Merge branch 'develop' into molecule-refactor-for-json

This commit is contained in:
Axel Kohlmeyer
2025-05-31 22:03:07 -04:00
16 changed files with 2157 additions and 1 deletions

View File

@ -29,6 +29,7 @@ OPT.
* :doc:`ave/grid <fix_ave_grid>`
* :doc:`ave/histo <fix_ave_histo>`
* :doc:`ave/histo/weight <fix_ave_histo>`
* :doc:`ave/moments <fix_ave_moments>`
* :doc:`ave/time <fix_ave_time>`
* :doc:`aveforce <fix_aveforce>`
* :doc:`balance <fix_balance>`

View File

@ -208,6 +208,7 @@ accelerated styles exist.
* :doc:`ave/grid <fix_ave_grid>` - compute per-grid time-averaged quantities
* :doc:`ave/histo <fix_ave_histo>` - compute/output time-averaged histograms
* :doc:`ave/histo/weight <fix_ave_histo>` - weighted version of fix ave/histo
* :doc:`ave/moments <fix_ave_moments>` - compute moments of scalar quantities
* :doc:`ave/time <fix_ave_time>` - compute/output global time-averaged quantities
* :doc:`aveforce <fix_aveforce>` - add an averaged force to each atom
* :doc:`balance <fix_balance>` - perform dynamic load-balancing

296
doc/src/fix_ave_moments.rst Normal file
View File

@ -0,0 +1,296 @@
.. index:: fix ave/moments
fix ave/moments command
=======================
Syntax
""""""
.. code-block:: LAMMPS
fix ID group-ID ave/moments Nevery Nrepeat Nfreq value1 value2 ... moment1 moment2 ... keyword args ...
* ID, group-ID are documented in :doc:`fix <fix>` command
* ave/moments = style name of this fix command
* Nevery = use input values every this many time steps
* Nrepeat = # of times to use input values for calculating averages
* Nfreq = calculate averages every this many time steps
* one or more input variables can be listed
* value = v_name
.. parsed-literal::
c_ID = global scalar calculated by a compute with ID
c_ID[I] = Ith component of global vector calculated by a compute with ID, I can include wildcard (see below)
f_ID = global scalar calculated by a fix with ID
f_ID[I] = Ith component of global vector calculated by a fix with ID, I can include wildcard (see below)
v_name = value calculated by an equal-style variable with name
v_name[I] = value calculated by a vector-style variable with name, I can include wildcard (see below)
* one or more moments to compute can be listed
* moment = *mean* or *stddev* or *variance* or *skew* or *kurtosis*, see exact definitions below.
* zero or more keyword/arg pairs may be appended
* keyword = *start* or *history*
.. parsed-literal::
*start* args = Nstart
Nstart = invoke first after this time step
*history* args = Nrecent
Nrecent = keep a history of up to Nrecent outputs
Examples
""""""""
.. code-block:: LAMMPS
fix 1 all ave/moments 1 1000 100 v_volume mean stddev
fix 1 all ave/moments 1 200 1000 v_volume variance kurtosis history 10
Description
"""""""""""
.. versionadded:: TBD
Using one or more values as input, calculate the moments of the underlying
(population) distributions based on samples collected every few time
steps over a time step window. The definitions of the moments calculated
are given below.
The group specified with this command is ignored. However, note that
specified values may represent calculations performed by computes and
fixes which store their own "group" definitions.
Each listed value can be the result of a :doc:`compute <compute>` or
:doc:`fix <fix>` or the evaluation of an equal-style or vector-style
:doc:`variable <variable>`. In each case, the compute, fix, or variable
must produce a global quantity, not a per-atom or local quantity.
If you wish to spatial- or time-average or histogram per-atom
quantities from a compute, fix, or variable, then see the :doc:`fix
ave/chunk <fix_ave_chunk>`, :doc:`fix ave/atom <fix_ave_atom>`, or
:doc:`fix ave/histo <fix_ave_histo>` commands. If you wish to sum a
per-atom quantity into a single global quantity, see the :doc:`compute
reduce <compute_reduce>` command.
Many :doc:`computes <compute>` and :doc:`fixes <fix>` produce global
quantities. See their doc pages for details. :doc:`Variables <variable>`
of style *equal* and *vector* are the only ones that can be used with
this fix. Variables of style *atom* cannot be used, since they produce
per-atom values.
The input values must all be scalars or vectors with a bracketed term
appended, indicating the :math:`I^\text{th}` value of the vector is
used.
The result of this fix can be accessed as a vector, containing the
interleaved moments of each input in order. If M moments are requested,
then the moments of input 1 will be the first M values in the vector
output by this fix. The moments of input 2 will the next M values, etc.
If there are N values, the vector length will be N*M.
----------
For input values from a compute or fix or variable, the bracketed index
I can be specified using a wildcard asterisk with the index to
effectively specify multiple values. This takes the form "\*" or "\*n"
or "m\*" or "m\*n". If :math:`N` is the size of the vector, then an
asterisk with no numeric values means all indices from 1 to :math:`N`.
A leading asterisk means all indices from 1 to n (inclusive). A
trailing asterisk means all indices from n to :math:`N` (inclusive). A
middle asterisk means all indices from m to n (inclusive).
Using a wildcard is the same as if the individual elements of the vector
or cells of the array had been listed one by one. For examples, see the
description of this capability in :doc:`fix ave/time <fix_ave_time>`.
----------
The :math:`N_\text{every}`, :math:`N_\text{repeat}`, and
:math:`N_\text{freq}` arguments specify on what time steps the input
values will be used in order to contribute to the average. The final
statistics are generated on time steps that are a multiple of
:math:`N_\text{freq}`\ . The average is over a window of up to
:math:`N_\text{repeat}` quantities, computed in the preceding portion of
the simulation once every :math:`N_\text{every}` time steps.
.. note::
Contrary to most fix ave/* commands, it is not required that Nevery *
Nrepeat <= Nfreq. This is to allow the user to choose the time
window and number of samples contributing to the output at each
Nfreq interval.
For example, if :math:`N_\text{freq}=100` and :math:`N_\text{repeat}=5`
(and :math:`N_\text{every}=1`), then on step 100 values from time steps
96, 97, 98, 99, and 100 will be used. The fix does not compute its
inputs on steps that are not required. If :math:`N_\text{freq}=5`,
:math:`N_\text{repeat}=8` and :math:`N_\text{every}=1`, then values
will first be calculated on step 5 from steps 1-5, on step 10 from 3-10,
on step 15 from 8-15 and so on, forming a rolling average over
timesteps that span a time window larger than Nfreq.
----------
If a value begins with "c\_", a compute ID must follow which has been
previously defined in the input script. If no bracketed term is
appended, the global scalar calculated by the compute is used. If a
bracketed term is appended, the Ith element of the global vector
calculated by the compute is used. See the discussion above for how I
can be specified with a wildcard asterisk to effectively specify
multiple values.
If a value begins with "f\_", a fix ID must follow which has been
previously defined in the input script. If no bracketed term is
appended, the global scalar calculated by the fix is used. If a
bracketed term is appended, the Ith element of the global vector
calculated by the fix is used. See the discussion above for how I can
be specified with a wildcard asterisk to effectively specify multiple
values.
Note that some fixes only produce their values on certain time steps,
which must be compatible with *Nevery*, else an error will result.
Users can also write code for their own fix styles and :doc:`add them to
LAMMPS <Modify>`.
If a value begins with "v\_", a variable name must follow which has been
previously defined in the input script. Only equal-style or vector-style
variables can be used, which both produce global values. Vector-style
variables require a bracketed term to specify the Ith element of the
vector calculated by the variable.
Note that variables of style *equal* and *vector* define a formula which
can reference individual atom properties or thermodynamic keywords, or
they can invoke other computes, fixes, or variables when they are
evaluated, so this is a very general means of specifying quantities to
time average.
----------
The moments are output in the order requested in the arguments following
the last input. Any number and order of moments can be specified,
although it does not make much sense to specify the same moment multiple
times. All moments are computed using a correction of the sample estimators
used to obtain unbiased cumulants :math:`k_{1..4}` (see :ref:`(Cramer)
<Cramer1>`). The correction for variance is the standard Bessel
correction. For other moments, see :ref:`(Joanes)<Joanes1>`.
For *mean*, the arithmetic mean :math:`\bar{x} = \frac{1}{n}
\sum_{i=1}^{n} x_i` is calculated.
For *variance*, the Bessel-corrected sample variance :math:`var = k_2 =
\frac{1}{n - 1} \sum_{i=1}^{n} (x_i - \bar{x})^2` is calculated.
For *stddev*, the Bessel-corrected sample standard deviation
:math:`stddev = \sqrt{k_2}` is calculated.
For *skew*, the adjusted Fisher--Pearson standardized moment :math:`G_1
= \frac{k_3}{k_2^{3/2}} = \frac{k_3}{stddev^3}` is calculated.
For *kurtosis*, the adjusted Fisher--Pearson standardized moment
:math:`G_2 = \frac{k_4}{k_2^2}` is calculated.
----------
Fix invocation and output can be modified by optional keywords.
The *start* keyword specifies that the first computation should be no
earlier than the step number given (but will still occur on a multiple
of *Nfreq*). The default is step 0. Often input values can be 0.0 at
time 0, so setting *start* to a larger value can avoid including a 0.0
in a longer series.
The *history* keyword stores the Nrecent most recent outputs on Nfreq
timesteps, so they can be accessed as global outputs of the fix. Nrecent
must be >= 1. The default is 1, meaning only the most recent output is
accessible. For example, if history 10 is specified and Nfreq = 1000,
then on timestep 20000, the Nfreq outputs from steps 20000, 19000, ...
11000 are available for access. See below for details on how to access
the history values.
For example, this will store the outputs of the previous 10 Nfreq
time steps, i.e. a window of 10000 time steps:
.. code-block:: LAMMPS
fix 1 all ave/moments 1 200 1000 v_volume mean history 10
The previous results can be accessed as values in a global array output
by this fix. Each column of the array is the vector output of the N-th
preceding Nfreq timestep. For example, assuming a single moment is
calculated, the most recent result corresponding to the third input
value would be accessed as "f_name[3][1]", "f_name[3][4]" is the 4th
most recent and so on. The current vector output is always the first
column of the array, corresponding to the most recent result.
To illustrate the utility of keeping output history, consider using
this fix in conjunction with :doc:`fix halt <fix_halt>` to stop a run
automatically if a quantity is converged to within some desired tolerance:
.. code-block:: LAMMPS
variable target equal etot
fix aveg all ave/moments 1 200 1000 v_target mean stddev history 10
variable stopcond equal "abs(f_aveg[1]-f_aveg[1][10])<f_aveg[2]"
fix fhalt all halt 1000 v_stopcond == 1
In this example, every 1000 time steps, the average and standard
deviation of the total energy over the previous 200 time steps are
calculated. If the difference between the most recent and 10-th most
recent average is lower than the most recent standard deviation, the run
is stopped.
----------
Restart, fix_modify, output, run start/stop, minimize info
"""""""""""""""""""""""""""""""""""""""""""""""""""""""""""
No information about this fix is written to :doc:`binary restart files
<restart>`.
This fix produces a global vector and global array which can be accessed
by various :doc:`output commands <Howto_output>`. The values can be
accessed on any time step, but may not be current.
A global vector is produced with the # of elements = number of moments *
number of inputs. The moments are output in the order given in the fix
definition. An array is produced having # of rows = length of vector
output (with an ordering which matches the vector) and # of columns =
value of *history*. There is always at least one column.
Each element of the global vector or array can be either "intensive" or
"extensive", depending on whether the values contributing to the element
are "intensive" or "extensive". If a compute or fix provides the value
being time averaged, then the compute or fix determines whether the value
is intensive or extensive; see the page for that compute or fix for
further info. Values produced by a variable are treated as intensive.
No parameter of this fix can be used with the *start/stop* keywords of
the :doc:`run <run>` command. This fix is not invoked during
:doc:`energy minimization <minimize>`.
Restrictions
""""""""""""
This compute is part of the EXTRA-FIX package. It is only enabled if
LAMMPS was built with that package. See the :doc:`Build package
<Build_package>` page for more info.
Related commands
""""""""""""""""
:doc:`fix ave/time <fix_ave_time>`,
Default
"""""""
The option defaults are history = 1, start = 0.
----------
.. _Cramer1:
**(Cramer)** Cramer, Mathematical Methods of Statistics, Princeton University Press (1946).
.. _Joanes1:
**(Joanes)** Joanes, Gill, The Statistician, 47, 183--189 (1998).