diff --git a/doc/src/Howto_viscosity.rst b/doc/src/Howto_viscosity.rst index 94be9589e0..3c97628179 100644 --- a/doc/src/Howto_viscosity.rst +++ b/doc/src/Howto_viscosity.rst @@ -65,7 +65,7 @@ liquid Ar via the GK formalism: .. code-block:: LAMMPS -# Sample LAMMPS input script for viscosity of liquid Ar + # Sample LAMMPS input script for viscosity of liquid Ar units real variable T equal 200.0 # run temperature @@ -107,7 +107,7 @@ liquid Ar via the GK formalism: # viscosity calculation, switch to NVE if desired velocity all create $T 102486 mom yes rot yes dist gaussian - #fix NVT all nvt temp $T $T 10 drag 0.2 + fix NVT all nvt temp $T $T 10 drag 0.2 #unfix NVT #fix NVE all nve @@ -116,17 +116,16 @@ liquid Ar via the GK formalism: variable pxz equal pxz variable pyz equal pyz fix SS all ave/correlate $s $p $d & - v_pxy v_pxz v_pyz type auto file S0St.dat ave running + v_pxy v_pxz v_pyz type auto file S0St.dat ave running variable scale equal ${convert}/(${kB}*$T)*$V*$s*${dt} variable v11 equal trap(f_SS[3])*${scale} variable v22 equal trap(f_SS[4])*${scale} variable v33 equal trap(f_SS[5])*${scale} - compute msd all msd com yes - thermo_style custom step temp press v_pxy v_pxz v_pyz v_v11 v_v22 v_v33 c_msd[*] + thermo_style custom step temp press v_pxy v_pxz v_pyz v_v11 v_v22 v_v33 run 100000 variable v equal (v_v11+v_v22+v_v33)/3.0 variable ndens equal count(all)/vol - print "average viscosity: $v [Pa.s] @ $T K, ${ndens} /A^3" + print "average viscosity: $v [Pa.s] @ $T K, ${ndens} atoms/A^3" The fifth method is related to the above Green-Kubo method, but uses the Einstein formulation, analogous to the Einstein @@ -135,9 +134,9 @@ time-integrated momentum fluxes play the role of Cartesian coordinates, whose mean-square displacement increases linearly with time at sufficiently long times. -The sixth is periodic perturbation method. It is also a non-equilibrium MD method. -However, instead of measure the momentum flux in response of applied velocity gradient, -it measures the velocity profile in response of applied stress. +The sixth is the periodic perturbation method, which is also a non-equilibrium MD method. +However, instead of measuring the momentum flux in response to an applied velocity gradient, +it measures the velocity profile in response to applied stress. A cosine-shaped periodic acceleration is added to the system via the :doc:`fix accelerate/cos ` command, and the :doc:`compute viscosity/cos` command is used to monitor the