apply more pylint recommendations
This commit is contained in:
@ -264,7 +264,7 @@ max-bool-expr = 5
|
||||
max-branches = 50
|
||||
|
||||
# Maximum number of locals for function / method body.
|
||||
max-locals = 20
|
||||
max-locals = 25
|
||||
|
||||
# Maximum number of parents for a class (see R0901).
|
||||
max-parents = 7
|
||||
@ -282,7 +282,7 @@ max-returns = 15
|
||||
max-statements = 500
|
||||
|
||||
# Minimum number of public methods for a class (see R0903).
|
||||
min-public-methods = 2
|
||||
min-public-methods = 0
|
||||
|
||||
[tool.pylint.exceptions]
|
||||
# Exceptions that will emit a warning when caught.
|
||||
|
||||
@ -11,8 +11,10 @@
|
||||
# See the README file in the top-level LAMMPS directory.
|
||||
# -------------------------------------------------------------------------
|
||||
|
||||
# various symbolic constants to be used
|
||||
# in certain calls to select data formats
|
||||
"""
|
||||
various symbolic constants to be used
|
||||
in certain calls to select data formats
|
||||
"""
|
||||
|
||||
# these must be kept in sync with the enums in src/library.h, src/lmptype.h,
|
||||
# tools/swig/lammps.i, examples/COUPLE/plugin/liblammpsplugin.h,
|
||||
@ -55,9 +57,11 @@ LMP_BUFSIZE = 1024
|
||||
# -------------------------------------------------------------------------
|
||||
|
||||
def get_ctypes_int(size):
|
||||
"""return ctypes type matching the configured C/C++ integer size in LAMMPS"""
|
||||
# pylint: disable=C0415
|
||||
from ctypes import c_int, c_int32, c_int64
|
||||
if size == 4:
|
||||
return c_int32
|
||||
elif size == 8:
|
||||
if size == 8:
|
||||
return c_int64
|
||||
return c_int
|
||||
|
||||
@ -10,7 +10,9 @@
|
||||
#
|
||||
# See the README file in the top-level LAMMPS directory.
|
||||
# -------------------------------------------------------------------------
|
||||
# Python wrapper for the LAMMPS library via ctypes
|
||||
"""
|
||||
Python module wrapping the LAMMPS library via ctypes
|
||||
"""
|
||||
|
||||
# avoid pylint warnings about naming conventions
|
||||
# pylint: disable=C0103
|
||||
|
||||
@ -11,12 +11,12 @@
|
||||
# See the README file in the top-level LAMMPS directory.
|
||||
# -------------------------------------------------------------------------
|
||||
|
||||
################################################################################
|
||||
# LAMMPS data structures
|
||||
# Written by Richard Berger <richard.berger@temple.edu>
|
||||
################################################################################
|
||||
"""
|
||||
Data structures for LAMMPS Python module
|
||||
Written by Richard Berger <richard.berger@temple.edu>
|
||||
"""
|
||||
|
||||
class NeighList(object):
|
||||
class NeighList:
|
||||
"""This is a wrapper class that exposes the contents of a neighbor list.
|
||||
|
||||
It can be used like a regular Python list. Each element is a tuple of:
|
||||
@ -38,6 +38,7 @@ class NeighList(object):
|
||||
self.idx = idx
|
||||
|
||||
def __str__(self):
|
||||
# pylint: disable=C0209
|
||||
return "Neighbor List ({} atoms)".format(self.size)
|
||||
|
||||
def __repr__(self):
|
||||
|
||||
@ -11,14 +11,15 @@
|
||||
# See the README file in the top-level LAMMPS directory.
|
||||
# -------------------------------------------------------------------------
|
||||
|
||||
################################################################################
|
||||
# LAMMPS output formats
|
||||
# Written by Richard Berger <richard.berger@temple.edu>
|
||||
# and Axel Kohlmeyer <akohlmey@gmail.com>
|
||||
################################################################################
|
||||
"""
|
||||
Output formats for LAMMPS python module
|
||||
Written by Richard Berger <richard.berger@temple.edu>
|
||||
and Axel Kohlmeyer <akohlmey@gmail.com>
|
||||
"""
|
||||
|
||||
import re
|
||||
|
||||
# pylint: disable=C0103
|
||||
has_yaml = False
|
||||
try:
|
||||
import yaml
|
||||
@ -32,6 +33,7 @@ except ImportError:
|
||||
pass
|
||||
|
||||
class LogFile:
|
||||
# pylint: disable=R0903
|
||||
"""Reads LAMMPS log files and extracts the thermo information
|
||||
|
||||
It supports the line, multi, and yaml thermo output styles.
|
||||
@ -55,7 +57,7 @@ class LogFile:
|
||||
yamllog = ""
|
||||
self.runs = []
|
||||
self.errors = []
|
||||
with open(filename, 'rt') as f:
|
||||
with open(filename, 'rt', encoding='utf-8') as f:
|
||||
in_thermo = False
|
||||
in_data_section = False
|
||||
for line in f:
|
||||
@ -72,9 +74,9 @@ class LogFile:
|
||||
|
||||
elif re.match(r'^(keywords:.*$|data:$|---$| - \[.*\]$)', line):
|
||||
if not has_yaml:
|
||||
raise Exception('Cannot process YAML format logs without the PyYAML Python module')
|
||||
raise RuntimeError('Cannot process YAML format logs without the PyYAML Python module')
|
||||
style = LogFile.STYLE_YAML
|
||||
yamllog += line;
|
||||
yamllog += line
|
||||
current_run = {}
|
||||
|
||||
elif re.match(r'^\.\.\.$', line):
|
||||
@ -134,9 +136,13 @@ class AvgChunkFile:
|
||||
:ivar chunks: List of chunks. Each chunk is a dictionary containing its ID, the coordinates, and the averaged quantities
|
||||
"""
|
||||
def __init__(self, filename):
|
||||
with open(filename, 'rt') as f:
|
||||
with open(filename, 'rt', encoding='utf-8') as f:
|
||||
timestep = None
|
||||
chunks_read = 0
|
||||
compress = False
|
||||
coord_start = None
|
||||
coord_end = None
|
||||
data_start = None
|
||||
|
||||
self.timesteps = []
|
||||
self.total_count = []
|
||||
@ -145,24 +151,24 @@ class AvgChunkFile:
|
||||
for lineno, line in enumerate(f):
|
||||
if lineno == 0:
|
||||
if not line.startswith("# Chunk-averaged data for fix"):
|
||||
raise Exception("Chunk data reader only supports default avg/chunk headers!")
|
||||
raise RuntimeError("Chunk data reader only supports default avg/chunk headers!")
|
||||
parts = line.split()
|
||||
self.fix_name = parts[5]
|
||||
self.group_name = parts[8]
|
||||
continue
|
||||
elif lineno == 1:
|
||||
if lineno == 1:
|
||||
if not line.startswith("# Timestep Number-of-chunks Total-count"):
|
||||
raise Exception("Chunk data reader only supports default avg/chunk headers!")
|
||||
raise RuntimeError("Chunk data reader only supports default avg/chunk headers!")
|
||||
continue
|
||||
elif lineno == 2:
|
||||
if lineno == 2:
|
||||
if not line.startswith("#"):
|
||||
raise Exception("Chunk data reader only supports default avg/chunk headers!")
|
||||
raise RuntimeError("Chunk data reader only supports default avg/chunk headers!")
|
||||
columns = line.split()[1:]
|
||||
ndim = line.count("Coord")
|
||||
compress = 'OrigID' in line
|
||||
if ndim > 0:
|
||||
coord_start = columns.index("Coord1")
|
||||
coord_end = columns.index("Coord%d" % ndim)
|
||||
coord_end = columns.index(f"Coord{ndim}")
|
||||
ncount_start = coord_end + 1
|
||||
data_start = ncount_start + 1
|
||||
else:
|
||||
@ -216,8 +222,8 @@ class AvgChunkFile:
|
||||
assert chunk == chunks_read
|
||||
else:
|
||||
# do not support changing number of chunks
|
||||
if not (num_chunks == int(parts[1])):
|
||||
raise Exception("Currently, changing numbers of chunks are not supported.")
|
||||
if not num_chunks == int(parts[1]):
|
||||
raise RuntimeError("Currently, changing numbers of chunks are not supported.")
|
||||
|
||||
timestep = int(parts[0])
|
||||
total_count = float(parts[2])
|
||||
|
||||
@ -11,12 +11,13 @@
|
||||
# See the README file in the top-level LAMMPS directory.
|
||||
# -------------------------------------------------------------------------
|
||||
|
||||
################################################################################
|
||||
# NumPy additions
|
||||
# Written by Richard Berger <richard.berger@temple.edu>
|
||||
################################################################################
|
||||
"""
|
||||
NumPy additions to the LAMMPS Python module
|
||||
Written by Richard Berger <richard.berger@temple.edu>
|
||||
"""
|
||||
|
||||
from ctypes import POINTER, c_void_p, c_char_p, c_double, c_int, c_int32, c_int64, cast
|
||||
import numpy as np
|
||||
|
||||
from .constants import LAMMPS_AUTODETECT, LAMMPS_INT, LAMMPS_INT_2D, LAMMPS_DOUBLE, \
|
||||
LAMMPS_DOUBLE_2D, LAMMPS_INT64, LAMMPS_INT64_2D, LMP_STYLE_GLOBAL, LMP_STYLE_ATOM, \
|
||||
@ -26,6 +27,7 @@ from .constants import LAMMPS_AUTODETECT, LAMMPS_INT, LAMMPS_INT_2D, LAMMPS_DOU
|
||||
from .data import NeighList
|
||||
|
||||
class numpy_wrapper:
|
||||
# pylint: disable=C0103
|
||||
"""lammps API NumPy Wrapper
|
||||
|
||||
This is a wrapper class that provides additional methods on top of an
|
||||
@ -46,10 +48,9 @@ class numpy_wrapper:
|
||||
# -------------------------------------------------------------------------
|
||||
|
||||
def _ctype_to_numpy_int(self, ctype_int):
|
||||
import numpy as np
|
||||
if ctype_int == c_int32:
|
||||
return np.int32
|
||||
elif ctype_int == c_int64:
|
||||
if ctype_int == c_int64:
|
||||
return np.int64
|
||||
return np.intc
|
||||
|
||||
@ -102,9 +103,9 @@ class numpy_wrapper:
|
||||
|
||||
if dtype in (LAMMPS_DOUBLE, LAMMPS_DOUBLE_2D):
|
||||
return self.darray(raw_ptr, nelem, dim)
|
||||
elif dtype in (LAMMPS_INT, LAMMPS_INT_2D):
|
||||
if dtype in (LAMMPS_INT, LAMMPS_INT_2D):
|
||||
return self.iarray(c_int32, raw_ptr, nelem, dim)
|
||||
elif dtype in (LAMMPS_INT64, LAMMPS_INT64_2D):
|
||||
if dtype in (LAMMPS_INT64, LAMMPS_INT64_2D):
|
||||
return self.iarray(c_int64, raw_ptr, nelem, dim)
|
||||
return raw_ptr
|
||||
|
||||
@ -133,7 +134,7 @@ class numpy_wrapper:
|
||||
if ctype == LMP_TYPE_VECTOR:
|
||||
nrows = self.lmp.extract_compute(cid, cstyle, LMP_SIZE_VECTOR)
|
||||
return self.darray(value, nrows)
|
||||
elif ctype == LMP_TYPE_ARRAY:
|
||||
if ctype == LMP_TYPE_ARRAY:
|
||||
nrows = self.lmp.extract_compute(cid, cstyle, LMP_SIZE_ROWS)
|
||||
ncols = self.lmp.extract_compute(cid, cstyle, LMP_SIZE_COLS)
|
||||
return self.darray(value, nrows, ncols)
|
||||
@ -142,13 +143,12 @@ class numpy_wrapper:
|
||||
ncols = self.lmp.extract_compute(cid, cstyle, LMP_SIZE_COLS)
|
||||
if ncols == 0:
|
||||
return self.darray(value, nrows)
|
||||
else:
|
||||
return self.darray(value, nrows, ncols)
|
||||
elif cstyle == LMP_STYLE_ATOM:
|
||||
if ctype == LMP_TYPE_VECTOR:
|
||||
nlocal = self.lmp.extract_global("nlocal")
|
||||
return self.darray(value, nlocal)
|
||||
elif ctype == LMP_TYPE_ARRAY:
|
||||
if ctype == LMP_TYPE_ARRAY:
|
||||
nlocal = self.lmp.extract_global("nlocal")
|
||||
ncols = self.lmp.extract_compute(cid, cstyle, LMP_SIZE_COLS)
|
||||
return self.darray(value, nlocal, ncols)
|
||||
@ -189,7 +189,7 @@ class numpy_wrapper:
|
||||
if ftype == LMP_TYPE_VECTOR:
|
||||
nlocal = self.lmp.extract_global("nlocal")
|
||||
return self.darray(value, nlocal)
|
||||
elif ftype == LMP_TYPE_ARRAY:
|
||||
if ftype == LMP_TYPE_ARRAY:
|
||||
nlocal = self.lmp.extract_global("nlocal")
|
||||
ncols = self.lmp.extract_fix(fid, fstyle, LMP_SIZE_COLS, 0, 0)
|
||||
return self.darray(value, nlocal, ncols)
|
||||
@ -197,7 +197,7 @@ class numpy_wrapper:
|
||||
if ftype == LMP_TYPE_VECTOR:
|
||||
nrows = self.lmp.extract_fix(fid, fstyle, LMP_SIZE_ROWS, 0, 0)
|
||||
return self.darray(value, nrows)
|
||||
elif ftype == LMP_TYPE_ARRAY:
|
||||
if ftype == LMP_TYPE_ARRAY:
|
||||
nrows = self.lmp.extract_fix(fid, fstyle, LMP_SIZE_ROWS, 0, 0)
|
||||
ncols = self.lmp.extract_fix(fid, fstyle, LMP_SIZE_COLS, 0, 0)
|
||||
return self.darray(value, nrows, ncols)
|
||||
@ -222,7 +222,6 @@ class numpy_wrapper:
|
||||
:return: the requested data or None
|
||||
:rtype: c_double, numpy.array, or NoneType
|
||||
"""
|
||||
import numpy as np
|
||||
value = self.lmp.extract_variable(name, group, vartype)
|
||||
if vartype == LMP_VAR_ATOM:
|
||||
return np.ctypeslib.as_array(value)
|
||||
@ -242,7 +241,6 @@ class numpy_wrapper:
|
||||
:return: the requested data as a 2d-integer numpy array
|
||||
:rtype: numpy.array(nbonds,3)
|
||||
"""
|
||||
import numpy as np
|
||||
nbonds, value = self.lmp.gather_bonds()
|
||||
return np.ctypeslib.as_array(value).reshape(nbonds,3)
|
||||
|
||||
@ -260,7 +258,6 @@ class numpy_wrapper:
|
||||
:return: the requested data as a 2d-integer numpy array
|
||||
:rtype: numpy.array(nangles,4)
|
||||
"""
|
||||
import numpy as np
|
||||
nangles, value = self.lmp.gather_angles()
|
||||
return np.ctypeslib.as_array(value).reshape(nangles,4)
|
||||
|
||||
@ -278,7 +275,6 @@ class numpy_wrapper:
|
||||
:return: the requested data as a 2d-integer numpy array
|
||||
:rtype: numpy.array(ndihedrals,5)
|
||||
"""
|
||||
import numpy as np
|
||||
ndihedrals, value = self.lmp.gather_dihedrals()
|
||||
return np.ctypeslib.as_array(value).reshape(ndihedrals,5)
|
||||
|
||||
@ -296,7 +292,6 @@ class numpy_wrapper:
|
||||
:return: the requested data as a 2d-integer numpy array
|
||||
:rtype: numpy.array(nimpropers,5)
|
||||
"""
|
||||
import numpy as np
|
||||
nimpropers, value = self.lmp.gather_impropers()
|
||||
return np.ctypeslib.as_array(value).reshape(nimpropers,5)
|
||||
|
||||
@ -317,7 +312,6 @@ class numpy_wrapper:
|
||||
:return: requested data
|
||||
:rtype: numpy.array
|
||||
"""
|
||||
import numpy as np
|
||||
nlocal = self.lmp.extract_setting('nlocal')
|
||||
value = self.lmp.fix_external_get_force(fix_id)
|
||||
return self.darray(value,nlocal,3)
|
||||
@ -339,10 +333,9 @@ class numpy_wrapper:
|
||||
:param eatom: per-atom potential energy
|
||||
:type: numpy.array
|
||||
"""
|
||||
import numpy as np
|
||||
nlocal = self.lmp.extract_setting('nlocal')
|
||||
if len(eatom) < nlocal:
|
||||
raise Exception('per-atom energy dimension must be at least nlocal')
|
||||
raise RuntimeError('per-atom energy dimension must be at least nlocal')
|
||||
|
||||
c_double_p = POINTER(c_double)
|
||||
value = eatom.astype(np.double)
|
||||
@ -366,12 +359,11 @@ class numpy_wrapper:
|
||||
:param eatom: per-atom potential energy
|
||||
:type: numpy.array
|
||||
"""
|
||||
import numpy as np
|
||||
nlocal = self.lmp.extract_setting('nlocal')
|
||||
if len(vatom) < nlocal:
|
||||
raise Exception('per-atom virial first dimension must be at least nlocal')
|
||||
raise RuntimeError('per-atom virial first dimension must be at least nlocal')
|
||||
if len(vatom[0]) != 6:
|
||||
raise Exception('per-atom virial second dimension must be 6')
|
||||
raise RuntimeError('per-atom virial second dimension must be 6')
|
||||
|
||||
c_double_pp = np.ctypeslib.ndpointer(dtype=np.uintp, ndim=1, flags='C')
|
||||
|
||||
@ -422,8 +414,8 @@ class numpy_wrapper:
|
||||
# -------------------------------------------------------------------------
|
||||
|
||||
def iarray(self, c_int_type, raw_ptr, nelem, dim=1):
|
||||
# pylint: disable=C0116
|
||||
if raw_ptr and nelem >= 0 and dim >= 0:
|
||||
import numpy as np
|
||||
np_int_type = self._ctype_to_numpy_int(c_int_type)
|
||||
ptr = None
|
||||
|
||||
@ -440,15 +432,15 @@ class numpy_wrapper:
|
||||
if dim > 1:
|
||||
a.shape = (nelem, dim)
|
||||
else:
|
||||
a.shape = (nelem)
|
||||
a.shape = nelem
|
||||
return a
|
||||
return None
|
||||
|
||||
# -------------------------------------------------------------------------
|
||||
|
||||
def darray(self, raw_ptr, nelem, dim=1):
|
||||
# pylint: disable=C0116
|
||||
if raw_ptr and nelem >= 0 and dim >= 0:
|
||||
import numpy as np
|
||||
ptr = None
|
||||
|
||||
if dim == 1:
|
||||
@ -464,7 +456,7 @@ class numpy_wrapper:
|
||||
if dim > 1:
|
||||
a.shape = (nelem, dim)
|
||||
else:
|
||||
a.shape = (nelem)
|
||||
a.shape = nelem
|
||||
return a
|
||||
return None
|
||||
|
||||
@ -485,9 +477,6 @@ class NumPyNeighList(NeighList):
|
||||
:param idx: neighbor list index
|
||||
:type idx: int
|
||||
"""
|
||||
def __init__(self, lmp, idx):
|
||||
super(NumPyNeighList, self).__init__(lmp, idx)
|
||||
|
||||
def get(self, element):
|
||||
"""
|
||||
Access a specific neighbor list entry. "element" must be a number from 0 to the size-1 of the list
|
||||
|
||||
Reference in New Issue
Block a user