diff --git a/doc/src/pair_tersoff.rst b/doc/src/pair_tersoff.rst index cd71fb9d9c..0de97e0697 100644 --- a/doc/src/pair_tersoff.rst +++ b/doc/src/pair_tersoff.rst @@ -55,7 +55,7 @@ The *tersoff* style computes a 3-body Tersoff potential .. math:: E & = \frac{1}{2} \sum_i \sum_{j \neq i} V_{ij} \\ - V_{ij} & = f_C(r_{ij}) \left[ f_R(r_{ij}) + b_{ij} f_A(r_{ij}) \right] \\ + V_{ij} & = f_C(r_{ij} + \delta) \left[ f_R(r_{ij} + \delta) + b_{ij} f_A(r_{ij} + delta) \right] \\ f_C(r) & = \left\{ \begin{array} {r@{\quad:\quad}l} 1 & r < R - D \\ \frac{1}{2} - \frac{1}{2} \sin \left( \frac{\pi}{2} \frac{r-R}{D} \right) & @@ -65,14 +65,15 @@ The *tersoff* style computes a 3-body Tersoff potential f_R(r) & = A \exp (-\lambda_1 r) \\ f_A(r) & = -B \exp (-\lambda_2 r) \\ b_{ij} & = \left( 1 + \beta^n {\zeta_{ij}}^n \right)^{-\frac{1}{2n}} \\ - \zeta_{ij} & = \sum_{k \neq i,j} f_C(r_{ik}) g(\theta_{ijk}) + \zeta_{ij} & = \sum_{k \neq i,j} f_C(r_{ik} + \delta) g \left[ \theta_{ijk}(r_{ij} + \delta, r_{ik} + \delta) \right] \exp \left[ {\lambda_3}^m (r_{ij} - r_{ik})^m \right] \\ g(\theta) & = \gamma_{ijk} \left( 1 + \frac{c^2}{d^2} - \frac{c^2}{\left[ d^2 + (\cos \theta - \cos \theta_0)^2\right]} \right) where :math:`f_R` is a two-body term and :math:`f_A` includes three-body interactions. The summations in the formula are over all neighbors -J and K of atom I within a cutoff distance = R + D. +J and K of atom I within a cutoff distance = R + D. math:`\delta` is +non-zero only for *tersoff/shift* style. The *tersoff/table* style uses tabulated forms for the two-body, environment and angular functions. Linear interpolation is performed