address spelling and achor issues, and integrate into style overview tables

This commit is contained in:
Axel Kohlmeyer
2022-02-16 08:04:12 -05:00
parent 78b123fa4d
commit 8b627f92f0
8 changed files with 25 additions and 18 deletions

View File

@ -124,6 +124,7 @@ OPT.
* :doc:`hbond/dreiding/morse (o) <pair_hbond_dreiding>`
* :doc:`hdnnp <pair_hdnnp>`
* :doc:`ilp/graphene/hbn <pair_ilp_graphene_hbn>`
* :doc:`ilp/tmd <pair_ilp_tmd>`
* :doc:`kolmogorov/crespi/full <pair_kolmogorov_crespi_full>`
* :doc:`kolmogorov/crespi/z <pair_kolmogorov_crespi_z>`
* :doc:`lcbop <pair_lcbop>`
@ -241,6 +242,7 @@ OPT.
* :doc:`reaxff (ko) <pair_reaxff>`
* :doc:`rebo (io) <pair_airebo>`
* :doc:`resquared (go) <pair_resquared>`
* :doc:`saip/metal <pair_saip_metal>`
* :doc:`sdpd/taitwater/isothermal <pair_sdpd_taitwater_isothermal>`
* :doc:`smd/hertz <pair_smd_hertz>`
* :doc:`smd/tlsph <pair_smd_tlsph>`

View File

@ -30,8 +30,8 @@ Description
"""""""""""
The *ilp/tmd* style computes the registry-dependent interlayer
potential (ILP) potential for itransition metal dichalcogenide (TMD)
as described in :ref:`(Ouyang3) <Ouyang3>`.
potential (ILP) potential for transition metal dichalcogenides (TMD)
as described in :ref:`(Ouyang7) <Ouyang7>`.
.. math::
@ -58,11 +58,11 @@ calculating the normals.
.. note::
Since each MX2 (M = Mo, W and X = S, Se Te) layer contains two
sublayers of X atoms and one sublayer of M atoms, the definition of the
sub-layers of X atoms and one sub-layer of M atoms, the definition of the
normal vectors used for graphene and h-BN is no longer valid for TMDs.
In :ref:`(Ouyang3) <Ouyang3>`, a new definition is proposed, where for
In :ref:`(Ouyang7) <Ouyang7>`, a new definition is proposed, where for
each atom `i`, its six nearest neighboring atoms belonging to the same
sublayer are chosen to define the normal vector `{\bf n}_i`.
sub-layer are chosen to define the normal vector `{\bf n}_i`.
The parameter file (e.g. TMD.ILP), is intended for use with *metal*
:doc:`units <units>`, with energies in meV. Two additional parameters,
@ -72,14 +72,14 @@ list for calculating the normals for each atom pair.
.. note::
The parameters presented in the parameter file (e.g. BNCH.ILP),
The parameters presented in the parameter file (e.g. TMD.ILP),
are fitted with taper function by setting the cutoff equal to 16.0
Angstrom. Using different cutoff or taper function should be careful.
These parameters provide a good description in both short- and long-range
interaction regimes. This feature is essential for simulations in high pressure
regime (i.e., the interlayer distance is smaller than the equilibrium
distance). The benchmark tests and comparison of these parameters can
be found in :ref:`(Ouyang3) <Ouyang3>`.
be found in :ref:`(Ouyang7) <Ouyang7>`.
This potential must be used in combination with hybrid/overlay.
Other interactions can be set to zero using pair_style *none*\ .
@ -152,6 +152,6 @@ tap_flag = 1
----------
.. _Ouyang3:
.. _Ouyang7:
**(Ouyang3)** W. Ouyang, et al., J. Chem. Theory Comput. 17, 7237 (2021).
**(Ouyang7)** W. Ouyang, et al., J. Chem. Theory Comput. 17, 7237 (2021).

View File

@ -30,8 +30,8 @@ Description
"""""""""""
The *saip/metal* style computes the registry-dependent interlayer
potential (ILP) potential for heterojunctions formed with hexagonal
2D materials and metal surfaces, as described in :ref:`(Ouyang4) <Ouyang4>`.
potential (ILP) potential for hetero-junctions formed with hexagonal
2D materials and metal surfaces, as described in :ref:`(Ouyang6) <Ouyang6>`.
.. math::
@ -63,9 +63,9 @@ calculating the normals.
assumption is suitable for many bulk material surfaces, for
example, for systems possessing s-type valence orbitals or
metallic surfaces, whose valence electrons are mostly
delocalized, such that their Pauli repulsions with the electrons
delocalized, such that their Pauli repulsion with the electrons
of adjacent surfaces are isotropic. Caution should be used in
the case of very small gold contacts, for example, nanoclusters,
the case of very small gold contacts, for example, nano-clusters,
where edge effects may become relevant.
The parameter file (e.g. CHAu.ILP), is intended for use with *metal*
@ -151,6 +151,6 @@ tap_flag = 1
----------
.. _Ouyang4:
.. _Ouyang6:
**(Ouyang4)** W. Ouyang, O. Hod, and R. Guerra, J. Chem. Theory Comput. 17, 7215 (2021).
**(Ouyang6)** W. Ouyang, O. Hod, and R. Guerra, J. Chem. Theory Comput. 17, 7215 (2021).

View File

@ -188,6 +188,7 @@ accelerated styles exist.
* :doc:`hbond/dreiding/morse <pair_hbond_dreiding>` - DREIDING hydrogen bonding Morse potential
* :doc:`hdnnp <pair_hdnnp>` - High-dimensional neural network potential
* :doc:`ilp/graphene/hbn <pair_ilp_graphene_hbn>` - registry-dependent interlayer potential (ILP)
* :doc:`ilp/tmd <pair_ilp_tmd>` - interlayer potential (ILP) potential for transition metal dichalcogenides (TMD)
* :doc:`kim <pair_kim>` - interface to potentials provided by KIM project
* :doc:`kolmogorov/crespi/full <pair_kolmogorov_crespi_full>` - Kolmogorov-Crespi (KC) potential with no simplifications
* :doc:`kolmogorov/crespi/z <pair_kolmogorov_crespi_z>` - Kolmogorov-Crespi (KC) potential with normals along z-axis
@ -305,6 +306,7 @@ accelerated styles exist.
* :doc:`reaxff <pair_reaxff>` - ReaxFF potential
* :doc:`rebo <pair_airebo>` - second generation REBO potential of Brenner
* :doc:`resquared <pair_resquared>` - Everaers RE-Squared ellipsoidal potential
* :doc:`saip/metal <pair_saip_metal>` - interlayer potential for hetero-junctions formed with hexagonal 2D materials and metal surfaces
* :doc:`sdpd/taitwater/isothermal <pair_sdpd_taitwater_isothermal>` - smoothed dissipative particle dynamics for water at isothermal conditions
* :doc:`smd/hertz <pair_smd_hertz>` -
* :doc:`smd/tlsph <pair_smd_tlsph>` -

View File

@ -69,7 +69,7 @@ and K of atom I within a cutoff distance :math:`a `\sigma`.
The *sw/mod* style is designed for simulations of materials when
distinguishing three-body angles are necessary, such as borophene
and transition metal dichalcogenide, which cannot be described
and transition metal dichalcogenides, which cannot be described
by the original code for the Stillinger-Weber potential.
For instance, there are several types of angles around each Mo atom in `MoS_2`,
and some unnecessary angle types should be excluded in the three-body interaction.
@ -99,7 +99,7 @@ This smoothly turns off the energy and force contributions for :math:`\left| \de
It is suggested that :math:`\delta 1` and :math:`\delta_2` to be the value around
:math:`0.5 \left| \cos \theta_1 - \cos \theta_2 \right|`, with
:math:`\theta_1` and :math:`\theta_2` as the different types of angles around an atom.
For borophene and transition metal dichalcogenide, :math:`\delta_1 = 0.25` and :math:`\delta_2 = 0.35`.
For borophene and transition metal dichalcogenides, :math:`\delta_1 = 0.25` and :math:`\delta_2 = 0.35`.
This value enables the cut-off function to exclude unnecessary angles in the three-body SW terms.
.. note::

View File

@ -692,7 +692,7 @@ diagonalizers
diagonalizing
Diallo
diblock
dichalcogenide
dichalcogenides
Dickel
diel
Dietz
@ -2954,6 +2954,7 @@ safezone
Safran
Sagui
Saidi
saip
Salanne
Salles
sandia

View File

@ -0,0 +1 @@
../../../../potentials/BNCH.ILP

View File

@ -0,0 +1 @@
../../../../potentials/CH.rebo