diff --git a/examples/mliap/mliap_unified_lj_Ar.py b/examples/mliap/mliap_unified_lj_Ar.py index 9b1c11be7d..2b404bd98e 100644 --- a/examples/mliap/mliap_unified_lj_Ar.py +++ b/examples/mliap/mliap_unified_lj_Ar.py @@ -49,7 +49,7 @@ lmp.commands_string(before_loading) # Define the model however you like. In this example # we simply import the unified L-J example from mliap from lammps.mliap.mliap_unified_lj import MLIAPUnifiedLJ -unified = MLIAPUnifiedLJ() +unified = MLIAPUnifiedLJ(["Ar"]) # You can also load the model from a pickle file. # import pickle diff --git a/examples/mliap/pickle_mliap_unified_lj_Ar.py b/examples/mliap/pickle_mliap_unified_lj_Ar.py index 4421c61fe4..f44c283f5a 100644 --- a/examples/mliap/pickle_mliap_unified_lj_Ar.py +++ b/examples/mliap/pickle_mliap_unified_lj_Ar.py @@ -5,5 +5,5 @@ from lammps.mliap.mliap_unified_lj import MLIAPUnifiedLJ if __name__ == '__main__': - unified = MLIAPUnifiedLJ() + unified = MLIAPUnifiedLJ(["Ar"]) unified.pickle('mliap_unified_lj_Ar.pkl') diff --git a/python/lammps/mliap/mliap_unified_lj.py b/python/lammps/mliap/mliap_unified_lj.py index 8794ba64c5..87925e1e39 100644 --- a/python/lammps/mliap/mliap_unified_lj.py +++ b/python/lammps/mliap/mliap_unified_lj.py @@ -5,17 +5,17 @@ import numpy as np class MLIAPUnifiedLJ(MLIAPUnified): """Test implementation for MLIAPUnified.""" - def __init__(self): + def __init__(self, element_types, epsilon=1.0, sigma=1.0, rcutfac=1.25): super().__init__() - self.element_types = ["Ar"] + self.element_types = element_types self.ndescriptors = 1 self.nparams = 3 # Mimicking the LJ pair-style: # pair_style lj/cut 2.5 # pair_coeff * * 1 1 - self.epsilon = 1.0 - self.sigma = 1.0 - self.rcutfac = 1.25 + self.epsilon = epsilon + self.sigma = sigma + self.rcutfac = rcutfac def compute_gradients(self, data): """Test compute_gradients."""