Updating Kokkos lib to 2.03.00

This commit is contained in:
Stan Moore
2017-04-25 13:48:51 -06:00
parent 9f6e126a2f
commit 8910ec6e59
261 changed files with 27816 additions and 17799 deletions

View File

@ -1,13 +1,13 @@
/*
//@HEADER
// ************************************************************************
//
//
// Kokkos v. 2.0
// Copyright (2014) Sandia Corporation
//
//
// Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation,
// the U.S. Government retains certain rights in this software.
//
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
@ -36,12 +36,11 @@
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Questions? Contact H. Carter Edwards (hcedwar@sandia.gov)
//
//
// ************************************************************************
//@HEADER
*/
#ifndef KOKKOS_UNITTEST_TASKSCHEDULER_HPP
#define KOKKOS_UNITTEST_TASKSCHEDULER_HPP
@ -51,9 +50,6 @@
#if defined( KOKKOS_ENABLE_TASKDAG )
//----------------------------------------------------------------------------
//----------------------------------------------------------------------------
namespace TestTaskScheduler {
namespace {
@ -61,14 +57,14 @@ namespace {
inline
long eval_fib( long n )
{
constexpr long mask = 0x03 ;
constexpr long mask = 0x03;
long fib[4] = { 0 , 1 , 1 , 2 };
long fib[4] = { 0, 1, 1, 2 };
for ( long i = 2 ; i <= n ; ++i ) {
for ( long i = 2; i <= n; ++i ) {
fib[ i & mask ] = fib[ ( i - 1 ) & mask ] + fib[ ( i - 2 ) & mask ];
}
return fib[ n & mask ];
}
@ -77,100 +73,93 @@ long eval_fib( long n )
template< typename Space >
struct TestFib
{
typedef Kokkos::TaskScheduler<Space> policy_type ;
typedef Kokkos::Future<long,Space> future_type ;
typedef long value_type ;
typedef Kokkos::TaskScheduler< Space > sched_type;
typedef Kokkos::Future< long, Space > future_type;
typedef long value_type;
policy_type policy ;
future_type fib_m1 ;
future_type fib_m2 ;
const value_type n ;
sched_type sched;
future_type fib_m1;
future_type fib_m2;
const value_type n;
KOKKOS_INLINE_FUNCTION
TestFib( const policy_type & arg_policy , const value_type arg_n )
: policy(arg_policy)
, fib_m1() , fib_m2()
, n( arg_n )
{}
TestFib( const sched_type & arg_sched, const value_type arg_n )
: sched( arg_sched ), fib_m1(), fib_m2(), n( arg_n ) {}
KOKKOS_INLINE_FUNCTION
void operator()( typename policy_type::member_type & , value_type & result )
{
void operator()( typename sched_type::member_type &, value_type & result )
{
#if 0
printf( "\nTestFib(%ld) %d %d\n"
, n
, int( ! fib_m1.is_null() )
, int( ! fib_m2.is_null() )
);
printf( "\nTestFib(%ld) %d %d\n", n, int( !fib_m1.is_null() ), int( !fib_m2.is_null() ) );
#endif
if ( n < 2 ) {
result = n ;
}
else if ( ! fib_m2.is_null() && ! fib_m1.is_null() ) {
result = fib_m1.get() + fib_m2.get();
if ( n < 2 ) {
result = n;
}
else if ( !fib_m2.is_null() && !fib_m1.is_null() ) {
result = fib_m1.get() + fib_m2.get();
}
else {
// Spawn new children and respawn myself to sum their results.
// Spawn lower value at higher priority as it has a shorter
// path to completion.
fib_m2 = Kokkos::task_spawn( Kokkos::TaskSingle( sched, Kokkos::TaskPriority::High )
, TestFib( sched, n - 2 ) );
fib_m1 = Kokkos::task_spawn( Kokkos::TaskSingle( sched )
, TestFib( sched, n - 1 ) );
Kokkos::Future< Space > dep[] = { fib_m1, fib_m2 };
Kokkos::Future< Space > fib_all = Kokkos::when_all( dep, 2 );
if ( !fib_m2.is_null() && !fib_m1.is_null() && !fib_all.is_null() ) {
// High priority to retire this branch.
Kokkos::respawn( this, fib_all, Kokkos::TaskPriority::High );
}
else {
// Spawn new children and respawn myself to sum their results:
// Spawn lower value at higher priority as it has a shorter
// path to completion.
fib_m2 = policy.task_spawn( TestFib(policy,n-2)
, Kokkos::TaskSingle
, Kokkos::TaskHighPriority );
fib_m1 = policy.task_spawn( TestFib(policy,n-1)
, Kokkos::TaskSingle );
Kokkos::Future<Space> dep[] = { fib_m1 , fib_m2 };
Kokkos::Future<Space> fib_all = policy.when_all( 2 , dep );
if ( ! fib_m2.is_null() && ! fib_m1.is_null() && ! fib_all.is_null() ) {
// High priority to retire this branch
policy.respawn( this , Kokkos::TaskHighPriority , fib_all );
}
else {
#if 1
printf( "TestFib(%ld) insufficient memory alloc_capacity(%d) task_max(%d) task_accum(%ld)\n"
, n
, policy.allocation_capacity()
, policy.allocated_task_count_max()
, policy.allocated_task_count_accum()
);
printf( "TestFib(%ld) insufficient memory alloc_capacity(%d) task_max(%d) task_accum(%ld)\n"
, n
, sched.allocation_capacity()
, sched.allocated_task_count_max()
, sched.allocated_task_count_accum()
);
#endif
Kokkos::abort("TestFib insufficient memory");
}
Kokkos::abort( "TestFib insufficient memory" );
}
}
}
static void run( int i , size_t MemoryCapacity = 16000 )
{
typedef typename policy_type::memory_space memory_space ;
static void run( int i, size_t MemoryCapacity = 16000 )
{
typedef typename sched_type::memory_space memory_space;
enum { Log2_SuperBlockSize = 12 };
enum { Log2_SuperBlockSize = 12 };
policy_type root_policy( memory_space() , MemoryCapacity , Log2_SuperBlockSize );
sched_type root_sched( memory_space(), MemoryCapacity, Log2_SuperBlockSize );
future_type f = root_policy.host_spawn( TestFib(root_policy,i) , Kokkos::TaskSingle );
Kokkos::wait( root_policy );
ASSERT_EQ( eval_fib(i) , f.get() );
future_type f = Kokkos::host_spawn( Kokkos::TaskSingle( root_sched )
, TestFib( root_sched, i ) );
Kokkos::wait( root_sched );
ASSERT_EQ( eval_fib( i ), f.get() );
#if 0
fprintf( stdout , "\nTestFib::run(%d) spawn_size(%d) when_all_size(%d) alloc_capacity(%d) task_max(%d) task_accum(%ld)\n"
, i
, int(root_policy.template spawn_allocation_size<TestFib>())
, int(root_policy.when_all_allocation_size(2))
, root_policy.allocation_capacity()
, root_policy.allocated_task_count_max()
, root_policy.allocated_task_count_accum()
);
fflush( stdout );
fprintf( stdout, "\nTestFib::run(%d) spawn_size(%d) when_all_size(%d) alloc_capacity(%d) task_max(%d) task_accum(%ld)\n"
, i
, int(root_sched.template spawn_allocation_size<TestFib>())
, int(root_sched.when_all_allocation_size(2))
, root_sched.allocation_capacity()
, root_sched.allocated_task_count_max()
, root_sched.allocated_task_count_accum()
);
fflush( stdout );
#endif
}
}
};
} // namespace TestTaskScheduler
@ -181,73 +170,71 @@ namespace TestTaskScheduler {
template< class Space >
struct TestTaskDependence {
typedef Kokkos::TaskScheduler< Space > sched_type;
typedef Kokkos::Future< Space > future_type;
typedef Kokkos::View< long, Space > accum_type;
typedef void value_type;
typedef Kokkos::TaskScheduler<Space> policy_type ;
typedef Kokkos::Future<Space> future_type ;
typedef Kokkos::View<long,Space> accum_type ;
typedef void value_type ;
policy_type m_policy ;
accum_type m_accum ;
long m_count ;
sched_type m_sched;
accum_type m_accum;
long m_count;
KOKKOS_INLINE_FUNCTION
TestTaskDependence( long n
, const policy_type & arg_policy
, const accum_type & arg_accum )
: m_policy( arg_policy )
, const sched_type & arg_sched
, const accum_type & arg_accum )
: m_sched( arg_sched )
, m_accum( arg_accum )
, m_count( n )
{}
, m_count( n ) {}
KOKKOS_INLINE_FUNCTION
void operator()( typename policy_type::member_type & )
{
enum { CHUNK = 8 };
const int n = CHUNK < m_count ? CHUNK : m_count ;
void operator()( typename sched_type::member_type & )
{
enum { CHUNK = 8 };
const int n = CHUNK < m_count ? CHUNK : m_count;
if ( 1 < m_count ) {
future_type f[ CHUNK ] ;
if ( 1 < m_count ) {
future_type f[ CHUNK ];
const int inc = ( m_count + n - 1 ) / n ;
const int inc = ( m_count + n - 1 ) / n;
for ( int i = 0 ; i < n ; ++i ) {
long begin = i * inc ;
long count = begin + inc < m_count ? inc : m_count - begin ;
f[i] = m_policy.task_spawn( TestTaskDependence(count,m_policy,m_accum) , Kokkos::TaskSingle );
}
for ( int i = 0; i < n; ++i ) {
long begin = i * inc;
long count = begin + inc < m_count ? inc : m_count - begin;
f[i] = Kokkos::task_spawn( Kokkos::TaskSingle( m_sched )
, TestTaskDependence( count, m_sched, m_accum ) );
}
m_count = 0 ;
m_count = 0;
m_policy.respawn( this , m_policy.when_all( n , f ) );
}
else if ( 1 == m_count ) {
Kokkos::atomic_increment( & m_accum() );
}
Kokkos::respawn( this, Kokkos::when_all( f, n ) );
}
else if ( 1 == m_count ) {
Kokkos::atomic_increment( & m_accum() );
}
}
static void run( int n )
{
typedef typename policy_type::memory_space memory_space ;
{
typedef typename sched_type::memory_space memory_space;
// enum { MemoryCapacity = 4000 }; // Triggers infinite loop in memory pool
enum { MemoryCapacity = 16000 };
enum { Log2_SuperBlockSize = 12 };
policy_type policy( memory_space() , MemoryCapacity , Log2_SuperBlockSize );
// enum { MemoryCapacity = 4000 }; // Triggers infinite loop in memory pool.
enum { MemoryCapacity = 16000 };
enum { Log2_SuperBlockSize = 12 };
sched_type sched( memory_space(), MemoryCapacity, Log2_SuperBlockSize );
accum_type accum("accum");
accum_type accum( "accum" );
typename accum_type::HostMirror host_accum =
Kokkos::create_mirror_view( accum );
typename accum_type::HostMirror host_accum = Kokkos::create_mirror_view( accum );
policy.host_spawn( TestTaskDependence(n,policy,accum) , Kokkos::TaskSingle );
Kokkos::host_spawn( Kokkos::TaskSingle( sched ), TestTaskDependence( n, sched, accum ) );
Kokkos::wait( policy );
Kokkos::wait( sched );
Kokkos::deep_copy( host_accum , accum );
Kokkos::deep_copy( host_accum, accum );
ASSERT_EQ( host_accum() , n );
}
ASSERT_EQ( host_accum(), n );
}
};
} // namespace TestTaskScheduler
@ -258,294 +245,317 @@ namespace TestTaskScheduler {
template< class ExecSpace >
struct TestTaskTeam {
//enum { SPAN = 8 };
enum { SPAN = 33 };
//enum { SPAN = 1 };
typedef void value_type ;
typedef Kokkos::TaskScheduler<ExecSpace> policy_type ;
typedef Kokkos::Future<ExecSpace> future_type ;
typedef Kokkos::View<long*,ExecSpace> view_type ;
typedef void value_type;
typedef Kokkos::TaskScheduler< ExecSpace > sched_type;
typedef Kokkos::Future< ExecSpace > future_type;
typedef Kokkos::View< long*, ExecSpace > view_type;
policy_type policy ;
future_type future ;
sched_type sched;
future_type future;
view_type parfor_result ;
view_type parreduce_check ;
view_type parscan_result ;
view_type parscan_check ;
const long nvalue ;
view_type parfor_result;
view_type parreduce_check;
view_type parscan_result;
view_type parscan_check;
const long nvalue;
KOKKOS_INLINE_FUNCTION
TestTaskTeam( const policy_type & arg_policy
, const view_type & arg_parfor_result
, const view_type & arg_parreduce_check
, const view_type & arg_parscan_result
, const view_type & arg_parscan_check
, const long arg_nvalue )
: policy(arg_policy)
TestTaskTeam( const sched_type & arg_sched
, const view_type & arg_parfor_result
, const view_type & arg_parreduce_check
, const view_type & arg_parscan_result
, const view_type & arg_parscan_check
, const long arg_nvalue )
: sched( arg_sched )
, future()
, parfor_result( arg_parfor_result )
, parreduce_check( arg_parreduce_check )
, parscan_result( arg_parscan_result )
, parscan_check( arg_parscan_check )
, nvalue( arg_nvalue )
{}
, nvalue( arg_nvalue ) {}
KOKKOS_INLINE_FUNCTION
void operator()( typename policy_type::member_type & member )
{
const long end = nvalue + 1 ;
const long begin = 0 < end - SPAN ? end - SPAN : 0 ;
void operator()( typename sched_type::member_type & member )
{
const long end = nvalue + 1;
const long begin = 0 < end - SPAN ? end - SPAN : 0;
if ( 0 < begin && future.is_null() ) {
if ( member.team_rank() == 0 ) {
future = policy.task_spawn
( TestTaskTeam( policy ,
parfor_result ,
parreduce_check,
parscan_result,
parscan_check,
begin - 1 )
, Kokkos::TaskTeam );
assert( ! future.is_null() );
policy.respawn( this , future );
}
return ;
}
Kokkos::parallel_for( Kokkos::TeamThreadRange(member,begin,end)
, [&]( int i ) { parfor_result[i] = i ; }
);
// test parallel_reduce without join
long tot = 0;
long expected = (begin+end-1)*(end-begin)*0.5;
Kokkos::parallel_reduce( Kokkos::TeamThreadRange(member,begin,end)
, [&]( int i, long &res) { res += parfor_result[i]; }
, tot);
Kokkos::parallel_for( Kokkos::TeamThreadRange(member,begin,end)
, [&]( int i ) { parreduce_check[i] = expected-tot ; }
);
// test parallel_reduce with join
tot = 0;
Kokkos::parallel_reduce( Kokkos::TeamThreadRange(member,begin,end)
, [&]( int i, long &res) { res += parfor_result[i]; }
, [&]( long& val1, const long& val2) { val1 += val2; }
, tot);
Kokkos::parallel_for( Kokkos::TeamThreadRange(member,begin,end)
, [&]( int i ) { parreduce_check[i] += expected-tot ; }
);
// test parallel_scan
// Exclusive scan
Kokkos::parallel_scan<long>( Kokkos::TeamThreadRange(member,begin,end)
, [&]( int i, long &val , const bool final ) {
if ( final ) { parscan_result[i] = val; }
val += i;
}
);
if ( 0 < begin && future.is_null() ) {
if ( member.team_rank() == 0 ) {
for ( long i = begin ; i < end ; ++i ) {
parscan_check[i] = (i*(i-1)-begin*(begin-1))*0.5-parscan_result[i];
}
future = Kokkos::task_spawn( Kokkos::TaskTeam( sched )
, TestTaskTeam( sched
, parfor_result
, parreduce_check
, parscan_result
, parscan_check
, begin - 1 )
);
assert( !future.is_null() );
Kokkos::respawn( this, future );
}
// Inclusive scan
Kokkos::parallel_scan<long>( Kokkos::TeamThreadRange(member,begin,end)
, [&]( int i, long &val , const bool final ) {
val += i;
if ( final ) { parscan_result[i] = val; }
}
);
if ( member.team_rank() == 0 ) {
for ( long i = begin ; i < end ; ++i ) {
parscan_check[i] += (i*(i+1)-begin*(begin-1))*0.5-parscan_result[i];
}
}
// ThreadVectorRange check
/*
long result = 0;
expected = (begin+end-1)*(end-begin)*0.5;
Kokkos::parallel_reduce( Kokkos::TeamThreadRange( member , 0 , 1 )
, [&] ( const int i , long & outerUpdate ) {
long sum_j = 0.0;
Kokkos::parallel_reduce( Kokkos::ThreadVectorRange( member , end - begin )
, [&] ( const int j , long &innerUpdate ) {
innerUpdate += begin+j;
} , sum_j );
outerUpdate += sum_j ;
} , result );
Kokkos::parallel_for( Kokkos::TeamThreadRange(member,begin,end)
, [&]( int i ) {
parreduce_check[i] += result-expected ;
}
);
*/
return;
}
Kokkos::parallel_for( Kokkos::TeamThreadRange( member, begin, end )
, [&] ( int i ) { parfor_result[i] = i; }
);
// Test parallel_reduce without join.
long tot = 0;
long expected = ( begin + end - 1 ) * ( end - begin ) * 0.5;
Kokkos::parallel_reduce( Kokkos::TeamThreadRange( member, begin, end )
, [&] ( int i, long & res ) { res += parfor_result[i]; }
, tot
);
Kokkos::parallel_for( Kokkos::TeamThreadRange( member, begin, end )
, [&] ( int i ) { parreduce_check[i] = expected - tot; }
);
// Test parallel_reduce with join.
tot = 0;
Kokkos::parallel_reduce( Kokkos::TeamThreadRange( member, begin, end )
, [&] ( int i, long & res ) { res += parfor_result[i]; }
#if 0
, Kokkos::Sum( tot )
#else
, [] ( long & dst, const long & src ) { dst += src; }
, tot
#endif
);
Kokkos::parallel_for( Kokkos::TeamThreadRange( member, begin, end )
, [&] ( int i ) { parreduce_check[i] += expected - tot; }
);
// Test parallel_scan.
// Exclusive scan.
Kokkos::parallel_scan<long>( Kokkos::TeamThreadRange( member, begin, end )
, [&] ( int i, long & val, const bool final )
{
if ( final ) { parscan_result[i] = val; }
val += i;
});
// Wait for 'parscan_result' before testing it.
member.team_barrier();
if ( member.team_rank() == 0 ) {
for ( long i = begin; i < end; ++i ) {
parscan_check[i] = ( i * ( i - 1 ) - begin * ( begin - 1 ) ) * 0.5 - parscan_result[i];
}
}
// Don't overwrite 'parscan_result' until it has been tested.
member.team_barrier();
// Inclusive scan.
Kokkos::parallel_scan<long>( Kokkos::TeamThreadRange( member, begin, end )
, [&] ( int i, long & val, const bool final )
{
val += i;
if ( final ) { parscan_result[i] = val; }
});
// Wait for 'parscan_result' before testing it.
member.team_barrier();
if ( member.team_rank() == 0 ) {
for ( long i = begin; i < end; ++i ) {
parscan_check[i] += ( i * ( i + 1 ) - begin * ( begin - 1 ) ) * 0.5 - parscan_result[i];
}
}
// ThreadVectorRange check.
/*
long result = 0;
expected = ( begin + end - 1 ) * ( end - begin ) * 0.5;
Kokkos::parallel_reduce( Kokkos::TeamThreadRange( member, 0, 1 )
, [&] ( const int i, long & outerUpdate )
{
long sum_j = 0.0;
Kokkos::parallel_reduce( Kokkos::ThreadVectorRange( member, end - begin )
, [&] ( const int j, long & innerUpdate )
{
innerUpdate += begin + j;
}, sum_j );
outerUpdate += sum_j;
}, result );
Kokkos::parallel_for( Kokkos::TeamThreadRange( member, begin, end )
, [&] ( int i )
{
parreduce_check[i] += result - expected;
});
*/
}
static void run( long n )
{
// const unsigned memory_capacity = 10000 ; // causes memory pool infinite loop
// const unsigned memory_capacity = 100000 ; // fails with SPAN=1 for serial and OMP
const unsigned memory_capacity = 400000 ;
{
//const unsigned memory_capacity = 10000; // Causes memory pool infinite loop.
//const unsigned memory_capacity = 100000; // Fails with SPAN=1 for serial and OMP.
const unsigned memory_capacity = 400000;
policy_type root_policy( typename policy_type::memory_space()
, memory_capacity );
sched_type root_sched( typename sched_type::memory_space(), memory_capacity );
view_type root_parfor_result("parfor_result",n+1);
view_type root_parreduce_check("parreduce_check",n+1);
view_type root_parscan_result("parscan_result",n+1);
view_type root_parscan_check("parscan_check",n+1);
view_type root_parfor_result( "parfor_result", n + 1 );
view_type root_parreduce_check( "parreduce_check", n + 1 );
view_type root_parscan_result( "parscan_result", n + 1 );
view_type root_parscan_check( "parscan_check", n + 1 );
typename view_type::HostMirror
host_parfor_result = Kokkos::create_mirror_view( root_parfor_result );
typename view_type::HostMirror
host_parreduce_check = Kokkos::create_mirror_view( root_parreduce_check );
typename view_type::HostMirror
host_parscan_result = Kokkos::create_mirror_view( root_parscan_result );
typename view_type::HostMirror
host_parscan_check = Kokkos::create_mirror_view( root_parscan_check );
typename view_type::HostMirror
host_parfor_result = Kokkos::create_mirror_view( root_parfor_result );
typename view_type::HostMirror
host_parreduce_check = Kokkos::create_mirror_view( root_parreduce_check );
typename view_type::HostMirror
host_parscan_result = Kokkos::create_mirror_view( root_parscan_result );
typename view_type::HostMirror
host_parscan_check = Kokkos::create_mirror_view( root_parscan_check );
future_type f = root_policy.host_spawn(
TestTaskTeam( root_policy ,
root_parfor_result ,
root_parreduce_check ,
root_parscan_result,
root_parscan_check,
n ) ,
Kokkos::TaskTeam );
future_type f = Kokkos::host_spawn( Kokkos::TaskTeam( root_sched )
, TestTaskTeam( root_sched
, root_parfor_result
, root_parreduce_check
, root_parscan_result
, root_parscan_check
, n )
);
Kokkos::wait( root_policy );
Kokkos::wait( root_sched );
Kokkos::deep_copy( host_parfor_result , root_parfor_result );
Kokkos::deep_copy( host_parreduce_check , root_parreduce_check );
Kokkos::deep_copy( host_parscan_result , root_parscan_result );
Kokkos::deep_copy( host_parscan_check , root_parscan_check );
Kokkos::deep_copy( host_parfor_result, root_parfor_result );
Kokkos::deep_copy( host_parreduce_check, root_parreduce_check );
Kokkos::deep_copy( host_parscan_result, root_parscan_result );
Kokkos::deep_copy( host_parscan_check, root_parscan_check );
for ( long i = 0 ; i <= n ; ++i ) {
const long answer = i ;
if ( host_parfor_result(i) != answer ) {
std::cerr << "TestTaskTeam::run ERROR parallel_for result(" << i << ") = "
<< host_parfor_result(i) << " != " << answer << std::endl ;
}
if ( host_parreduce_check(i) != 0 ) {
std::cerr << "TestTaskTeam::run ERROR parallel_reduce check(" << i << ") = "
<< host_parreduce_check(i) << " != 0" << std::endl ;
}
if ( host_parscan_check(i) != 0 ) {
std::cerr << "TestTaskTeam::run ERROR parallel_scan check(" << i << ") = "
<< host_parscan_check(i) << " != 0" << std::endl ;
}
for ( long i = 0; i <= n; ++i ) {
const long answer = i;
if ( host_parfor_result( i ) != answer ) {
std::cerr << "TestTaskTeam::run ERROR parallel_for result(" << i << ") = "
<< host_parfor_result( i ) << " != " << answer << std::endl;
}
if ( host_parreduce_check( i ) != 0 ) {
std::cerr << "TestTaskTeam::run ERROR parallel_reduce check(" << i << ") = "
<< host_parreduce_check( i ) << " != 0" << std::endl;
}
if ( host_parscan_check( i ) != 0 ) {
std::cerr << "TestTaskTeam::run ERROR parallel_scan check(" << i << ") = "
<< host_parscan_check( i ) << " != 0" << std::endl;
}
}
}
};
template< class ExecSpace >
struct TestTaskTeamValue {
enum { SPAN = 8 };
typedef long value_type ;
typedef Kokkos::TaskScheduler<ExecSpace> policy_type ;
typedef Kokkos::Future<value_type,ExecSpace> future_type ;
typedef Kokkos::View<long*,ExecSpace> view_type ;
typedef long value_type;
typedef Kokkos::TaskScheduler< ExecSpace > sched_type;
typedef Kokkos::Future< value_type, ExecSpace > future_type;
typedef Kokkos::View< long*, ExecSpace > view_type;
policy_type policy ;
future_type future ;
sched_type sched;
future_type future;
view_type result ;
const long nvalue ;
view_type result;
const long nvalue;
KOKKOS_INLINE_FUNCTION
TestTaskTeamValue( const policy_type & arg_policy
, const view_type & arg_result
, const long arg_nvalue )
: policy(arg_policy)
TestTaskTeamValue( const sched_type & arg_sched
, const view_type & arg_result
, const long arg_nvalue )
: sched( arg_sched )
, future()
, result( arg_result )
, nvalue( arg_nvalue )
{}
, nvalue( arg_nvalue ) {}
KOKKOS_INLINE_FUNCTION
void operator()( typename policy_type::member_type const & member
void operator()( typename sched_type::member_type const & member
, value_type & final )
{
const long end = nvalue + 1 ;
const long begin = 0 < end - SPAN ? end - SPAN : 0 ;
if ( 0 < begin && future.is_null() ) {
if ( member.team_rank() == 0 ) {
future = policy.task_spawn
( TestTaskTeamValue( policy , result , begin - 1 )
, Kokkos::TaskTeam );
assert( ! future.is_null() );
policy.respawn( this , future );
}
return ;
}
Kokkos::parallel_for( Kokkos::TeamThreadRange(member,begin,end)
, [&]( int i ) { result[i] = i + 1 ; }
);
{
const long end = nvalue + 1;
const long begin = 0 < end - SPAN ? end - SPAN : 0;
if ( 0 < begin && future.is_null() ) {
if ( member.team_rank() == 0 ) {
final = result[nvalue] ;
future = sched.task_spawn( TestTaskTeamValue( sched, result, begin - 1 )
, Kokkos::TaskTeam );
assert( !future.is_null() );
sched.respawn( this , future );
}
Kokkos::memory_fence();
return;
}
Kokkos::parallel_for( Kokkos::TeamThreadRange( member, begin, end )
, [&] ( int i ) { result[i] = i + 1; }
);
if ( member.team_rank() == 0 ) {
final = result[nvalue];
}
Kokkos::memory_fence();
}
static void run( long n )
{
// const unsigned memory_capacity = 10000 ; // causes memory pool infinite loop
const unsigned memory_capacity = 100000 ;
{
//const unsigned memory_capacity = 10000; // Causes memory pool infinite loop.
const unsigned memory_capacity = 100000;
policy_type root_policy( typename policy_type::memory_space()
, memory_capacity );
sched_type root_sched( typename sched_type::memory_space()
, memory_capacity );
view_type root_result("result",n+1);
view_type root_result( "result", n + 1 );
typename view_type::HostMirror
host_result = Kokkos::create_mirror_view( root_result );
typename view_type::HostMirror host_result = Kokkos::create_mirror_view( root_result );
future_type fv = root_policy.host_spawn
( TestTaskTeamValue( root_policy, root_result, n ) , Kokkos::TaskTeam );
future_type fv = root_sched.host_spawn( TestTaskTeamValue( root_sched, root_result, n )
, Kokkos::TaskTeam );
Kokkos::wait( root_policy );
Kokkos::wait( root_sched );
Kokkos::deep_copy( host_result , root_result );
Kokkos::deep_copy( host_result, root_result );
if ( fv.get() != n + 1 ) {
std::cerr << "TestTaskTeamValue ERROR future = "
<< fv.get() << " != " << n + 1 << std::endl ;
}
for ( long i = 0 ; i <= n ; ++i ) {
const long answer = i + 1 ;
if ( host_result(i) != answer ) {
std::cerr << "TestTaskTeamValue ERROR result(" << i << ") = "
<< host_result(i) << " != " << answer << std::endl ;
}
if ( fv.get() != n + 1 ) {
std::cerr << "TestTaskTeamValue ERROR future = "
<< fv.get() << " != " << n + 1 << std::endl;
}
for ( long i = 0; i <= n; ++i ) {
const long answer = i + 1;
if ( host_result( i ) != answer ) {
std::cerr << "TestTaskTeamValue ERROR result(" << i << ") = "
<< host_result( i ) << " != " << answer << std::endl;
}
}
}
};
} // namespace TestTaskScheduler
//----------------------------------------------------------------------------
//----------------------------------------------------------------------------
#endif /* #if defined( KOKKOS_ENABLE_TASKDAG ) */
#endif /* #ifndef KOKKOS_UNITTEST_TASKSCHEDULER_HPP */
#endif // #if defined( KOKKOS_ENABLE_TASKDAG )
#endif // #ifndef KOKKOS_UNITTEST_TASKSCHEDULER_HPP