Merge pull request #1631 from jibril-b-coulibaly/patch-2
Bug fixes for pair style granular
This commit is contained in:
@ -100,7 +100,7 @@ on particle {i} due to contact with particle {j} is given by:
|
||||
\mathbf\{F\}_\{ne, Hooke\} = k_N \delta_\{ij\} \mathbf\{n\}
|
||||
\end\{equation\}
|
||||
|
||||
Where \(\delta = R_i + R_j - \|\mathbf\{r\}_\{ij\}\|\) is the particle
|
||||
Where \(\delta_\{ij\} = R_i + R_j - \|\mathbf\{r\}_\{ij\}\|\) is the particle
|
||||
overlap, \(R_i, R_j\) are the particle radii, \(\mathbf\{r\}_\{ij\} =
|
||||
\mathbf\{r\}_i - \mathbf\{r\}_j\) is the vector separating the two
|
||||
particle centers (note the i-j ordering so that \(F_\{ne\}\) is
|
||||
@ -177,7 +177,7 @@ following general form:
|
||||
\end\{equation\}
|
||||
|
||||
Here, \(\mathbf\{v\}_\{n,rel\} = (\mathbf\{v\}_j - \mathbf\{v\}_i)
|
||||
\cdot \mathbf\{n\}\) is the component of relative velocity along
|
||||
\cdot \mathbf\{n\} \mathbf\{n\}\) is the component of relative velocity along
|
||||
\(\mathbf\{n\}\).
|
||||
|
||||
The optional {damping} keyword to the {pair_coeff} command followed by
|
||||
@ -299,8 +299,8 @@ the normal damping \(\eta_n\) (see above):
|
||||
\eta_t = -x_\{\gamma,t\} \eta_n
|
||||
\end\{equation\}
|
||||
|
||||
The normal damping prefactor \(\eta_n\) is determined by the choice of
|
||||
the {damping} keyword, as discussed above. Thus, the {damping}
|
||||
The normal damping prefactor \(\eta_n\) is determined by the choice
|
||||
of the {damping} keyword, as discussed above. Thus, the {damping}
|
||||
keyword also affects the tangential damping. The parameter
|
||||
\(x_\{\gamma,t\}\) is a scaling coefficient. Several works in the
|
||||
literature use \(x_\{\gamma,t\} = 1\) ("Marshall"_#Marshall2009,
|
||||
@ -308,10 +308,10 @@ literature use \(x_\{\gamma,t\} = 1\) ("Marshall"_#Marshall2009,
|
||||
tangential velocity at the point of contact is given by
|
||||
\(\mathbf\{v\}_\{t, rel\} = \mathbf\{v\}_\{t\} - (R_i\Omega_i +
|
||||
R_j\Omega_j) \times \mathbf\{n\}\), where \(\mathbf\{v\}_\{t\} =
|
||||
\mathbf\{v\}_r - \mathbf\{v\}_r\cdot\mathbf\{n\}\), \(\mathbf\{v\}_r =
|
||||
\mathbf\{v\}_j - \mathbf\{v\}_i\). The direction of the applied force
|
||||
is \(\mathbf\{t\} =
|
||||
\mathbf\{v_\{t,rel\}\}/\|\mathbf\{v_\{t,rel\}\}\|\).
|
||||
\mathbf\{v\}_r - \mathbf\{v\}_r\cdot\mathbf\{n\}\{n\}\),
|
||||
\(\mathbf\{v\}_r = \mathbf\{v\}_j - \mathbf\{v\}_i\).
|
||||
The direction of the applied force is \(\mathbf\{t\} =
|
||||
\mathbf\{v_\{t,rel\}\}/\|\mathbf\{v_\{t,rel\}\}\|\) .
|
||||
|
||||
The normal force value \(F_\{n0\}\) used to compute the critical force
|
||||
depends on the form of the contact model. For non-cohesive models
|
||||
@ -411,8 +411,8 @@ option by an additional factor of {a}, the radius of the contact region. The tan
|
||||
\mathbf\{F\}_t = -min(\mu_t F_\{n0\}, \|-k_t a \mathbf\{\xi\} + \mathbf\{F\}_\mathrm\{t,damp\}\|) \mathbf\{t\}
|
||||
\end\{equation\}
|
||||
|
||||
Here, {a} is the radius of the contact region, given by \(a = \delta
|
||||
R\) for all normal contact models, except for {jkr}, where it is given
|
||||
Here, {a} is the radius of the contact region, given by \(a =\sqrt\{R\delta\}\)
|
||||
for all normal contact models, except for {jkr}, where it is given
|
||||
implicitly by \(\delta = a^2/R - 2\sqrt\{\pi \gamma a/E\}\), see
|
||||
discussion above. To match the Mindlin solution, one should set \(k_t
|
||||
= 8G\), where \(G\) is the shear modulus, related to Young's modulus
|
||||
@ -680,7 +680,7 @@ The single() function of these pair styles returns 0.0 for the energy
|
||||
of a pairwise interaction, since energy is not conserved in these
|
||||
dissipative potentials. It also returns only the normal component of
|
||||
the pairwise interaction force. However, the single() function also
|
||||
calculates 10 extra pairwise quantities. The first 3 are the
|
||||
calculates 12 extra pairwise quantities. The first 3 are the
|
||||
components of the tangential force between particles I and J, acting
|
||||
on particle I. The 4th is the magnitude of this tangential force.
|
||||
The next 3 (5-7) are the components of the rolling torque acting on
|
||||
|
||||
Reference in New Issue
Block a user