Added Clebsch-Gordan coefficients

This commit is contained in:
Aidan Thompson
2019-08-23 22:29:41 -06:00
parent aa9b805cc9
commit 8e1b3116a7
2 changed files with 337 additions and 30 deletions

View File

@ -56,6 +56,7 @@ ComputeOrientOrderAtom::ComputeOrientOrderAtom(LAMMPS *lmp, int narg, char **arg
nnn = 12;
cutsq = 0.0;
wlflag = 0;
qlcompflag = 0;
// specify which orders to request
@ -103,6 +104,13 @@ ComputeOrientOrderAtom::ComputeOrientOrderAtom(LAMMPS *lmp, int narg, char **arg
if (qlist[il] > qmax) qmax = qlist[il];
}
iarg += nqlist;
} else if (strcmp(arg[iarg],"wlparams") == 0) {
if (iarg+2 > narg)
error->all(FLERR,"Illegal compute orientorder/atom command");
if (strcmp(arg[iarg+1],"yes") == 0) wlflag = 1;
else if (strcmp(arg[iarg+1],"no") == 0) wlflag = 0;
else error->all(FLERR,"Illegal compute orientorder/atom command");
iarg += 2;
} else if (strcmp(arg[iarg],"components") == 0) {
qlcompflag = 1;
if (iarg+2 > narg)
@ -130,8 +138,9 @@ ComputeOrientOrderAtom::ComputeOrientOrderAtom(LAMMPS *lmp, int narg, char **arg
} else error->all(FLERR,"Illegal compute orientorder/atom command");
}
if (qlcompflag) ncol = nqlist + 2*(2*qlcomp+1);
else ncol = nqlist;
ncol = nqlist;
if (wlflag) ncol += nqlist;
if (qlcompflag) ncol += nqlist + 2*(2*qlcomp+1);
peratom_flag = 1;
size_peratom_cols = ncol;
@ -151,7 +160,7 @@ ComputeOrientOrderAtom::~ComputeOrientOrderAtom()
memory->destroy(qlist);
memory->destroy(qnm_r);
memory->destroy(qnm_i);
memory->destroy(cglist);
}
/* ---------------------------------------------------------------------- */
@ -183,6 +192,8 @@ void ComputeOrientOrderAtom::init()
if (strcmp(modify->compute[i]->style,"orientorder/atom") == 0) count++;
if (count > 1 && comm->me == 0)
error->warning(FLERR,"More than one compute orientorder/atom");
if (wlflag) init_clebsch_gordan();
}
/* ---------------------------------------------------------------------- */
@ -274,8 +285,8 @@ void ComputeOrientOrderAtom::compute_peratom()
// if not nnn neighbors, order parameter = 0;
if ((ncount == 0) || (ncount < nnn)) {
for (int il = 0; il < nqlist; il++)
qn[il] = 0.0;
for (int jj = 0; jj < ncol; jj++)
qn[jj] = 0.0;
continue;
}
@ -461,52 +472,71 @@ void ComputeOrientOrderAtom::calc_boop(double **rlist,
}
}
// convert sums to averages
double facn = 1.0 / ncount;
for (int il = 0; il < nqlist; il++) {
int l = qlist[il];
for(int m = 0; m < 2*l+1; m++) {
qnm_r[il][m] *= facn;
qnm_i[il][m] *= facn;
}
}
// calculate Q_l
double fac = sqrt(MY_4PI) / ncount;
double facpi = sqrt(MY_4PI);
double normfac = 0.0;
int jcount = 0;
int jj = 0;
for (int il = 0; il < nqlist; il++) {
int l = qlist[il];
double qm_sum = 0.0;
for(int m = 0; m < 2*l+1; m++)
qm_sum += qnm_r[il][m]*qnm_r[il][m] + qnm_i[il][m]*qnm_i[il][m];
qn[jcount++] = fac * sqrt(qm_sum / (2*l+1));
for(int m = 0; m < 2*l+1; m++)
printf("Q_l = %d %g %g\n",l, qnm_r[il][m], qnm_i[il][m]);
qn[jj++] = facpi * sqrt(qm_sum / (2*l+1) );
if (qlcompflag && iqlcomp == il) normfac = 1.0/sqrt(qm_sum);
}
// TODO:
// 1. Need to allocate extra memory in qn[] for this option
// 2. Need to add keyword option
// 1. [done]Need to allocate extra memory in qnarray[] for this option
// 2. [done]Need to add keyword option
// 3. Need to caclulate Clebsch-Gordan/Wigner 3j coefficients
// 4. Compate to bcc values in /Users/athomps/netapp/codes/MatMiner/matminer/matminer/featurizers/boop
// (Can try getting them from boop.py first)
// 5. Compate to bcc values in /Users/athomps/netapp/codes/MatMiner/matminer/matminer/featurizers/boop.py
// // calculate W_l
// calculate W_l
// if (wlflag) {
// for (int il = 0; il < nqlist; il++) {
// int l = qlist[il];
// double wlsum = 0.0;
// for(int m1 = 0; m1 < 2*l+1; m1++) {
// for(int m2 = MAX(0,l-m1); m2 < MIN(2*l+1,3*l-m1; m2++)) {
// int m = m1 + m2 - l;
// qm1qm2_r = qnm_r[il][m1]*qnm_r[il][m2] - qnm_i[il][m1]*qnm_i[il][m2];
// qm1qm2_i = qnm_r[il][m1]*qnm_i[il][m2] + qnm_i[il][m1]*qnm_r[il][m2];
// wlsum += (qm1qm2_r*qnm_r[il][m] + qm1qm2_i*qnm_i[il][m])*cg;
// }
// }
// qn[jcount++] = wlsum;
// }
// }
if (wlflag) {
int idxcg_count = 0;
for (int il = 0; il < nqlist; il++) {
int l = qlist[il];
double wlsum = 0.0;
for(int m1 = 0; m1 < 2*l+1; m1++) {
for(int m2 = MAX(0,l-m1); m2 < MIN(2*l+1,3*l-m1+1); m2++) {
int m = m1 + m2 - l;
double qm1qm2_r = qnm_r[il][m1]*qnm_r[il][m2] - qnm_i[il][m1]*qnm_i[il][m2];
double qm1qm2_i = qnm_r[il][m1]*qnm_i[il][m2] + qnm_i[il][m1]*qnm_r[il][m2];
wlsum += (qm1qm2_r*qnm_r[il][m] + qm1qm2_i*qnm_i[il][m])*cglist[idxcg_count];
idxcg_count++;
}
}
// This matches boop.py output, with cg==1
printf("W_l = %d %g\n",l,wlsum);
qn[jj++] = wlsum/sqrt(2*l+1);
}
}
// output of the complex vector
if (qlcompflag) {
for(int m = 0; m < 2*qlcomp+1; m++) {
qn[jcount++] = qnm_r[iqlcomp][m] * normfac;
qn[jcount++] = qnm_i[iqlcomp][m] * normfac;
qn[jj++] = qnm_r[iqlcomp][m] * normfac;
qn[jj++] = qnm_i[iqlcomp][m] * normfac;
}
}
@ -567,3 +597,272 @@ double ComputeOrientOrderAtom::associated_legendre(int l, int m, double x)
return p;
}
/* ----------------------------------------------------------------------
assign Clebsch-Gordan coefficients with l1=l2=l
using the quasi-binomial formula VMK 8.2.1(3)
------------------------------------------------------------------------- */
void ComputeOrientOrderAtom::init_clebsch_gordan()
{
double sum,dcg,sfaccg;
int m, aa2, bb2, cc2, j1, j2, j;
int ifac, idxcg_count;
idxcg_count = 0;
for (int il = 0; il < nqlist; il++) {
int l = qlist[il];
for(int m1 = 0; m1 < 2*l+1; m1++) {
for(int m2 = MAX(0,l-m1); m2 < MIN(2*l+1,3*l-m1+1); m2++) {
idxcg_count++;
}
}
}
idxcg_max = idxcg_count;
memory->create(cglist, idxcg_max, "computeorientorderatom:cglist");
idxcg_count = 0;
for (int il = 0; il < nqlist; il++) {
int l = qlist[il];
j1 = j2 = j = l;
for(int m1 = 0; m1 < 2*l+1; m1++) {
aa2 = m1 - j1;
for(int m2 = MAX(0,l-m1); m2 < MIN(2*l+1,3*l-m1+1); m2++) {
bb2 = m2 - j2;
m = (aa2 + bb2 + j) / 2;
sum = 0.0;
for (int z = MAX(0, MAX(-(j - j2 + aa2)
, -(j - j1 - bb2) ));
z <= MIN((j1 + j2 - j),
MIN((j1 - aa2), (j2 + bb2)));
z++) {
ifac = z % 2 ? -1 : 1;
sum += ifac /
(factorial(z) *
factorial((j1 + j2 - j) - z) *
factorial((j1 - aa2) - z) *
factorial((j2 + bb2) - z) *
factorial((j - j2 + aa2) + z) *
factorial((j - j1 - bb2) + z));
}
cc2 = m - j;
dcg = deltacg(j1, j2, j);
sfaccg = sqrt(factorial((j1 + aa2)) *
factorial((j1 - aa2)) *
factorial((j2 + bb2)) *
factorial((j2 - bb2)) *
factorial((j + cc2)) *
factorial((j - cc2)) *
(j + 1));
cglist[idxcg_count] = sum * dcg * sfaccg;
idxcg_count++;
}
}
}
}
/* ----------------------------------------------------------------------
factorial n, wrapper for precomputed table
------------------------------------------------------------------------- */
double ComputeOrientOrderAtom::factorial(int n)
{
if (n < 0 || n > nmaxfactorial) {
char str[128];
sprintf(str, "Invalid argument to factorial %d", n);
error->all(FLERR, str);
}
return nfac_table[n];
}
/* ----------------------------------------------------------------------
factorial n table, size SNA::nmaxfactorial+1
------------------------------------------------------------------------- */
const double ComputeOrientOrderAtom::nfac_table[] = {
1,
1,
2,
6,
24,
120,
720,
5040,
40320,
362880,
3628800,
39916800,
479001600,
6227020800,
87178291200,
1307674368000,
20922789888000,
355687428096000,
6.402373705728e+15,
1.21645100408832e+17,
2.43290200817664e+18,
5.10909421717094e+19,
1.12400072777761e+21,
2.5852016738885e+22,
6.20448401733239e+23,
1.5511210043331e+25,
4.03291461126606e+26,
1.08888694504184e+28,
3.04888344611714e+29,
8.8417619937397e+30,
2.65252859812191e+32,
8.22283865417792e+33,
2.63130836933694e+35,
8.68331761881189e+36,
2.95232799039604e+38,
1.03331479663861e+40,
3.71993326789901e+41,
1.37637530912263e+43,
5.23022617466601e+44,
2.03978820811974e+46,
8.15915283247898e+47,
3.34525266131638e+49,
1.40500611775288e+51,
6.04152630633738e+52,
2.65827157478845e+54,
1.1962222086548e+56,
5.50262215981209e+57,
2.58623241511168e+59,
1.24139155925361e+61,
6.08281864034268e+62,
3.04140932017134e+64,
1.55111875328738e+66,
8.06581751709439e+67,
4.27488328406003e+69,
2.30843697339241e+71,
1.26964033536583e+73,
7.10998587804863e+74,
4.05269195048772e+76,
2.35056133128288e+78,
1.3868311854569e+80,
8.32098711274139e+81,
5.07580213877225e+83,
3.14699732603879e+85,
1.98260831540444e+87,
1.26886932185884e+89,
8.24765059208247e+90,
5.44344939077443e+92,
3.64711109181887e+94,
2.48003554243683e+96,
1.71122452428141e+98,
1.19785716699699e+100,
8.50478588567862e+101,
6.12344583768861e+103,
4.47011546151268e+105,
3.30788544151939e+107,
2.48091408113954e+109,
1.88549470166605e+111,
1.45183092028286e+113,
1.13242811782063e+115,
8.94618213078297e+116,
7.15694570462638e+118,
5.79712602074737e+120,
4.75364333701284e+122,
3.94552396972066e+124,
3.31424013456535e+126,
2.81710411438055e+128,
2.42270953836727e+130,
2.10775729837953e+132,
1.85482642257398e+134,
1.65079551609085e+136,
1.48571596448176e+138,
1.3520015276784e+140,
1.24384140546413e+142,
1.15677250708164e+144,
1.08736615665674e+146,
1.03299784882391e+148,
9.91677934870949e+149,
9.61927596824821e+151,
9.42689044888324e+153,
9.33262154439441e+155,
9.33262154439441e+157,
9.42594775983835e+159,
9.61446671503512e+161,
9.90290071648618e+163,
1.02990167451456e+166,
1.08139675824029e+168,
1.14628056373471e+170,
1.22652020319614e+172,
1.32464181945183e+174,
1.44385958320249e+176,
1.58824554152274e+178,
1.76295255109024e+180,
1.97450685722107e+182,
2.23119274865981e+184,
2.54355973347219e+186,
2.92509369349301e+188,
3.3931086844519e+190,
3.96993716080872e+192,
4.68452584975429e+194,
5.5745857612076e+196,
6.68950291344912e+198,
8.09429852527344e+200,
9.8750442008336e+202,
1.21463043670253e+205,
1.50614174151114e+207,
1.88267717688893e+209,
2.37217324288005e+211,
3.01266001845766e+213,
3.8562048236258e+215,
4.97450422247729e+217,
6.46685548922047e+219,
8.47158069087882e+221,
1.118248651196e+224,
1.48727070609069e+226,
1.99294274616152e+228,
2.69047270731805e+230,
3.65904288195255e+232,
5.01288874827499e+234,
6.91778647261949e+236,
9.61572319694109e+238,
1.34620124757175e+241,
1.89814375907617e+243,
2.69536413788816e+245,
3.85437071718007e+247,
5.5502938327393e+249,
8.04792605747199e+251,
1.17499720439091e+254,
1.72724589045464e+256,
2.55632391787286e+258,
3.80892263763057e+260,
5.71338395644585e+262,
8.62720977423323e+264,
1.31133588568345e+267,
2.00634390509568e+269,
3.08976961384735e+271,
4.78914290146339e+273,
7.47106292628289e+275,
1.17295687942641e+278,
1.85327186949373e+280,
2.94670227249504e+282,
4.71472363599206e+284,
7.59070505394721e+286,
1.22969421873945e+289,
2.0044015765453e+291,
3.28721858553429e+293,
5.42391066613159e+295,
9.00369170577843e+297,
1.503616514865e+300, // nmaxfactorial = 167
};
/* ----------------------------------------------------------------------
the function delta given by VMK Eq. 8.2(1)
------------------------------------------------------------------------- */
double ComputeOrientOrderAtom::deltacg(int j1, int j2, int j)
{
double sfaccg = factorial((j1 + j2 + j) + 1);
return sqrt(factorial((j1 + j2 - j)) *
factorial((j1 - j2 + j)) *
factorial((-j1 + j2 + j)) / sfaccg);
}