git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@14972 f3b2605a-c512-4ea7-a41b-209d697bcdaa

This commit is contained in:
sjplimp
2016-05-09 21:12:06 +00:00
parent 410c743f77
commit 69ffae65d0
146 changed files with 214 additions and 214 deletions

View File

@ -266,7 +266,7 @@ after 10 psec, the box length will have doubled. After 20 psec, it
will have tripled.</p>
<p>The <em>erate</em> style changes a dimension of the the box at a &#8220;constant
engineering strain rate&#8221;. The units of the specified strain rate are
1/time. See the <span class="xref doc">units</span> command for the time units
1/time. See the <a class="reference internal" href="units.html"><span class="doc">units</span></a> command for the time units
associated with different choices of simulation units,
e.g. picoseconds for &#8220;metal&#8221; units). Tensile strain is unitless and
is defined as delta/L0, where L0 is the original box length and delta
@ -289,7 +289,7 @@ strain rate&#8221;. Note that this is not an &#8220;engineering strain rate&#82
the other styles are. Rather, for a &#8220;true&#8221; rate, the rate of change
is constant, which means the box dimension changes non-linearly with
time from its initial to final value. The units of the specified
strain rate are 1/time. See the <span class="xref doc">units</span> command for the
strain rate are 1/time. See the <a class="reference internal" href="units.html"><span class="doc">units</span></a> command for the
time units associated with different choices of simulation units,
e.g. picoseconds for &#8220;metal&#8221; units). Tensile strain is unitless and
is defined as delta/L0, where L0 is the original box length and delta
@ -405,7 +405,7 @@ tilt factor will be 15 Angstroms. After 2 psec, it will be 25
Angstroms.</p>
<p>The <em>erate</em> style changes a tilt factor at a &#8220;constant engineering
shear strain rate&#8221;. The units of the specified shear strain rate are
1/time. See the <span class="xref doc">units</span> command for the time units
1/time. See the <a class="reference internal" href="units.html"><span class="doc">units</span></a> command for the time units
associated with different choices of simulation units,
e.g. picoseconds for &#8220;metal&#8221; units). Shear strain is unitless and is
defined as offset/length, where length is the box length perpendicular
@ -433,7 +433,7 @@ rate&#8221;, as the other styles are. Rather, for a &#8220;true&#8221; rate, th
of change is constant, which means the tilt factor changes
non-linearly with time from its initial to final value. The units of
the specified shear strain rate are 1/time. See the
<span class="xref doc">units</span> command for the time units associated with
<a class="reference internal" href="units.html"><span class="doc">units</span></a> command for the time units associated with
different choices of simulation units, e.g. picoseconds for &#8220;metal&#8221;
units). Shear strain is unitless and is defined as offset/length,
where length is the box length perpendicular to the shear direction
@ -608,7 +608,7 @@ irregular-shaped sub-domain. For extreme values of tilt, LAMMPS may
also lose atoms and generate an error.</p>
<p>The <em>units</em> keyword determines the meaning of the distance units used
to define various arguments. A <em>box</em> value selects standard distance
units as defined by the <span class="xref doc">units</span> command, e.g. Angstroms for
units as defined by the <a class="reference internal" href="units.html"><span class="doc">units</span></a> command, e.g. Angstroms for
units = real or metal. A <em>lattice</em> value means the distance units are
in lattice spacings. The <a class="reference internal" href="lattice.html"><span class="doc">lattice</span></a> command must have
been previously used to define the lattice spacing. Note that the