKAGES/pod.
|
||||
|
||||
----------
|
||||
|
||||
Restrictions
|
||||
""""""""""""
|
||||
|
||||
This style is part of the ML-POD package. It is only enabled if LAMMPS
|
||||
was built with that package. See the :doc:`Build package
|
||||
<Build_package>` page for more info.
|
||||
|
||||
This pair style does not compute per-atom energies and per-atom stresses.
|
||||
|
||||
Related commands
|
||||
""""""""""""""""
|
||||
|
||||
:doc:`fitpod <fitpod_command>`,
|
||||
|
||||
Default
|
||||
"""""""
|
||||
|
||||
none
|
||||
|
||||
----------
|
||||
|
||||
.. _Nguyen20221:
|
||||
|
||||
**(Nguyen)** Nguyen and Rohskopf, arXiv preprint arXiv:2209.02362 (2022).
|
||||
@ -314,6 +314,7 @@ accelerated styles exist.
|
||||
* :doc:`oxrna2/xstk <pair_oxrna2>` -
|
||||
* :doc:`pace <pair_pace>` - Atomic Cluster Expansion (ACE) machine-learning potential
|
||||
* :doc:`pace/extrapolation <pair_pace>` - Atomic Cluster Expansion (ACE) machine-learning potential with extrapolation grades
|
||||
* :doc:`pod <pair_pod>` - Proper orthogonal decomposition (POD) machine-learning potential
|
||||
* :doc:`peri/eps <pair_peri>` - peridynamic EPS potential
|
||||
* :doc:`peri/lps <pair_peri>` - peridynamic LPS potential
|
||||
* :doc:`peri/pmb <pair_peri>` - peridynamic PMB potential
|
||||
|
||||
@ -176,9 +176,13 @@ are placeholders for atom types that will be used with other potentials.
|
||||
|
||||
.. note::
|
||||
|
||||
When the *threebody off* keyword is used, multiple pair_coeff commands may
|
||||
be used to specific the pairs of atoms which don't require three-body term.
|
||||
In these cases, the first 2 arguments are not required to be \* \*.
|
||||
When the *threebody off* keyword is used, multiple pair_coeff
|
||||
commands may be used to specific the pairs of atoms which don't
|
||||
require three-body term. In these cases, the first 2 arguments are
|
||||
not required to be \* \*, the potential parameter file is only read
|
||||
by the first :doc:`pair_coeff command <pair_coeff>` and the element
|
||||
to atom type mappings must be consistent across all *pair_coeff*
|
||||
statements. If not LAMMPS will abort with an error.
|
||||
|
||||
Stillinger-Weber files in the *potentials* directory of the LAMMPS
|
||||
distribution have a ".sw" suffix. Lines that are not blank or
|
||||
|
||||
@ -120,6 +120,13 @@ best effect:
|
||||
|
||||
----------
|
||||
|
||||
Suitable tables in the correct format for use with these pair styles can
|
||||
be created by LAMMPS itself using the :doc:`pair_write <pair_write>`
|
||||
command. In combination with the :doc:`pair style python <pair_python>`
|
||||
this can be a powerful mechanism to implement and test tables for use
|
||||
with LAMMPS. Another option to generate tables is the Python code in
|
||||
the ``tools/tabulate`` folder of the LAMMPS source code distribution.
|
||||
|
||||
The format of a tabulated file has an (optional) header followed by a
|
||||
series of one or more sections, defined as follows (without the
|
||||
parenthesized comments). The header must start with a `#` character
|
||||
|
||||
@ -174,8 +174,8 @@ the specified attribute.
|
||||
Restrictions
|
||||
""""""""""""
|
||||
|
||||
This fix is part of the MISC package. It is only enabled if LAMMPS
|
||||
was built with that package. See the :doc:`Build package
|
||||
This pair style is part of the MISC package. It is only enabled if
|
||||
LAMMPS was built with that package. See the :doc:`Build package
|
||||
<Build_package>` page for more info.
|
||||
|
||||
This pair style is currently incompatible with granular pair styles
|
||||
|
||||
@ -82,7 +82,7 @@ mixing as described below:
|
||||
|
||||
* :math:`\epsilon` = well depth (energy units)
|
||||
* :math:`\sigma` = minimum effective particle radii (distance units)
|
||||
* :math:`\zeta` = tune parameter for the slope of the attractive branch
|
||||
* :math:`\zeta` = tuning parameter for the slope of the attractive branch
|
||||
* :math:`\mu` = parameter related to bending rigidity
|
||||
* :math:`\beta` = parameter related to the spontaneous curvature
|
||||
* cutoff (distance units)
|
||||
|
||||
@ -8,14 +8,25 @@ Syntax
|
||||
|
||||
.. parsed-literal::
|
||||
|
||||
python func keyword args ...
|
||||
python mode keyword args ...
|
||||
|
||||
* func = name of Python function
|
||||
* one or more keyword/args pairs must be appended
|
||||
* mode = *source* or name of Python function
|
||||
|
||||
if mode is *source*:
|
||||
|
||||
.. parsed-literal::
|
||||
|
||||
keyword = *invoke* or *input* or *return* or *format* or *length* or *file* or *here* or *exists* or *source*
|
||||
keyword = *here* or name of a *Python file*
|
||||
*here* arg = inline
|
||||
inline = one or more lines of Python code which defines func
|
||||
must be a single argument, typically enclosed between triple quotes
|
||||
*Python file* = name of a file with Python code which will be executed immediately
|
||||
|
||||
* if *mode* is the name of a Python function, one or more keywords with/without arguments must be appended
|
||||
|
||||
.. parsed-literal::
|
||||
|
||||
keyword = *invoke* or *input* or *return* or *format* or *length* or *file* or *here* or *exists*
|
||||
*invoke* arg = none = invoke the previously defined Python function
|
||||
*input* args = N i1 i2 ... iN
|
||||
N = # of inputs to function
|
||||
@ -24,7 +35,7 @@ Syntax
|
||||
SELF = reference to LAMMPS itself which can be accessed by Python function
|
||||
variable = v_name, where name = name of LAMMPS variable, e.g. v_abc
|
||||
*return* arg = varReturn
|
||||
varReturn = v_name = LAMMPS variable name which return value of function will be assigned to
|
||||
varReturn = v_name = LAMMPS variable name which the return value of the Python function will be assigned to
|
||||
*format* arg = fstring with M characters
|
||||
M = N if no return value, where N = # of inputs
|
||||
M = N+1 if there is a return value
|
||||
@ -38,10 +49,6 @@ Syntax
|
||||
inline = one or more lines of Python code which defines func
|
||||
must be a single argument, typically enclosed between triple quotes
|
||||
*exists* arg = none = Python code has been loaded by previous python command
|
||||
*source* arg = *filename* or *inline*
|
||||
filename = file of Python code which will be executed immediately
|
||||
inline = one or more lines of Python code which will be executed immediately
|
||||
must be a single argument, typically enclosed between triple quotes
|
||||
|
||||
Examples
|
||||
""""""""
|
||||
@ -70,80 +77,105 @@ Examples
|
||||
lmp.command("pair_style lj/cut ${cut}") # LAMMPS commands
|
||||
lmp.command("pair_coeff * * 1.0 1.0")
|
||||
lmp.command("run 100")
|
||||
"""
|
||||
"""
|
||||
|
||||
python source funcdef.py
|
||||
|
||||
python source here "from lammps import lammps"
|
||||
|
||||
|
||||
Description
|
||||
"""""""""""
|
||||
|
||||
Define a Python function or execute a previously defined function or
|
||||
execute some arbitrary python code.
|
||||
The *python* command allows interfacing LAMMPS with an embedded Python
|
||||
interpreter and enables either executing arbitrary python code in that
|
||||
interpreter, registering a Python function for future execution (as a
|
||||
python style variable, from a fix interfaced with python, or for direct
|
||||
invocation), or invoking such a previously registered function.
|
||||
|
||||
Arguments, including LAMMPS variables, can be passed to the function
|
||||
from the LAMMPS input script and a value returned by the Python
|
||||
function to a LAMMPS variable. The Python code for the function can
|
||||
be included directly in the input script or in a separate Python file.
|
||||
The function can be standard Python code or it can make "callbacks" to
|
||||
LAMMPS through its library interface to query or set internal values
|
||||
within LAMMPS. This is a powerful mechanism for performing complex
|
||||
operations in a LAMMPS input script that are not possible with the
|
||||
simple input script and variable syntax which LAMMPS defines. Thus
|
||||
your input script can operate more like a true programming language.
|
||||
from the LAMMPS input script and a value returned by the Python function
|
||||
assigned to a LAMMPS variable. The Python code for the function can be included
|
||||
directly in the input script or in a separate Python file. The function
|
||||
can be standard Python code or it can make "callbacks" to LAMMPS through
|
||||
its library interface to query or set internal values within LAMMPS.
|
||||
This is a powerful mechanism for performing complex operations in a
|
||||
LAMMPS input script that are not possible with the simple input script
|
||||
and variable syntax which LAMMPS defines. Thus your input script can
|
||||
operate more like a true programming language.
|
||||
|
||||
Use of this command requires building LAMMPS with the PYTHON package
|
||||
which links to the Python library so that the Python interpreter is
|
||||
embedded in LAMMPS. More details about this process are given below.
|
||||
|
||||
There are two ways to invoke a Python function once it has been
|
||||
defined. One is using the *invoke* keyword. The other is to assign
|
||||
registered. One is using the *invoke* keyword. The other is to assign
|
||||
the function to a :doc:`python-style variable <variable>` defined in
|
||||
your input script. Whenever the variable is evaluated, it will
|
||||
execute the Python function to assign a value to the variable. Note
|
||||
that variables can be evaluated in many different ways within LAMMPS.
|
||||
They can be substituted for directly in an input script. Or they can
|
||||
be passed to various commands as arguments, so that the variable is
|
||||
evaluated during a simulation run.
|
||||
your input script. Whenever the variable is evaluated, it will execute
|
||||
the Python function to assign a value to the variable. Note that
|
||||
variables can be evaluated in many different ways within LAMMPS. They
|
||||
can be substituted with their result directly in an input script, or
|
||||
they can be passed to various commands as arguments, so that the
|
||||
variable is evaluated during a simulation run.
|
||||
|
||||
A broader overview of how Python can be used with LAMMPS is given on
|
||||
the :doc:`Python <Python_head>` doc page. There is an examples/python
|
||||
directory which illustrates use of the python command.
|
||||
A broader overview of how Python can be used with LAMMPS is given in the
|
||||
:doc:`Use Python with LAMMPS <Python_head>` section of the
|
||||
documentation. There also is an ``examples/python`` directory which
|
||||
illustrates use of the python command.
|
||||
|
||||
----------
|
||||
|
||||
The *func* setting specifies the name of the Python function. The
|
||||
code for the function is defined using the *file* or *here* keywords
|
||||
as explained below. In case of the *source* keyword, the name of
|
||||
the function is ignored.
|
||||
The first argument of the *python* command is either the *source*
|
||||
keyword or the name of a Python function. This defines the mode
|
||||
of the python command.
|
||||
|
||||
.. versionchanged:: TBD
|
||||
|
||||
If the *source* keyword is used, it is followed by either a file name or
|
||||
the *here* keyword. No other keywords can be used. The *here* keyword
|
||||
is followed by a string with python commands, either on a single line
|
||||
enclosed in quotes, or as multiple lines enclosed in triple quotes.
|
||||
These Python commands will be passed to the python interpreter and
|
||||
executed immediately without registering a Python function for future
|
||||
execution. The code will be loaded into and run in the "main" module of
|
||||
the Python interpreter. This allows running arbitrary Python code at
|
||||
any time while processing the LAMMPS input file. This can be used to
|
||||
pre-load Python modules, initialize global variables, define functions
|
||||
or classes, or perform operations using the python programming language.
|
||||
The Python code will be executed in parallel on all MPI processes. No
|
||||
arguments can be passed.
|
||||
|
||||
In all other cases, the first argument is the name of a Python function
|
||||
that will be registered with LAMMPS for future execution. The function
|
||||
may already be defined (see *exists* keyword) or must be defined using
|
||||
the *file* or *here* keywords as explained below.
|
||||
|
||||
If the *invoke* keyword is used, no other keywords can be used, and a
|
||||
previous python command must have defined the Python function
|
||||
previous *python* command must have registered the Python function
|
||||
referenced by this command. This invokes the Python function with the
|
||||
previously defined arguments and return value processed as explained
|
||||
below. You can invoke the function as many times as you wish in your
|
||||
input script.
|
||||
|
||||
If the *source* keyword is used, no other keywords can be used.
|
||||
The argument can be a filename or a string with python commands,
|
||||
either on a single line enclosed in quotes, or as multiple lines
|
||||
enclosed in triple quotes. These python commands will be passed
|
||||
to the python interpreter and executed immediately without registering
|
||||
a python function for future execution.
|
||||
previously defined arguments and the return value is processed as
|
||||
explained below. You can invoke the function as many times as you wish
|
||||
in your input script.
|
||||
|
||||
The *input* keyword defines how many arguments *N* the Python function
|
||||
expects. If it takes no arguments, then the *input* keyword should
|
||||
not be used. Each argument can be specified directly as a value,
|
||||
e.g. 6 or 3.14159 or abc (a string of characters). The type of each
|
||||
expects. If it takes no arguments, then the *input* keyword should not
|
||||
be used. Each argument can be specified directly as a value, e.g. '6'
|
||||
or '3.14159' or 'abc' (a string of characters). The type of each
|
||||
argument is specified by the *format* keyword as explained below, so
|
||||
that Python will know how to interpret the value. If the word SELF is
|
||||
used for an argument it has a special meaning. A pointer is passed to
|
||||
the Python function which it converts into a reference to LAMMPS
|
||||
itself. This enables the function to call back to LAMMPS through its
|
||||
library interface as explained below. This allows the Python function
|
||||
to query or set values internal to LAMMPS which can affect the
|
||||
subsequent execution of the input script. A LAMMPS variable can also
|
||||
be used as an argument, specified as v_name, where "name" is the name
|
||||
of the variable. Any style of LAMMPS variable can be used, as defined
|
||||
by the :doc:`variable <variable>` command. Each time the Python
|
||||
function is invoked, the LAMMPS variable is evaluated and its value is
|
||||
passed to the Python function.
|
||||
the Python function which it can convert into a reference to LAMMPS
|
||||
itself using the :doc:`LAMMPS Python module <Python_module>`. This
|
||||
enables the function to call back to LAMMPS through its library
|
||||
interface as explained below. This allows the Python function to query
|
||||
or set values internal to LAMMPS which can affect the subsequent
|
||||
execution of the input script. A LAMMPS variable can also be used as an
|
||||
argument, specified as v_name, where "name" is the name of the variable.
|
||||
Any style of LAMMPS variable returning a scalar or a string can be used,
|
||||
as defined by the :doc:`variable <variable>` command. The *format*
|
||||
keyword must be used to set the type of data that is passed to Python.
|
||||
Each time the Python function is invoked, the LAMMPS variable is
|
||||
evaluated and its value is passed to the Python function.
|
||||
|
||||
The *return* keyword is only needed if the Python function returns a
|
||||
value. The specified *varReturn* must be of the form v_name, where
|
||||
@ -153,8 +185,9 @@ numeric or string value, as specified by the *format* keyword.
|
||||
|
||||
As explained on the :doc:`variable <variable>` doc page, the definition
|
||||
of a python-style variable associates a Python function name with the
|
||||
variable. This must match the *func* setting for this command. For
|
||||
example these two commands would be self-consistent:
|
||||
variable. This must match the *Python function name* first argument of
|
||||
the *python* command. For example these two commands would be
|
||||
consistent:
|
||||
|
||||
.. code-block:: LAMMPS
|
||||
|
||||
@ -163,21 +196,22 @@ example these two commands would be self-consistent:
|
||||
|
||||
The two commands can appear in either order in the input script so
|
||||
long as both are specified before the Python function is invoked for
|
||||
the first time.
|
||||
the first time. Afterwards, the variable 'foo' is associated with
|
||||
the Python function 'myMultiply'.
|
||||
|
||||
The *format* keyword must be used if the *input* or *return* keyword
|
||||
is used. It defines an *fstring* with M characters, where M = sum of
|
||||
The *format* keyword must be used if the *input* or *return* keywords
|
||||
are used. It defines an *fstring* with M characters, where M = sum of
|
||||
number of inputs and outputs. The order of characters corresponds to
|
||||
the N inputs, followed by the return value (if it exists). Each
|
||||
character must be one of the following: "i" for integer, "f" for
|
||||
floating point, "s" for string, or "p" for SELF. Each character
|
||||
defines the type of the corresponding input or output value of the
|
||||
Python function and affects the type conversion that is performed
|
||||
internally as data is passed back and forth between LAMMPS and Python.
|
||||
Note that it is permissible to use a :doc:`python-style variable <variable>` in a LAMMPS command that allows for an
|
||||
equal-style variable as an argument, but only if the output of the
|
||||
Python function is flagged as a numeric value ("i" or "f") via the
|
||||
*format* keyword.
|
||||
floating point, "s" for string, or "p" for SELF. Each character defines
|
||||
the type of the corresponding input or output value of the Python
|
||||
function and affects the type conversion that is performed internally as
|
||||
data is passed back and forth between LAMMPS and Python. Note that it
|
||||
is permissible to use a :doc:`python-style variable <variable>` in a
|
||||
LAMMPS command that allows for an equal-style variable as an argument,
|
||||
but only if the output of the Python function is flagged as a numeric
|
||||
value ("i" or "f") via the *format* keyword.
|
||||
|
||||
If the *return* keyword is used and the *format* keyword specifies the
|
||||
output as a string, then the default maximum length of that string is
|
||||
@ -192,12 +226,13 @@ truncated.
|
||||
|
||||
Either the *file*, *here*, or *exists* keyword must be used, but only
|
||||
one of them. These keywords specify what Python code to load into the
|
||||
Python interpreter. The *file* keyword gives the name of a file,
|
||||
which should end with a ".py" suffix, which contains Python code. The
|
||||
code will be immediately loaded into and run in the "main" module of
|
||||
the Python interpreter. Note that Python code which contains a
|
||||
function definition does not "execute" the function when it is run; it
|
||||
simply defines the function so that it can be invoked later.
|
||||
Python interpreter. The *file* keyword gives the name of a file
|
||||
containing Python code, which should end with a ".py" suffix. The code
|
||||
will be immediately loaded into and run in the "main" module of the
|
||||
Python interpreter. The Python code will be executed in parallel on all
|
||||
MPI processes. Note that Python code which contains a function
|
||||
definition does not "execute" the function when it is run; it simply
|
||||
defines the function so that it can be invoked later.
|
||||
|
||||
The *here* keyword does the same thing, except that the Python code
|
||||
follows as a single argument to the *here* keyword. This can be done
|
||||
@ -208,14 +243,15 @@ proper indentation, blank lines, and comments, as desired. See the
|
||||
how triple quotes can be used as part of input script syntax.
|
||||
|
||||
The *exists* keyword takes no argument. It means that Python code
|
||||
containing the required Python function defined by the *func* setting,
|
||||
is assumed to have been previously loaded by another python command.
|
||||
containing the required Python function with the given name has already
|
||||
been executed, for example by a *python source* command or in the same
|
||||
file that was used previously with the *file* keyword.
|
||||
|
||||
Note that the Python code that is loaded and run must contain a
|
||||
function with the specified *func* name. To operate properly when
|
||||
later invoked, the function code must match the *input* and
|
||||
*return* and *format* keywords specified by the python command.
|
||||
Otherwise Python will generate an error.
|
||||
Note that the Python code that is loaded and run must contain a function
|
||||
with the specified function name. To operate properly when later
|
||||
invoked, the function code must match the *input* and *return* and
|
||||
*format* keywords specified by the python command. Otherwise Python
|
||||
will generate an error.
|
||||
|
||||
----------
|
||||
|
||||
@ -225,19 +261,19 @@ LAMMPS.
|
||||
Whether you load Python code from a file or directly from your input
|
||||
script, via the *file* and *here* keywords, the code can be identical.
|
||||
It must be indented properly as Python requires. It can contain
|
||||
comments or blank lines. If the code is in your input script, it
|
||||
cannot however contain triple-quoted Python strings, since that will
|
||||
conflict with the triple-quote parsing that the LAMMPS input script
|
||||
performs.
|
||||
comments or blank lines. If the code is in your input script, it cannot
|
||||
however contain triple-quoted Python strings, since that will conflict
|
||||
with the triple-quote parsing that the LAMMPS input script performs.
|
||||
|
||||
All the Python code you specify via one or more python commands is
|
||||
loaded into the Python "main" module, i.e. __main__. The code can
|
||||
define global variables or statements that are outside of function
|
||||
definitions. It can contain multiple functions, only one of which
|
||||
matches the *func* setting in the python command. This means you can
|
||||
use the *file* keyword once to load several functions, and the
|
||||
*exists* keyword thereafter in subsequent python commands to access
|
||||
the other functions previously loaded.
|
||||
loaded into the Python "main" module, i.e. ``__name__ == '__main__'``.
|
||||
The code can define global variables, define global functions, define
|
||||
classes or execute statements that are outside of function definitions.
|
||||
It can contain multiple functions, only one of which matches the *func*
|
||||
setting in the python command. This means you can use the *file*
|
||||
keyword once to load several functions, and the *exists* keyword
|
||||
thereafter in subsequent python commands to register the other functions
|
||||
that were previously loaded with LAMMPS.
|
||||
|
||||
A Python function you define (or more generally, the code you load)
|
||||
can import other Python modules or classes, it can make calls to other
|
||||
@ -264,12 +300,13 @@ outside the function:
|
||||
nvaluelast = nvalue
|
||||
return nvalue
|
||||
|
||||
Nsteplast stores the previous timestep the function was invoked
|
||||
(passed as an argument to the function). Nvaluelast stores the return
|
||||
value computed on the last function invocation. If the function is
|
||||
invoked again on the same timestep, the previous value is simply
|
||||
returned, without re-computing it. The "global" statement inside the
|
||||
Python function allows it to overwrite the global variables.
|
||||
The variable 'nsteplast' stores the previous timestep the function was
|
||||
invoked (passed as an argument to the function). The variable
|
||||
'nvaluelast' stores the return value computed on the last function
|
||||
invocation. If the function is invoked again on the same timestep, the
|
||||
previous value is simply returned, without re-computing it. The
|
||||
"global" statement inside the Python function allows it to overwrite the
|
||||
global variables from within the local context of the function.
|
||||
|
||||
Note that if you load Python code multiple times (via multiple python
|
||||
commands), you can overwrite previously loaded variables and functions
|
||||
@ -285,19 +322,39 @@ copy of the Python function(s) you define. There is no connection
|
||||
between the Python interpreters running on different processors.
|
||||
This implies three important things.
|
||||
|
||||
First, if you put a print statement in your Python function, you will
|
||||
see P copies of the output, when running on P processors. If the
|
||||
prints occur at (nearly) the same time, the P copies of the output may
|
||||
be mixed together. Welcome to the world of parallel programming and
|
||||
debugging.
|
||||
First, if you put a print or other statement creating output to the
|
||||
screen in your Python function, you will see P copies of the output,
|
||||
when running on P processors. If the prints occur at (nearly) the same
|
||||
time, the P copies of the output may be mixed together. When loading
|
||||
the LAMMPS Python module into the embedded Python interpreter, it is
|
||||
possible to pass the pointer to the current LAMMPS class instance and
|
||||
via the Python interface to the LAMMPS library interface, it is possible
|
||||
to determine the MPI rank of the current process and thus adapt the
|
||||
Python code so that output will only appear on MPI rank 0. The
|
||||
following LAMMPS input demonstrates how this could be done. The text
|
||||
'Hello, LAMMPS!' should be printed only once, even when running LAMMPS
|
||||
in parallel.
|
||||
|
||||
Second, if your Python code loads modules that are not pre-loaded by
|
||||
the Python library, then it will load the module from disk. This may
|
||||
be a bottleneck if 1000s of processors try to load a module at the
|
||||
same time. On some large supercomputers, loading of modules from disk
|
||||
by Python may be disabled. In this case you would need to pre-build a
|
||||
Python library that has the required modules pre-loaded and link
|
||||
LAMMPS with that library.
|
||||
.. code-block:: LAMMPS
|
||||
|
||||
python python_hello input 1 SELF format p here """
|
||||
def python_hello(handle):
|
||||
from lammps import lammps
|
||||
lmp = lammps(ptr=handle)
|
||||
me = lmp.extract_setting('world_rank')
|
||||
if me == 0:
|
||||
print('Hello, LAMMPS!')
|
||||
"""
|
||||
|
||||
python python_hello invoke
|
||||
|
||||
If your Python code loads Python modules that are not pre-loaded by the
|
||||
Python library, then it will load the module from disk. This may be a
|
||||
bottleneck if 1000s of processors try to load a module at the same time.
|
||||
On some large supercomputers, loading of modules from disk by Python may
|
||||
be disabled. In this case you would need to pre-build a Python library
|
||||
that has the required modules pre-loaded and link LAMMPS with that
|
||||
library.
|
||||
|
||||
Third, if your Python code calls back to LAMMPS (discussed in the
|
||||
next section) and causes LAMMPS to perform an MPI operation requires
|
||||
@ -315,22 +372,21 @@ Python function is as follows:
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
def foo(lmpptr,...):
|
||||
def foo(handle,...):
|
||||
from lammps import lammps
|
||||
lmp = lammps(ptr=lmpptr)
|
||||
lmp = lammps(ptr=handle)
|
||||
lmp.command('print "Hello from inside Python"')
|
||||
...
|
||||
|
||||
The function definition must include a variable (lmpptr in this case)
|
||||
which corresponds to SELF in the python command. The first line of the
|
||||
function imports the :doc:`"lammps" Python module <Python_module>`.
|
||||
The second line creates a Python object ``lmp`` which
|
||||
wraps the instance of LAMMPS that called the function. The "ptr=lmpptr"
|
||||
argument is what makes that happen. The third line invokes the
|
||||
command() function in the LAMMPS library interface. It takes a single
|
||||
string argument which is a LAMMPS input script command for LAMMPS to
|
||||
execute, the same as if it appeared in your input script. In this case,
|
||||
LAMMPS should output
|
||||
The function definition must include a variable ('handle' in this case)
|
||||
which corresponds to SELF in the *python* command. The first line of
|
||||
the function imports the :doc:`"lammps" Python module <Python_module>`.
|
||||
The second line creates a Python object ``lmp`` which wraps the instance
|
||||
of LAMMPS that called the function. The 'ptr=handle' argument is what
|
||||
makes that happen. The third line invokes the command() function in the
|
||||
LAMMPS library interface. It takes a single string argument which is a
|
||||
LAMMPS input script command for LAMMPS to execute, the same as if it
|
||||
appeared in your input script. In this case, LAMMPS should output
|
||||
|
||||
.. parsed-literal::
|
||||
|
||||
@ -344,8 +400,8 @@ The :doc:`Python_head` page describes the syntax
|
||||
for how Python wraps the various functions included in the LAMMPS
|
||||
library interface.
|
||||
|
||||
A more interesting example is in the examples/python/in.python script
|
||||
which loads and runs the following function from examples/python/funcs.py:
|
||||
A more interesting example is in the ``examples/python/in.python`` script
|
||||
which loads and runs the following function from ``examples/python/funcs.py``:
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
@ -495,24 +551,35 @@ Restrictions
|
||||
""""""""""""
|
||||
|
||||
This command is part of the PYTHON package. It is only enabled if
|
||||
LAMMPS was built with that package. See the :doc:`Build package <Build_package>` page for more info.
|
||||
LAMMPS was built with that package. See the :doc:`Build package
|
||||
<Build_package>` page for more info.
|
||||
|
||||
Building LAMMPS with the PYTHON package will link LAMMPS with the
|
||||
Python library on your system. Settings to enable this are in the
|
||||
Building LAMMPS with the PYTHON package will link LAMMPS with the Python
|
||||
library on your system. Settings to enable this are in the
|
||||
lib/python/Makefile.lammps file. See the lib/python/README file for
|
||||
information on those settings.
|
||||
|
||||
If you use Python code which calls back to LAMMPS, via the SELF input argument
|
||||
explained above, there is an extra step required when building LAMMPS. LAMMPS
|
||||
must also be built as a shared library and your Python function must be able to
|
||||
load the :doc:`"lammps" Python module <Python_module>` that wraps the LAMMPS
|
||||
library interface. These are the same steps required to use Python by itself
|
||||
to wrap LAMMPS. Details on these steps are explained on the :doc:`Python
|
||||
<Python_head>` doc page. Note that it is important that the stand-alone LAMMPS
|
||||
executable and the LAMMPS shared library be consistent (built from the same
|
||||
source code files) in order for this to work. If the two have been built at
|
||||
If you use Python code which calls back to LAMMPS, via the SELF input
|
||||
argument explained above, there is an extra step required when building
|
||||
LAMMPS. LAMMPS must also be built as a shared library and your Python
|
||||
function must be able to load the :doc:`"lammps" Python module
|
||||
<Python_module>` that wraps the LAMMPS library interface. These are the
|
||||
same steps required to use Python by itself to wrap LAMMPS. Details on
|
||||
these steps are explained on the :doc:`Python <Python_head>` doc page.
|
||||
Note that it is important that the stand-alone LAMMPS executable and the
|
||||
LAMMPS shared library be consistent (built from the same source code
|
||||
files) in order for this to work. If the two have been built at
|
||||
different times using different source files, problems may occur.
|
||||
|
||||
Another limitation of calling back to Python from the LAMMPS module
|
||||
using the *python* command in a LAMMPS input is that both, the Python
|
||||
interpreter and LAMMPS, must be linked to the same Python runtime as a
|
||||
shared library. If the Python interpreter is linked to Python
|
||||
statically (which seems to happen with Conda) then loading the shared
|
||||
LAMMPS library will create a second python "main" module that hides the
|
||||
one from the Python interpreter and all previous defined function and
|
||||
global variables will become invisible.
|
||||
|
||||
Related commands
|
||||
""""""""""""""""
|
||||
|
||||
|
||||
@ -340,16 +340,20 @@ and are called "tilt factors" because they are the amount of
|
||||
displacement applied to faces of an originally orthogonal box to
|
||||
transform it into the parallelepiped.
|
||||
|
||||
By default, the tilt factors (xy,xz,yz) can not skew the box more than
|
||||
half the distance of the corresponding parallel box length. For
|
||||
example, if xlo = 2 and xhi = 12, then the x box length is 10 and the
|
||||
xy tilt factor must be between -5 and 5. Similarly, both xz and yz
|
||||
must be between -(xhi-xlo)/2 and +(yhi-ylo)/2. Note that this is not
|
||||
a limitation, since if the maximum tilt factor is 5 (as in this
|
||||
example), then configurations with tilt = ..., -15, -5, 5, 15, 25,
|
||||
... are all geometrically equivalent. If you wish to define a box
|
||||
with tilt factors that exceed these limits, you can use the :doc:`box tilt <box>` command, with a setting of *large*\ ; a setting of
|
||||
*small* is the default.
|
||||
The tilt factors (xy,xz,yz) should not skew the box more than half the
|
||||
distance of the corresponding parallel box length. For example, if
|
||||
:math:`x_\text{lo} = 2` and :math:`x_\text{hi} = 12`, then the :math:`x`
|
||||
box length is 10 and the :math:`xy` tilt factor must be between
|
||||
:math:`-5` and :math:`5`. Similarly, both :math:`xz` and :math:`yz`
|
||||
must be between :math:`-(x_\text{hi}-x_\text{lo})/2` and
|
||||
:math:`+(y_\text{hi}-y_\text{lo})/2`. Note that this is not a
|
||||
limitation, since if the maximum tilt factor is 5 (as in this example),
|
||||
then configurations with tilt :math:`= \dots, -15`, :math:`-5`,
|
||||
:math:`5`, :math:`15`, :math:`25, \dots` are all geometrically
|
||||
equivalent. Simulations with large tilt factors will run inefficiently,
|
||||
since they require more ghost atoms and thus more communication. With
|
||||
very large tilt factors, LAMMPS will eventually produce incorrect
|
||||
trajectories and stop with errors due to lost atoms or similar.
|
||||
|
||||
See the :doc:`Howto triclinic <Howto_triclinic>` page for a
|
||||
geometric description of triclinic boxes, as defined by LAMMPS, and
|
||||
|
||||
@ -1,94 +0,0 @@
|
||||
.. index:: reset_atom_ids
|
||||
|
||||
reset_atom_ids command
|
||||
======================
|
||||
|
||||
Syntax
|
||||
""""""
|
||||
|
||||
.. code-block:: LAMMPS
|
||||
|
||||
reset_atom_ids keyword values ...
|
||||
|
||||
* zero or more keyword/value pairs may be appended
|
||||
* keyword = *sort*
|
||||
|
||||
.. parsed-literal::
|
||||
|
||||
*sort* value = *yes* or *no*
|
||||
|
||||
Examples
|
||||
""""""""
|
||||
|
||||
.. code-block:: LAMMPS
|
||||
|
||||
reset_atom_ids
|
||||
reset_atom_ids sort yes
|
||||
|
||||
Description
|
||||
"""""""""""
|
||||
|
||||
Reset atom IDs for the system, including all the global IDs stored
|
||||
for bond, angle, dihedral, improper topology data. This will
|
||||
create a set of IDs that are numbered contiguously from 1 to N
|
||||
for a N atoms system.
|
||||
|
||||
This can be useful to do after performing a "delete_atoms" command for
|
||||
a molecular system. The delete_atoms compress yes option will not
|
||||
perform this operation due to the existence of bond topology. It can
|
||||
also be useful to do after any simulation which has lost atoms,
|
||||
e.g. due to atoms moving outside a simulation box with fixed
|
||||
boundaries (see the "boundary command"), or due to evaporation (see
|
||||
the "fix evaporate" command).
|
||||
|
||||
If the *sort* keyword is used with a setting of *yes*, then the
|
||||
assignment of new atom IDs will be the same no matter how many
|
||||
processors LAMMPS is running on. This is done by first doing a
|
||||
spatial sort of all the atoms into bins and sorting them within each
|
||||
bin. Because the set of bins is independent of the number of
|
||||
processors, this enables a consistent assignment of new IDs to each
|
||||
atom.
|
||||
|
||||
This can be useful to do after using the "create_atoms" command and/or
|
||||
"replicate" command. In general those commands do not guarantee
|
||||
assignment of the same atom ID to the same physical atom when LAMMPS
|
||||
is run on different numbers of processors. Enforcing consistent IDs
|
||||
can be useful for debugging or comparing output from two different
|
||||
runs.
|
||||
|
||||
Note that the spatial sort requires communication of atom IDs and
|
||||
coordinates between processors in an all-to-all manner. This is done
|
||||
efficiently in LAMMPS, but it is more expensive than how atom IDs are
|
||||
reset without sorting.
|
||||
|
||||
Note that whether sorting or not, the resetting of IDs is not a
|
||||
compression, where gaps in atom IDs are removed by decrementing atom
|
||||
IDs that are larger. Instead the IDs for all atoms are erased, and
|
||||
new IDs are assigned so that the atoms owned by an individual
|
||||
processor have consecutive IDs, as the :doc:`create_atoms
|
||||
<create_atoms>` command explains.
|
||||
|
||||
.. note::
|
||||
|
||||
If this command is used before a :doc:`pair style <pair_style>` is
|
||||
defined, an error about bond topology atom IDs not being found may
|
||||
result. This is because the cutoff distance for ghost atom
|
||||
communication was not sufficient to find atoms in bonds, angles, etc
|
||||
that are owned by other processors. The :doc:`comm_modify cutoff <comm_modify>` command can be used to correct this issue.
|
||||
Or you can define a pair style before using this command. If you do
|
||||
the former, you should unset the comm_modify cutoff after using
|
||||
reset_atom_ids so that subsequent communication is not inefficient.
|
||||
|
||||
Restrictions
|
||||
""""""""""""
|
||||
none
|
||||
|
||||
Related commands
|
||||
""""""""""""""""
|
||||
|
||||
:doc:`delete_atoms <delete_atoms>`
|
||||
|
||||
Default
|
||||
"""""""
|
||||
|
||||
By default, *sort* is no.
|
||||
283
doc/src/reset_atoms.rst
Normal file
283
doc/src/reset_atoms.rst
Normal file
@ -0,0 +1,283 @@
|
||||
.. index:: reset_atoms
|
||||
|
||||
reset_atoms command
|
||||
===================
|
||||
|
||||
Syntax
|
||||
""""""
|
||||
|
||||
.. code-block:: LAMMPS
|
||||
|
||||
reset_atoms property arguments ...
|
||||
|
||||
* property = *id* or *image* or *mol*
|
||||
* additional arguments depend on the property
|
||||
|
||||
.. code-block:: LAMMPS
|
||||
|
||||
reset_atoms id keyword value ...
|
||||
|
||||
* zero or more keyword/value pairs can be appended
|
||||
* keyword = *sort*
|
||||
|
||||
.. parsed-literal::
|
||||
|
||||
*sort* value = *yes* or *no*
|
||||
|
||||
.. code-block:: LAMMPS
|
||||
|
||||
reset_atoms image group-ID
|
||||
|
||||
* group-ID = ID of group of atoms whose image flags will be reset
|
||||
|
||||
.. code-block:: LAMMPS
|
||||
|
||||
reset atoms mol group-ID keyword value ...
|
||||
|
||||
* group-ID = ID of group of atoms whose molecule IDs will be reset
|
||||
* zero or more keyword/value pairs can be appended
|
||||
* keyword = *compress* or *offset* or *single*
|
||||
|
||||
.. parsed-literal::
|
||||
|
||||
*compress* value = *yes* or *no*
|
||||
*offset* value = *Noffset* >= -1
|
||||
*single* value = *yes* or *no* to treat single atoms (no bonds) as molecules
|
||||
|
||||
|
||||
Examples
|
||||
""""""""
|
||||
|
||||
.. code-block:: LAMMPS
|
||||
|
||||
reset_atoms id
|
||||
reset_atoms id sort yes
|
||||
reset_atoms image all
|
||||
reset_atoms image mobile
|
||||
reset_atoms mol all
|
||||
reset_atoms mol all offset 10 single yes
|
||||
reset_atoms mol solvent compress yes offset 100
|
||||
reset_atoms mol solvent compress no
|
||||
|
||||
|
||||
Description
|
||||
"""""""""""
|
||||
|
||||
.. versionadded:: TBD
|
||||
|
||||
The *reset_atoms* command resets the values of a specified atom
|
||||
property. In contrast to the set command, it does this in a
|
||||
collective manner which resets the values for many atoms in a
|
||||
self-consistent way. This is often useful when the simulated system
|
||||
has undergone significant modifications like adding or removing atoms
|
||||
or molecules, joining data files, changing bonds, or large-scale
|
||||
diffusion.
|
||||
|
||||
The new values can be thought of as a *reset*, similar to values atoms
|
||||
would have if a new data file were being read or a new simulation
|
||||
performed. Note that the set command also resets atom properties to
|
||||
new values, but it treats each atom independently.
|
||||
|
||||
The *property* setting can be *id* or *image* or *mol*. For *id*, the
|
||||
IDs of all the atoms are reset to contiguous values. For *image*, the
|
||||
image flags of atoms in the specified *group-ID* are reset so that at
|
||||
least one atom in each molecule is in the simulation box (image flag =
|
||||
0). For *mol*, the molecule IDs of all atoms are reset to contiguous
|
||||
values.
|
||||
|
||||
More details on these operations and their arguments or optional
|
||||
keyword/value settings are given below.
|
||||
|
||||
----------
|
||||
|
||||
*Property id*
|
||||
|
||||
Reset atom IDs for the entire system, including all the global IDs
|
||||
stored for bond, angle, dihedral, improper topology data. This will
|
||||
create a set of IDs that are numbered contiguously from 1 to N for a N
|
||||
atoms system.
|
||||
|
||||
This can be useful to do after performing a "delete_atoms" command for
|
||||
a molecular system. The delete_atoms compress yes option will not
|
||||
perform this operation due to the existence of bond topology. It can
|
||||
also be useful to do after any simulation which has lost atoms,
|
||||
e.g. due to atoms moving outside a simulation box with fixed
|
||||
boundaries (see the "boundary command"), or due to evaporation (see
|
||||
the "fix evaporate" command).
|
||||
|
||||
If the *sort* keyword is used with a setting of *yes*, then the
|
||||
assignment of new atom IDs will be the same no matter how many
|
||||
processors LAMMPS is running on. This is done by first doing a
|
||||
spatial sort of all the atoms into bins and sorting them within each
|
||||
bin. Because the set of bins is independent of the number of
|
||||
processors, this enables a consistent assignment of new IDs to each
|
||||
atom.
|
||||
|
||||
This can be useful to do after using the "create_atoms" command and/or
|
||||
"replicate" command. In general those commands do not guarantee
|
||||
assignment of the same atom ID to the same physical atom when LAMMPS
|
||||
is run on different numbers of processors. Enforcing consistent IDs
|
||||
can be useful for debugging or comparing output from two different
|
||||
runs.
|
||||
|
||||
Note that the spatial sort requires communication of atom IDs and
|
||||
coordinates between processors in an all-to-all manner. This is done
|
||||
efficiently in LAMMPS, but it is more expensive than how atom IDs are
|
||||
reset without sorting.
|
||||
|
||||
Note that whether sorting or not, the resetting of IDs is not a
|
||||
compression, where gaps in atom IDs are removed by decrementing atom
|
||||
IDs that are larger. Instead the IDs for all atoms are erased, and
|
||||
new IDs are assigned so that the atoms owned by an individual
|
||||
processor have consecutive IDs, as the :doc:`create_atoms
|
||||
<create_atoms>` command explains.
|
||||
|
||||
.. note::
|
||||
|
||||
If this command is used before a :doc:`pair style <pair_style>` is
|
||||
defined, an error about bond topology atom IDs not being found may
|
||||
result. This is because the cutoff distance for ghost atom
|
||||
communication was not sufficient to find atoms in bonds, angles, etc
|
||||
that are owned by other processors. The :doc:`comm_modify cutoff
|
||||
<comm_modify>` command can be used to correct this issue. Or you can
|
||||
define a pair style before using this command. If you do the former,
|
||||
you should unset the *comm_modify cutoff* after using *reset
|
||||
atoms id* so that subsequent communication is not inefficient.
|
||||
|
||||
----------
|
||||
|
||||
*Property image*
|
||||
|
||||
Reset the image flags of atoms so that at least one atom in each
|
||||
molecule has an image flag of 0. Molecular topology is respected so
|
||||
that if the molecule straddles a periodic simulation box boundary, the
|
||||
images flags of all atoms in the molecule will be consistent. This
|
||||
avoids inconsistent image flags that could result from resetting all
|
||||
image flags to zero with the :doc:`set <set>` command.
|
||||
|
||||
.. note::
|
||||
|
||||
If the system has no bonds, there is no reason to use this command,
|
||||
since image flags for different atoms do not need to be
|
||||
consistent. Use the :doc:`set <set>` command with its *image*
|
||||
keyword instead.
|
||||
|
||||
Only image flags for atoms in the specified *group-ID* are reset; all
|
||||
others remain unchanged. No check is made for whether the group
|
||||
covers complete molecule fragments and thus whether the command will
|
||||
result in inconsistent image flags.
|
||||
|
||||
Molecular fragments are identified by the algorithm used by the
|
||||
:doc:`compute fragment/atom <compute_cluster_atom>` command. For each
|
||||
fragment the average of the largest and the smallest image flag in
|
||||
each direction across all atoms in the fragment is computed and
|
||||
subtracted from the current image flag in the same direction.
|
||||
|
||||
This can be a useful operation to perform after running longer
|
||||
equilibration runs of mobile systems where molecules would pass
|
||||
through the system multiple times and thus produce non-zero image
|
||||
flags.
|
||||
|
||||
.. note::
|
||||
|
||||
Same as explained for the :doc:`compute fragment/atom
|
||||
<compute_cluster_atom>` command, molecules are identified using the
|
||||
current bond topology. This will **not** account for bonds broken by
|
||||
the :doc:`bond_style quartic <bond_quartic>` command, because this
|
||||
bond style does not perform a full update of the bond topology data
|
||||
structures within LAMMPS. In that case, using the :doc:`delete_bonds
|
||||
all bond 0 remove <delete_bonds>` will permanently delete such
|
||||
broken bonds and should thus be used first.
|
||||
|
||||
----------
|
||||
|
||||
*Property mol*
|
||||
|
||||
Reset molecule IDs for a specified group of atoms based on current
|
||||
bond connectivity. This will typically create a new set of molecule
|
||||
IDs for atoms in the group. Only molecule IDs for atoms in the
|
||||
specified *group-ID* are reset; molecule IDs for atoms not in the
|
||||
group are not changed.
|
||||
|
||||
For purposes of this operation, molecules are identified by the current
|
||||
bond connectivity in the system, which may or may not be consistent with
|
||||
the current molecule IDs. A molecule in this context is a set of atoms
|
||||
connected to each other with explicit bonds. The specific algorithm
|
||||
used is the one of :doc:`compute fragment/atom <compute_cluster_atom>`
|
||||
Once the molecules are identified and a new molecule ID computed for
|
||||
each, this command will update the current molecule ID for all atoms in
|
||||
the group with the new molecule ID. Note that if the group excludes
|
||||
atoms within molecules, one (physical) molecule may become two or more
|
||||
(logical) molecules. For example if the group excludes atoms in the
|
||||
middle of a linear chain, then each end of the chain is considered an
|
||||
independent molecule and will be assigned a different molecule ID.
|
||||
|
||||
This can be a useful operation to perform after running reactive
|
||||
molecular dynamics run with :doc:`fix bond/react <fix_bond_react>`,
|
||||
:doc:`fix bond/create <fix_bond_create>`, or :doc:`fix bond/break
|
||||
<fix_bond_break>`, all of which can change molecule topologies. It can
|
||||
also be useful after molecules have been deleted with the
|
||||
:doc:`delete_atoms <delete_atoms>` command or after a simulation which
|
||||
has lost molecules, e.g. via the :doc:`fix evaporate <fix_evaporate>`
|
||||
command.
|
||||
|
||||
The *compress* keyword determines how new molecule IDs are computed. If
|
||||
the setting is *yes* (the default) and there are N molecules in the
|
||||
group, the new molecule IDs will be a set of N contiguous values. See
|
||||
the *offset* keyword for details on selecting the range of these values.
|
||||
If the setting is *no*, the molecule ID of every atom in the molecule
|
||||
will be set to the smallest atom ID of any atom in the molecule.
|
||||
|
||||
The *single* keyword determines whether single atoms (not bonded to
|
||||
another atom) are treated as one-atom molecules or not, based on the
|
||||
*yes* or *no* setting. If the setting is *no* (the default), their
|
||||
molecule IDs are set to 0. This setting can be important if the new
|
||||
molecule IDs will be used as input to other commands such as
|
||||
:doc:`compute chunk/atom molecule <compute_chunk_atom>` or :doc:`fix
|
||||
rigid molecule <fix_rigid>`.
|
||||
|
||||
The *offset* keyword is only used if the *compress* setting is *yes*.
|
||||
Its default value is *Noffset* = -1. In that case, if the specified
|
||||
group is *all*, then the new compressed molecule IDs will range from 1
|
||||
to N. If the specified group is not *all* and the largest molecule ID
|
||||
of atoms outside that group is M, then the new compressed molecule IDs will
|
||||
range from M+1 to M+N, to avoid collision with existing molecule
|
||||
IDs. If an *Noffset* >= 0 is specified, then the new compressed
|
||||
molecule IDs will range from *Noffset*\ +1 to *Noffset*\ +N. If the group
|
||||
is not *all* there may be collisions with the molecule IDs of other atoms.
|
||||
|
||||
.. note::
|
||||
|
||||
Same as explained for the :doc:`compute fragment/atom
|
||||
<compute_cluster_atom>` command, molecules are identified using the
|
||||
current bond topology. This will **not** account for bonds broken by
|
||||
the :doc:`bond_style quartic <bond_quartic>` command, because this
|
||||
bond style does not perform a full update of the bond topology data
|
||||
structures within LAMMPS. In that case, using the :doc:`delete_bonds
|
||||
all bond 0 remove <delete_bonds>` will permanently delete such broken
|
||||
bonds and should thus be used first.
|
||||
|
||||
|
||||
Restrictions
|
||||
""""""""""""
|
||||
|
||||
The *image* property can only be used when the atom style supports bonds.
|
||||
|
||||
Related commands
|
||||
""""""""""""""""
|
||||
|
||||
:doc:`compute fragment/atom <compute_cluster_atom>`
|
||||
:doc:`fix bond/react <fix_bond_react>`,
|
||||
:doc:`fix bond/create <fix_bond_create>`,
|
||||
:doc:`fix bond/break <fix_bond_break>`,
|
||||
:doc:`fix evaporate <fix_evaporate>`,
|
||||
:doc:`delete_atoms <delete_atoms>`,
|
||||
:doc:`delete_bonds <delete_bonds>`
|
||||
|
||||
Defaults
|
||||
""""""""
|
||||
|
||||
For property *id*, the default keyword setting is sort = no.
|
||||
|
||||
For property *mol*, the default keyword settings are compress = yes,
|
||||
single = no, and offset = -1.
|
||||
@ -1,116 +0,0 @@
|
||||
.. index:: reset_mol_ids
|
||||
|
||||
reset_mol_ids command
|
||||
=====================
|
||||
|
||||
Syntax
|
||||
""""""
|
||||
|
||||
.. parsed-literal::
|
||||
|
||||
reset_mol_ids group-ID keyword value ...
|
||||
|
||||
* group-ID = ID of group of atoms whose molecule IDs will be reset
|
||||
* zero or more keyword/value pairs may be appended
|
||||
* keyword = *compress* or *offset* or *single*
|
||||
|
||||
.. parsed-literal::
|
||||
|
||||
*compress* value = *yes* or *no*
|
||||
*offset* value = *Noffset* >= -1
|
||||
*single* value = *yes* or *no* to treat single atoms (no bonds) as molecules
|
||||
|
||||
Examples
|
||||
""""""""
|
||||
|
||||
.. code-block:: LAMMPS
|
||||
|
||||
reset_mol_ids all
|
||||
reset_mol_ids all offset 10 single yes
|
||||
reset_mol_ids solvent compress yes offset 100
|
||||
reset_mol_ids solvent compress no
|
||||
|
||||
Description
|
||||
"""""""""""
|
||||
|
||||
Reset molecule IDs for a group of atoms based on current bond
|
||||
connectivity. This will typically create a new set of molecule IDs
|
||||
for atoms in the group. Only molecule IDs for atoms in the specified
|
||||
group are reset; molecule IDs for atoms not in the group are not
|
||||
changed.
|
||||
|
||||
For purposes of this operation, molecules are identified by the current
|
||||
bond connectivity in the system, which may or may not be consistent with
|
||||
the current molecule IDs. A molecule in this context is a set of atoms
|
||||
connected to each other with explicit bonds. The specific algorithm
|
||||
used is the one of :doc:`compute fragment/atom <compute_cluster_atom>`
|
||||
Once the molecules are identified and a new molecule ID computed for
|
||||
each, this command will update the current molecule ID for all atoms in
|
||||
the group with the new molecule ID. Note that if the group excludes
|
||||
atoms within molecules, one (physical) molecule may become two or more
|
||||
(logical) molecules. For example if the group excludes atoms in the
|
||||
middle of a linear chain, then each end of the chain is considered an
|
||||
independent molecule and will be assigned a different molecule ID.
|
||||
|
||||
This can be a useful operation to perform after running reactive
|
||||
molecular dynamics run with :doc:`fix bond/react <fix_bond_react>`,
|
||||
:doc:`fix bond/create <fix_bond_create>`, or :doc:`fix bond/break
|
||||
<fix_bond_break>`, all of which can change molecule topologies. It can
|
||||
also be useful after molecules have been deleted with the
|
||||
:doc:`delete_atoms <delete_atoms>` command or after a simulation which
|
||||
has lost molecules, e.g. via the :doc:`fix evaporate <fix_evaporate>`
|
||||
command.
|
||||
|
||||
The *compress* keyword determines how new molecule IDs are computed. If
|
||||
the setting is *yes* (the default) and there are N molecules in the
|
||||
group, the new molecule IDs will be a set of N contiguous values. See
|
||||
the *offset* keyword for details on selecting the range of these values.
|
||||
If the setting is *no*, the molecule ID of every atom in the molecule
|
||||
will be set to the smallest atom ID of any atom in the molecule.
|
||||
|
||||
The *single* keyword determines whether single atoms (not bonded to
|
||||
another atom) are treated as one-atom molecules or not, based on the
|
||||
*yes* or *no* setting. If the setting is *no* (the default), their
|
||||
molecule IDs are set to 0. This setting can be important if the new
|
||||
molecule IDs will be used as input to other commands such as
|
||||
:doc:`compute chunk/atom molecule <compute_chunk_atom>` or :doc:`fix
|
||||
rigid molecule <fix_rigid>`.
|
||||
|
||||
The *offset* keyword is only used if the *compress* setting is *yes*.
|
||||
Its default value is *Noffset* = -1. In that case, if the specified
|
||||
group is *all*, then the new compressed molecule IDs will range from 1
|
||||
to N. If the specified group is not *all* and the largest molecule ID
|
||||
of atoms outside that group is M, then the new compressed molecule IDs will
|
||||
range from M+1 to M+N, to avoid collision with existing molecule
|
||||
IDs. If an *Noffset* >= 0 is specified, then the new compressed
|
||||
molecule IDs will range from *Noffset*\ +1 to *Noffset*\ +N. If the group
|
||||
is not *all* there may be collisions with the molecule IDs of other atoms.
|
||||
|
||||
.. note::
|
||||
|
||||
The same as explained for the :doc:`compute fragment/atom
|
||||
<compute_cluster_atom>` command, molecules are identified using the
|
||||
current bond topology. This will not account for bonds broken by
|
||||
the :doc:`bond_style quartic <bond_quartic>` command because it
|
||||
does not perform a full update of the bond topology data structures
|
||||
within LAMMPS.
|
||||
|
||||
Restrictions
|
||||
""""""""""""
|
||||
none
|
||||
|
||||
Related commands
|
||||
""""""""""""""""
|
||||
|
||||
:doc:`reset_atom_ids <reset_atom_ids>`, :doc:`fix bond/react <fix_bond_react>`,
|
||||
:doc:`fix bond/create <fix_bond_create>`,
|
||||
:doc:`fix bond/break <fix_bond_break>`,
|
||||
:doc:`fix evaporate <fix_evaporate>`,
|
||||
:doc:`delete_atoms <delete_atoms>`,
|
||||
:doc:`compute fragment/atom <compute_cluster_atom>`
|
||||
|
||||
Default
|
||||
"""""""
|
||||
|
||||
The default keyword settings are compress = yes, single = no, and
|
||||
offset = -1.
|
||||
0
doc/utils/check-packages.py
Executable file → Normal file
0
doc/utils/check-packages.py
Executable file → Normal file
0
doc/utils/check-styles.py
Executable file → Normal file
0
doc/utils/check-styles.py
Executable file → Normal file
0
doc/utils/converters/lammpsdoc/doc_anchor_check.py
Executable file → Normal file
0
doc/utils/converters/lammpsdoc/doc_anchor_check.py
Executable file → Normal file
0
doc/utils/converters/lammpsdoc/rst_anchor_check.py
Executable file → Normal file
0
doc/utils/converters/lammpsdoc/rst_anchor_check.py
Executable file → Normal file
0
doc/utils/converters/lammpsdoc/txt2html.py
Executable file → Normal file
0
doc/utils/converters/lammpsdoc/txt2html.py
Executable file → Normal file
0
doc/utils/converters/lammpsdoc/txt2rst.py
Executable file → Normal file
0
doc/utils/converters/lammpsdoc/txt2rst.py
Executable file → Normal file
0
doc/utils/fixup_headers.py
Executable file → Normal file
0
doc/utils/fixup_headers.py
Executable file → Normal file
@ -1,25 +1,33 @@
|
||||
from pygments.lexer import RegexLexer, words, include, default
|
||||
from pygments.token import *
|
||||
|
||||
LAMMPS_COMMANDS = ("angle_coeff", "angle_style", "atom_modify", "atom_style",
|
||||
"balance", "bond_coeff", "bond_style", "bond_write", "boundary", "box",
|
||||
"clear", "comm_modify", "comm_style",
|
||||
"compute_modify", "create_atoms", "create_bonds", "create_box", "delete_atoms",
|
||||
"delete_bonds", "dielectric", "dihedral_coeff", "dihedral_style", "dimension",
|
||||
"displace_atoms", "dump_modify", "dynamical_matrix", "echo", "elif", "else",
|
||||
"fix_modify", "group2ndx", "hyper", "if", "improper_coeff",
|
||||
"improper_style", "include", "info", "jump", "kim",
|
||||
"kspace_modify", "kspace_style", "label", "labelmap", "lattice", "log",
|
||||
"mass", "mdi", "message", "minimize", "min_modify", "min_style", "molecule",
|
||||
"ndx2group", "neb", "neb/spin", "neighbor", "neigh_modify", "newton", "next",
|
||||
"package", "pair_coeff", "pair_modify", "pair_style", "pair_write",
|
||||
"partition", "prd", "print", "processors", "python", "quit", "read_data",
|
||||
"read_dump", "read_restart", "replicate", "rerun", "reset_ids",
|
||||
"reset_timestep", "restart", "run", "run_style", "server", "set", "shell",
|
||||
"special_bonds", "suffix", "tad", "temper", "temper/grem", "temper/npt", "then",
|
||||
"thermo", "thermo_modify", "thermo_style", "third_order", "timer", "timestep",
|
||||
"units", "velocity", "write_coeff",
|
||||
"write_data", "write_restart")
|
||||
LAMMPS_COMMANDS = ("angle_coeff", "angle_style", "atom_modify",
|
||||
"atom_style", "balance", "bond_coeff", "bond_style",
|
||||
"bond_write", "boundary", "clear", "comm_modify",
|
||||
"comm_style", "compute_modify", "create_atoms",
|
||||
"create_bonds", "create_box", "delete_atoms",
|
||||
"delete_bonds", "dielectric", "dihedral_coeff",
|
||||
"dihedral_style", "dimension", "displace_atoms",
|
||||
"dump_modify", "dynamical_matrix", "echo", "elif",
|
||||
"else", "fix_modify", "group2ndx", "hyper", "if",
|
||||
"improper_coeff", "improper_style", "include",
|
||||
"info", "jump", "kim", "kspace_modify",
|
||||
"kspace_style", "label", "labelmap", "lattice",
|
||||
"log", "mass", "mdi", "message", "minimize",
|
||||
"min_modify", "min_style", "molecule", "ndx2group",
|
||||
"neb", "neb/spin", "neighbor", "neigh_modify",
|
||||
"newton", "next", "package", "pair_coeff",
|
||||
"pair_modify", "pair_style", "pair_write",
|
||||
"partition", "plugin", "prd", "print", "processors",
|
||||
"python", "quit", "read_data", "read_dump",
|
||||
"read_restart", "replicate", "rerun", "reset_atoms",
|
||||
"reset_timestep", "restart", "run", "run_style",
|
||||
"server", "set", "shell", "special_bonds", "suffix",
|
||||
"tad", "temper", "temper/grem", "temper/npt", "then",
|
||||
"thermo", "thermo_modify", "thermo_style",
|
||||
"third_order", "timer", "timestep", "units",
|
||||
"velocity", "write_coeff", "write_data",
|
||||
"write_restart")
|
||||
|
||||
#fix ID group-ID style args
|
||||
#compute ID group-ID style args
|
||||
|
||||
@ -228,6 +228,7 @@ Bartels
|
||||
Bartelt
|
||||
barycenter
|
||||
barye
|
||||
basename
|
||||
Bashford
|
||||
bashrc
|
||||
Baskes
|
||||
@ -256,6 +257,7 @@ berlin
|
||||
Berne
|
||||
Bertotti
|
||||
Bessarab
|
||||
bessel
|
||||
Beutler
|
||||
Bext
|
||||
Bfrac
|
||||
@ -447,6 +449,7 @@ checkbox
|
||||
checkmark
|
||||
checkqeq
|
||||
checksum
|
||||
chemflag
|
||||
chemistries
|
||||
Chemnitz
|
||||
Cheng
|
||||
@ -608,6 +611,7 @@ curv
|
||||
Cusentino
|
||||
customIDs
|
||||
cutbond
|
||||
cutghost
|
||||
cuthi
|
||||
cutinner
|
||||
cutlo
|
||||
@ -688,6 +692,7 @@ delocalized
|
||||
Delong
|
||||
delr
|
||||
deltaHf
|
||||
deltamu
|
||||
dem
|
||||
Dendrimer
|
||||
dendritic
|
||||
@ -738,6 +743,7 @@ diel
|
||||
Dietz
|
||||
differentiable
|
||||
diffusively
|
||||
diffusivities
|
||||
diffusivity
|
||||
dihedral
|
||||
dihedrals
|
||||
@ -749,6 +755,7 @@ dimensionality
|
||||
dimensioned
|
||||
dimgray
|
||||
dipolar
|
||||
dipoleflag
|
||||
dir
|
||||
Direc
|
||||
dirname
|
||||
@ -757,6 +764,7 @@ discretization
|
||||
discretized
|
||||
discretizing
|
||||
disp
|
||||
dispersionflag
|
||||
dissipative
|
||||
Dissipative
|
||||
distharm
|
||||
@ -819,6 +827,7 @@ du
|
||||
dU
|
||||
Ducastelle
|
||||
Dudarev
|
||||
Dufils
|
||||
Duin
|
||||
Dullweber
|
||||
dumpfile
|
||||
@ -906,6 +915,7 @@ elastance
|
||||
Electroneg
|
||||
electronegative
|
||||
electronegativity
|
||||
electroneutrality
|
||||
Eleftheriou
|
||||
ElementN
|
||||
elementset
|
||||
@ -971,7 +981,6 @@ equilization
|
||||
equipartitioning
|
||||
eradius
|
||||
erate
|
||||
erc
|
||||
Ercolessi
|
||||
Erdmann
|
||||
erf
|
||||
@ -1022,12 +1031,14 @@ evirials
|
||||
ew
|
||||
ewald
|
||||
Ewald
|
||||
ewaldflag
|
||||
excitations
|
||||
excv
|
||||
exe
|
||||
executables
|
||||
extep
|
||||
extrema
|
||||
extxyz
|
||||
exy
|
||||
ey
|
||||
ez
|
||||
@ -1094,8 +1105,10 @@ Fincham
|
||||
Fint
|
||||
fingerprintconstants
|
||||
fingerprintsperelement
|
||||
finitecutflag
|
||||
Finnis
|
||||
Fiorin
|
||||
fitpod
|
||||
fixID
|
||||
fj
|
||||
Fji
|
||||
@ -1138,6 +1151,7 @@ Forschungszentrum
|
||||
fortran
|
||||
Fortran
|
||||
Fosado
|
||||
fourbody
|
||||
fourier
|
||||
fp
|
||||
fphi
|
||||
@ -1271,6 +1285,7 @@ greenyellow
|
||||
Greffet
|
||||
grem
|
||||
gREM
|
||||
Grepl
|
||||
Grest
|
||||
Grigera
|
||||
Grimme
|
||||
@ -1510,6 +1525,9 @@ inumeric
|
||||
inv
|
||||
invariants
|
||||
inversed
|
||||
invertible
|
||||
invertibility
|
||||
ionicities
|
||||
ionizable
|
||||
ionocovalent
|
||||
iostreams
|
||||
@ -1629,6 +1647,7 @@ Kalia
|
||||
Kamberaj
|
||||
Kantorovich
|
||||
Kapfer
|
||||
Karhunen
|
||||
Karls
|
||||
Karlsruhe
|
||||
Karniadakis
|
||||
@ -1883,6 +1902,7 @@ ln
|
||||
localhost
|
||||
localTemp
|
||||
localvectors
|
||||
Loeve
|
||||
Loewen
|
||||
logfile
|
||||
logfreq
|
||||
@ -1934,6 +1954,7 @@ Mackrodt
|
||||
MacOS
|
||||
Macromolecules
|
||||
macroparticle
|
||||
Maday
|
||||
Madura
|
||||
Magda
|
||||
Magdeburg
|
||||
@ -2198,6 +2219,7 @@ msd
|
||||
msi
|
||||
MSI
|
||||
msm
|
||||
msmflag
|
||||
msse
|
||||
msst
|
||||
Mtchell
|
||||
@ -2248,6 +2270,7 @@ MxN
|
||||
myCompute
|
||||
myIndex
|
||||
mylammps
|
||||
myMultiply
|
||||
MyPool
|
||||
mysocket
|
||||
mySpin
|
||||
@ -2276,6 +2299,8 @@ nanometer
|
||||
nanometers
|
||||
nanoparticle
|
||||
nanoparticles
|
||||
nanopores
|
||||
nanostructures
|
||||
nanotube
|
||||
Nanotube
|
||||
nanotubes
|
||||
@ -2359,6 +2384,7 @@ Ng
|
||||
nghost
|
||||
Nghost
|
||||
Ngpu
|
||||
ngpus
|
||||
Ngyuen
|
||||
nh
|
||||
nharmonic
|
||||
@ -2384,6 +2410,7 @@ nktv
|
||||
nl
|
||||
nlayers
|
||||
nlen
|
||||
Nlimit
|
||||
nlines
|
||||
Nlines
|
||||
nlo
|
||||
@ -2473,7 +2500,9 @@ nsq
|
||||
Nstart
|
||||
nstats
|
||||
Nstep
|
||||
Nsteplast
|
||||
Nsteps
|
||||
nsteps
|
||||
nsteplast
|
||||
Nstop
|
||||
nsub
|
||||
Nsw
|
||||
@ -2503,7 +2532,7 @@ numpy
|
||||
Numpy
|
||||
Nurdin
|
||||
Nvalue
|
||||
Nvaluelast
|
||||
nvaluelast
|
||||
Nvalues
|
||||
nvc
|
||||
nvcc
|
||||
@ -2547,6 +2576,7 @@ Omelyan
|
||||
omp
|
||||
OMP
|
||||
oneAPI
|
||||
onebody
|
||||
onelevel
|
||||
oneway
|
||||
onlysalt
|
||||
@ -2628,6 +2658,7 @@ Pastewka
|
||||
pathangle
|
||||
pathname
|
||||
pathnames
|
||||
Patera
|
||||
Patomtrans
|
||||
Pattnaik
|
||||
Pavese
|
||||
@ -2769,6 +2800,7 @@ PowerShell
|
||||
ppme
|
||||
ppn
|
||||
pppm
|
||||
pppmflag
|
||||
Prakash
|
||||
Praprotnik
|
||||
prd
|
||||
@ -2923,6 +2955,7 @@ Rcmx
|
||||
Rcmy
|
||||
Rco
|
||||
Rcut
|
||||
rcut
|
||||
rcutfac
|
||||
rdc
|
||||
rdf
|
||||
@ -2948,6 +2981,7 @@ refactoring
|
||||
reflectionstyle
|
||||
Reinders
|
||||
reinit
|
||||
reinitflag
|
||||
relaxbox
|
||||
relink
|
||||
relres
|
||||
@ -3015,6 +3049,7 @@ Rij
|
||||
RIj
|
||||
Rik
|
||||
Rin
|
||||
rin
|
||||
Rinaldi
|
||||
Rino
|
||||
RiRj
|
||||
@ -3090,6 +3125,7 @@ Rutuparna
|
||||
rx
|
||||
rxd
|
||||
rxnave
|
||||
rxnbond
|
||||
rxnsum
|
||||
ry
|
||||
Ryckaert
|
||||
@ -3150,6 +3186,7 @@ sdpd
|
||||
SDPD
|
||||
se
|
||||
seagreen
|
||||
Searles
|
||||
Secor
|
||||
sectoring
|
||||
sed
|
||||
@ -3178,6 +3215,7 @@ setvel
|
||||
sfftw
|
||||
sfree
|
||||
Sg
|
||||
sgcmc
|
||||
Shan
|
||||
Shanno
|
||||
Shapeev
|
||||
@ -3280,6 +3318,7 @@ SPH
|
||||
spica
|
||||
SPICA
|
||||
Spickermann
|
||||
spinflag
|
||||
splined
|
||||
spparks
|
||||
Sprik
|
||||
@ -3465,6 +3504,7 @@ thermo
|
||||
thermochemical
|
||||
thermochemistry
|
||||
thermodynamically
|
||||
thermopotentiostat
|
||||
Thermophysical
|
||||
thermostatted
|
||||
thermostatting
|
||||
@ -3832,6 +3872,7 @@ workflows
|
||||
Workum
|
||||
Worley
|
||||
Wriggers
|
||||
writedata
|
||||
Wuppertal
|
||||
Wurtzite
|
||||
www
|
||||
|
||||
@ -1,14 +1,14 @@
|
||||
These examples demonstrate the use of the ELECTRODE package for constant potential molecular dynamics.
|
||||
|
||||
planar/
|
||||
au-vac.data -- gold electrodes with vacuum
|
||||
data.au-vac -- gold electrodes with vacuum
|
||||
in.planar* -- comparison of gold electrodes with vacuum to theoretical capacitance of planar capacitor
|
||||
-- 5x, further labeled by long-range solver (ewald / pppm) and boundary correction (ew2d / ew3dc / ffield)
|
||||
-- the pppm-ew2d combination would not give correct results and will throw an error if selected
|
||||
test.sh -- run all in.planar files and check charge at 1.2V and %difference from theoretical (last column)
|
||||
|
||||
graph-il/
|
||||
graph-il.data -- graphene electrodes with electrolyte (coarse-grained BMIm-PF6)
|
||||
data.graph-il -- graphene electrodes with electrolyte (coarse-grained BMIm-PF6)
|
||||
in.conp -- reference run at constant potential
|
||||
in.etypes -- type-based smart neighborlists
|
||||
in.ffield -- finite field method with fully periodic cell
|
||||
@ -18,10 +18,22 @@ graph-il/
|
||||
in.thermo -- thermalize electrolyte with thermopotentiostat instead of NVT
|
||||
|
||||
au-aq/
|
||||
au-aq.data -- gold electrodes with electrolyte (SPC water + NaCl)
|
||||
data.au-aq -- gold electrodes with electrolyte (SPC water + NaCl)
|
||||
in.ffield -- finite field method with fully periodic cell
|
||||
in.tf -- Thomas-Fermi metallicity model with more delocalized charges
|
||||
|
||||
madelung/
|
||||
data.au-elyt -- tiny electrodes with two electrolyte atoms in between
|
||||
settings.mod -- common settings
|
||||
in.* -- setup KSpace and fix electrode/conp
|
||||
plate_cap.py -- compute reference energy and charges from Madelung style sum
|
||||
eval.py -- compare output of reference and Lammps job (used by test.sh)
|
||||
test.sh -- run all in.* files and check charge at 1 V and %difference from theoretical (last column)
|
||||
|
||||
piston/
|
||||
data.piston -- two electrodes with water
|
||||
in.piston -- equilibrate distance between rigid electrodes
|
||||
|
||||
# future work:
|
||||
# in.cylinder -- comparison of carbon nanotube to theoretical induced charge for charge near circular conductor
|
||||
|
||||
|
||||
@ -4,7 +4,7 @@
|
||||
boundary p p p # ffield uses periodic z-boundary and no slab
|
||||
include settings.mod # styles, groups, computes and fixes
|
||||
|
||||
fix conp bot electrode/conp -1.0 1.805132 couple top 1.0 symm on ffield yes etypes 6*7
|
||||
fix conp bot electrode/conp -1.0 1.805132 couple top 1.0 symm on ffield yes etypes on
|
||||
|
||||
thermo 50
|
||||
thermo_style custom step temp c_ctemp epair etotal c_qtop c_qbot c_qztop c_qzbot
|
||||
|
||||
@ -6,7 +6,7 @@
|
||||
boundary p p p # ffield uses periodic z-boundary and no slab
|
||||
include settings.mod # styles, groups, computes and fixes
|
||||
|
||||
fix conp bot electrode/conp -1.0 1.805132 couple top 1.0 symm on ffield yes etypes 6*7
|
||||
fix conp bot electrode/conp -1.0 1.805132 couple top 1.0 symm on ffield yes etypes on
|
||||
fix_modify conp tf 6 1.0 18.1715745
|
||||
fix_modify conp tf 7 1.0 18.1715745
|
||||
|
||||
|
||||
@ -1,4 +1,4 @@
|
||||
LAMMPS (24 Mar 2022)
|
||||
LAMMPS (3 Nov 2022)
|
||||
# electrodes with constant potential using finite field
|
||||
# for z-periodic gold-saline electrochemical cell
|
||||
|
||||
@ -37,8 +37,8 @@ Finding 1-2 1-3 1-4 neighbors ...
|
||||
1 = max # of 1-3 neighbors
|
||||
1 = max # of 1-4 neighbors
|
||||
2 = max # of special neighbors
|
||||
special bonds CPU = 0.002 seconds
|
||||
read_data CPU = 0.051 seconds
|
||||
special bonds CPU = 0.006 seconds
|
||||
read_data CPU = 0.097 seconds
|
||||
|
||||
group bot type 6
|
||||
1620 atoms in group bot
|
||||
@ -52,11 +52,12 @@ group electrolyte type 1 2 3 4 5
|
||||
|
||||
fix nvt electrolyte nvt temp 298.0 298.0 241
|
||||
fix shake SPC shake 1e-4 20 0 b 1 2 a 1
|
||||
Finding SHAKE clusters ...
|
||||
0 = # of size 2 clusters
|
||||
0 = # of size 3 clusters
|
||||
0 = # of size 4 clusters
|
||||
2160 = # of frozen angles
|
||||
find clusters CPU = 0.002 seconds
|
||||
find clusters CPU = 0.006 seconds
|
||||
|
||||
variable q atom q
|
||||
variable qz atom q*(z-lz/2)
|
||||
@ -67,12 +68,41 @@ compute qzbot bot reduce sum v_qz
|
||||
compute ctemp electrolyte temp
|
||||
|
||||
|
||||
fix conp bot electrode/conp -1.0 1.805132 couple top 1.0 symm on ffield yes etypes 6*7
|
||||
fix conp bot electrode/conp -1.0 1.805132 couple top 1.0 symm on ffield yes etypes on
|
||||
3240 atoms in group conp_group
|
||||
|
||||
thermo 50
|
||||
thermo_style custom step temp c_ctemp epair etotal c_qtop c_qbot c_qztop c_qzbot
|
||||
run 500
|
||||
|
||||
CITE-CITE-CITE-CITE-CITE-CITE-CITE-CITE-CITE-CITE-CITE-CITE-CITE
|
||||
|
||||
Your simulation uses code contributions which should be cited:
|
||||
|
||||
- kspace_style pppm/electrode command:
|
||||
|
||||
@article{Ahrens2021,
|
||||
author = {Ahrens-Iwers, Ludwig J.V. and Mei{\ss}ner, Robert H.},
|
||||
doi = {10.1063/5.0063381},
|
||||
title = {{Constant potential simulations on a mesh}},
|
||||
journal = {Journal of Chemical Physics},
|
||||
year = {2021}
|
||||
volume = {155},
|
||||
pages = {104104},
|
||||
}
|
||||
- fix electrode command:
|
||||
|
||||
@article{Ahrens2022
|
||||
author = {Ahrens-Iwers, Ludwig J.V. and Janssen, Mahijs and Tee, Shern R. and Mei{\ss}ner, Robert H.},
|
||||
doi = {10.1063/5.0099239},
|
||||
title = {{ELECTRODE: An electrochemistry package for LAMMPS}},
|
||||
journal = {The Journal of Chemical Physics},
|
||||
year = {2022}
|
||||
volume = {157},
|
||||
pages = {084801},
|
||||
}
|
||||
CITE-CITE-CITE-CITE-CITE-CITE-CITE-CITE-CITE-CITE-CITE-CITE-CITE
|
||||
|
||||
PPPM/electrode initialization ...
|
||||
using 12-bit tables for long-range coulomb (src/kspace.cpp:342)
|
||||
G vector (1/distance) = 0.24017705
|
||||
@ -82,9 +112,9 @@ PPPM/electrode initialization ...
|
||||
estimated relative force accuracy = 1.093542e-07
|
||||
using double precision MKL FFT
|
||||
3d grid and FFT values/proc = 472567 349920
|
||||
generated 21 of 21 mixed pair_coeff terms from geometric mixing rule
|
||||
Generated 21 of 21 mixed pair_coeff terms from geometric mixing rule
|
||||
Neighbor list info ...
|
||||
update every 1 steps, delay 10 steps, check yes
|
||||
update: every = 1 steps, delay = 0 steps, check = yes
|
||||
max neighbors/atom: 2000, page size: 100000
|
||||
master list distance cutoff = 17
|
||||
ghost atom cutoff = 17
|
||||
@ -105,35 +135,35 @@ Neighbor list info ...
|
||||
pair build: skip
|
||||
stencil: none
|
||||
bin: none
|
||||
Per MPI rank memory allocation (min/avg/max) = 194.6 | 194.6 | 194.6 Mbytes
|
||||
Per MPI rank memory allocation (min/avg/max) = 194.8 | 194.8 | 194.8 Mbytes
|
||||
Step Temp c_ctemp E_pair TotEng c_qtop c_qbot c_qztop c_qzbot
|
||||
0 171.61215 298.06731 -39212.819 -35306.164 4.1391573 -4.1391573 78.718381 131.56372
|
||||
50 147.03139 255.37383 -39870.139 -36523.051 4.1312167 -4.1312167 78.563872 131.30255
|
||||
100 149.89027 260.33932 -39878.859 -36466.689 4.0217834 -4.0217834 76.482548 127.82573
|
||||
150 151.7382 263.54893 -39873.178 -36418.942 4.0469977 -4.0469977 76.967548 128.59855
|
||||
200 151.7508 263.57081 -39827.015 -36372.492 4.1830375 -4.1830375 79.554159 132.93925
|
||||
250 152.61146 265.06566 -39791.293 -36317.177 4.1835865 -4.1835865 79.56665 132.97185
|
||||
300 153.51486 266.63475 -39751.841 -36257.16 4.1571861 -4.1571861 79.061431 132.12905
|
||||
350 156.35115 271.561 -39754.955 -36195.708 4.3498059 -4.3498059 82.720202 138.28678
|
||||
400 156.26118 271.40474 -39690.781 -36133.582 4.3444079 -4.3444079 82.619396 138.11873
|
||||
450 158.54164 275.36558 -39681.083 -36071.97 4.2020488 -4.2020488 79.912674 133.55185
|
||||
500 161.40138 280.33258 -39684.185 -36009.972 4.3021924 -4.3021924 81.807527 136.7464
|
||||
Loop time of 246.197 on 1 procs for 500 steps with 9798 atoms
|
||||
0 171.61215 298.06731 -39021.917 -35115.261 4.1391573 -4.1391573 78.718381 131.56372
|
||||
50 147.03139 255.37383 -39679.603 -36332.515 4.1312167 -4.1312167 78.563872 131.30255
|
||||
100 149.89027 260.33932 -39693.369 -36281.2 4.0217834 -4.0217834 76.482548 127.82573
|
||||
150 151.7382 263.54893 -39686.526 -36232.29 4.0469977 -4.0469977 76.967548 128.59855
|
||||
200 151.7508 263.57081 -39634.089 -36179.566 4.1830375 -4.1830375 79.554159 132.93925
|
||||
250 152.61146 265.06566 -39598.341 -36124.226 4.1835865 -4.1835865 79.56665 132.97185
|
||||
300 153.51486 266.63475 -39560.107 -36065.426 4.1571861 -4.1571861 79.06143 132.12905
|
||||
350 156.35115 271.561 -39554.338 -35995.09 4.3498059 -4.3498059 82.720202 138.28678
|
||||
400 156.26118 271.40474 -39490.412 -35933.213 4.344408 -4.344408 82.619398 138.11874
|
||||
450 158.54163 275.36557 -39487.28 -35878.167 4.2020489 -4.2020489 79.912677 133.55186
|
||||
500 161.40137 280.33257 -39485.763 -35811.55 4.3021927 -4.3021927 81.807532 136.74641
|
||||
Loop time of 146.959 on 1 procs for 500 steps with 9798 atoms
|
||||
|
||||
Performance: 0.175 ns/day, 136.776 hours/ns, 2.031 timesteps/s
|
||||
356.3% CPU use with 1 MPI tasks x no OpenMP threads
|
||||
Performance: 0.294 ns/day, 81.644 hours/ns, 3.402 timesteps/s, 33.336 katom-step/s
|
||||
100.0% CPU use with 1 MPI tasks x no OpenMP threads
|
||||
|
||||
MPI task timing breakdown:
|
||||
Section | min time | avg time | max time |%varavg| %total
|
||||
---------------------------------------------------------------
|
||||
Pair | 105.64 | 105.64 | 105.64 | 0.0 | 42.91
|
||||
Bond | 0.0010592 | 0.0010592 | 0.0010592 | 0.0 | 0.00
|
||||
Kspace | 37.643 | 37.643 | 37.643 | 0.0 | 15.29
|
||||
Neigh | 5.8827 | 5.8827 | 5.8827 | 0.0 | 2.39
|
||||
Comm | 0.18181 | 0.18181 | 0.18181 | 0.0 | 0.07
|
||||
Output | 0.0055762 | 0.0055762 | 0.0055762 | 0.0 | 0.00
|
||||
Modify | 96.78 | 96.78 | 96.78 | 0.0 | 39.31
|
||||
Other | | 0.06346 | | | 0.03
|
||||
Pair | 69.832 | 69.832 | 69.832 | 0.0 | 47.52
|
||||
Bond | 0.00091634 | 0.00091634 | 0.00091634 | 0.0 | 0.00
|
||||
Kspace | 33.817 | 33.817 | 33.817 | 0.0 | 23.01
|
||||
Neigh | 4.2067 | 4.2067 | 4.2067 | 0.0 | 2.86
|
||||
Comm | 0.12212 | 0.12212 | 0.12212 | 0.0 | 0.08
|
||||
Output | 0.0031896 | 0.0031896 | 0.0031896 | 0.0 | 0.00
|
||||
Modify | 38.92 | 38.92 | 38.92 | 0.0 | 26.48
|
||||
Other | | 0.05687 | | | 0.04
|
||||
|
||||
Nlocal: 9798 ave 9798 max 9798 min
|
||||
Histogram: 1 0 0 0 0 0 0 0 0 0
|
||||
@ -147,4 +177,4 @@ Ave neighs/atom = 842.63544
|
||||
Ave special neighs/atom = 1.3227189
|
||||
Neighbor list builds = 22
|
||||
Dangerous builds = 0
|
||||
Total wall time: 0:19:39
|
||||
Total wall time: 0:05:33
|
||||
@ -1,4 +1,4 @@
|
||||
LAMMPS (24 Mar 2022)
|
||||
LAMMPS (3 Nov 2022)
|
||||
# electrodes with constant potential using finite field
|
||||
# for z-periodic gold-saline electrochemical cell
|
||||
|
||||
@ -39,7 +39,7 @@ Finding 1-2 1-3 1-4 neighbors ...
|
||||
1 = max # of 1-4 neighbors
|
||||
2 = max # of special neighbors
|
||||
special bonds CPU = 0.002 seconds
|
||||
read_data CPU = 0.149 seconds
|
||||
read_data CPU = 0.118 seconds
|
||||
|
||||
group bot type 6
|
||||
1620 atoms in group bot
|
||||
@ -53,11 +53,12 @@ group electrolyte type 1 2 3 4 5
|
||||
|
||||
fix nvt electrolyte nvt temp 298.0 298.0 241
|
||||
fix shake SPC shake 1e-4 20 0 b 1 2 a 1
|
||||
Finding SHAKE clusters ...
|
||||
0 = # of size 2 clusters
|
||||
0 = # of size 3 clusters
|
||||
0 = # of size 4 clusters
|
||||
2160 = # of frozen angles
|
||||
find clusters CPU = 0.003 seconds
|
||||
find clusters CPU = 0.002 seconds
|
||||
|
||||
variable q atom q
|
||||
variable qz atom q*(z-lz/2)
|
||||
@ -68,12 +69,41 @@ compute qzbot bot reduce sum v_qz
|
||||
compute ctemp electrolyte temp
|
||||
|
||||
|
||||
fix conp bot electrode/conp -1.0 1.805132 couple top 1.0 symm on ffield yes etypes 6*7
|
||||
fix conp bot electrode/conp -1.0 1.805132 couple top 1.0 symm on ffield yes etypes on
|
||||
3240 atoms in group conp_group
|
||||
|
||||
thermo 50
|
||||
thermo_style custom step temp c_ctemp epair etotal c_qtop c_qbot c_qztop c_qzbot
|
||||
run 500
|
||||
|
||||
CITE-CITE-CITE-CITE-CITE-CITE-CITE-CITE-CITE-CITE-CITE-CITE-CITE
|
||||
|
||||
Your simulation uses code contributions which should be cited:
|
||||
|
||||
- kspace_style pppm/electrode command:
|
||||
|
||||
@article{Ahrens2021,
|
||||
author = {Ahrens-Iwers, Ludwig J.V. and Mei{\ss}ner, Robert H.},
|
||||
doi = {10.1063/5.0063381},
|
||||
title = {{Constant potential simulations on a mesh}},
|
||||
journal = {Journal of Chemical Physics},
|
||||
year = {2021}
|
||||
volume = {155},
|
||||
pages = {104104},
|
||||
}
|
||||
- fix electrode command:
|
||||
|
||||
@article{Ahrens2022
|
||||
author = {Ahrens-Iwers, Ludwig J.V. and Janssen, Mahijs and Tee, Shern R. and Mei{\ss}ner, Robert H.},
|
||||
doi = {10.1063/5.0099239},
|
||||
title = {{ELECTRODE: An electrochemistry package for LAMMPS}},
|
||||
journal = {The Journal of Chemical Physics},
|
||||
year = {2022}
|
||||
volume = {157},
|
||||
pages = {084801},
|
||||
}
|
||||
CITE-CITE-CITE-CITE-CITE-CITE-CITE-CITE-CITE-CITE-CITE-CITE-CITE
|
||||
|
||||
PPPM/electrode initialization ...
|
||||
using 12-bit tables for long-range coulomb (src/kspace.cpp:342)
|
||||
G vector (1/distance) = 0.24017705
|
||||
@ -83,9 +113,9 @@ PPPM/electrode initialization ...
|
||||
estimated relative force accuracy = 1.093542e-07
|
||||
using double precision MKL FFT
|
||||
3d grid and FFT values/proc = 138958 87480
|
||||
generated 21 of 21 mixed pair_coeff terms from geometric mixing rule
|
||||
Generated 21 of 21 mixed pair_coeff terms from geometric mixing rule
|
||||
Neighbor list info ...
|
||||
update every 1 steps, delay 10 steps, check yes
|
||||
update: every = 1 steps, delay = 0 steps, check = yes
|
||||
max neighbors/atom: 2000, page size: 100000
|
||||
master list distance cutoff = 17
|
||||
ghost atom cutoff = 17
|
||||
@ -106,35 +136,35 @@ Neighbor list info ...
|
||||
pair build: skip
|
||||
stencil: none
|
||||
bin: none
|
||||
Per MPI rank memory allocation (min/avg/max) = 118.1 | 120.6 | 123.1 Mbytes
|
||||
Per MPI rank memory allocation (min/avg/max) = 118.2 | 120.7 | 123.2 Mbytes
|
||||
Step Temp c_ctemp E_pair TotEng c_qtop c_qbot c_qztop c_qzbot
|
||||
0 171.61215 298.06731 -39212.819 -35306.164 4.1391573 -4.1391573 78.718381 131.56372
|
||||
50 147.03139 255.37383 -39870.139 -36523.051 4.1312167 -4.1312167 78.563872 131.30255
|
||||
100 149.89027 260.33932 -39878.859 -36466.689 4.0217834 -4.0217834 76.482548 127.82573
|
||||
150 151.7382 263.54893 -39873.178 -36418.942 4.0469977 -4.0469977 76.967548 128.59855
|
||||
200 151.7508 263.57081 -39827.015 -36372.492 4.1830375 -4.1830375 79.554159 132.93925
|
||||
250 152.61146 265.06566 -39791.293 -36317.177 4.1835865 -4.1835865 79.56665 132.97185
|
||||
300 153.51486 266.63475 -39751.841 -36257.16 4.1571861 -4.1571861 79.061431 132.12905
|
||||
350 156.35115 271.561 -39754.955 -36195.708 4.3498059 -4.3498059 82.7202 138.28678
|
||||
400 156.26118 271.40474 -39690.781 -36133.582 4.3444079 -4.3444079 82.619398 138.11873
|
||||
450 158.54163 275.36558 -39681.083 -36071.97 4.2020488 -4.2020488 79.912675 133.55185
|
||||
500 161.40138 280.33257 -39684.185 -36009.972 4.3021924 -4.3021924 81.807527 136.7464
|
||||
Loop time of 111.902 on 4 procs for 500 steps with 9798 atoms
|
||||
0 171.61215 298.06731 -39021.917 -35115.261 4.1391573 -4.1391573 78.718381 131.56372
|
||||
50 147.03139 255.37383 -39679.603 -36332.515 4.1312167 -4.1312167 78.563872 131.30255
|
||||
100 149.89027 260.33932 -39693.369 -36281.2 4.0217834 -4.0217834 76.482548 127.82573
|
||||
150 151.7382 263.54893 -39686.526 -36232.29 4.0469977 -4.0469977 76.967548 128.59855
|
||||
200 151.7508 263.57081 -39634.089 -36179.566 4.1830375 -4.1830375 79.554159 132.93925
|
||||
250 152.61146 265.06566 -39598.341 -36124.226 4.1835864 -4.1835864 79.56665 132.97185
|
||||
300 153.51486 266.63475 -39560.107 -36065.426 4.1571861 -4.1571861 79.06143 132.12905
|
||||
350 156.35115 271.561 -39554.338 -35995.09 4.3498059 -4.3498059 82.720201 138.28678
|
||||
400 156.26118 271.40474 -39490.412 -35933.213 4.3444079 -4.3444079 82.619397 138.11873
|
||||
450 158.54163 275.36558 -39487.279 -35878.167 4.202049 -4.202049 79.912678 133.55186
|
||||
500 161.40137 280.33256 -39485.763 -35811.55 4.3021925 -4.3021925 81.807529 136.7464
|
||||
Loop time of 97.2399 on 4 procs for 500 steps with 9798 atoms
|
||||
|
||||
Performance: 0.386 ns/day, 62.168 hours/ns, 4.468 timesteps/s
|
||||
97.2% CPU use with 4 MPI tasks x no OpenMP threads
|
||||
Performance: 0.444 ns/day, 54.022 hours/ns, 5.142 timesteps/s, 50.381 katom-step/s
|
||||
87.0% CPU use with 4 MPI tasks x no OpenMP threads
|
||||
|
||||
MPI task timing breakdown:
|
||||
Section | min time | avg time | max time |%varavg| %total
|
||||
---------------------------------------------------------------
|
||||
Pair | 21.816 | 31.136 | 40.866 | 166.5 | 27.82
|
||||
Bond | 0.00073413 | 0.00080346 | 0.00084203 | 0.0 | 0.00
|
||||
Kspace | 29.546 | 39.137 | 48.326 | 146.4 | 34.97
|
||||
Neigh | 2.5867 | 2.5872 | 2.5877 | 0.0 | 2.31
|
||||
Comm | 0.33289 | 0.33603 | 0.33791 | 0.3 | 0.30
|
||||
Output | 0.0022537 | 0.0030028 | 0.005192 | 2.3 | 0.00
|
||||
Modify | 38.498 | 38.635 | 38.77 | 2.2 | 34.53
|
||||
Other | | 0.06679 | | | 0.06
|
||||
Pair | 19.363 | 28.08 | 37.126 | 160.3 | 28.88
|
||||
Bond | 0.00094043 | 0.00096516 | 0.00098016 | 0.0 | 0.00
|
||||
Kspace | 31.655 | 40.554 | 49.143 | 131.3 | 41.71
|
||||
Neigh | 2.2289 | 2.2294 | 2.2297 | 0.0 | 2.29
|
||||
Comm | 0.5341 | 0.54079 | 0.5478 | 0.9 | 0.56
|
||||
Output | 0.0024141 | 0.0026943 | 0.0034176 | 0.8 | 0.00
|
||||
Modify | 25.6 | 25.755 | 25.908 | 2.8 | 26.49
|
||||
Other | | 0.07733 | | | 0.08
|
||||
|
||||
Nlocal: 2449.5 ave 2908 max 2012 min
|
||||
Histogram: 2 0 0 0 0 0 0 0 0 2
|
||||
@ -148,4 +178,4 @@ Ave neighs/atom = 842.63544
|
||||
Ave special neighs/atom = 1.3227189
|
||||
Neighbor list builds = 22
|
||||
Dangerous builds = 0
|
||||
Total wall time: 0:07:48
|
||||
Total wall time: 0:03:03
|
||||
@ -1,4 +1,4 @@
|
||||
LAMMPS (24 Mar 2022)
|
||||
LAMMPS (3 Nov 2022)
|
||||
# electrodes with constant potential using finite field
|
||||
# for z-periodic gold-saline electrochemical cell
|
||||
# using Thomas-Fermi metallicity model: electrode q and qz will be
|
||||
@ -39,8 +39,8 @@ Finding 1-2 1-3 1-4 neighbors ...
|
||||
1 = max # of 1-3 neighbors
|
||||
1 = max # of 1-4 neighbors
|
||||
2 = max # of special neighbors
|
||||
special bonds CPU = 0.010 seconds
|
||||
read_data CPU = 0.115 seconds
|
||||
special bonds CPU = 0.003 seconds
|
||||
read_data CPU = 0.065 seconds
|
||||
|
||||
group bot type 6
|
||||
1620 atoms in group bot
|
||||
@ -54,11 +54,12 @@ group electrolyte type 1 2 3 4 5
|
||||
|
||||
fix nvt electrolyte nvt temp 298.0 298.0 241
|
||||
fix shake SPC shake 1e-4 20 0 b 1 2 a 1
|
||||
Finding SHAKE clusters ...
|
||||
0 = # of size 2 clusters
|
||||
0 = # of size 3 clusters
|
||||
0 = # of size 4 clusters
|
||||
2160 = # of frozen angles
|
||||
find clusters CPU = 0.010 seconds
|
||||
find clusters CPU = 0.002 seconds
|
||||
|
||||
variable q atom q
|
||||
variable qz atom q*(z-lz/2)
|
||||
@ -69,7 +70,7 @@ compute qzbot bot reduce sum v_qz
|
||||
compute ctemp electrolyte temp
|
||||
|
||||
|
||||
fix conp bot electrode/conp -1.0 1.805132 couple top 1.0 symm on ffield yes etypes 6*7
|
||||
fix conp bot electrode/conp -1.0 1.805132 couple top 1.0 symm on ffield yes etypes on
|
||||
3240 atoms in group conp_group
|
||||
fix_modify conp tf 6 1.0 18.1715745
|
||||
fix_modify conp tf 7 1.0 18.1715745
|
||||
@ -77,6 +78,35 @@ fix_modify conp tf 7 1.0 18.1715745
|
||||
thermo 50
|
||||
thermo_style custom step temp c_ctemp epair etotal c_qtop c_qbot c_qztop c_qzbot
|
||||
run 500
|
||||
|
||||
CITE-CITE-CITE-CITE-CITE-CITE-CITE-CITE-CITE-CITE-CITE-CITE-CITE
|
||||
|
||||
Your simulation uses code contributions which should be cited:
|
||||
|
||||
- kspace_style pppm/electrode command:
|
||||
|
||||
@article{Ahrens2021,
|
||||
author = {Ahrens-Iwers, Ludwig J.V. and Mei{\ss}ner, Robert H.},
|
||||
doi = {10.1063/5.0063381},
|
||||
title = {{Constant potential simulations on a mesh}},
|
||||
journal = {Journal of Chemical Physics},
|
||||
year = {2021}
|
||||
volume = {155},
|
||||
pages = {104104},
|
||||
}
|
||||
- fix electrode command:
|
||||
|
||||
@article{Ahrens2022
|
||||
author = {Ahrens-Iwers, Ludwig J.V. and Janssen, Mahijs and Tee, Shern R. and Mei{\ss}ner, Robert H.},
|
||||
doi = {10.1063/5.0099239},
|
||||
title = {{ELECTRODE: An electrochemistry package for LAMMPS}},
|
||||
journal = {The Journal of Chemical Physics},
|
||||
year = {2022}
|
||||
volume = {157},
|
||||
pages = {084801},
|
||||
}
|
||||
CITE-CITE-CITE-CITE-CITE-CITE-CITE-CITE-CITE-CITE-CITE-CITE-CITE
|
||||
|
||||
PPPM/electrode initialization ...
|
||||
using 12-bit tables for long-range coulomb (src/kspace.cpp:342)
|
||||
G vector (1/distance) = 0.24017705
|
||||
@ -86,9 +116,9 @@ PPPM/electrode initialization ...
|
||||
estimated relative force accuracy = 1.093542e-07
|
||||
using double precision MKL FFT
|
||||
3d grid and FFT values/proc = 472567 349920
|
||||
generated 21 of 21 mixed pair_coeff terms from geometric mixing rule
|
||||
Generated 21 of 21 mixed pair_coeff terms from geometric mixing rule
|
||||
Neighbor list info ...
|
||||
update every 1 steps, delay 10 steps, check yes
|
||||
update: every = 1 steps, delay = 0 steps, check = yes
|
||||
max neighbors/atom: 2000, page size: 100000
|
||||
master list distance cutoff = 17
|
||||
ghost atom cutoff = 17
|
||||
@ -109,35 +139,35 @@ Neighbor list info ...
|
||||
pair build: skip
|
||||
stencil: none
|
||||
bin: none
|
||||
Per MPI rank memory allocation (min/avg/max) = 194.6 | 194.6 | 194.6 Mbytes
|
||||
Per MPI rank memory allocation (min/avg/max) = 194.8 | 194.8 | 194.8 Mbytes
|
||||
Step Temp c_ctemp E_pair TotEng c_qtop c_qbot c_qztop c_qzbot
|
||||
0 171.61215 298.06731 -39190.106 -35283.45 4.0804484 -4.0804484 79.075127 131.20697
|
||||
50 147.14308 255.56782 -39849.964 -36500.334 3.9990346 -3.9990346 77.497181 128.57759
|
||||
100 149.94935 260.44194 -39857.533 -36444.019 3.8613914 -3.8613914 74.82985 124.15315
|
||||
150 151.95924 263.93285 -39855.567 -36396.299 3.8677064 -3.8677064 74.957279 124.33201
|
||||
200 151.66737 263.42591 -39802.585 -36349.961 3.99842 -3.99842 77.491015 128.54496
|
||||
250 152.36874 264.64408 -39763.306 -36294.716 3.9925863 -3.9925863 77.379445 128.37226
|
||||
300 153.83916 267.19802 -39737.075 -36235.012 3.94995 -3.94995 76.553896 127.00395
|
||||
350 155.88897 270.75827 -39722.265 -36173.539 4.0598524 -4.0598524 78.679643 130.5394
|
||||
400 156.51993 271.85415 -39674.759 -36111.669 4.1312899 -4.1312899 80.060369 132.83599
|
||||
450 160.21339 278.26919 -39697.962 -36050.793 3.9068098 -3.9068098 75.713484 125.59216
|
||||
500 161.63639 280.74075 -39669.412 -35989.849 3.9261656 -3.9261656 76.0806 126.22255
|
||||
Loop time of 280.183 on 1 procs for 500 steps with 9798 atoms
|
||||
0 171.61215 298.06731 -39001.911 -35095.255 4.0804484 -4.0804484 79.075127 131.20697
|
||||
50 147.14308 255.56782 -39665.525 -36315.894 3.9990346 -3.9990346 77.497181 128.57759
|
||||
100 149.94935 260.44194 -39679.441 -36265.927 3.8613914 -3.8613914 74.82985 124.15315
|
||||
150 151.95924 263.93285 -39677.184 -36217.916 3.8677064 -3.8677064 74.957279 124.33201
|
||||
200 151.66737 263.42591 -39618.173 -36165.549 3.99842 -3.99842 77.491015 128.54496
|
||||
250 152.36874 264.64408 -39579.164 -36110.574 3.9925863 -3.9925863 77.379445 128.37226
|
||||
300 153.83916 267.19802 -39554.899 -36052.836 3.94995 -3.94995 76.553896 127.00395
|
||||
350 155.88897 270.75827 -39535.02 -35986.294 4.0598524 -4.0598524 78.679643 130.5394
|
||||
400 156.51993 271.85415 -39484.219 -35921.13 4.1312898 -4.1312898 80.060368 132.83598
|
||||
450 160.21339 278.26919 -39517.776 -35870.607 3.9068098 -3.9068098 75.713484 125.59216
|
||||
500 161.63639 280.74075 -39488.333 -35808.771 3.9261656 -3.9261656 76.080599 126.22255
|
||||
Loop time of 185.804 on 1 procs for 500 steps with 9798 atoms
|
||||
|
||||
Performance: 0.154 ns/day, 155.657 hours/ns, 1.785 timesteps/s
|
||||
341.9% CPU use with 1 MPI tasks x no OpenMP threads
|
||||
Performance: 0.233 ns/day, 103.225 hours/ns, 2.691 timesteps/s, 26.366 katom-step/s
|
||||
100.0% CPU use with 1 MPI tasks x no OpenMP threads
|
||||
|
||||
MPI task timing breakdown:
|
||||
Section | min time | avg time | max time |%varavg| %total
|
||||
---------------------------------------------------------------
|
||||
Pair | 119.69 | 119.69 | 119.69 | 0.0 | 42.72
|
||||
Bond | 0.0010952 | 0.0010952 | 0.0010952 | 0.0 | 0.00
|
||||
Kspace | 42.137 | 42.137 | 42.137 | 0.0 | 15.04
|
||||
Neigh | 6.5403 | 6.5403 | 6.5403 | 0.0 | 2.33
|
||||
Comm | 0.19411 | 0.19411 | 0.19411 | 0.0 | 0.07
|
||||
Output | 0.0053644 | 0.0053644 | 0.0053644 | 0.0 | 0.00
|
||||
Modify | 111.54 | 111.54 | 111.54 | 0.0 | 39.81
|
||||
Other | | 0.07244 | | | 0.03
|
||||
Pair | 91 | 91 | 91 | 0.0 | 48.98
|
||||
Bond | 0.0010315 | 0.0010315 | 0.0010315 | 0.0 | 0.00
|
||||
Kspace | 40.32 | 40.32 | 40.32 | 0.0 | 21.70
|
||||
Neigh | 5.6505 | 5.6505 | 5.6505 | 0.0 | 3.04
|
||||
Comm | 0.15304 | 0.15304 | 0.15304 | 0.0 | 0.08
|
||||
Output | 0.0041829 | 0.0041829 | 0.0041829 | 0.0 | 0.00
|
||||
Modify | 48.607 | 48.607 | 48.607 | 0.0 | 26.16
|
||||
Other | | 0.06807 | | | 0.04
|
||||
|
||||
Nlocal: 9798 ave 9798 max 9798 min
|
||||
Histogram: 1 0 0 0 0 0 0 0 0 0
|
||||
@ -151,4 +181,4 @@ Ave neighs/atom = 842.7079
|
||||
Ave special neighs/atom = 1.3227189
|
||||
Neighbor list builds = 23
|
||||
Dangerous builds = 0
|
||||
Total wall time: 0:21:11
|
||||
Total wall time: 0:06:18
|
||||
@ -1,4 +1,4 @@
|
||||
LAMMPS (24 Mar 2022)
|
||||
LAMMPS (3 Nov 2022)
|
||||
# electrodes with constant potential using finite field
|
||||
# for z-periodic gold-saline electrochemical cell
|
||||
# using Thomas-Fermi metallicity model: electrode q and qz will be
|
||||
@ -41,7 +41,7 @@ Finding 1-2 1-3 1-4 neighbors ...
|
||||
1 = max # of 1-4 neighbors
|
||||
2 = max # of special neighbors
|
||||
special bonds CPU = 0.002 seconds
|
||||
read_data CPU = 0.091 seconds
|
||||
read_data CPU = 0.114 seconds
|
||||
|
||||
group bot type 6
|
||||
1620 atoms in group bot
|
||||
@ -55,11 +55,12 @@ group electrolyte type 1 2 3 4 5
|
||||
|
||||
fix nvt electrolyte nvt temp 298.0 298.0 241
|
||||
fix shake SPC shake 1e-4 20 0 b 1 2 a 1
|
||||
Finding SHAKE clusters ...
|
||||
0 = # of size 2 clusters
|
||||
0 = # of size 3 clusters
|
||||
0 = # of size 4 clusters
|
||||
2160 = # of frozen angles
|
||||
find clusters CPU = 0.001 seconds
|
||||
find clusters CPU = 0.002 seconds
|
||||
|
||||
variable q atom q
|
||||
variable qz atom q*(z-lz/2)
|
||||
@ -70,7 +71,7 @@ compute qzbot bot reduce sum v_qz
|
||||
compute ctemp electrolyte temp
|
||||
|
||||
|
||||
fix conp bot electrode/conp -1.0 1.805132 couple top 1.0 symm on ffield yes etypes 6*7
|
||||
fix conp bot electrode/conp -1.0 1.805132 couple top 1.0 symm on ffield yes etypes on
|
||||
3240 atoms in group conp_group
|
||||
fix_modify conp tf 6 1.0 18.1715745
|
||||
fix_modify conp tf 7 1.0 18.1715745
|
||||
@ -78,6 +79,35 @@ fix_modify conp tf 7 1.0 18.1715745
|
||||
thermo 50
|
||||
thermo_style custom step temp c_ctemp epair etotal c_qtop c_qbot c_qztop c_qzbot
|
||||
run 500
|
||||
|
||||
CITE-CITE-CITE-CITE-CITE-CITE-CITE-CITE-CITE-CITE-CITE-CITE-CITE
|
||||
|
||||
Your simulation uses code contributions which should be cited:
|
||||
|
||||
- kspace_style pppm/electrode command:
|
||||
|
||||
@article{Ahrens2021,
|
||||
author = {Ahrens-Iwers, Ludwig J.V. and Mei{\ss}ner, Robert H.},
|
||||
doi = {10.1063/5.0063381},
|
||||
title = {{Constant potential simulations on a mesh}},
|
||||
journal = {Journal of Chemical Physics},
|
||||
year = {2021}
|
||||
volume = {155},
|
||||
pages = {104104},
|
||||
}
|
||||
- fix electrode command:
|
||||
|
||||
@article{Ahrens2022
|
||||
author = {Ahrens-Iwers, Ludwig J.V. and Janssen, Mahijs and Tee, Shern R. and Mei{\ss}ner, Robert H.},
|
||||
doi = {10.1063/5.0099239},
|
||||
title = {{ELECTRODE: An electrochemistry package for LAMMPS}},
|
||||
journal = {The Journal of Chemical Physics},
|
||||
year = {2022}
|
||||
volume = {157},
|
||||
pages = {084801},
|
||||
}
|
||||
CITE-CITE-CITE-CITE-CITE-CITE-CITE-CITE-CITE-CITE-CITE-CITE-CITE
|
||||
|
||||
PPPM/electrode initialization ...
|
||||
using 12-bit tables for long-range coulomb (src/kspace.cpp:342)
|
||||
G vector (1/distance) = 0.24017705
|
||||
@ -87,9 +117,9 @@ PPPM/electrode initialization ...
|
||||
estimated relative force accuracy = 1.093542e-07
|
||||
using double precision MKL FFT
|
||||
3d grid and FFT values/proc = 138958 87480
|
||||
generated 21 of 21 mixed pair_coeff terms from geometric mixing rule
|
||||
Generated 21 of 21 mixed pair_coeff terms from geometric mixing rule
|
||||
Neighbor list info ...
|
||||
update every 1 steps, delay 10 steps, check yes
|
||||
update: every = 1 steps, delay = 0 steps, check = yes
|
||||
max neighbors/atom: 2000, page size: 100000
|
||||
master list distance cutoff = 17
|
||||
ghost atom cutoff = 17
|
||||
@ -110,35 +140,35 @@ Neighbor list info ...
|
||||
pair build: skip
|
||||
stencil: none
|
||||
bin: none
|
||||
Per MPI rank memory allocation (min/avg/max) = 118.1 | 120.6 | 123.1 Mbytes
|
||||
Per MPI rank memory allocation (min/avg/max) = 118.2 | 120.7 | 123.2 Mbytes
|
||||
Step Temp c_ctemp E_pair TotEng c_qtop c_qbot c_qztop c_qzbot
|
||||
0 171.61215 298.06731 -39190.106 -35283.45 4.0804484 -4.0804484 79.075127 131.20697
|
||||
50 147.14308 255.56782 -39849.964 -36500.334 3.9990346 -3.9990346 77.497181 128.57759
|
||||
100 149.94935 260.44194 -39857.533 -36444.019 3.8613914 -3.8613914 74.82985 124.15315
|
||||
150 151.95924 263.93285 -39855.567 -36396.299 3.8677064 -3.8677064 74.957279 124.33201
|
||||
200 151.66737 263.42591 -39802.585 -36349.961 3.99842 -3.99842 77.491015 128.54496
|
||||
250 152.36874 264.64408 -39763.306 -36294.716 3.9925863 -3.9925863 77.379445 128.37226
|
||||
300 153.83916 267.19802 -39737.075 -36235.012 3.94995 -3.94995 76.553896 127.00395
|
||||
350 155.88897 270.75827 -39722.265 -36173.539 4.0598524 -4.0598524 78.679643 130.5394
|
||||
400 156.51993 271.85415 -39674.759 -36111.669 4.1312899 -4.1312899 80.060369 132.83599
|
||||
450 160.21339 278.26919 -39697.962 -36050.793 3.9068098 -3.9068098 75.713485 125.59216
|
||||
500 161.63639 280.74075 -39669.412 -35989.849 3.9261654 -3.9261654 76.080597 126.22255
|
||||
Loop time of 110.716 on 4 procs for 500 steps with 9798 atoms
|
||||
0 171.61215 298.06731 -39001.911 -35095.255 4.0804484 -4.0804484 79.075127 131.20697
|
||||
50 147.14308 255.56782 -39665.525 -36315.894 3.9990346 -3.9990346 77.497181 128.57759
|
||||
100 149.94935 260.44194 -39679.441 -36265.927 3.8613914 -3.8613914 74.82985 124.15315
|
||||
150 151.95924 263.93285 -39677.184 -36217.916 3.8677064 -3.8677064 74.957279 124.33201
|
||||
200 151.66737 263.42591 -39618.173 -36165.549 3.99842 -3.99842 77.491015 128.54496
|
||||
250 152.36874 264.64408 -39579.163 -36110.574 3.9925863 -3.9925863 77.379445 128.37226
|
||||
300 153.83916 267.19802 -39554.899 -36052.835 3.94995 -3.94995 76.553896 127.00395
|
||||
350 155.88897 270.75826 -39535.02 -35986.294 4.0598523 -4.0598523 78.679642 130.5394
|
||||
400 156.51993 271.85415 -39484.219 -35921.13 4.1312897 -4.1312897 80.060366 132.83598
|
||||
450 160.21339 278.26919 -39517.776 -35870.607 3.9068099 -3.9068099 75.713486 125.59216
|
||||
500 161.63639 280.74075 -39488.333 -35808.771 3.9261657 -3.9261657 76.080602 126.22256
|
||||
Loop time of 104.099 on 4 procs for 500 steps with 9798 atoms
|
||||
|
||||
Performance: 0.390 ns/day, 61.509 hours/ns, 4.516 timesteps/s
|
||||
97.2% CPU use with 4 MPI tasks x no OpenMP threads
|
||||
Performance: 0.415 ns/day, 57.833 hours/ns, 4.803 timesteps/s, 47.061 katom-step/s
|
||||
87.7% CPU use with 4 MPI tasks x no OpenMP threads
|
||||
|
||||
MPI task timing breakdown:
|
||||
Section | min time | avg time | max time |%varavg| %total
|
||||
---------------------------------------------------------------
|
||||
Pair | 21.17 | 30.449 | 39.65 | 164.9 | 27.50
|
||||
Bond | 0.0007313 | 0.00077537 | 0.00081477 | 0.0 | 0.00
|
||||
Kspace | 29.854 | 38.911 | 48.058 | 143.8 | 35.14
|
||||
Neigh | 2.7206 | 2.7213 | 2.722 | 0.0 | 2.46
|
||||
Comm | 0.33023 | 0.33225 | 0.33384 | 0.2 | 0.30
|
||||
Output | 0.0024528 | 0.0027565 | 0.0035754 | 0.9 | 0.00
|
||||
Modify | 38.091 | 38.233 | 38.365 | 2.1 | 34.53
|
||||
Other | | 0.06636 | | | 0.06
|
||||
Pair | 20.951 | 30.326 | 40.07 | 166.7 | 29.13
|
||||
Bond | 0.00098259 | 0.0010706 | 0.0011926 | 0.3 | 0.00
|
||||
Kspace | 33.465 | 43.037 | 52.268 | 137.5 | 41.34
|
||||
Neigh | 2.6007 | 2.6014 | 2.6021 | 0.0 | 2.50
|
||||
Comm | 0.57766 | 0.58318 | 0.58875 | 0.7 | 0.56
|
||||
Output | 0.0022277 | 0.0024765 | 0.0031841 | 0.8 | 0.00
|
||||
Modify | 27.292 | 27.47 | 27.647 | 3.1 | 26.39
|
||||
Other | | 0.0787 | | | 0.08
|
||||
|
||||
Nlocal: 2449.5 ave 2908 max 2017 min
|
||||
Histogram: 2 0 0 0 0 0 0 0 0 2
|
||||
@ -147,9 +177,9 @@ Histogram: 2 0 0 0 0 0 0 0 0 2
|
||||
Neighs: 2.06421e+06 ave 2.7551e+06 max 1.40237e+06 min
|
||||
Histogram: 2 0 0 0 0 0 0 0 0 2
|
||||
|
||||
Total # of neighbors = 8256853
|
||||
Ave neighs/atom = 842.708
|
||||
Total # of neighbors = 8256852
|
||||
Ave neighs/atom = 842.7079
|
||||
Ave special neighs/atom = 1.3227189
|
||||
Neighbor list builds = 23
|
||||
Dangerous builds = 0
|
||||
Total wall time: 0:08:22
|
||||
Total wall time: 0:03:12
|
||||
@ -1 +1,2 @@
|
||||
log.lammps*
|
||||
in.temp
|
||||
|
||||
28
examples/PACKAGES/electrode/graph-il/algo_test.sh
Executable file
28
examples/PACKAGES/electrode/graph-il/algo_test.sh
Executable file
@ -0,0 +1,28 @@
|
||||
#!/bin/bash
|
||||
|
||||
LMP_BIN="$1"
|
||||
NP="${2:-1}"
|
||||
echo "MPI over $NP procs:"
|
||||
for feat in conp etypes tf
|
||||
do
|
||||
echo "Using base input file in.$feat:"
|
||||
echo "mat_inv, log excerpts:"
|
||||
logfile="log.algo_test.$NP.$feat"
|
||||
mpirun -np $NP $LMP_BIN -i in.$feat -l $logfile > /dev/null 2>&1
|
||||
grep -A2 'Per MPI rank' $logfile
|
||||
grep -B1 'Loop time' $logfile
|
||||
rm $logfile
|
||||
for cgtype in mat_cg cg
|
||||
do
|
||||
for tol in 1e-4 1e-5 1e-6
|
||||
do
|
||||
echo "$cgtype, tol = $tol, log excerpts:"
|
||||
logfile="log.algo_test.$NP.$feat.$cgtype.$tol"
|
||||
sed '/electrode/ s/$/ algo '"$cgtype"' '"$tol"'/' in.$feat > in.temp
|
||||
mpirun -np $NP $LMP_BIN -i in.temp -l $logfile > /dev/null 2>&1
|
||||
grep -A2 'Per MPI rank' $logfile
|
||||
grep -B1 'Loop time' $logfile
|
||||
rm $logfile
|
||||
done
|
||||
done
|
||||
done
|
||||
File diff suppressed because it is too large
Load Diff
@ -3,9 +3,9 @@
|
||||
|
||||
boundary p p f # slab calculation
|
||||
include settings.mod # styles, groups, computes and fixes
|
||||
kspace_modify slab 3.0
|
||||
kspace_modify slab 3.0 # amat twostep
|
||||
|
||||
fix conp bot electrode/conp -1.0 1.979 couple top 1.0 symm on
|
||||
fix conp bot electrode/conp -1.0 1.979 couple top 1.0 symm on #algo mat_inv
|
||||
|
||||
thermo 50
|
||||
thermo_style custom step temp c_ctemp epair etotal c_qbot c_qtop
|
||||
|
||||
@ -5,14 +5,10 @@ boundary p p f # slab calculation
|
||||
include settings.mod # styles, groups, computes and fixes
|
||||
kspace_modify slab 3.0
|
||||
|
||||
fix conq bot electrode/conq -1.0 1.979 couple top 1.0 etypes 5 # conq doesn't take symm option
|
||||
|
||||
# ask fix conq to output electrode potentials to internal variables
|
||||
variable vbot internal 0.0
|
||||
variable vtop internal 0.0
|
||||
fix_modify conq set v bot vbot
|
||||
fix_modify conq set v top vtop
|
||||
fix conq bot electrode/conq -1.0 1.979 couple top 1.0 etypes on # symm on
|
||||
variable dv equal f_conq[2]-f_conq[1]
|
||||
# symm on and off give different electrode potentials, but identical potential difference
|
||||
|
||||
thermo 50
|
||||
thermo_style custom step temp c_ctemp epair etotal c_qbot c_qtop v_vbot v_vtop
|
||||
thermo_style custom step temp c_ctemp epair etotal c_qbot c_qtop f_conq[1] f_conq[2] v_dv
|
||||
run 500
|
||||
|
||||
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user