git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@13798 f3b2605a-c512-4ea7-a41b-209d697bcdaa
This commit is contained in:
565
doc/fix_ttm.html
565
doc/fix_ttm.html
@ -1,147 +1,32 @@
|
||||
<HTML>
|
||||
<CENTER><A HREF = "http://lammps.sandia.gov">LAMMPS WWW Site</A> - <A HREF = "Manual.html">LAMMPS Documentation</A> - <A HREF = "Section_commands.html#comm">LAMMPS Commands</A>
|
||||
</CENTER>
|
||||
|
||||
|
||||
<!DOCTYPE html>
|
||||
<!--[if IE 8]><html class="no-js lt-ie9" lang="en" > <![endif]-->
|
||||
<!--[if gt IE 8]><!--> <html class="no-js" lang="en" > <!--<![endif]-->
|
||||
<head>
|
||||
<meta charset="utf-8">
|
||||
|
||||
<meta name="viewport" content="width=device-width, initial-scale=1.0">
|
||||
|
||||
<title>fix ttm command — LAMMPS 15 May 2015 version documentation</title>
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
<link rel="stylesheet" href="_static/css/theme.css" type="text/css" />
|
||||
|
||||
|
||||
|
||||
<link rel="stylesheet" href="_static/sphinxcontrib-images/LightBox2/lightbox2/css/lightbox.css" type="text/css" />
|
||||
|
||||
|
||||
|
||||
<link rel="top" title="LAMMPS 15 May 2015 version documentation" href="index.html"/>
|
||||
|
||||
|
||||
<script src="_static/js/modernizr.min.js"></script>
|
||||
|
||||
</head>
|
||||
|
||||
<body class="wy-body-for-nav" role="document">
|
||||
|
||||
<div class="wy-grid-for-nav">
|
||||
|
||||
|
||||
<nav data-toggle="wy-nav-shift" class="wy-nav-side">
|
||||
<div class="wy-side-nav-search">
|
||||
|
||||
|
||||
|
||||
<a href="Manual.html" class="icon icon-home"> LAMMPS
|
||||
|
||||
|
||||
|
||||
</a>
|
||||
|
||||
|
||||
<div role="search">
|
||||
<form id="rtd-search-form" class="wy-form" action="search.html" method="get">
|
||||
<input type="text" name="q" placeholder="Search docs" />
|
||||
<input type="hidden" name="check_keywords" value="yes" />
|
||||
<input type="hidden" name="area" value="default" />
|
||||
</form>
|
||||
</div>
|
||||
|
||||
|
||||
</div>
|
||||
|
||||
<div class="wy-menu wy-menu-vertical" data-spy="affix" role="navigation" aria-label="main navigation">
|
||||
|
||||
|
||||
|
||||
<ul>
|
||||
<li class="toctree-l1"><a class="reference internal" href="Section_intro.html">1. Introduction</a></li>
|
||||
<li class="toctree-l1"><a class="reference internal" href="Section_start.html">2. Getting Started</a></li>
|
||||
<li class="toctree-l1"><a class="reference internal" href="Section_commands.html">3. Commands</a></li>
|
||||
<li class="toctree-l1"><a class="reference internal" href="Section_packages.html">4. Packages</a></li>
|
||||
<li class="toctree-l1"><a class="reference internal" href="Section_accelerate.html">5. Accelerating LAMMPS performance</a></li>
|
||||
<li class="toctree-l1"><a class="reference internal" href="Section_howto.html">6. How-to discussions</a></li>
|
||||
<li class="toctree-l1"><a class="reference internal" href="Section_example.html">7. Example problems</a></li>
|
||||
<li class="toctree-l1"><a class="reference internal" href="Section_perf.html">8. Performance & scalability</a></li>
|
||||
<li class="toctree-l1"><a class="reference internal" href="Section_tools.html">9. Additional tools</a></li>
|
||||
<li class="toctree-l1"><a class="reference internal" href="Section_modify.html">10. Modifying & extending LAMMPS</a></li>
|
||||
<li class="toctree-l1"><a class="reference internal" href="Section_python.html">11. Python interface to LAMMPS</a></li>
|
||||
<li class="toctree-l1"><a class="reference internal" href="Section_errors.html">12. Errors</a></li>
|
||||
<li class="toctree-l1"><a class="reference internal" href="Section_history.html">13. Future and history</a></li>
|
||||
</ul>
|
||||
|
||||
|
||||
|
||||
</div>
|
||||
|
||||
</nav>
|
||||
|
||||
<section data-toggle="wy-nav-shift" class="wy-nav-content-wrap">
|
||||
|
||||
|
||||
<nav class="wy-nav-top" role="navigation" aria-label="top navigation">
|
||||
<i data-toggle="wy-nav-top" class="fa fa-bars"></i>
|
||||
<a href="Manual.html">LAMMPS</a>
|
||||
</nav>
|
||||
|
||||
|
||||
|
||||
<div class="wy-nav-content">
|
||||
<div class="rst-content">
|
||||
<div role="navigation" aria-label="breadcrumbs navigation">
|
||||
<ul class="wy-breadcrumbs">
|
||||
<li><a href="Manual.html">Docs</a> »</li>
|
||||
|
||||
<li>fix ttm command</li>
|
||||
<li class="wy-breadcrumbs-aside">
|
||||
|
||||
|
||||
<a href="http://lammps.sandia.gov">Website</a>
|
||||
<a href="Section_commands.html#comm">Commands</a>
|
||||
|
||||
</li>
|
||||
</ul>
|
||||
<hr/>
|
||||
|
||||
</div>
|
||||
<div role="main" class="document" itemscope="itemscope" itemtype="http://schema.org/Article">
|
||||
<div itemprop="articleBody">
|
||||
|
||||
<div class="section" id="fix-ttm-command">
|
||||
<span id="index-0"></span><h1>fix ttm command<a class="headerlink" href="#fix-ttm-command" title="Permalink to this headline">¶</a></h1>
|
||||
</div>
|
||||
<div class="section" id="fix-ttm-mod-command">
|
||||
<h1>fix ttm/mod command<a class="headerlink" href="#fix-ttm-mod-command" title="Permalink to this headline">¶</a></h1>
|
||||
<div class="section" id="syntax">
|
||||
<h2>Syntax<a class="headerlink" href="#syntax" title="Permalink to this headline">¶</a></h2>
|
||||
<div class="highlight-python"><div class="highlight"><pre>fix ID group-ID ttm seed C_e rho_e kappa_e gamma_p gamma_s v_0 Nx Ny Nz T_infile N T_outfile
|
||||
fix ID group-ID ttm/mod seed init_file Nx Ny Nz T_infile N T_outfile
|
||||
</pre></div>
|
||||
</div>
|
||||
<ul class="simple">
|
||||
<li>ID, group-ID are documented in <a class="reference internal" href="fix.html"><em>fix</em></a> command</li>
|
||||
<li>style = <em>ttm</em> or <em>ttm_mod</em></li>
|
||||
<li>seed = random number seed to use for white noise (positive integer)</li>
|
||||
<li>remaining arguments for fix ttm:</li>
|
||||
</ul>
|
||||
<div class="highlight-python"><div class="highlight"><pre>C_e = electronic specific heat (energy/(electron*temperature) units)
|
||||
|
||||
|
||||
<HR>
|
||||
|
||||
<H3>fix ttm command
|
||||
</H3>
|
||||
<H3>fix ttm/mod command
|
||||
</H3>
|
||||
<P><B>Syntax:</B>
|
||||
</P>
|
||||
<PRE>fix ID group-ID ttm seed C_e rho_e kappa_e gamma_p gamma_s v_0 Nx Ny Nz T_infile N T_outfile
|
||||
fix ID group-ID ttm/mod seed init_file Nx Ny Nz T_infile N T_outfile
|
||||
</PRE>
|
||||
<UL><LI>ID, group-ID are documented in <A HREF = "fix.html">fix</A> command
|
||||
|
||||
<LI>style = <I>ttm</I> or <I>ttm_mod</I>
|
||||
|
||||
<LI>seed = random number seed to use for white noise (positive integer)
|
||||
|
||||
<LI>remaining arguments for fix ttm:
|
||||
|
||||
<PRE> C_e = electronic specific heat (energy/(electron*temperature) units)
|
||||
rho_e = electronic density (electrons/volume units)
|
||||
kappa_e = electronic thermal conductivity (energy/(time*distance*temperature) units)
|
||||
gamma_p = friction coefficient due to electron-ion interactions (mass/time units)
|
||||
@ -152,55 +37,54 @@ fix ID group-ID ttm/mod seed init_file Nx Ny Nz T_infile N T_outfile
|
||||
Nz = number of thermal solve grid points in the z-direction (positive integer)
|
||||
T_infile = filename to read initial electronic temperature from
|
||||
N = dump TTM temperatures every this many timesteps, 0 = no dump
|
||||
T_outfile = filename to write TTM temperatures to (only needed if N > 0)
|
||||
</pre></div>
|
||||
</div>
|
||||
<ul class="simple">
|
||||
<li>remaining arguments for fix ttm/mod:</li>
|
||||
</ul>
|
||||
<div class="highlight-python"><div class="highlight"><pre>init_file = file with the parameters to TTM
|
||||
T_outfile = filename to write TTM temperatures to (only needed if N > 0)
|
||||
</PRE>
|
||||
<LI>remaining arguments for fix ttm/mod:
|
||||
|
||||
<PRE> init_file = file with the parameters to TTM
|
||||
Nx = number of thermal solve grid points in the x-direction (positive integer)
|
||||
Ny = number of thermal solve grid points in the y-direction (positive integer)
|
||||
Nz = number of thermal solve grid points in the z-direction (positive integer)
|
||||
T_infile = filename to read initial electronic temperature from
|
||||
N = dump TTM temperatures every this many timesteps, 0 = no dump
|
||||
T_outfile = filename to write TTM temperatures to (only needed if N > 0)
|
||||
</pre></div>
|
||||
</div>
|
||||
</div>
|
||||
<div class="section" id="examples">
|
||||
<h2>Examples<a class="headerlink" href="#examples" title="Permalink to this headline">¶</a></h2>
|
||||
<div class="highlight-python"><div class="highlight"><pre>fix 2 all ttm 699489 1.0 1.0 10 0.1 0.0 2.0 1 12 1 initialTs 1000 T.out
|
||||
T_outfile = filename to write TTM temperatures to (only needed if N > 0)
|
||||
</PRE>
|
||||
|
||||
</UL>
|
||||
<P><B>Examples:</B>
|
||||
</P>
|
||||
<PRE>fix 2 all ttm 699489 1.0 1.0 10 0.1 0.0 2.0 1 12 1 initialTs 1000 T.out
|
||||
fix 2 all ttm 123456 1.0 1.0 1.0 1.0 1.0 5.0 5 5 5 Te.in 1 Te.out
|
||||
fix 2 all ttm/mod 34277 parameters.txt 5 5 5 T_init 10 T_out
|
||||
</pre></div>
|
||||
</div>
|
||||
</div>
|
||||
<div class="section" id="description">
|
||||
<h2>Description<a class="headerlink" href="#description" title="Permalink to this headline">¶</a></h2>
|
||||
<p>Use a two-temperature model (TTM) to represent heat transfer through
|
||||
fix 2 all ttm/mod 34277 parameters.txt 5 5 5 T_init 10 T_out
|
||||
</PRE>
|
||||
<P><B>Description:</B>
|
||||
</P>
|
||||
<P>Use a two-temperature model (TTM) to represent heat transfer through
|
||||
and between electronic and atomic subsystems. LAMMPS models the
|
||||
atomic subsystem as usual with a molecular dynamics model and the
|
||||
classical force field specified by the user, but the electronic
|
||||
subsystem is modeled as a continuum, or a background “gas”, on a
|
||||
subsystem is modeled as a continuum, or a background "gas", on a
|
||||
regular grid. Energy can be transferred spatially within the grid
|
||||
representing the electrons. Energy can also be transferred between
|
||||
the electronic and the atomic subsystems. The algorithm underlying
|
||||
this fix was derived by D. M. Duffy and A. M. Rutherford and is
|
||||
discussed in two J Physics: Condensed Matter papers: <a class="reference internal" href="#duffy"><span>(Duffy)</span></a>
|
||||
and <a class="reference internal" href="#rutherford"><span>(Rutherford)</span></a>. They used this algorithm in cascade
|
||||
discussed in two J Physics: Condensed Matter papers: <A HREF = "#Duffy">(Duffy)</A>
|
||||
and <A HREF = "#Rutherford">(Rutherford)</A>. They used this algorithm in cascade
|
||||
simulations where a primary knock-on atom (PKA) was initialized with a
|
||||
high velocity to simulate a radiation event.</p>
|
||||
<p>The description in this sub-section applies to both fix ttm and fix
|
||||
high velocity to simulate a radiation event.
|
||||
</P>
|
||||
<P>The description in this sub-section applies to both fix ttm and fix
|
||||
ttm/mod. Fix ttm/mod adds options to account for external heat
|
||||
sources (e.g. at a surface) and for specifying parameters that allow
|
||||
the electronic heat capacity to depend strongly on electronic
|
||||
temperature. It is more expensive computationally than fix ttm
|
||||
because it treats the thermal diffusion equation as non-linear. More
|
||||
details on fix ttm/mod are given below.</p>
|
||||
<p>Heat transfer between the electronic and atomic subsystems is carried
|
||||
details on fix ttm/mod are given below.
|
||||
</P>
|
||||
<P>Heat transfer between the electronic and atomic subsystems is carried
|
||||
out via an inhomogeneous Langevin thermostat. This thermostat differs
|
||||
from the regular Langevin thermostat (<a class="reference internal" href="fix_langevin.html"><em>fix langevin</em></a>) in three important ways. First, the
|
||||
from the regular Langevin thermostat (<A HREF = "fix_langevin.html">fix
|
||||
langevin</A>) in three important ways. First, the
|
||||
Langevin thermostat is applied uniformly to all atoms in the
|
||||
user-specified group for a single target temperature, whereas the TTM
|
||||
fix applies Langevin thermostatting locally to atoms within the
|
||||
@ -211,57 +95,65 @@ reservoir, whereas the heat reservoir for fix TTM is finite and
|
||||
represents the local electrons. Third, the TTM fix allows users to
|
||||
specify not just one friction coefficient, but rather two independent
|
||||
friction coefficients: one for the electron-ion interactions
|
||||
(<em>gamma_p</em>), and one for electron stopping (<em>gamma_s</em>).</p>
|
||||
<p>When the friction coefficient due to electron stopping, <em>gamma_s</em>, is
|
||||
(<I>gamma_p</I>), and one for electron stopping (<I>gamma_s</I>).
|
||||
</P>
|
||||
<P>When the friction coefficient due to electron stopping, <I>gamma_s</I>, is
|
||||
non-zero, electron stopping effects are included for atoms moving
|
||||
faster than the electron stopping critical velocity, <em>v_0</em>. For
|
||||
further details about this algorithm, see <a class="reference internal" href="#duffy"><span>(Duffy)</span></a> and
|
||||
<a class="reference internal" href="#rutherford"><span>(Rutherford)</span></a>.</p>
|
||||
<p>Energy transport within the electronic subsystem is solved according
|
||||
faster than the electron stopping critical velocity, <I>v_0</I>. For
|
||||
further details about this algorithm, see <A HREF = "#Duffy">(Duffy)</A> and
|
||||
<A HREF = "#Rutherford">(Rutherford)</A>.
|
||||
</P>
|
||||
<P>Energy transport within the electronic subsystem is solved according
|
||||
to the heat diffusion equation with added source terms for heat
|
||||
transfer between the subsystems:</p>
|
||||
<img alt="_images/fix_ttm.jpg" class="align-center" src="_images/fix_ttm.jpg" />
|
||||
<p>where C_e is the specific heat, rho_e is the density, kappa_e is the
|
||||
thermal conductivity, T is temperature, the “e” and “a” subscripts
|
||||
transfer between the subsystems:
|
||||
</P>
|
||||
<CENTER><IMG SRC = "Eqs/fix_ttm.jpg">
|
||||
</CENTER>
|
||||
<P>where C_e is the specific heat, rho_e is the density, kappa_e is the
|
||||
thermal conductivity, T is temperature, the "e" and "a" subscripts
|
||||
represent electronic and atomic subsystems respectively, g_p is the
|
||||
coupling constant for the electron-ion interaction, and g_s is the
|
||||
electron stopping coupling parameter. C_e, rho_e, and kappa_e are
|
||||
specified as parameters to the fix. The other quantities are derived.
|
||||
The form of the heat diffusion equation used here is almost the same
|
||||
as that in equation 6 of <a class="reference internal" href="#duffy"><span>(Duffy)</span></a>, with the exception that the
|
||||
as that in equation 6 of <A HREF = "#Duffy">(Duffy)</A>, with the exception that the
|
||||
electronic density is explicitly reprensented, rather than being part
|
||||
of the the specific heat parameter.</p>
|
||||
<p>Currently, fix ttm assumes that none of the user-supplied parameters
|
||||
will vary with temperature. Note that <a class="reference internal" href="#duffy"><span>(Duffy)</span></a> used a tanh()
|
||||
of the the specific heat parameter.
|
||||
</P>
|
||||
<P>Currently, fix ttm assumes that none of the user-supplied parameters
|
||||
will vary with temperature. Note that <A HREF = "#Duffy">(Duffy)</A> used a tanh()
|
||||
functional form for the temperature dependence of the electronic
|
||||
specific heat, but ignored temperature dependencies of any of the
|
||||
other parameters. See more discussion below for fix ttm/mod.</p>
|
||||
<p>These fixes require use of periodic boundary conditions and a 3D
|
||||
other parameters. See more discussion below for fix ttm/mod.
|
||||
</P>
|
||||
<P>These fixes require use of periodic boundary conditions and a 3D
|
||||
simulation. Periodic boundary conditions are also used in the heat
|
||||
equation solve for the electronic subsystem. This varies from the
|
||||
approach of <a class="reference internal" href="#rutherford"><span>(Rutherford)</span></a> where the atomic subsystem was
|
||||
approach of <A HREF = "#Rutherford">(Rutherford)</A> where the atomic subsystem was
|
||||
embedded within a larger continuum representation of the electronic
|
||||
subsystem.</p>
|
||||
<p>The initial electronic temperature input file, <em>T_infile</em>, is a text
|
||||
subsystem.
|
||||
</P>
|
||||
<P>The initial electronic temperature input file, <I>T_infile</I>, is a text
|
||||
file LAMMPS reads in with no header and with four numeric columns
|
||||
(ix,iy,iz,Temp) and with a number of rows equal to the number of
|
||||
user-specified grid points (Nx by Ny by Nz). The ix,iy,iz are node
|
||||
indices from 0 to nxnodes-1, etc. For example, the initial electronic
|
||||
temperatures on a 1 by 2 by 3 grid could be specified in a <em>T_infile</em>
|
||||
as follows:</p>
|
||||
<div class="highlight-python"><div class="highlight"><pre>0 0 0 1.0
|
||||
temperatures on a 1 by 2 by 3 grid could be specified in a <I>T_infile</I>
|
||||
as follows:
|
||||
</P>
|
||||
<PRE>0 0 0 1.0
|
||||
0 0 1 1.0
|
||||
0 0 2 1.0
|
||||
0 1 0 2.0
|
||||
0 1 1 2.0
|
||||
0 1 2 2.0
|
||||
</pre></div>
|
||||
</div>
|
||||
<p>where the electronic temperatures along the y=0 plane have been set to
|
||||
0 1 2 2.0
|
||||
</PRE>
|
||||
<P>where the electronic temperatures along the y=0 plane have been set to
|
||||
1.0, and the electronic temperatures along the y=1 plane have been set
|
||||
to 2.0. The order of lines in this file is no important. If all the
|
||||
nodal values are not specified, LAMMPS will generate an error.</p>
|
||||
<p>The temperature output file, <em>T_oufile</em>, is created and written by
|
||||
nodal values are not specified, LAMMPS will generate an error.
|
||||
</P>
|
||||
<P>The temperature output file, <I>T_oufile</I>, is created and written by
|
||||
this fix. Temperatures for both the electronic and atomic subsystems
|
||||
at every node and every N timesteps are output. If N is specified as
|
||||
zero, no output is generated, and no output filename is needed. The
|
||||
@ -271,66 +163,83 @@ The next Nx*Ny*Nz columns contain the temperatures for the atomic
|
||||
subsystem, and the final Nx*Ny*Nz columns contain the temperatures for
|
||||
the electronic subsystem. The ordering of the Nx*Ny*Nz columns is
|
||||
with the z index varing fastest, y the next fastest, and x the
|
||||
slowest.</p>
|
||||
<p>These fixes do not change the coordinates of their atoms; they only
|
||||
scales their velocities. Thus a time integration fix (e.g. <a class="reference internal" href="fix_nve.html"><em>fix nve</em></a>) should still be used to time integrate the affected
|
||||
slowest.
|
||||
</P>
|
||||
<P>These fixes do not change the coordinates of their atoms; they only
|
||||
scales their velocities. Thus a time integration fix (e.g. <A HREF = "fix_nve.html">fix
|
||||
nve</A>) should still be used to time integrate the affected
|
||||
atoms. The fixes should not normally be used on atoms that have their
|
||||
temperature controlled by another fix - e.g. <a class="reference internal" href="fix_nh.html"><em>fix nvt</em></a> or
|
||||
<a class="reference internal" href="fix_langevin.html"><em>fix langevin</em></a>.</p>
|
||||
<div class="admonition warning">
|
||||
<p class="first admonition-title">Warning</p>
|
||||
<p class="last">The current implementations of these fixes create a
|
||||
temperature controlled by another fix - e.g. <A HREF = "fix_nh.html">fix nvt</A> or
|
||||
<A HREF = "fix_langevin.html">fix langevin</A>.
|
||||
</P>
|
||||
<P>IMPORTANT NOTE: The current implementations of these fixes create a
|
||||
copy of the electron grid that overlays the entire simulation domain,
|
||||
for each processor. Values on the grid are summed across all
|
||||
processors. Thus you should insure that this grid is not too large,
|
||||
else your simulation could incur high memory and communication costs.</p>
|
||||
</div>
|
||||
<hr class="docutils" />
|
||||
<p><strong>Additional details for fix ttm/mod</strong></p>
|
||||
<p>Fix ttm/mod uses the heat diffusion equation with possible external
|
||||
heat sources (e.g. laser heating in ablation simulations):</p>
|
||||
<img alt="_images/fix_ttm_mod.jpg" class="align-center" src="_images/fix_ttm_mod.jpg" />
|
||||
<p>where theta is the Heaviside step function, I_0 is the (absorbed)
|
||||
laser pulse intensity for ablation simulations, l_skin is the depth
|
||||
of skin-layer, and all other designations have the same meaning as in
|
||||
else your simulation could incur high memory and communication costs.
|
||||
</P>
|
||||
<HR>
|
||||
|
||||
<P><B>Additional details for fix ttm/mod</B>
|
||||
</P>
|
||||
<P>Fix ttm/mod uses the heat diffusion equation with possible external
|
||||
heat sources (e.g. laser heating in ablation simulations):
|
||||
</P>
|
||||
<CENTER><IMG SRC = "Eqs/fix_ttm_mod.jpg">
|
||||
</CENTER>
|
||||
<P>where theta is the Heaviside step function, I_0 is the (absorbed)
|
||||
laser pulse intensity for ablation simulations, l_skin is the depth
|
||||
of skin-layer, and all other designations have the same meaning as in
|
||||
the former equation. The duration of the pulse is set by the parameter
|
||||
<em>tau</em> in the <em>init_file</em>.</p>
|
||||
<p>Fix ttm/mod also allows users to specify the dependencies of C_e and
|
||||
<I>tau</I> in the <I>init_file</I>.
|
||||
</P>
|
||||
<P>Fix ttm/mod also allows users to specify the dependencies of C_e and
|
||||
kappa_e on the electronic temperature. The specific heat is expressed
|
||||
as</p>
|
||||
<img alt="_images/fix_ttm_ce.jpg" class="align-center" src="_images/fix_ttm_ce.jpg" />
|
||||
<p>where <em>X</em> = T_e/1000, and the thermal conductivity is defined as
|
||||
as
|
||||
</P>
|
||||
<CENTER><IMG SRC = "Eqs/fix_ttm_ce.jpg">
|
||||
</CENTER>
|
||||
<P>where <I>X</I> = T_e/1000, and the thermal conductivity is defined as
|
||||
kappa_e = D_e*rho_e*C_e, where D_e is the thermal diffusion
|
||||
coefficient.</p>
|
||||
<p>Electronic pressure effects are included in the TTM model to account
|
||||
coefficient.
|
||||
</P>
|
||||
<P>Electronic pressure effects are included in the TTM model to account
|
||||
for the blast force acting on ions because of electronic pressure
|
||||
gradient (see <a class="reference internal" href="#chen"><span>(Chen)</span></a>, <a class="reference internal" href="#norman"><span>(Norman)</span></a>). The total force
|
||||
acting on an ion is:</p>
|
||||
<img alt="_images/fix_ttm_blast.jpg" class="align-center" src="_images/fix_ttm_blast.jpg" />
|
||||
<p>where F_langevin is a force from Langevin thermostat simulating
|
||||
gradient (see <A HREF = "Chen">(Chen)</A>, <A HREF = "#Norman">(Norman)</A>). The total force
|
||||
acting on an ion is:
|
||||
</P>
|
||||
<CENTER><IMG SRC = "Eqs/fix_ttm_blast.jpg">
|
||||
</CENTER>
|
||||
<P>where F_langevin is a force from Langevin thermostat simulating
|
||||
electron-phonon coupling, and nabla P_e/n_ion is the electron blast
|
||||
force.</p>
|
||||
<p>The electronic pressure is taken to be P_e = B*rho_e*C_e*T_e</p>
|
||||
<p>The current fix ttm/mod implementation allows TTM simulations with a
|
||||
force.
|
||||
</P>
|
||||
<P>The electronic pressure is taken to be P_e = B*rho_e*C_e*T_e
|
||||
</P>
|
||||
<P>The current fix ttm/mod implementation allows TTM simulations with a
|
||||
vacuum. The vacuum region is defined as the grid cells with zero
|
||||
electronic temperature. The numerical scheme does not allow energy
|
||||
exchange with such cells. Since the material can expand to previously
|
||||
unoccupied region in some simulations, the vacuum border can be
|
||||
allowed to move. It is controlled by the <em>surface_movement</em> parameter
|
||||
in the <em>init_file</em>. If it is set to 1, then “vacuum” cells can be
|
||||
changed to “electron-filled” cells with the temperature <em>T_e_min</em> if
|
||||
allowed to move. It is controlled by the <I>surface_movement</I> parameter
|
||||
in the <I>init_file</I>. If it is set to 1, then "vacuum" cells can be
|
||||
changed to "electron-filled" cells with the temperature <I>T_e_min</I> if
|
||||
atoms move into them (currently only implemented for the case of
|
||||
1-dimensional motion of flat surface normal to the X axis). The
|
||||
initial borders of vacuum can be set in the <em>init_file</em> via <em>lsurface</em>
|
||||
and <em>rsurface</em> parameters. In this case, electronic pressure gradient
|
||||
is calculated as</p>
|
||||
<img alt="_images/fix_ttm_blast1.jpg" class="align-center" src="_images/fix_ttm_blast1.jpg" />
|
||||
<p>where lambda is the electron mean free path (see <a class="reference internal" href="#norman"><span>(Norman)</span></a>,
|
||||
<a class="reference internal" href="#pisarev"><span>(Pisarev)</span></a>)</p>
|
||||
<p>The fix ttm/mod parameter file <em>init_file</em> has the following syntax/
|
||||
initial borders of vacuum can be set in the <I>init_file</I> via <I>lsurface</I>
|
||||
and <I>rsurface</I> parameters. In this case, electronic pressure gradient
|
||||
is calculated as
|
||||
</P>
|
||||
<CENTER><IMG SRC = "Eqs/fix_ttm_blast1.jpg">
|
||||
</CENTER>
|
||||
<P>where lambda is the electron mean free path (see <A HREF = "#Norman">(Norman)</A>,
|
||||
<A HREF = "#Pisarev">(Pisarev)</A>)
|
||||
</P>
|
||||
<P>The fix ttm/mod parameter file <I>init_file</I> has the following syntax/
|
||||
Every line with the odd number is considered as a comment and
|
||||
ignored. The lines with the even numbers are treated as follows:</p>
|
||||
<div class="highlight-python"><div class="highlight"><pre>a_0, energy/(temperature*electron) units
|
||||
ignored. The lines with the even numbers are treated as follows:
|
||||
</P>
|
||||
<PRE>a_0, energy/(temperature*electron) units
|
||||
a_1, energy/(temperature^2*electron) units
|
||||
a_2, energy/(temperature^3*electron) units
|
||||
a_3, energy/(temperature^4*electron) units
|
||||
@ -351,27 +260,31 @@ B, dimensionless
|
||||
lambda, length units
|
||||
n_ion, ions/volume units
|
||||
surface_movement: 0 to disable tracking of surface motion, 1 to enable
|
||||
T_e_min, temperature units
|
||||
</pre></div>
|
||||
</div>
|
||||
</div>
|
||||
<hr class="docutils" />
|
||||
<div class="section" id="restart-fix-modify-output-run-start-stop-minimize-info">
|
||||
<h2>Restart, fix_modify, output, run start/stop, minimize info<a class="headerlink" href="#restart-fix-modify-output-run-start-stop-minimize-info" title="Permalink to this headline">¶</a></h2>
|
||||
<p>These fixes write the state of the electronic subsystem and the energy
|
||||
exchange between the subsystems to <a class="reference internal" href="restart.html"><em>binary restart files</em></a>. See the <a class="reference internal" href="read_restart.html"><em>read_restart</em></a> command
|
||||
T_e_min, temperature units
|
||||
</PRE>
|
||||
<HR>
|
||||
|
||||
<P><B>Restart, fix_modify, output, run start/stop, minimize info:</B>
|
||||
</P>
|
||||
<P>These fixes write the state of the electronic subsystem and the energy
|
||||
exchange between the subsystems to <A HREF = "restart.html">binary restart
|
||||
files</A>. See the <A HREF = "read_restart.html">read_restart</A> command
|
||||
for info on how to re-specify a fix in an input script that reads a
|
||||
restart file, so that the operation of the fix continues in an
|
||||
uninterrupted fashion.</p>
|
||||
<p>Because the state of the random number generator is not saved in the
|
||||
restart files, this means you cannot do “exact” restarts with this
|
||||
uninterrupted fashion.
|
||||
</P>
|
||||
<P>Because the state of the random number generator is not saved in the
|
||||
restart files, this means you cannot do "exact" restarts with this
|
||||
fix, where the simulation continues on the same as if no restart had
|
||||
taken place. However, in a statistical sense, a restarted simulation
|
||||
should produce the same behavior.</p>
|
||||
<p>None of the <a class="reference internal" href="fix_modify.html"><em>fix_modify</em></a> options are relevant to these
|
||||
fixes.</p>
|
||||
<p>Both fixes compute 2 output quantities stored in a vector of length 2,
|
||||
which can be accessed by various <a class="reference internal" href="Section_howto.html#howto-15"><span>output commands</span></a>. The first quantity is the
|
||||
should produce the same behavior.
|
||||
</P>
|
||||
<P>None of the <A HREF = "fix_modify.html">fix_modify</A> options are relevant to these
|
||||
fixes.
|
||||
</P>
|
||||
<P>Both fixes compute 2 output quantities stored in a vector of length 2,
|
||||
which can be accessed by various <A HREF = "Section_howto.html#howto_15">output
|
||||
commands</A>. The first quantity is the
|
||||
total energy of the electronic subsystem. The second quantity is the
|
||||
energy transferred from the electronic to the atomic subsystem on that
|
||||
timestep. Note that the velocity verlet integrator applies the fix ttm
|
||||
@ -381,101 +294,57 @@ Consequently, the change in the atomic subsystem energy is lagged by
|
||||
half a timestep relative to the change in the electronic subsystem
|
||||
energy. As a result of this, users may notice slight fluctuations in
|
||||
the sum of the atomic and electronic subsystem energies reported at
|
||||
the end of the timestep.</p>
|
||||
<p>The vector values calculated are “extensive”.</p>
|
||||
<p>No parameter of the fixes can be used with the <em>start/stop</em> keywords
|
||||
of the <a class="reference internal" href="run.html"><em>run</em></a> command. The fixes are not invoked during
|
||||
<a class="reference internal" href="minimize.html"><em>energy minimization</em></a>.</p>
|
||||
</div>
|
||||
<div class="section" id="restrictions">
|
||||
<h2>Restrictions<a class="headerlink" href="#restrictions" title="Permalink to this headline">¶</a></h2>
|
||||
<p>Fix <em>ttm</em> is part of the MISC package. It is only enabled if LAMMPS
|
||||
was built with that package. Fix <em>ttm/mod</em> is part of the USER-MISC
|
||||
the end of the timestep.
|
||||
</P>
|
||||
<P>The vector values calculated are "extensive".
|
||||
</P>
|
||||
<P>No parameter of the fixes can be used with the <I>start/stop</I> keywords
|
||||
of the <A HREF = "run.html">run</A> command. The fixes are not invoked during
|
||||
<A HREF = "minimize.html">energy minimization</A>.
|
||||
</P>
|
||||
<P><B>Restrictions:</B>
|
||||
</P>
|
||||
<P>Fix <I>ttm</I> is part of the MISC package. It is only enabled if LAMMPS
|
||||
was built with that package. Fix <I>ttm/mod</I> is part of the USER-MISC
|
||||
package. It is only enabled if LAMMPS was built with that package.
|
||||
See the <a class="reference internal" href="Section_start.html#start-3"><span>Making LAMMPS</span></a> section for more
|
||||
info.</p>
|
||||
<p>These fixes can only be used for 3d simulations and orthogonal
|
||||
See the <A HREF = "Section_start.html#start_3">Making LAMMPS</A> section for more
|
||||
info.
|
||||
</P>
|
||||
<P>These fixes can only be used for 3d simulations and orthogonal
|
||||
simlulation boxes. You must also use periodic
|
||||
<a class="reference internal" href="boundary.html"><em>boundary</em></a> conditions.</p>
|
||||
</div>
|
||||
<div class="section" id="related-commands">
|
||||
<h2>Related commands<a class="headerlink" href="#related-commands" title="Permalink to this headline">¶</a></h2>
|
||||
<p><a class="reference internal" href="fix_langevin.html"><em>fix langevin</em></a>, <a class="reference internal" href="fix_dt_reset.html"><em>fix dt/reset</em></a></p>
|
||||
<p><strong>Default:</strong> none</p>
|
||||
<hr class="docutils" />
|
||||
<p id="duffy"><strong>(Duffy)</strong> D M Duffy and A M Rutherford, J. Phys.: Condens. Matter, 19,
|
||||
016207-016218 (2007).</p>
|
||||
<p id="rutherford"><strong>(Rutherford)</strong> A M Rutherford and D M Duffy, J. Phys.:
|
||||
Condens. Matter, 19, 496201-496210 (2007).</p>
|
||||
<p id="chen"><strong>(Chen)</strong> J Chen, D Tzou and J Beraun, Int. J. Heat
|
||||
Mass Transfer, 49, 307-316 (2006).</p>
|
||||
<p id="norman"><strong>(Norman)</strong> G E Norman, S V Starikov, V V Stegailov et al., Contrib.
|
||||
Plasma Phys., 53, 129-139 (2013).</p>
|
||||
<p id="pisarev"><strong>(Pisarev)</strong> V V Pisarev and S V Starikov, J. Phys.: Condens. Matter, 26,
|
||||
475401 (2014).</p>
|
||||
</div>
|
||||
</div>
|
||||
<A HREF = "boundary.html">boundary</A> conditions.
|
||||
</P>
|
||||
<P><B>Related commands:</B>
|
||||
</P>
|
||||
<P><A HREF = "fix_langevin.html">fix langevin</A>, <A HREF = "fix_dt_reset.html">fix dt/reset</A>
|
||||
</P>
|
||||
<P><B>Default:</B> none
|
||||
</P>
|
||||
<HR>
|
||||
|
||||
<A NAME = "Duffy"></A>
|
||||
|
||||
</div>
|
||||
</div>
|
||||
<footer>
|
||||
|
||||
<P><B>(Duffy)</B> D M Duffy and A M Rutherford, J. Phys.: Condens. Matter, 19,
|
||||
016207-016218 (2007).
|
||||
</P>
|
||||
<A NAME = "Rutherford"></A>
|
||||
|
||||
<hr/>
|
||||
<P><B>(Rutherford)</B> A M Rutherford and D M Duffy, J. Phys.:
|
||||
Condens. Matter, 19, 496201-496210 (2007).
|
||||
</P>
|
||||
<A NAME = "Chen"></A>
|
||||
|
||||
<div role="contentinfo">
|
||||
<p>
|
||||
© Copyright .
|
||||
</p>
|
||||
</div>
|
||||
Built with <a href="http://sphinx-doc.org/">Sphinx</a> using a <a href="https://github.com/snide/sphinx_rtd_theme">theme</a> provided by <a href="https://readthedocs.org">Read the Docs</a>.
|
||||
<P><B>(Chen)</B> J Chen, D Tzou and J Beraun, Int. J. Heat
|
||||
Mass Transfer, 49, 307-316 (2006).
|
||||
</P>
|
||||
<A NAME = "Norman"></A>
|
||||
|
||||
</footer>
|
||||
<P><B>(Norman)</B> G E Norman, S V Starikov, V V Stegailov et al., Contrib.
|
||||
Plasma Phys., 53, 129-139 (2013).
|
||||
</P>
|
||||
<A NAME = "Pisarev"></A>
|
||||
|
||||
</div>
|
||||
</div>
|
||||
|
||||
</section>
|
||||
|
||||
</div>
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
<script type="text/javascript">
|
||||
var DOCUMENTATION_OPTIONS = {
|
||||
URL_ROOT:'./',
|
||||
VERSION:'15 May 2015 version',
|
||||
COLLAPSE_INDEX:false,
|
||||
FILE_SUFFIX:'.html',
|
||||
HAS_SOURCE: true
|
||||
};
|
||||
</script>
|
||||
<script type="text/javascript" src="_static/jquery.js"></script>
|
||||
<script type="text/javascript" src="_static/underscore.js"></script>
|
||||
<script type="text/javascript" src="_static/doctools.js"></script>
|
||||
<script type="text/javascript" src="https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML"></script>
|
||||
<script type="text/javascript" src="_static/sphinxcontrib-images/LightBox2/lightbox2/js/jquery-1.11.0.min.js"></script>
|
||||
<script type="text/javascript" src="_static/sphinxcontrib-images/LightBox2/lightbox2/js/lightbox.min.js"></script>
|
||||
<script type="text/javascript" src="_static/sphinxcontrib-images/LightBox2/lightbox2-customize/jquery-noconflict.js"></script>
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
<script type="text/javascript" src="_static/js/theme.js"></script>
|
||||
|
||||
|
||||
|
||||
|
||||
<script type="text/javascript">
|
||||
jQuery(function () {
|
||||
SphinxRtdTheme.StickyNav.enable();
|
||||
});
|
||||
</script>
|
||||
|
||||
|
||||
</body>
|
||||
</html>
|
||||
<P><B>(Pisarev)</B> V V Pisarev and S V Starikov, J. Phys.: Condens. Matter, 26,
|
||||
475401 (2014).
|
||||
</P>
|
||||
</HTML>
|
||||
|
||||
Reference in New Issue
Block a user