bibliography cleanup

This commit is contained in:
Axel Kohlmeyer
2024-08-14 10:32:46 -04:00
parent 9e6715504b
commit 6a91f2ec67
13 changed files with 87 additions and 59 deletions

View File

@ -1,6 +1,12 @@
Bibliography Bibliography
************ ************
**(Abascal1)**
Abascal, Sanz, Fernandez, Vega, J Chem Phys, 122, 234511 (2005)
**(Abascal2)**
Abascal, J Chem Phys, 123, 234505 (2005)
**(Ackland)** **(Ackland)**
Ackland, Jones, Phys Rev B, 73, 054104 (2006). Ackland, Jones, Phys Rev B, 73, 054104 (2006).
@ -22,21 +28,24 @@ Bibliography
**(Agnolin and Roux 2007)** **(Agnolin and Roux 2007)**
Agnolin, I. & Roux, J-N. (2007). Internal states of model isotropic granular packings. I. Assembling process, geometry, and contact networks. Phys. Rev. E, 76, 061302. Agnolin, I. & Roux, J-N. (2007). Internal states of model isotropic granular packings. I. Assembling process, geometry, and contact networks. Phys. Rev. E, 76, 061302.
**(Ahrens-Iwers2022)**
Ahrens-Iwers *et al.*, J. Chem. Phys. 157, 084801 (2022).
**(Ahrens-Iwers)**
Ahrens-Iwers and Meissner, J. Chem. Phys. 155, 104104 (2021).
**(Aktulga)** **(Aktulga)**
Aktulga, Fogarty, Pandit, Grama, Parallel Computing, 38, 245-259 (2012). Aktulga, Fogarty, Pandit, Grama, Parallel Computing, 38, 245-259 (2012).
**(Albe)** **(Albe)**
J.\ Nord, K. Albe, P. Erhart, and K. Nordlund, J. Phys.: Condens. Matter, 15, 5649(2003). J.\ Nord, K. Albe, P. Erhart, and K. Nordlund, J. Phys.: Condens. Matter, 15, 5649(2003).
**(Albe)** **(Albe1)**
K.\ Albe, K. Nordlund, J. Nord, and A. Kuronen, Phys. Rev. B, 66, 035205 (2002). K.\ Albe, K. Nordlund, J. Nord, and A. Kuronen, Phys. Rev. B, 66, 035205 (2002).
**(Allen)** **(Allen)**
Allen and Germano, Mol Phys 104, 3225-3235 (2006). Allen and Germano, Mol Phys 104, 3225-3235 (2006).
**(Allen)**
Allen and Tildesley, Computer Simulation of Liquids, Clarendon Press, Oxford, 1987.
**(AllenTildesley)** **(AllenTildesley)**
Allen and Tildesley, Computer Simulation of Liquids, Oxford University Press (1987) Allen and Tildesley, Computer Simulation of Liquids, Oxford University Press (1987)
@ -49,6 +58,9 @@ Bibliography
**(Anderson)** **(Anderson)**
Anderson, Mukherjee, Critchley, Ziegler, and Lipton "POEMS: Parallelizable Open-source Efficient Multibody Software ", Engineering With Computers (2006). Anderson, Mukherjee, Critchley, Ziegler, and Lipton "POEMS: Parallelizable Open-source Efficient Multibody Software ", Engineering With Computers (2006).
**(Appshaw)**
Appshaw, Seddon, Hanna, Soft. Matter,18, 1747(2022).
**(Avendano)** **(Avendano)**
C.\ Avendano, T. Lafitte, A. Galindo, C. S. Adjiman, G. Jackson, E. Muller, J Phys Chem B, 115, 11154 (2011). C.\ Avendano, T. Lafitte, A. Galindo, C. S. Adjiman, G. Jackson, E. Muller, J Phys Chem B, 115, 11154 (2011).
@ -58,7 +70,7 @@ Bibliography
**(Babadi)** **(Babadi)**
Babadi, Ejtehadi, Everaers, J Comp Phys, 219, 770-779 (2006). Babadi, Ejtehadi, Everaers, J Comp Phys, 219, 770-779 (2006).
**(Babadi)** **(Babadi2)**
Babadi and Ejtehadi, EPL, 77 (2007) 23002. Babadi and Ejtehadi, EPL, 77 (2007) 23002.
**(Baczewski)** **(Baczewski)**
@ -73,23 +85,23 @@ Bibliography
**(Ballenegger)** **(Ballenegger)**
Ballenegger, Arnold, Cerda, J Chem Phys, 131, 094107 (2009). Ballenegger, Arnold, Cerda, J Chem Phys, 131, 094107 (2009).
**(Banna)**
Volkov, Banna, Comp. Mater. Sci. 176, 109410 (2020).
**(Barrat)** **(Barrat)**
Barrat and Rodney, J. Stat. Phys, 144, 679 (2011). Barrat and Rodney, J. Stat. Phys, 144, 679 (2011).
**(Barrett)** **(Barrett)**
Barrett, Tschopp, El Kadiri, Scripta Mat. 66, p.666 (2012). Barrett, Tschopp, El Kadiri, Scripta Mat. 66, p.666 (2012).
**(Barros)**
Barros, Sinkovits, Luijten, J. Chem. Phys, 140, 064903 (2014)
**(Bartok)** **(Bartok)**
Bartok, Payne, Risi, Csanyi, Phys Rev Lett, 104, 136403 (2010). Bartok, Payne, Risi, Csanyi, Phys Rev Lett, 104, 136403 (2010).
**(Bartok2010)** **(Bartok2010)**
Bartok, Payne, Risi, Csanyi, Phys Rev Lett, 104, 136403 (2010). Bartok, Payne, Risi, Csanyi, Phys Rev Lett, 104, 136403 (2010).
**(Bartok_2010)** **(Bartok2013)**
AP Bartok, MC Payne, R Kondor, and G Csanyi, Physical Review Letters 104, 136403 (2010). Bartok, Kondor, Csanyi, Phys Rev B, 87, 184115 (2013).
**(Bartok_PhD)** **(Bartok_PhD)**
A Bartok-Partay, PhD Thesis, University of Cambridge, (2010). A Bartok-Partay, PhD Thesis, University of Cambridge, (2010).
@ -97,30 +109,36 @@ Bibliography
**(Baskes)** **(Baskes)**
Baskes, Phys Rev B, 46, 2727-2742 (1992). Baskes, Phys Rev B, 46, 2727-2742 (1992).
**(Baskes2)**
Baskes, Phys Rev B, 75, 094113 (2007).
**(Beck)** **(Beck)**
Beck, Molecular Physics, 14, 311 (1968). Beck, Molecular Physics, 14, 311 (1968).
**(Becton)**
Becton, Averett, Wang, Biomech. Model. Mechanobiology, 18, 425-433(2019).
**(Behler and Parrinello 2007)**
Behler, J.; Parrinello, M. Phys. Rev. Lett. 2007, 98 (14), 146401.
**(Bennet)** **(Bennet)**
Bennet, J Comput Phys, 22, 245 (1976) Bennet, J Comput Phys, 22, 245 (1976)
**(Berardi)** **(Berardi)**
Berardi, Fava, Zannoni, Chem Phys Lett, 297, 8-14 (1998). Berardi, Muccioli, Zannoni, J Chem Phys, 128, 024905 (2008). Berardi, Fava, Zannoni, Chem Phys Lett, 297, 8-14 (1998). Berardi, Muccioli, Zannoni, J Chem Phys, 128, 024905 (2008).
**(Berendsen)**
Berendsen, Grigera, Straatsma, J Phys Chem, 91, 6269-6271 (1987).
**(Berendsen)** **(Berendsen)**
Berendsen, Postma, van Gunsteren, DiNola, Haak, J Chem Phys, 81, 3684 (1984). Berendsen, Postma, van Gunsteren, DiNola, Haak, J Chem Phys, 81, 3684 (1984).
**(Berendsen2)**
Berendsen, Grigera, Straatsma, J Phys Chem, 91, 6269-6271 (1987).
**(Bessarab)** **(Bessarab)**
Bessarab, Uzdin, Jonsson, Comp Phys Comm, 196, 335-347 (2015). Bessarab, Uzdin, Jonsson, Comp Phys Comm, 196, 335-347 (2015).
**(Beutler)** **(Beutler)**
Beutler, Mark, van Schaik, Gerber, van Gunsteren, Chem Phys Lett, 222, 529 (1994). Beutler, Mark, van Schaik, Gerber, van Gunsteren, Chem Phys Lett, 222, 529 (1994).
**(Bialke)**
J.\ Bialke, T. Speck, and H Loewen, Phys. Rev. Lett. 108, 168301, 2012.
**(Bird)** **(Bird)**
G.\ A. Bird, "Molecular Gas Dynamics and the Direct Simulation of Gas Flows" (1994). G.\ A. Bird, "Molecular Gas Dynamics and the Direct Simulation of Gas Flows" (1994).
@ -310,6 +328,9 @@ Bibliography
**(Erdmann)** **(Erdmann)**
U.\ Erdmann , W. Ebeling, L. Schimansky-Geier, and F. Schweitzer, Eur. Phys. J. B 15, 105-113, 2000. U.\ Erdmann , W. Ebeling, L. Schimansky-Geier, and F. Schweitzer, Eur. Phys. J. B 15, 105-113, 2000.
**(Eshelby)**
J.D. Eshelby, Philos. Trans. Royal Soc. London A, Math. Phys. Sci., Vol. 244, No. 877 (1951) pp. 87-112; J. Elasticity, Vol. 5, Nos. 3-4 (1975) pp. 321-335]
**(Espanol and Revenga)** **(Espanol and Revenga)**
Espanol, Revenga, Physical Review E, 67, 026705 (2003). Espanol, Revenga, Physical Review E, 67, 026705 (2003).

View File

@ -33,7 +33,7 @@ the partial charge assignments change:
| O charge = -0.8476 | O charge = -0.8476
| H charge = 0.4238 | H charge = 0.4238
See the :ref:`(Berendsen) <howto-Berendsen>` reference for more details on both See the :ref:`(Berendsen2) <howto-Berendsen>` reference for more details on both
the SPC and SPC/E models. the SPC and SPC/E models.
Below is the code for a LAMMPS input file and a molecule file Below is the code for a LAMMPS input file and a molecule file
@ -149,4 +149,4 @@ Wikipedia also has a nice article on `water models <https://en.wikipedia.org/wik
.. _howto-Berendsen: .. _howto-Berendsen:
**(Berendsen)** Berendsen, Grigera, Straatsma, J Phys Chem, 91, 6269-6271 (1987). **(Berendsen2)** Berendsen, Grigera, Straatsma, J Phys Chem, 91, 6269-6271 (1987).

View File

@ -49,7 +49,7 @@ angle.
The torque on the dipole can be obtained by differentiating the The torque on the dipole can be obtained by differentiating the
potential using the 'chain rule' as in appendix C.3 of potential using the 'chain rule' as in appendix C.3 of
:ref:`(Allen) <Allen1>`: :ref:`(AllenTildesley) <Allen1>`:
.. math:: .. math::
@ -129,5 +129,5 @@ lipid membranes, PloS ONE 6(12): e28637, 2011.
.. _Allen1: .. _Allen1:
**(Allen)** Allen & Tildesley, Computer Simulation of Liquids, **(AllenTildesley)** Allen & Tildesley, Computer Simulation of Liquids,
Clarendon Press, Oxford, 1987. Clarendon Press, Oxford, 1987.

View File

@ -34,7 +34,7 @@ Syntax
- internal_energy : total internal energy (potential + thermal) per unit volume - internal_energy : total internal energy (potential + thermal) per unit volume
- energy : total energy (potential + kinetic) per unit volume - energy : total energy (potential + kinetic) per unit volume
- number_density : number of atoms per unit volume - number_density : number of atoms per unit volume
- eshelby_stress : configurational stress (energy-momentum) tensor defined by [Eshelby]_ - eshelby_stress : configurational stress (energy-momentum) tensor defined by :ref:`(Eshelby) <Eshelby1>`
- vacancy_concentration : volume fraction of vacancy content - vacancy_concentration : volume fraction of vacancy content
- type_concentration : volume fraction of a specific atom type - type_concentration : volume fraction of a specific atom type
@ -83,4 +83,6 @@ By default, no fields are output.
References References
"""""""""" """"""""""
.. [Eshelby] J.D. Eshelby, Philos. Trans. Royal Soc. London A, Math. Phys. Sci., Vol. 244, No. 877 (1951) pp. 87-112; J. Elasticity, Vol. 5, Nos. 3-4 (1975) pp. 321-335] .. _Eshelby1:
**(Eshelby)** J.D. Eshelby, Philos. Trans. Royal Soc. London A, Math. Phys. Sci., Vol. 244, No. 877 (1951) pp. 87-112; J. Elasticity, Vol. 5, Nos. 3-4 (1975) pp. 321-335]

View File

@ -32,7 +32,7 @@ Syntax
- internal_energy : total internal energy (potential + thermal) per unit volume - internal_energy : total internal energy (potential + thermal) per unit volume
- energy : total energy (potential + kinetic) per unit volume - energy : total energy (potential + kinetic) per unit volume
- number_density : number of atoms per unit volume - number_density : number of atoms per unit volume
- eshelby_stress : configurational stress (energy-momentum) tensor defined by [Eshelby]_ - eshelby_stress : configurational stress (energy-momentum) tensor defined by :ref:`(Eshelby) <Eshelby3>`
- vacancy_concentration : volume fraction of vacancy content - vacancy_concentration : volume fraction of vacancy content
- type_concentration : volume fraction of a specific atom type - type_concentration : volume fraction of a specific atom type
@ -72,3 +72,10 @@ Default
""""""" """""""
None. None.
References
""""""""""
.. _Eshelby3:
**(Eshelby)** J.D. Eshelby, Philos. Trans. Royal Soc. London A, Math. Phys. Sci., Vol. 244, No. 877 (1951) pp. 87-112; J. Elasticity, Vol. 5, Nos. 3-4 (1975) pp. 321-335]

View File

@ -32,7 +32,7 @@ Syntax
- internal_energy : total internal energy (potential + thermal) per unit volume - internal_energy : total internal energy (potential + thermal) per unit volume
- energy : total energy (potential + kinetic) per unit volume - energy : total energy (potential + kinetic) per unit volume
- number_density : number of atoms per unit volume - number_density : number of atoms per unit volume
- eshelby_stress : configurational stress (energy-momentum) tensor defined by [Eshelby]_ - eshelby_stress : configurational stress (energy-momentum) tensor defined by :ref:`(Eshelby) <Eshelby2>`
- vacancy_concentration : volume fraction of vacancy content - vacancy_concentration : volume fraction of vacancy content
- type_concentration : volume fraction of a specific atom type - type_concentration : volume fraction of a specific atom type
@ -72,3 +72,10 @@ Default
""""""" """""""
None. None.
References
""""""""""
.. _Eshelby2:
**(Eshelby)** J.D. Eshelby, Philos. Trans. Royal Soc. London A, Math. Phys. Sci., Vol. 244, No. 877 (1951) pp. 87-112; J. Elasticity, Vol. 5, Nos. 3-4 (1975) pp. 321-335]

View File

@ -44,7 +44,7 @@ energy relaxes toward the saddle point (i.e. the point of highest energy
along the MEP), and a second relaxation is performed. along the MEP), and a second relaxation is performed.
The nudging forces are calculated as explained in The nudging forces are calculated as explained in
:ref:`(BessarabB) <BessarabB>`). :ref:`(Bessarab) <BessarabB>`).
See this reference for more explanation about their expression. See this reference for more explanation about their expression.
Restart, fix_modify, output, run start/stop, minimize info Restart, fix_modify, output, run start/stop, minimize info
@ -81,5 +81,5 @@ none
.. _BessarabB: .. _BessarabB:
**(BessarabB)** Bessarab, Uzdin, Jonsson, Comp Phys Comm, 196, **(Bessarab)** Bessarab, Uzdin, Jonsson, Comp Phys Comm, 196,
335-347 (2015). 335-347 (2015).

View File

@ -71,7 +71,7 @@ energy of wall-particle interactions E is given by:
\sigma_{n}^5 \left(r^2-\sigma_{n}^2\right)} \right]\qquad \sigma_n \sigma_{n}^5 \left(r^2-\sigma_{n}^2\right)} \right]\qquad \sigma_n
< r < r_c < r < r_c
Introduced by Babadi and Ejtehadi in :ref:`(Babadi) Introduced by Babadi and Ejtehadi in :ref:`(Babadi2)
<BabadiEjtehadi>`. Here, *r* is the distance from the particle to the <BabadiEjtehadi>`. Here, *r* is the distance from the particle to the
wall at position *coord*, and Rc is the *cutoff* distance at which wall at position *coord*, and Rc is the *cutoff* distance at which
the particle and wall no longer interact. Also, :math:`\sigma_n` is the particle and wall no longer interact. Also, :math:`\sigma_n` is
@ -182,4 +182,4 @@ none
.. _BabadiEjtehadi: .. _BabadiEjtehadi:
**(Babadi)** Babadi and Ejtehadi, EPL, 77 (2007) 23002. **(Babadi2)** Babadi and Ejtehadi, EPL, 77 (2007) 23002.

View File

@ -56,7 +56,7 @@ of the energy barrier associated with a transition state, e.g.
spins to perform a collective rotation from one energy basin to spins to perform a collective rotation from one energy basin to
another. another.
The implementation in LAMMPS follows the discussion in the The implementation in LAMMPS follows the discussion in the
following paper: :ref:`(BessarabA) <BessarabA>`. following paper: :ref:`(Bessarab) <BessarabA>`.
Each replica runs on a partition of one or more processors. Processor Each replica runs on a partition of one or more processors. Processor
partitions are defined at run-time using the :doc:`-partition command-line switch <Run_options>`. Note that if you have MPI installed, you partitions are defined at run-time using the :doc:`-partition command-line switch <Run_options>`. Note that if you have MPI installed, you
@ -129,7 +129,7 @@ is assigned to be a fraction of the angular distance.
The "angular distance" between the starting and final point is The "angular distance" between the starting and final point is
evaluated in the geodesic sense, as described in evaluated in the geodesic sense, as described in
:ref:`(BessarabA) <BessarabA>`. :ref:`(Bessarab) <BessarabA>`.
.. note:: .. note::
@ -224,7 +224,7 @@ For intermediate replicas, it is the cumulative angular distance
(normalized by the total cumulative angular distance) between adjacent (normalized by the total cumulative angular distance) between adjacent
replicas, where "distance" is defined as the length of the 3N-vector of replicas, where "distance" is defined as the length of the 3N-vector of
the geodesic distances in spin coordinates, with N the number of the geodesic distances in spin coordinates, with N the number of
GNEB spins involved (see equation (13) in :ref:`(BessarabA) <BessarabA>`). GNEB spins involved (see equation (13) in :ref:`(Bessarab) <BessarabA>`).
These outputs allow you to monitor NEB's progress in These outputs allow you to monitor NEB's progress in
finding a good energy barrier. *N1* and *N2* must both be multiples finding a good energy barrier. *N1* and *N2* must both be multiples
of *Nevery*\ . of *Nevery*\ .
@ -243,7 +243,7 @@ In the second stage of GNEB, the replica with the highest energy is
selected and the inter-replica forces on it are converted to a force selected and the inter-replica forces on it are converted to a force
that drives its spin coordinates to the top or saddle point of the that drives its spin coordinates to the top or saddle point of the
barrier, via the barrier-climbing calculation described in barrier, via the barrier-climbing calculation described in
:ref:`(BessarabA) <BessarabA>`. As before, the other replicas rearrange :ref:`(Bessarab) <BessarabA>`. As before, the other replicas rearrange
themselves along the MEP so as to be roughly equally spaced. themselves along the MEP so as to be roughly equally spaced.
When both stages are complete, if the GNEB calculation was successful, When both stages are complete, if the GNEB calculation was successful,
@ -321,11 +321,11 @@ maximum torque component of any atom in any replica. The potential
gradients are the two-norm of the 3N-length magnetic precession vector gradients are the two-norm of the 3N-length magnetic precession vector
solely due to the interaction potential i.e. without adding in solely due to the interaction potential i.e. without adding in
inter-replica forces, and projected along the path tangent (as detailed inter-replica forces, and projected along the path tangent (as detailed
in Appendix D of :ref:`(BessarabA) <BessarabA>`). in Appendix D of :ref:`(Bessarab) <BessarabA>`).
The "reaction coordinate" (RD) for each replica is the two-norm of the The "reaction coordinate" (RD) for each replica is the two-norm of the
3N-length vector of geodesic distances between its spins and the preceding 3N-length vector of geodesic distances between its spins and the preceding
replica's spins (see equation (13) of :ref:`(BessarabA) <BessarabA>`), added to replica's spins (see equation (13) of :ref:`(Bessarab) <BessarabA>`), added to
the RD of the preceding replica. The RD of the first replica RD1 = 0.0; the RD of the preceding replica. The RD of the first replica RD1 = 0.0;
the RD of the final replica RDN = RDT, the total reaction coordinate. the RD of the final replica RDN = RDT, the total reaction coordinate.
The normalized RDs are divided by RDT, so that they form a monotonically The normalized RDs are divided by RDT, so that they form a monotonically
@ -340,9 +340,9 @@ screen and master log.lammps file by adding the *verbose* keyword. This
information include the following. information include the following.
The "GradVidottan" are the projections of the potential gradient for The "GradVidottan" are the projections of the potential gradient for
the replica i on its tangent vector (as detailed in Appendix D of the replica i on its tangent vector (as detailed in Appendix D of
:ref:`(BessarabA) <BessarabA>`). :ref:`(Bessarab) <BessarabA>`).
The "DNi" are the non normalized geodesic distances (see equation (13) The "DNi" are the non normalized geodesic distances (see equation (13)
of :ref:`(BessarabA) <BessarabA>`), between a replica i and the next replica of :ref:`(Bessarab) <BessarabA>`), between a replica i and the next replica
i+1. For the last replica, this distance is not defined and a "NAN" i+1. For the last replica, this distance is not defined and a "NAN"
value is the corresponding output. value is the corresponding output.
@ -372,7 +372,7 @@ parameters.
A c file script in provided in the tool/spin/interpolate_gneb A c file script in provided in the tool/spin/interpolate_gneb
directory, that interpolates the MEP given the information provided directory, that interpolates the MEP given the information provided
by the *verbose* output option (as detailed in Appendix D of by the *verbose* output option (as detailed in Appendix D of
:ref:`(BessarabA) <BessarabA>`). :ref:`(Bessarab) <BessarabA>`).
---------- ----------
@ -403,5 +403,5 @@ none
.. _BessarabA: .. _BessarabA:
**(BessarabA)** Bessarab, Uzdin, Jonsson, Comp Phys Comm, 196, **(Bessarab)** Bessarab, Uzdin, Jonsson, Comp Phys Comm, 196,
335-347 (2015). 335-347 (2015).

View File

@ -124,7 +124,7 @@ and the vector r = Ri - Rj is the separation vector between the two
particles. Note that Eqq and Fqq are simply Coulombic energy and particles. Note that Eqq and Fqq are simply Coulombic energy and
force, Fij = -Fji as symmetric forces, and Tij != -Tji since the force, Fij = -Fji as symmetric forces, and Tij != -Tji since the
torques do not act symmetrically. These formulas are discussed in torques do not act symmetrically. These formulas are discussed in
:ref:`(Allen) <Allen2>` and in :ref:`(Toukmaji) <Toukmaji2>`. :ref:`(AllenTildesley) <Allen2>` and in :ref:`(Toukmaji) <Toukmaji2>`.
Also note, that in the code, all of these terms (except Elj) have a Also note, that in the code, all of these terms (except Elj) have a
:math:`C/\epsilon` prefactor, the same as the Coulombic term in the :math:`C/\epsilon` prefactor, the same as the Coulombic term in the
@ -140,7 +140,7 @@ moment. In general, a shifted-force potential is a (slightly) modified
potential containing extra terms that make both the energy and its potential containing extra terms that make both the energy and its
derivative go to zero at the cutoff distance; this removes derivative go to zero at the cutoff distance; this removes
(cutoff-related) problems in energy conservation and any numerical (cutoff-related) problems in energy conservation and any numerical
instability in the equations of motion :ref:`(Allen) instability in the equations of motion :ref:`(AllenTildesley)
<Allen2>`. Shifted-force interactions for the Lennard-Jones (E_LJ), <Allen2>`. Shifted-force interactions for the Lennard-Jones (E_LJ),
charge-charge (Eqq), charge-dipole (Eqp), dipole-charge (Epq) and charge-charge (Eqq), charge-dipole (Eqp), dipole-charge (Epq) and
dipole-dipole (Epp) potentials are computed by these formulas for the dipole-dipole (Epp) potentials are computed by these formulas for the
@ -221,10 +221,10 @@ shifted-force formula for the Lennard-Jones potential is reported in
:ref:`(Stoddard) <Stoddard>`. The original (non-shifted) formulas for :ref:`(Stoddard) <Stoddard>`. The original (non-shifted) formulas for
the electrostatic potentials, forces and torques can be found in the electrostatic potentials, forces and torques can be found in
:ref:`(Price) <Price2>`. The shifted-force electrostatic potentials :ref:`(Price) <Price2>`. The shifted-force electrostatic potentials
have been obtained by applying equation 5.13 of :ref:`(Allen) have been obtained by applying equation 5.13 of :ref:`(AllenTildesley)
<Allen2>`. The formulas for the corresponding forces and torques have <Allen2>`. The formulas for the corresponding forces and torques have
been obtained by applying the 'chain rule' as in appendix C.3 of been obtained by applying the 'chain rule' as in appendix C.3 of
:ref:`(Allen) <Allen2>`. :ref:`(AllenTildesley) <Allen2>`.
If one cutoff is specified in the pair_style command, it is used for If one cutoff is specified in the pair_style command, it is used for
both the LJ and Coulombic (q,p) terms. If two cutoffs are specified, both the LJ and Coulombic (q,p) terms. If two cutoffs are specified,
@ -378,7 +378,7 @@ none
.. _Allen2: .. _Allen2:
**(Allen)** Allen and Tildesley, Computer Simulation of Liquids, **(AllenTildesley)** Allen and Tildesley, Computer Simulation of Liquids,
Clarendon Press, Oxford, 1987. Clarendon Press, Oxford, 1987.
.. _Toukmaji2: .. _Toukmaji2:

View File

@ -210,21 +210,12 @@ The default options are *dir* = "hdnnp/", *showew* = yes, *showewsum* = 0, *maxe
.. _Behler_Parrinello_2007: .. _Behler_Parrinello_2007:
**(Behler and Parrinello 2007)** `Behler, J.; Parrinello, M. Generalized **(Behler and Parrinello 2007)** Behler, J.; Parrinello, M. Phys. Rev. Lett. 2007, 98 (14), 146401.
Neural-Network Representation of High-Dimensional Potential-Energy Surfaces.
Phys. Rev. Lett. 2007, 98 (14), 146401.
<https://doi.org/10.1103/PhysRevLett.98.146401>`__
.. _Singraber_Behler_Dellago_2019: .. _Singraber_Behler_Dellago_2019:
**(Singraber, Behler and Dellago 2019)** `Singraber, A.; Behler, J.; Dellago, C. **(Singraber, Behler and Dellago 2019)** Singraber, A.; Behler, J.; Dellago, C. J., Chem. Theory Comput. 2019, 15 (3), 1827-1840
Library-Based LAMMPS Implementation of High-Dimensional Neural Network
Potentials. J. Chem. Theory Comput. 2019, 15 (3), 1827-1840
<https://doi.org/10.1021/acs.jctc.8b00770>`__
.. _Singraber_et_al_2019: .. _Singraber_et_al_2019:
**(Singraber et al 2019)** `Singraber, A.; Morawietz, T.; Behler, J.; Dellago, **(Singraber et al 2019)** Singraber, A.; Morawietz, T.; Behler, J.; Dellago, C., J. Chem. Theory Comput. 2019, 15 (5), 3075-3092.
C. Parallel Multistream Training of High-Dimensional Neural Network Potentials.
J. Chem. Theory Comput. 2019, 15 (5), 3075-3092.
<https://doi.org/10.1021/acs.jctc.8b01092>`__

View File

@ -75,7 +75,7 @@ instance, the potential reduces to a Stillinger-Weber potential
G_{JIK}\left(\cos\theta\right) & = \left(\cos\theta+\frac{1}{3}\right)^2 G_{JIK}\left(\cos\theta\right) & = \left(\cos\theta+\frac{1}{3}\right)^2
The potential reduces to a Tersoff potential (:ref:`Tersoff <Tersoff>` The potential reduces to a Tersoff potential (:ref:`Tersoff <Tersoff>`
or :ref:`Albe <poly-Albe>`) if we set or :ref:`Albe1 <poly-Albe>`) if we set
.. math:: .. math::
@ -351,7 +351,7 @@ Related commands
.. _poly-Albe: .. _poly-Albe:
**(Albe)** K. Albe, K. Nordlund, J. Nord, and A. Kuronen, Phys. Rev. B, 66, 035205 (2002). **(Albe1)** K. Albe, K. Nordlund, J. Nord, and A. Kuronen, Phys. Rev. B, 66, 035205 (2002).
.. _Wang3: .. _Wang3:

View File

@ -29,7 +29,7 @@ from GitHub:
`https://github.com/libAtoms/QUIP <https://github.com/libAtoms/QUIP>`_. The `https://github.com/libAtoms/QUIP <https://github.com/libAtoms/QUIP>`_. The
interface is chiefly intended to be used to run Gaussian Approximation interface is chiefly intended to be used to run Gaussian Approximation
Potentials (GAP), which are described in the following publications: Potentials (GAP), which are described in the following publications:
:ref:`(Bartok et al) <Bartok_2010>` and :ref:`(PhD thesis of Bartok) <Bartok_PhD>`. :ref:`(Bartok et al) <Bartok2010>` and :ref:`(PhD thesis of Bartok) <Bartok_PhD>`.
Only a single pair_coeff command is used with the *quip* style that Only a single pair_coeff command is used with the *quip* style that
specifies a QUIP potential file containing the parameters of the specifies a QUIP potential file containing the parameters of the
@ -103,7 +103,7 @@ Related commands
.. _Bartok_2010: .. _Bartok_2010:
**(Bartok_2010)** AP Bartok, MC Payne, R Kondor, and G Csanyi, Physical **(Bartok2010)** AP Bartok, MC Payne, R Kondor, and G Csanyi, Physical
Review Letters 104, 136403 (2010). Review Letters 104, 136403 (2010).
.. _Bartok_PhD: .. _Bartok_PhD: