Merge pull request #806 from vishalkenchan/new_pair_lj_cut_coul_wolf

Lennard-Jones with Coulomb interactions accounted through Wolf sum
This commit is contained in:
Steve Plimpton
2018-02-20 11:55:37 -07:00
committed by GitHub
5 changed files with 797 additions and 0 deletions

View File

@ -32,6 +32,8 @@ pair_style lj/cut/coul/long/omp command :h3
pair_style lj/cut/coul/msm command :h3
pair_style lj/cut/coul/msm/gpu command :h3
pair_style lj/cut/coul/msm/omp command :h3
pair_style lj/cut/coul/wolf command :h3
pair_style lj/cut/coul/wolf/omp command :h3
pair_style lj/cut/tip4p/cut command :h3
pair_style lj/cut/tip4p/cut/omp command :h3
pair_style lj/cut/tip4p/long command :h3
@ -63,6 +65,10 @@ args = list of arguments for a particular style :ul
{lj/cut/coul/msm} args = cutoff (cutoff2)
cutoff = global cutoff for LJ (and Coulombic if only 1 arg) (distance units)
cutoff2 = global cutoff for Coulombic (optional) (distance units)
{lj/cut/coul/wolf} args = alpha cutoff (cutoff2)
alpha = damping parameter (inverse distance units)
cutoff = global cutoff for LJ (and Coulombic if only 2 arg) (distance units)
cutoff2 = global cutoff for Coulombic (optional) (distance units)
{lj/cut/tip4p/cut} args = otype htype btype atype qdist cutoff (cutoff2)
otype,htype = atom types for TIP4P O and H
btype,atype = bond and angle types for TIP4P waters
@ -115,6 +121,10 @@ pair_style lj/cut/tip4p/cut 1 2 7 8 0.15 12.0 10.0
pair_coeff * * 100.0 3.0
pair_coeff 1 1 100.0 3.5 9.0 :pre
pair_style lj/cut/coul/wolf 0.2 5. 10.0
pair_coeff * * 1.0 1.0
pair_coeff 1 1 1.0 1.0 2.5 :pre
pair_style lj/cut/tip4p/long 1 2 7 8 0.15 12.0
pair_style lj/cut/tip4p/long 1 2 7 8 0.15 12.0 10.0
pair_coeff * * 100.0 3.0
@ -179,6 +189,24 @@ that a term is added for the "core/shell
model"_Section_howto.html#howto_25 to allow charges on core and shell
particles to be separated by r = 0.0.
Style {coul/wolf} adds a Coulombic pairwise interaction via the Wolf
summation method, described in "Wolf"_#Wolf1, given by:
:c,image(Eqs/pair_coul_wolf.jpg)
where {alpha} is the damping parameter, and erfc() is the
complementary error-function terms. This potential
is essentially a short-range, spherically-truncated,
charge-neutralized, shifted, pairwise {1/r} summation. With a
manipulation of adding and subtracting a self term (for i = j) to the
first and second term on the right-hand-side, respectively, and a
small enough {alpha} damping parameter, the second term shrinks and
the potential becomes a rapidly-converging real-space summation. With
a long enough cutoff and small enough alpha parameter, the energy and
forces calculated by the Wolf summation method approach those of the
Ewald sum. So it is a means of getting effective long-range
interactions with a short-range potential.
Styles {lj/cut/tip4p/cut} and {lj/cut/tip4p/long} implement the TIP4P
water model of "(Jorgensen)"_#Jorgensen2, which introduces a massless
site located a short distance away from the oxygen atom along the