replace tabs and remove trailing whitespace in lib folder with updated script

This commit is contained in:
Axel Kohlmeyer
2021-08-22 20:45:24 -04:00
parent 30821b37e5
commit 92b5b159e5
311 changed files with 9176 additions and 9176 deletions

View File

@ -18,12 +18,12 @@ using std::min;
using ATC_Utility::to_string;
using ATC_Utility::sgn;
const double zero_tol = 1.e-12;
const double f_tol = 1.e-8;
const double zero_tol = 1.e-12;
const double f_tol = 1.e-8;
namespace ATC {
enum oneDconservationEnum {ONED_DENSITY=0, ONED_FLUX, ONED_GLOBAL_FLUX};
enum oneDconservationEnum {ONED_DENSITY=0, ONED_FLUX, ONED_GLOBAL_FLUX};
@ -61,7 +61,7 @@ double fermi_dirac(const double E, const double T)
//-----------------------------------------------------
void SchrodingerSolver::initialize()
{
SPAR_MAT sparseM;
SPAR_MAT sparseM;
atc_->fe_engine()->compute_mass_matrix(sparseM);
M_ = sparseM.dense_copy();
}
@ -83,7 +83,7 @@ double fermi_dirac(const double E, const double T)
atc_->element_to_material_map(), stiffness_);
DENS_MAT K(stiffness_.dense_copy());
set<int> fixedNodes = prescribedDataMgr_->fixed_nodes(ELECTRON_WAVEFUNCTION);
const BC_SET & bcs
const BC_SET & bcs
= (prescribedDataMgr_->bcs(ELECTRON_WAVEFUNCTION))[0];
DENS_MAT & psi = (atc_->field(ELECTRON_WAVEFUNCTION)).set_quantity();
DENS_MAT & eVecs = (atc_->field(ELECTRON_WAVEFUNCTIONS)).set_quantity();
@ -97,13 +97,13 @@ double fermi_dirac(const double E, const double T)
return true;
}
// (1) Helmholtz solve for inhomongeneous bcs
LinearSolver helmholtzSolver_(K,bcs,LinearSolver::AUTO_SOLVE,-1,parallel_);
psi.reset(nNodes_,1);
// (2) Eigenvalue solve
// (2) Eigenvalue solve
helmholtzSolver_.eigen_system(eVals,eVecs,&M_);
return true;
return true;
}
//========================================================
@ -119,7 +119,7 @@ double fermi_dirac(const double E, const double T)
const Array< double > & oneDdxs,
bool parallel
)
: SchrodingerSolver(fieldName, physicsModel, feEngine, prescribedDataMgr,
: SchrodingerSolver(fieldName, physicsModel, feEngine, prescribedDataMgr,
atc, parallel),
oneDslices_(oneDslices),
oneDdxs_(oneDdxs)
@ -144,7 +144,7 @@ double fermi_dirac(const double E, const double T)
DENS_MAT & Ef = (atc_->field(FERMI_ENERGY)).set_quantity();
DENS_MAT & n = (atc_->field(ELECTRON_DENSITY)).set_quantity();
DENS_MAT & T = (atc_->field(ELECTRON_TEMPERATURE)).set_quantity();
// stiffness = K + V M
SPAR_MAT stiffness_;
Array2D <bool> rhsMask(NUM_FIELDS,NUM_FLUX);
@ -158,7 +158,7 @@ double fermi_dirac(const double E, const double T)
atc_->element_to_material_map(), stiffness_);
DENS_MAT K(stiffness_.dense_copy());
// Eigenvalue solve
// Eigenvalue solve
DENS_MAT K1,M1;
int nslices = oneDslices_.size();
DENS_MAT b ;
@ -186,24 +186,24 @@ double fermi_dirac(const double E, const double T)
eigensolver.eigen_system(evals1,evecs1,&M1);
eindex.clear();
for (int j = 0; j < snodes; j++) eindex.insert(iEVal++);
eVals.insert(eindex,one, evals1);
eVals.insert(eindex,one, evals1);
eindex.clear();
for (int j = 0; j < snodes; j++) eindex.insert(j);
eVecs.insert(slice,eindex,evecs1);
// slice charge density
n1.reset(snodes,1);
set<int>::const_iterator iset;
double aveE_f = 0;
for (iset = slice.begin(); iset != slice.end(); iset++) {
int gnode = *iset;
for (iset = slice.begin(); iset != slice.end(); iset++) {
int gnode = *iset;
aveE_f += Ef(gnode,0);
}
aveE_f /= snodes;
//#define VERBOSE
//#define VERBOSE
#ifdef VERBOSE
stringstream ss;
ss << " slice "+to_string(islice+1)+" E_f "+to_string(aveE_f) << "\n"
ss << " slice "+to_string(islice+1)+" E_f "+to_string(aveE_f) << "\n"
<< "#-----------------------------------------------\n"
<< "# E-Ef f psi n\n"
<< "#-----------------------------------------------\n";
@ -211,17 +211,17 @@ double fermi_dirac(const double E, const double T)
// B: compute charge density on slice
int node = 0;
for (iset = slice.begin(); iset != slice.end(); iset++) { // node
int gnode = *iset;
int gnode = *iset;
double temp = T(gnode,0);
for (int mode = 0; mode < snodes-nfixed; mode++) {
double Ei = evals1(mode,0);
double E = Ei-aveE_f;
double f = fermi_dirac(E,temp);
double f = fermi_dirac(E,temp);
double psi1 = evecs1(node,mode); // 2nd index corresp to evals order
#ifdef VERBOSE
ss << node<<":"<<mode << " " << to_string(6,E) << " " << to_string(6,f) << " " << to_string(6,psi1) << " " << to_string(6,n1(node,0)+psi1*psi1*f) << "\n";
#endif
if (f < f_tol) break; // take advantage of E ordering
if (f < f_tol) break; // take advantage of E ordering
n1(node,0) += psi1*psi1*f;
}
node++;
@ -232,7 +232,7 @@ double fermi_dirac(const double E, const double T)
n.insert(slice,one, n1); // note not "assemble"
}
}
return true;
return true;
}
//========================================================
@ -333,7 +333,7 @@ double fermi_dirac(const double E, const double T)
//===================================================================
// SchrodingerPoissonSolver
//===================================================================
SchrodingerPoissonSolver::SchrodingerPoissonSolver(
SchrodingerPoissonSolver::SchrodingerPoissonSolver(
/*const*/ ATC_Coupling * atc,
SchrodingerSolver * schrodingerSolver,
PoissonSolver * poissonSolver,
@ -369,47 +369,47 @@ double fermi_dirac(const double E, const double T)
const double tol = 1.e-4;
int k = 0;
double logRatio = 3;
int maxIter = (int) logRatio;
double logRatio = 3;
int maxIter = (int) logRatio;
double base = 2.0;
// temperature relaxation loop
for (int i = 0; i < maxIter ; ++i) {
for (int i = 0; i < maxIter ; ++i) {
//double alpha = ((double) i) /( (double) maxIter-1);
//double beta = 0.1;
//alpha = (exp(beta*i)-1.0)/(exp(beta*(maxIter-1))-1.0);
double alpha = pow(base,logRatio-i-1);
// self consistency loop
int j = 0; // for storage of last iterate
for (j = 0; j < maxConsistencyIter_ ; ++j) {
for (j = 0; j < maxConsistencyIter_ ; ++j) {
// compute eigen-values and vectors
atc_->set_fixed_nodes();
Te = alpha*Te0;
schrodingerSolver_->solve(atc_->fields());
for (int l = 0; l < nNodes_; l++) {
int count = 0;
double T_e = Te(l,0);
for (int m = 0; m < nNodes_; m++) {
double f = fermi_dirac(E_I(m,0), T_e);
if (f > tol) count++;
if (f > tol) count++;
}
}
// compute charge density
DENS_MAN & n = atc_->field(ELECTRON_DENSITY);
//(n.quantity()).print("DENSITY");
atc_->nodal_projection(ELECTRON_DENSITY,physicsModel_,n);
atc_->set_fixed_nodes();
atc_->set_fixed_nodes();
// solve poisson eqn for electric potential
atc_->set_fixed_nodes();
Te = alpha*Te0;
poissonSolver_->solve(atc_->fields(),rhs);
//DENS_MAT dn = n;
//DENS_MAT dpsi = psi;
//DENS_MAT dphi = phi;
@ -421,7 +421,7 @@ double fermi_dirac(const double E, const double T)
//dn -= nPrev;
//dpsi -= psiPrev;
//dphi -= phiPrev;
norm = (n.quantity()-nPrev).norm();
if (i == 0 && j==0) norm0 = (n.quantity()).norm();
//normPrev = norm;
@ -436,11 +436,11 @@ double fermi_dirac(const double E, const double T)
// Tmax_ *= 0.5;
}
}
//===================================================================
// SliceSchrodingerPoissonSolver
//===================================================================
SliceSchrodingerPoissonSolver::SliceSchrodingerPoissonSolver(
SliceSchrodingerPoissonSolver::SliceSchrodingerPoissonSolver(
/*const*/ ATC_Coupling * atc,
SchrodingerSolver * schrodingerSolver,
PoissonSolver * poissonSolver,
@ -479,37 +479,37 @@ double fermi_dirac(const double E, const double T)
Array2D<double> nHistory(nslices,2);
// target for constraint
double target = 0.0;
double target = 0.0;
set<int> & slice = oneDslices_(0); // note assume first slice is fixed
if (oneDconserve_ == ONED_FLUX) atc_->set_sources();
if (oneDconserve_ == ONED_FLUX) atc_->set_sources();
DENS_MAT & nSource = (atc_->source(ELECTRON_DENSITY)).set_quantity();
for (set<int>::const_iterator iset = slice.begin(); iset != slice.end(); iset++) {
for (set<int>::const_iterator iset = slice.begin(); iset != slice.end(); iset++) {
if (oneDconserve_ == ONED_FLUX) target += nSource(*iset,0);
else target += n(*iset,0);
}
target /= slice.size();
target /= slice.size();
#ifdef VERBOSE
if (oneDconserve_ == ONED_FLUX) {
if (target > 0) ATC::LammpsInterface::instance()->print_msg_once(" influx target "+ to_string(target));
else ATC::LammpsInterface::instance()->print_msg_once(" efflux target "+ to_string(target));
}
#endif
// A: self consistency loop between Phi and n(psi_i)
double error = 1.0;
for (int i = 0; i < maxConsistencyIter_ ; ++i) {
for (int i = 0; i < maxConsistencyIter_ ; ++i) {
atc_->set_fixed_nodes();
if (! atc_->prescribedDataMgr_->all_fixed(ELECTRIC_POTENTIAL) )
poissonSolver_->solve(atc_->fields(),rhs);
if (! atc_->prescribedDataMgr_->all_fixed(ELECTRIC_POTENTIAL) )
poissonSolver_->solve(atc_->fields(),rhs);
if (! atc_->prescribedDataMgr_->all_fixed(ELECTRON_DENSITY) ) {
// iterate on Ef
//if (i==0) Ef = -1.0*phi;// E ~ -|e| \Phi, charge of electron e = 1
Ef = -1.0*phi;
//if (i==0) Ef = -1.0*phi;// E ~ -|e| \Phi, charge of electron e = 1
Ef = -1.0*phi;
Ef +=Ef_shift_;
// B: conservation constraint
for (int j = 0; j < maxConstraintIter_ ; ++j) {
for (int j = 0; j < maxConstraintIter_ ; ++j) {
schrodingerSolver_->solve(atc_->fields()); // n(E_f)
atc_->set_fixed_nodes();
error = update_fermi_energy(target,(j==0),fluxes);// root finder
@ -517,7 +517,7 @@ double fermi_dirac(const double E, const double T)
ATC::LammpsInterface::instance()->print_msg_once(to_string(i)+":"+to_string(j)+" constraint_error "+to_string(error)+" / "+to_string(tol*target)+"\n");
#endif
// exit condition based on constraint satisfaction
if (error < tol*fabs(target)) break;
if (error < tol*fabs(target)) break;
} // loop j : flux constraint
// error based on change in field (Cauchy convergence)
if (i == 0) {
@ -556,7 +556,7 @@ double fermi_dirac(const double E, const double T)
rhsMask(ELECTRON_DENSITY,FLUX) = true;
//#define WIP_REJ
atc_->compute_flux(rhsMask,atc_->fields_,fluxes,physicsModel_);
y = & ( fluxes[ELECTRON_DENSITY][oneDcoor_] );
y = & ( fluxes[ELECTRON_DENSITY][oneDcoor_] );
}
BCS bcs;
double error = 0;
@ -571,10 +571,10 @@ double fermi_dirac(const double E, const double T)
atc_->prescribedDataMgr_->bcs(ELECTRON_WAVEFUNCTION,slice,bcs,true);
const BC_SET & bc = bcs[0];
int nFixed = bc.size();
if (nFixed == nSlice) continue; // skip if all fixed
if (nFixed == nSlice) continue; // skip if all fixed
double Y = 0.0, X = 0.0;
double nAve = 0., phiAve = 0.;
for (set<int>::const_iterator iset = slice.begin(); iset != slice.end(); iset++) {
for (set<int>::const_iterator iset = slice.begin(); iset != slice.end(); iset++) {
int gnode = *iset;
X += Ef(gnode,0);
Y += (*y)(gnode,0);
@ -585,14 +585,14 @@ double fermi_dirac(const double E, const double T)
Y /= nSlice;
nAve /= nSlice;
phiAve /= nSlice;
// now adjust Ef for each slice
double dY = Y - EfHistory_(islice,0);
// now adjust Ef for each slice
double dY = Y - EfHistory_(islice,0);
double dX = X - EfHistory_(islice,1);
double err = target - Y;
double err = target - Y;
if (target*Y < -zero_tol*target) {
#ifdef VERBOSE
cStr = " opp. SIGNS";
#else
#else
ATC::LammpsInterface::instance()->print_msg_once("WARNING: slice "+to_string(islice)+" target and quantity opposite signs "+to_string(Y));
#endif
}
@ -601,21 +601,21 @@ double fermi_dirac(const double E, const double T)
if (first) {
dEf = (err < 0) ? -safe_dEf_ : safe_dEf_;
}
else {
else {
if (fabs(dY) < zero_tol*dX) throw ATC_Error("zero increment in conserved field on slice:"+to_string(islice));
dEf = err / dY * dX;
if (fabs(dEf) > safe_dEf_) {
dEf = safe_dEf_* dEf / fabs(dEf);
#ifdef VERBOSE
Estr = " !!";
#else
#else
ATC::LammpsInterface::instance()->print_msg_once("WARNING: slice "+to_string(islice)+ " large Delta E_f "+to_string(dEf));
#endif
}
}
for (set<int>::const_iterator iset = slice.begin(); iset != slice.end(); iset++) {
for (set<int>::const_iterator iset = slice.begin(); iset != slice.end(); iset++) {
int gnode = *iset;
Ef(gnode,0) += dEf;
Ef(gnode,0) += dEf;
}
EfHistory_(islice,0) = Y;
EfHistory_(islice,1) = X;
@ -624,14 +624,14 @@ double fermi_dirac(const double E, const double T)
ATC::LammpsInterface::instance()->print_msg_once(" slice"+to_string(islice,2) +cStr+to_string(4,Y/target) +Estr+to_string(4,X)+" n"+to_string(5,nAve)+" phi"+to_string(4,phiAve));
//ATC::LammpsInterface::instance()->print_msg_once(" slice "+to_string(islice) +cStr+to_string(4,Y/target) +" E_f"+to_string(4,X)+dEstr+to_string(4,X-EfHistory_(std::max(0,islice-1),1))+" n"+to_string(4,nAve)+" phi"+to_string(4,phiAve)+" "+to_string(nFixed)+" dn "+to_string(4,dnAve)+" dphi "+to_string(4,dphiAve));
#endif
} // loop slice
} // loop slice
return error;
}
//===================================================================
// GlobalSliceSchrodingerPoissonSolver
//===================================================================
GlobalSliceSchrodingerPoissonSolver::GlobalSliceSchrodingerPoissonSolver(
GlobalSliceSchrodingerPoissonSolver::GlobalSliceSchrodingerPoissonSolver(
/*const*/ ATC_Coupling * atc,
SchrodingerSolver * schrodingerSolver,
PoissonSolver * poissonSolver,
@ -642,11 +642,11 @@ double fermi_dirac(const double E, const double T)
double Ef0,
double alpha,
double safe_dEf,
double tol,
double tol,
double mu, double D
) :
SliceSchrodingerPoissonSolver(atc,schrodingerSolver,poissonSolver,physicsModel,maxConsistencyIter,maxConstraintIter,oneDconserve,0,0),
solver_(nullptr),
solver_(nullptr),
mobility_(mu),diffusivity_(D)
{
Ef0_ = Ef0;
@ -680,10 +680,10 @@ double fermi_dirac(const double E, const double T)
}
A(0,0) = -2;
A(0,1) = 1;
A(m-1,m-1) = -2;
A(m-1,m-2) = 1;
A(m-1,m-1) = -2;
A(m-1,m-2) = 1;
//if (nfixed_ == 1) { A(m-1,m-1) = -1; }
double dx = oneDdxs_(0);
double dx = oneDdxs_(0);
A *= 1./dx;
A.print("stiffness",4);
SPAR_MAT K(A);
@ -703,14 +703,14 @@ double fermi_dirac(const double E, const double T)
B.print("gradient",4);
SPAR_MAT G(B);
G_ = G;
DENS_MAT C(nNodes_,nNodes_);
// local to ATC nodemap: k --> gnode = *iset
int k = 0;
set<int>::const_iterator iset;
for (int islice = 0; islice < nslices_; islice++) {
set<int> & slice = oneDslices_(islice);
for (iset = slice.begin(); iset != slice.end(); iset++) {
for (iset = slice.begin(); iset != slice.end(); iset++) {
double v = 0.5/dx;
if ( k < sliceSize_ || k+1 > (nslices_-1)*sliceSize_ ) v *=2.0;
if (islice > 0) { C(k,k-sliceSize_) += v; }
@ -732,7 +732,7 @@ double fermi_dirac(const double E, const double T)
ATC::LammpsInterface::instance()->print_msg_once("schrodinger-poisson solver: Dirichlet INLET, Dirichlet; OUTLET");
else if (nfixed_ ==1)
ATC::LammpsInterface::instance()->print_msg_once("schrodinger-poisson solver: Dirichlet INLET, Neumann; OUTLET");
else
else
ATC_Error("schrodinger-poisson solver:too many fixed");
}
GlobalSliceSchrodingerPoissonSolver::~GlobalSliceSchrodingerPoissonSolver(void) {
@ -746,10 +746,10 @@ double fermi_dirac(const double E, const double T)
DENS_MAT & Ef = (atc_->field(FERMI_ENERGY)).set_quantity();
Ef.reset(phi.nRows(),1);
norm_ = norm0_ = 1.0;
for (int i = 0; i < maxConstraintIter_ ; ++i) {
for (int i = 0; i < maxConstraintIter_ ; ++i) {
atc_->set_fixed_nodes();
if (! atc_->prescribedDataMgr_->all_fixed(ELECTRIC_POTENTIAL) ) {
poissonSolver_->solve(atc_->fields(),rhs);
poissonSolver_->solve(atc_->fields(),rhs);
}
else {
ATC::LammpsInterface::instance()->print_msg_once("WARNING: phi is fixed");
@ -771,10 +771,10 @@ double fermi_dirac(const double E, const double T)
report(i+1);
if (i == 0 && norm_ > tol_) norm0_ = norm_;
else { if (norm_ < tol_*norm0_) break; }
}
}
}
//--------------------------------------------------------------------------
void GlobalSliceSchrodingerPoissonSolver::exponential_electron_density()
void GlobalSliceSchrodingerPoissonSolver::exponential_electron_density()
{
std::cout << "******************HACK******************\n";
@ -786,12 +786,12 @@ double fermi_dirac(const double E, const double T)
for (int islice = 0; islice < nslices_; islice++) {
set<int> & slice = oneDslices_(islice);
double aveE_f = 0.0;
for (iset = slice.begin(); iset != slice.end(); iset++) {
for (iset = slice.begin(); iset != slice.end(); iset++) {
int gnode = *iset;
aveE_f += Ef(gnode,0);
}
aveE_f /= slice.size();
for (iset = slice.begin(); iset != slice.end(); iset++) {
for (iset = slice.begin(); iset != slice.end(); iset++) {
int gnode = *iset;
//std::cout << phi(gnode,0)+aveE_f << "\n";
//n(gnode,0) = -n0*exp(-(phi(gnode,0)+aveE_f)/(kBeV_*T));
@ -806,7 +806,7 @@ double fermi_dirac(const double E, const double T)
}
}
//--------------------------------------------------------------------------
void GlobalSliceSchrodingerPoissonSolver::report(int i)
void GlobalSliceSchrodingerPoissonSolver::report(int i)
{
const DENS_MAT & phi = (atc_->fields_[ELECTRIC_POTENTIAL]).quantity();
const DENS_MAT & n = (atc_->fields_[ELECTRON_DENSITY] ).quantity();
@ -852,8 +852,8 @@ double fermi_dirac(const double E, const double T)
int j = nslices_-1;
double lambdaN = 0.;
std::string space = "*";
if (nfixed_ == 1) {
lambdaN = lambda_(nslices_-2);
if (nfixed_ == 1) {
lambdaN = lambda_(nslices_-2);
space = " ";
}
ss << to_string(nslices_,2) << space << to_string(6,dJn) << " " << to_string(6,lambdaN) << " " << to_string(6,F_(j)) << " " << to_string(6,Phi_(j)) << " " << to_string(6,n_(j)) << " " << to_string(6,J_(j)) << "\n";
@ -874,7 +874,7 @@ double fermi_dirac(const double E, const double T)
// grad phi
for (int islice = 0; islice < nslices_; islice++) {
set<int> & slice = oneDslices_(islice);
for (iset = slice.begin(); iset != slice.end(); iset++) {
for (iset = slice.begin(); iset != slice.end(); iset++) {
int gnode = *iset;
f(k) = phi(gnode,0);
k++;
@ -887,7 +887,7 @@ double fermi_dirac(const double E, const double T)
// grad n
for (int islice = 0; islice < nslices_; islice++) {
set<int> & slice = oneDslices_(islice);
for (iset = slice.begin(); iset != slice.end(); iset++) {
for (iset = slice.begin(); iset != slice.end(); iset++) {
int gnode = *iset;
f(k) = n(gnode,0);
k++;
@ -906,7 +906,7 @@ double fermi_dirac(const double E, const double T)
for (int islice = 0; islice < nslices_; islice++) {
set<int> & slice = oneDslices_(islice);
J_(islice) = 0;
for (iset = slice.begin(); iset != slice.end(); iset++) {
for (iset = slice.begin(); iset != slice.end(); iset++) {
J_(islice) += flux_(k);
k++;
}
@ -914,10 +914,10 @@ double fermi_dirac(const double E, const double T)
//std::cout << islice << " J " << J_(islice) << "\n";
}
//J_.print("J");
dJ_ = G_*J_;
dJ_ = G_*J_;
}
//--------------------------------------------------------------------------
void GlobalSliceSchrodingerPoissonSolver::update_fermi_level()
void GlobalSliceSchrodingerPoissonSolver::update_fermi_level()
{
DENS_MAT & Ef = (atc_->field(FERMI_ENERGY) ).set_quantity();
@ -941,7 +941,7 @@ double fermi_dirac(const double E, const double T)
Phi_(islice) = Phi; // average potential
N /= slice.size();
n_(islice) = N; // average electron density
//F_(j) += min(fabs(alpha_*lambda),safe_dEf_)*sgn(lambda);
for (iset = slice.begin(); iset != slice.end(); iset++) {
int gnode = *iset;