Merge pull request #2412 from lammps/progguide-updates

Updates to the Programmer Guide part of the Manual
This commit is contained in:
Axel Kohlmeyer
2020-10-08 21:50:37 -04:00
committed by GitHub
44 changed files with 2106 additions and 1326 deletions

View File

@ -0,0 +1,27 @@
// LAMMPS -> Python
digraph api {
rankdir="LR";
edge [constraint=false];
input [shape=box label="LAMMPS\nInput Script" height=1.5];
subgraph cluster0 {
style=filled;
color="#e5e5e5";
rank=same;
capi [shape=box style=filled height=1 color="#666666" fontcolor=white label="LAMMPS\nC Library API"];
instance [shape=box style=filled height=1 color="#3465a4" fontcolor=white label="LAMMPS\ninstance\n\n0x01abcdef"];
capi -> instance [dir=both];
label="LAMMPS Shared Library\nor LAMMPS Executable";
}
python [shape=box style=filled color="#4e9a06" fontcolor=white label="Python\nScript" height=1.5];
subgraph cluster1 {
style=filled;
color="#e5e5e5";
lammps [shape=box style=filled height=1 color="#729fcf" label="lammps\n\nptr: 0x01abcdef"];
label="LAMMPS Python Module";
}
input -> instance [constraint=true];
instance -> python [dir=both constraint=true];
python:e -> lammps:w [dir=both constraint=true];
lammps:s -> capi:e [dir=both label=ctypes constraint=true];
}

View File

@ -0,0 +1,30 @@
// PyLammps -> LAMMPS
digraph api {
rankdir="LR";
edge [constraint=false];
python [shape=box style=filled color="#4e9a06" fontcolor=white label="Python\nScript" height=1.5];
subgraph cluster0 {
style=filled;
color="#e5e5e5";
height=1.5;
rank=same;
pylammps [shape=box style=filled height=1 color="#729fcf" label="(I)PyLammps"];
lammps [shape=box style=filled height=1 color="#729fcf" label="lammps\n\nptr: 0x01abcdef"];
pylammps -> lammps [dir=both];
label="LAMMPS Python Module";
}
subgraph cluster1 {
style=filled;
color="#e5e5e5";
height=1.5;
capi [shape=box style=filled height=1 color="#666666" fontcolor=white label="LAMMPS\nC Library API"];
instance [shape=box style=filled height=1 color="#3465a4" fontcolor=white label="LAMMPS\ninstance\n\n0x01abcdef"];
capi -> instance [dir=both constraint=true];
label="LAMMPS Shared Library";
}
python -> pylammps [dir=both constraint=true];
lammps -> capi [dir=both label=ctypes constraint=true];
pylammps:e -> instance:ne [dir=back, style=dashed label="captured standard output"];
}

View File

@ -0,0 +1,24 @@
// Python -> LAMMPS
digraph api {
rankdir="LR";
python [shape=box style=filled color="#4e9a06" fontcolor=white label="Python\nScript" height=1.5];
subgraph cluster0 {
style=filled;
color="#e5e5e5";
height=1.5;
lammps [shape=box style=filled height=1 color="#729fcf" label="lammps\n\nptr: 0x01abcdef"];
label="LAMMPS Python Module";
}
subgraph cluster1 {
style=filled;
color="#e5e5e5";
height=1.5;
capi [shape=box style=filled height=1 color="#666666" fontcolor=white label="LAMMPS\nC Library API"];
instance [shape=box style=filled height=1 color="#3465a4" fontcolor=white label="LAMMPS\ninstance\n\n0x01abcdef"];
capi -> instance [dir=both];
label="LAMMPS Shared Library";
}
python -> lammps [dir=both];
lammps -> capi [dir=both,label=ctypes];
}

View File

@ -329,6 +329,7 @@ LAMMPS.
----------
.. _exe:
.. _library:
Build the LAMMPS executable and library
---------------------------------------

View File

@ -33,6 +33,13 @@ Fortran code using the interface.
cover the entire range of functionality available in the C and
Python library interfaces.
.. note::
A contributed (and complete!) Fortran interface is available
in the ``examples/COUPLE/fortran2`` folder. Please see the
README file in that folder for more information about that
Fortran interface and how to contact its author and maintainer.
----------
Creating or deleting a LAMMPS object

View File

@ -11,7 +11,7 @@ on its own or use an existing lammps Python object. It creates a simpler,
more "pythonic" interface to common LAMMPS functionality, in contrast to
the ``lammps.py`` wrapper for the C-style LAMMPS library interface which
is written using `Python ctypes <ctypes_>`_. The ``lammps.py`` wrapper
is discussed on the :doc:`Python library <Python_library>` doc page.
is discussed on the :doc:`Python_head` doc page.
Unlike the flat ``ctypes`` interface, PyLammps exposes a discoverable
API. It no longer requires knowledge of the underlying C++ code

View File

@ -10,7 +10,7 @@ If you prefer to download a tarball, as described on the
:doc:`tarball download <Install_tarball>` page, you can stay current by
downloading "patch files" when new patch releases are made. A link to
a patch file is posted on the
`bugf fixes and new feature page <https://lammps.sandia.gov/bug.html>`_
`bug fixes and new feature page <https://lammps.sandia.gov/bug.html>`_
of the LAMMPS website, along
with a list of changed files and details about what is in the new patch
release. This page explains how to apply the patch file to your local

Binary file not shown.

Before

Width:  |  Height:  |  Size: 245 KiB

After

Width:  |  Height:  |  Size: 266 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 36 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 36 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 28 KiB

View File

@ -2,11 +2,11 @@ Adding code to the Library interface
====================================
The functionality of the LAMMPS library interface has historically
always been motivated by the needs of its users and functions were
added or expanded as they were needed and used. Contributions to
the interface are always welcome. However with a refactoring of
the library interface and its documentation that started in 2020,
there are now a few requirements for inclusion of changes.
been motivated by the needs of its users. Functions have been added
or expanded as they were needed and used. Contributions to the
interface are always welcome. However with a refactoring of the
library interface and its documentation that started in 2020, there
are now a few requirements for including new changes or extensions.
- New functions should be orthogonal to existing ones and not
implement functionality that can already be achieved with the
@ -17,17 +17,18 @@ there are now a few requirements for inclusion of changes.
``doc/src`` folder.
- If possible, new unit tests to test those new features should
be added.
- The new feature should also be implemented and documented for
the Python and Fortran modules.
- The new feature should also be implemented and documented not
just for the C interface, but also the Python and Fortran interfaces.
- All additions should work and be compatible with ``-DLAMMPS_BIGBIG``,
``-DLAMMPS_SMALLBIG``, ``-DLAMMPS_SMALLSMALL`` and compiling
``-DLAMMPS_SMALLBIG``, ``-DLAMMPS_SMALLSMALL`` and when compiling
with and without MPI support.
- The ``library.h`` file should be kept compatible to C code at
a level similar to C89. Its interfaces may not reference any
custom data types (e.g. ``bigint``, ``tagint``, and so on) only
known inside of LAMMPS.
- only C style comments, not C++ style
custom data types (e.g. ``bigint``, ``tagint``, and so on) that
are only known inside of LAMMPS.
- only use C style comments, not C++ style
Please note that these are *not* *strict* requirements, but the LAMMPS
developers appreciate if they are followed and can assist with
implementing what is missing.
Please note, that these are *not* *strict* requirements, but the
LAMMPS developers appreciate if they are followed closely and will
assist with implementing what is missing.

View File

@ -21,18 +21,18 @@ This section documents the following functions:
--------------------
The following library functions can be used to query the LAMMPS library
about compile time settings and included packages and styles. This
enables programs that use the library interface to run LAMMPS
simulations to determine, whether the linked LAMMPS library is compatible
with the requirements of the application without crashing during the
LAMMPS functions (e.g. due to missing pair styles from packages) or to
choose between different options (e.g. whether to use ``lj/cut``,
``lj/cut/opt``, ``lj/cut/omp`` or ``lj/cut/intel``). Most of the
functions can be called directly without first creating a LAMMPS
instance. While crashes within LAMMPS may be recovered from through
enabling :ref:`exceptions <exceptions>`, avoiding them proactively is
a safer approach.
These library functions can be used to query the LAMMPS library for
compile time settings and included packages and styles. This enables
programs that use the library interface to determine whether the
linked LAMMPS library is compatible with the requirements of the
application without crashing during the LAMMPS functions (e.g. due to
missing pair styles from packages) or to choose between different
options (e.g. whether to use ``lj/cut``, ``lj/cut/opt``,
``lj/cut/omp`` or ``lj/cut/intel``). Most of the functions can be
called directly without first creating a LAMMPS instance. While
crashes within LAMMPS may be recovered from by enabling
:ref:`exceptions <exceptions>`, avoiding them proactively is a safer
approach.
.. code-block:: C
:caption: Example for using configuration settings functions

View File

@ -1,8 +1,8 @@
Accessing LAMMPS Neighbor lists
===============================
The following functions allow to access neighbor lists
generated by LAMMPS or query their properties:
The following functions enable access to neighbor lists generated by
LAMMPS or querying of their properties:
- :cpp:func:`lammps_find_compute_neighlist`
- :cpp:func:`lammps_find_fix_neighlist`

View File

@ -1,8 +1,8 @@
Retrieving or setting properties of LAMMPS objects
==================================================
This section documents accessing or modifying data from objects like
computes, fixes, or variables in LAMMPS using following functions:
This section documents accessing or modifying data stored by computes,
fixes, or variables in LAMMPS using the following functions:
- :cpp:func:`lammps_extract_compute`
- :cpp:func:`lammps_extract_fix`

View File

@ -1,7 +1,16 @@
Library functions for scatter/gather operations
================================================
This section documents the following functions:
This section has functions which gather per-atom data from one or more
processors into a contiguous global list ordered by atom ID. The same
list is returned to all calling processors. It also contains
functions which scatter per-atom data from a contiguous global list
across the processors that own those atom IDs. It also has a
create_atoms() function which can create new atoms by scattering them
appropriately to owning processors in the LAMMPS spatial
decomposition.
It documents the following functions:
- :cpp:func:`lammps_gather_atoms`
- :cpp:func:`lammps_gather_atoms_concat`
@ -14,8 +23,6 @@ This section documents the following functions:
- :cpp:func:`lammps_scatter`
- :cpp:func:`lammps_scatter_subset`
.. TODO add description
-----------------------
.. doxygenfunction:: lammps_gather_atoms

View File

@ -1,8 +1,8 @@
Library interface utility functions
===================================
To simplify some of the tasks, the library interface contains
some utility functions that are not directly calling LAMMPS:
To simplify some tasks, the library interface contains these utility
functions. They do not directly call the LAMMPS library.
- :cpp:func:`lammps_encode_image_flags`
- :cpp:func:`lammps_decode_image_flags`

View File

@ -1,5 +1,5 @@
Call Python from a LAMMPS input script
======================================
Calling Python from a LAMMPS input script
*****************************************
LAMMPS has several commands which can be used to invoke Python
code directly from an input script:
@ -47,32 +47,3 @@ See the :doc:`python <python>` doc page and the :doc:`variable <variable>`
doc page for its python-style variables for more info, including
examples of Python code you can write for both pure Python operations
and callbacks to LAMMPS.
The :doc:`fix python/invoke <fix_python_invoke>` command can execute
Python code at selected timesteps during a simulation run.
The :doc:`pair_style python <pair_python>` command allows you to define
pairwise potentials as python code which encodes a single pairwise
interaction. This is useful for rapid development and debugging of a
new potential.
To use any of these commands, you only need to build LAMMPS with the
PYTHON package installed:
.. code-block:: bash
make yes-python
make machine
Note that this will link LAMMPS with the Python library on your
system, which typically requires several auxiliary system libraries to
also be linked. The list of these libraries and the paths to find
them are specified in the lib/python/Makefile.lammps file. You need
to insure that file contains the correct information for your version
of Python and your machine to successfully build LAMMPS. See the
lib/python/README file for more info.
If you want to write Python code with callbacks to LAMMPS, then you
must also follow the steps summarized in the :doc:`Python run <Python_run>` doc page. I.e. you must build LAMMPS as a shared
library and insure that Python can find the python/lammps.py file and
the shared library.

45
doc/src/Python_config.rst Normal file
View File

@ -0,0 +1,45 @@
Retrieving LAMMPS configuration information
*******************************************
The following methods can be used to query the LAMMPS library
about compile time settings and included packages and styles.
.. code-block:: Python
:caption: Example for using configuration settings functions
from lammps import lammps
lmp = lammps()
try:
lmp.file("in.missing")
except Exception as e:
print("LAMMPS failed with error:", e)
# write compressed dump file depending on available of options
if lmp.has_style("dump", "atom/zstd"):
lmp.command("dump d1 all atom/zstd 100 dump.zst")
elif lmp.has_style("dump", "atom/gz"):
lmp.command("dump d1 all atom/gz 100 dump.gz")
elif lmp.has_gzip_support():
lmp.command("dump d1 all atom 100 dump.gz")
else:
lmp.command("dump d1 all atom 100 dump")
-----------------------
**Methods:**
* :py:attr:`lammps.has_mpi_support <lammps.lammps.has_mpi_support>`
* :py:attr:`lammps.has_exceptions <lammps.lammps.has_exceptions>`
* :py:attr:`lammps.has_gzip_support <lammps.lammps.has_gzip_support>`
* :py:attr:`lammps.has_png_support <lammps.lammps.has_png_support>`
* :py:attr:`lammps.has_jpeg_support <lammps.lammps.has_jpeg_support>`
* :py:attr:`lammps.has_ffmpeg_support <lammps.lammps.has_ffmpeg_support>`
* :py:attr:`lammps.installed_packages <lammps.lammps.installed_pages>`
* :py:meth:`lammps.has_style() <lammps.lammps.has_style()>`
* :py:meth:`lammps.available_styles() <lammps.lammps.available_styles()>`

36
doc/src/Python_error.rst Normal file
View File

@ -0,0 +1,36 @@
LAMMPS error handling in Python
*******************************
Compiling the shared library with :ref:`C++ exception support <exceptions>` provides a better error
handling experience. Without exceptions the LAMMPS code will terminate the
current Python process with an error message. C++ exceptions allow capturing
them on the C++ side and rethrowing them on the Python side. This way
LAMMPS errors can be handled through the Python exception handling mechanism.
.. code-block:: Python
from lammps import lammps, MPIAbortException
lmp = lammps()
try:
# LAMMPS will normally terminate itself and the running process if an error
# occurs. This would kill the Python interpreter. To avoid this, make sure to
# compile with LAMMPS_EXCEPTIONS enabled. This ensures the library API calls
# will not terminate the parent process. Instead, the library wrapper will
# detect that an error has occured and throw a Python exception
lmp.command('unknown')
except MPIAbortException as ae:
# Single MPI process got killed. This would normally be handled by an MPI abort
pass
except Exception as e:
# All (MPI) processes have reached this error
pass
.. warning::
Capturing a LAMMPS exception in Python can still mean that the
current LAMMPS process is in an illegal state and must be terminated. It is
advised to save your data and terminate the Python instance as quickly as
possible.

View File

@ -1,6 +1,9 @@
Example Python scripts that use LAMMPS
======================================
The python/examples directory has Python scripts which show how Python
can run LAMMPS, grab data, change it, and put it back into LAMMPS.
These are the Python scripts included as demos in the python/examples
directory of the LAMMPS distribution, to illustrate the kinds of
things that are possible when Python wraps LAMMPS. If you create your

16
doc/src/Python_ext.rst Normal file
View File

@ -0,0 +1,16 @@
Extending the library and Python interface
******************************************
As noted above, these Python class methods correspond one-to-one with
the functions in the LAMMPS library interface in ``src/library.cpp`` and
``library.h``. This means you can extend the Python wrapper via the
following steps:
* Add a new interface function to ``src/library.cpp`` and
``src/library.h``.
* Rebuild LAMMPS as a shared library.
* Add a wrapper method to ``python/lammps.py`` for this interface
function.
* You should now be able to invoke the new interface function from a
Python script.

View File

@ -1,44 +1,50 @@
Use Python with LAMMPS
**********************
These doc pages describe various ways that LAMMPS and Python can be
used together.
These pages describe various ways that LAMMPS and Python can be used
together.
.. toctree::
:maxdepth: 1
Python_overview
Python_run
Python_shlib
Python_install
Python_mpi
Python_test
Python_library
Python_module
Python_pylammps
Python_examples
Python_run
Python_usage
Python_call
Python_config
Python_neighbor
Python_module
Python_examples
Python_error
Python_ext
Python_trouble
If you're not familiar with `Python <http://www.python.org>`_, it's a
powerful scripting and programming language which can do most
everything that lower-level languages like C or C++ can do in fewer
lines of code. The only drawback is slower execution speed. Python
is also easy to use as a "glue" language to drive a program through
its library interface, or to hook multiple pieces of software
together, such as a simulation code plus a visualization tool, or to
run a coupled multiscale or multiphysics model.
If you are not familiar with `Python <http://www.python.org>`_, it is a
powerful scripting and programming language which can do almost
everything that compiled languages like C, C++, or Fortran can do in
fewer lines of code. It also comes with a large collection of add-on
modules for many purposes (either bundled or easily installed from
Python code repositories). The major drawback is slower execution speed
of the script code compared to compiled programming languages. But when
the script code is interfaced to optimized compiled code, performance can
be on par with a standalone executable, for as long as the scripting is
restricted to high-level operations. Thus Python is also convenient to
use as a "glue" language to "drive" a program through its library
interface, or to hook multiple pieces of software together, such as a
simulation code and a visualization tool, or to run a coupled
multi-scale or multi-physics model.
See the :doc:`Howto_couple <Howto_couple>` doc page for more ideas about
coupling LAMMPS to other codes. See the :doc:`Howto library <Howto_library>` doc page for a description of the LAMMPS
library interface provided in src/library.h and src/library.h. That
interface is exposed to Python either when calling LAMMPS from Python
or when calling Python from a LAMMPS input script and then calling
back to LAMMPS from Python code. The library interface is designed to
be easy to add functionality to. Thus the Python interface to LAMMPS
is also easy to extend as well.
See the :doc:`Howto_couple` page for more ideas about coupling LAMMPS
to other codes. See the :doc:`Library` page for a description of the
LAMMPS library interfaces. That interface is exposed to Python either
when calling LAMMPS from Python or when calling Python from a LAMMPS
input script and then calling back to LAMMPS from Python code. The
C-library interface is designed to be easy to add functionality to,
thus the Python interface to LAMMPS is easy to extend as well.
If you create interesting Python scripts that run LAMMPS or
interesting Python functions that can be called from a LAMMPS input
script, that you think would be generally useful, please post them as
a pull request to our `GitHub site <https://github.com/lammps/lammps>`_,
and they can be added to the LAMMPS distribution or webpage.
and they can be added to the LAMMPS distribution or web page.

View File

@ -1,68 +1,468 @@
Installing LAMMPS in Python
===========================
Installation
************
For Python to invoke LAMMPS, there are 2 files it needs to know about:
The LAMMPS Python module enables calling the :ref:`LAMMPS C library API
<lammps_c_api>` from Python by dynamically loading functions in the
LAMMPS shared library through the Python `ctypes <ctypes_>`_
module. Because of the dynamic loading, it is required that LAMMPS is
compiled in :ref:`"shared" mode <exe>`. It is also recommended to
compile LAMMPS with :ref:`C++ exceptions <exceptions>` enabled.
* python/lammps.py
* liblammps.so or liblammps.dylib
Two files are necessary for Python to be able to invoke LAMMPS code:
The python source code in lammps.py is the Python wrapper on the
LAMMPS library interface. The liblammps.so or liblammps.dylib file
is the shared LAMMPS library that Python loads dynamically.
* The LAMMPS Python Module (``lammps.py``) from the ``python`` folder
* The LAMMPS Shared Library (``liblammps.so``, ``liblammps.dylib`` or
``liblammps.dll``) from the folder where you compiled LAMMPS.
You can achieve that Python can find these files in one of two ways:
.. _ctypes: https://docs.python.org/3/library/ctypes.html
.. _python_virtualenv: https://packaging.python.org/guides/installing-using-pip-and-virtual-environments/#creating-a-virtual-environment
.. _python_venv: https://docs.python.org/3/library/venv.html
.. _python_pep405: https://www.python.org/dev/peps/pep-0405
* set two environment variables pointing to the location in the source tree
* run "make install-python" or run the python/install.py script explicitly
.. _python_install_guides:
When calling "make install-python" LAMMPS will try to install the
python module and the shared library into the python site-packages folders;
either the system-wide ones, or the local users ones (in case of insufficient
permissions for the global install). Python will then find the module
and shared library file automatically. The exact location of these folders
depends on your python version and your operating system. When using
the CMake build system, you can set the python executable to use during
the CMake configuration process. Details are given in the build instructions
for the :ref:`PYTHON <python>` package. When using the conventional make
system, you can override the python version to version x.y when calling
make with PYTHON=pythonx.y.
Installing the LAMMPS Python Module and Shared Library
======================================================
If you set the paths to these files as environment variables, you only
have to do it once. For the csh or tcsh shells, add something like
this to your ~/.cshrc file, one line for each of the two files:
Making LAMMPS usable within Python and vice versa requires putting the
LAMMPS Python module file (``lammps.py``) into a location where the
Python interpreter can find it and installing the LAMMPS shared library
into a folder that the dynamic loader searches or into the same folder
where the ``lammps.py`` file is. There are multiple ways to achieve
this.
.. code-block:: csh
#. Do a full LAMMPS installation of libraries, executables, selected
headers, documentation (if enabled), and supporting files (only
available via CMake), which can also be either system-wide or into
user specific folders.
setenv PYTHONPATH ${PYTHONPATH}:/home/sjplimp/lammps/python
setenv LD_LIBRARY_PATH ${LD_LIBRARY_PATH}:/home/sjplimp/lammps/src
#. Install both files into a Python ``site-packages`` folder, either
system-wide or in the corresponding user-specific folder. This way no
additional environment variables need to be set, but the shared
library is otherwise not accessible.
On MacOSX you may also need to set DYLD_LIBRARY_PATH accordingly.
For Bourne/Korn shells accordingly into the corresponding files using
the "export" shell builtin.
#. Do an installation into a virtual environment. This can either be
an installation of the python module only or a full installation.
If you use "make install-python" or the python/install.py script, you need
to invoke it every time you rebuild LAMMPS (as a shared library) or
make changes to the python/lammps.py file, so that the site-packages
files are updated with the new version.
#. Leave the files where they are in the source/development tree and
adjust some environment variables.
If the default settings of "make install-python" are not what you want,
you can invoke install.py from the python directory manually as
.. tabs::
.. parsed-literal::
.. tab:: Full install (CMake-only)
% python install.py -m \<python module\> -l <shared library> -v <version.h file> [-d \<pydir\>]
:ref:`Build the LAMMPS executable and library <library>` with
``-DBUILD_SHARED_LIBS=on``, ``-DLAMMPS_EXCEPTIONS=on`` and
``-DPKG_PYTHON=on`` (The first option is required, the other two
are optional by recommended). The exact file name of the shared
library depends on the platform (Unix/Linux, MacOS, Windows) and
the build configuration being used. The installation base folder
is already set by default to the ``$HOME/.local`` directory, but
it can be changed to a custom location defined by the
``CMAKE_INSTALL_PREFIX`` CMake variable. This uses a folder
called ``build`` to store files generated during compilation.
* The -m flag points to the lammps.py python module file to be installed,
* the -l flag points to the LAMMPS shared library file to be installed,
* the -v flag points to the version.h file in the LAMMPS source
* and the optional -d flag to a custom (legacy) installation folder
.. code-block:: bash
If you use a legacy installation folder, you will need to set your
PYTHONPATH and LD_LIBRARY_PATH (and/or DYLD_LIBRARY_PATH) environment
variables accordingly, as described above.
# create build folder
mkdir build
cd build
# configure LAMMPS compilation
cmake -C cmake/presets/minimal.cmake -D BUILD_SHARED_LIBS=on \
-D LAMMPS_EXCEPTIONS=on -D PKG_PYTHON=on cmake
# compile LAMMPS
cmake --build .
# install LAMMPS into $HOME/.local
cmake --install .
This leads to an installation to the following locations:
+------------------------+-----------------------------------------------------------+-------------------------------------------------------------+
| File | Location | Notes |
+========================+===========================================================+=============================================================+
| LAMMPS Python Module | * ``$HOME/.local/lib/pythonX.Y/site-packages/`` (32bit) | ``X.Y`` depends on the installed Python version |
| | * ``$HOME/.local/lib64/pythonX.Y/site-packages/`` (64bit) | |
+------------------------+-----------------------------------------------------------+-------------------------------------------------------------+
| LAMMPS shared library | * ``$HOME/.local/lib/`` (32bit) | |
| | * ``$HOME/.local/lib64/`` (64bit) | |
+------------------------+-----------------------------------------------------------+-------------------------------------------------------------+
| LAMMPS executable | * ``$HOME/.local/bin/`` | |
+------------------------+-----------------------------------------------------------+-------------------------------------------------------------+
| LAMMPS potential files | * ``$HOME/.local/share/lammps/potentials/`` | Set ``LAMMPS_POTENTIALS`` environment variable to this path |
+------------------------+-----------------------------------------------------------+-------------------------------------------------------------+
For a system-wide installation you need to set
``CMAKE_INSTALL_PREFIX`` to a system folder like ``/usr`` (or
``/usr/local``). The installation step (**not** the
configuration/compilation) needs to be done with superuser
privilege, e.g. by using ``sudo cmake --install .``. The
installation folders will then by changed to:
+------------------------+---------------------------------------------------+-------------------------------------------------------------+
| File | Location | Notes |
+========================+===================================================+=============================================================+
| LAMMPS Python Module | * ``/usr/lib/pythonX.Y/site-packages/`` (32bit) | ``X.Y`` depends on the installed Python version |
| | * ``/usr/lib64/pythonX.Y/site-packages/`` (64bit) | |
+------------------------+---------------------------------------------------+-------------------------------------------------------------+
| LAMMPS shared library | * ``/usr/lib/`` (32bit) | |
| | * ``/usr/lib64/`` (64bit) | |
+------------------------+---------------------------------------------------+-------------------------------------------------------------+
| LAMMPS executable | * ``/usr/bin/`` | |
+------------------------+---------------------------------------------------+-------------------------------------------------------------+
| LAMMPS potential files | * ``/usr/share/lammps/potentials/`` | |
+------------------------+---------------------------------------------------+-------------------------------------------------------------+
To be able to use the "user" installation you have to ensure that
the folder containing the LAMMPS shared library is either included
in a path searched by the shared linker (e.g. like
``/usr/lib64/``) or part of the ``LD_LIBRARY_PATH`` environment
variable (or ``DYLD_LIBRARY_PATH`` on MacOS). Otherwise you will
get an error when trying to create a LAMMPS object through the
Python module.
.. code-block:: bash
# Unix/Linux
export LD_LIBRARY_PATH=$HOME/.local/lib:$LD_LIBRARY_PATH
# MacOS
export DYLD_LIBRARY_PATH=$HOME/.local/lib:$DYLD_LIBRARY_PATH
If you plan to use the LAMMPS executable (e.g., ``lmp``), you may
also need to adjust the ``PATH`` environment variable (but many
newer Linux distributions already have ``$HOME/.local/bin``
included). Example:
.. code-block:: bash
export PATH=$HOME/.local/bin:$PATH
To make those changes permanent, you can add the commands to your
``$HOME/.bashrc`` file. For a system-wide installation is is not
necessary due to files installed in system folders that are loaded
automatically when a login shell is started.
.. tab:: Python module only
Compile LAMMPS with either :doc:`CMake <Build_cmake>` or the
:doc:`traditional make <Build_make>` procedure in :ref:`shared
mode <exe>`. After compilation has finished type (in the
compilation folder):
.. code-block:: bash
make install-python
This will try to install (only) the shared library and the python
module into a system folder and if that fails (due to missing
write permissions) will instead do the installation to a user
folder under ``$HOME/.local``. For a system-wide installation you
would have to gain superuser privilege, e.g. though ``sudo``
+------------------------+-----------------------------------------------------------+-------------------------------------------------------------+
| File | Location | Notes |
+========================+===========================================================+=============================================================+
| LAMMPS Python Module | * ``$HOME/.local/lib/pythonX.Y/site-packages/`` (32bit) | ``X.Y`` depends on the installed Python version |
| | * ``$HOME/.local/lib64/pythonX.Y/site-packages/`` (64bit) | |
+------------------------+-----------------------------------------------------------+-------------------------------------------------------------+
| LAMMPS shared library | * ``$HOME/.local/lib/pythonX.Y/site-packages/`` (32bit) | ``X.Y`` depends on the installed Python version |
| | * ``$HOME/.local/lib64/pythonX.Y/site-packages/`` (64bit) | |
+------------------------+-----------------------------------------------------------+-------------------------------------------------------------+
For a system-wide installation those folders would then become.
+------------------------+---------------------------------------------------+-------------------------------------------------------------+
| File | Location | Notes |
+========================+===================================================+=============================================================+
| LAMMPS Python Module | * ``/usr/lib/pythonX.Y/site-packages/`` (32bit) | ``X.Y`` depends on the installed Python version |
| | * ``/usr/lib64/pythonX.Y/site-packages/`` (64bit) | |
+------------------------+---------------------------------------------------+-------------------------------------------------------------+
| LAMMPS shared library | * ``/usr/lib/pythonX.Y/site-packages/`` (32bit) | ``X.Y`` depends on the installed Python version |
| | * ``/usr/lib64/pythonX.Y/site-packages/`` (64bit) | |
+------------------------+---------------------------------------------------+-------------------------------------------------------------+
No environment variables need to be set for those, as those
folders are searched by default by Python or the LAMMPS Python
module.
For the traditional make process you can override the python
version to version x.y when calling ``make`` with
``PYTHON=pythonX.Y``. For a CMake based compilation this choice
has to be made during the CMake configuration step.
If the default settings of ``make install-python`` are not what you want,
you can invoke ``install.py`` from the python directory manually as
.. code-block:: bash
$ python install.py -m <python module> -l <shared library> -v <version.h file> [-d <pydir>]
* The ``-m`` flag points to the ``lammps.py`` python module file to be installed,
* the ``-l`` flag points to the LAMMPS shared library file to be installed,
* the ``-v`` flag points to the ``version.h`` file in the LAMMPS source
* and the optional ``-d`` flag to a custom (legacy) installation folder
If you use a legacy installation folder, you will need to set your
``PYTHONPATH`` and ``LD_LIBRARY_PATH`` (and/or ``DYLD_LIBRARY_PATH``) environment
variables accordingly as explained in the description for "In place use".
.. tab:: Virtual environment
A virtual environment is a minimal Python installation inside of a
folder. It allows isolating and customizing a Python environment
that is mostly independent from a user or system installation.
For the core Python environment, it uses symbolic links to the
system installation and thus it can be set up quickly and will not
take up much disk space. This gives you the flexibility to
install (newer/different) versions of Python packages that would
potentially conflict with already installed system packages. It
also does not requite any superuser privileges. See `PEP 405:
Python Virtual Environments <python_pep405>`_ for more
information.
To create a virtual environment in the folder ``$HOME/myenv``,
use the `venv <python_venv>`_ module as follows.
.. code-block:: bash
# create virtual environment in folder $HOME/myenv
python3 -m venv $HOME/myenv
For Python versions prior 3.3 you can use `virtualenv
<python_virtualenv>`_ command instead of "python3 -m venv". This
step has to be done only once.
To activate the virtual environment type:
.. code-block:: bash
source $HOME/myenv/bin/activate
This has to be done every time you log in or open a new terminal
window and after you turn off the virtual environment with the
``deactivate`` command.
When using CMake to build LAMMPS, you need to set
``CMAKE_INSTALL_PREFIX`` to the value of the ``$VIRTUAL_ENV``
environment variable during the configuration step. For the
traditional make procedure, not additional steps are needed.
After compiling LAMMPS you can do a "Python module only"
installation with ``make install-python`` and the LAMMPS Python
module and the shared library file are installed into the
following locations:
+------------------------+-----------------------------------------------------------+-------------------------------------------------------------+
| File | Location | Notes |
+========================+===========================================================+=============================================================+
| LAMMPS Python Module | * ``$VIRTUAL_ENV/lib/pythonX.Y/site-packages/`` (32bit) | ``X.Y`` depends on the installed Python version |
| | * ``$VIRTUAL_ENV/lib64/pythonX.Y/site-packages/`` (64bit) | |
+------------------------+-----------------------------------------------------------+-------------------------------------------------------------+
| LAMMPS shared library | * ``$VIRTUAL_ENV/lib/pythonX.Y/site-packages/`` (32bit) | ``X.Y`` depends on the installed Python version |
| | * ``$VIRTUAL_ENV/lib64/pythonX.Y/site-packages/`` (64bit) | |
+------------------------+-----------------------------------------------------------+-------------------------------------------------------------+
If you do a full installation (CMake only) with "install", this
leads to the following installation locations:
+------------------------+-----------------------------------------------------------+-------------------------------------------------------------+
| File | Location | Notes |
+========================+===========================================================+=============================================================+
| LAMMPS Python Module | * ``$VIRTUAL_ENV/lib/pythonX.Y/site-packages/`` (32bit) | ``X.Y`` depends on the installed Python version |
| | * ``$VIRTUAL_ENV/lib64/pythonX.Y/site-packages/`` (64bit) | |
+------------------------+-----------------------------------------------------------+-------------------------------------------------------------+
| LAMMPS shared library | * ``$VIRTUAL_ENV/lib/`` (32bit) | |
| | * ``$VIRTUAL_ENV/lib64/`` (64bit) | |
+------------------------+-----------------------------------------------------------+-------------------------------------------------------------+
| LAMMPS executable | * ``$VIRTUAL_ENV/bin/`` | |
+------------------------+-----------------------------------------------------------+-------------------------------------------------------------+
| LAMMPS potential files | * ``$VIRTUAL_ENV/share/lammps/potentials/`` | |
+------------------------+-----------------------------------------------------------+-------------------------------------------------------------+
In that case you need to modify the ``$HOME/myenv/bin/activate``
script in a similar fashion you need to update your
``$HOME/.bashrc`` file to include the shared library and
executable locations in ``LD_LIBRARY_PATH`` (or
``DYLD_LIBRARY_PATH`` on MacOS) and ``PATH``, respectively.
For example with:
.. code-block:: bash
# Unix/Linux
echo 'export LD_LIBRARY_PATH=$VIRTUAL_ENV/lib:$LD_LIBRARY_PATH' >> $HOME/myenv/bin/activate
# MacOS
echo 'export DYLD_LIBRARY_PATH=$VIRTUAL_ENV/lib:$LD_LIBRARY_PATH' >> $HOME/myenv/bin/activate
.. tab:: In place usage
You can also :doc:`compile LAMMPS <Build>` as usual in
:ref:`"shared" mode <exe>` leave the shared library and Python
module files inside the source/compilation folders. Instead of
copying the files where they can be found, you need to set the environment
variables ``PYTHONPATH`` (for the Python module) and
``LD_LIBRARY_PATH`` (or ``DYLD_LIBRARY_PATH`` on MacOS
For Bourne shells (bash, ksh and similar) the commands are:
.. code-block:: bash
export PYTHONPATH=${PYTHONPATH}:${HOME}/lammps/python
export LD_LIBRARY_PATH=${LD_LIBRARY_PATH}:${HOME}/lammps/src
For the C-shells like csh or tcsh the commands are:
.. code-block:: csh
setenv PYTHONPATH ${PYTHONPATH}:${HOME}/lammps/python
setenv LD_LIBRARY_PATH ${LD_LIBRARY_PATH}:${HOME}/lammps/src
On MacOS you may also need to set ``DYLD_LIBRARY_PATH`` accordingly.
You can make those changes permanent by editing your ``$HOME/.bashrc``
or ``$HOME/.login`` files, respectively.
To verify if LAMMPS can be successfully started from Python, start the
Python interpreter, load the ``lammps`` Python module and create a
LAMMPS instance. This should not generate an error message and produce
output similar to the following:
.. code-block:: bash
$ python
Python 3.8.5 (default, Sep 5 2020, 10:50:12)
[GCC 10.2.0] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> import lammps
>>> lmp = lammps.lammps()
LAMMPS (18 Sep 2020)
using 1 OpenMP thread(s) per MPI task
>>>
.. note::
Unless you opted for "In place use", you will have to rerun the installation
any time you recompile LAMMPS to ensure the latest Python module and shared
library are installed and used.
.. note::
If you want Python to be able to load different versions of the
LAMMPS shared library with different settings, you will need to
manually copy the files under different names
(e.g. ``liblammps_mpi.so`` or ``liblammps_gpu.so``) into the
appropriate folder as indicated above. You can then select the
desired library through the *name* argument of the LAMMPS object
constructor (see :ref:`python_create_lammps`).
.. _python_install_mpi4py:
Extending Python to run in parallel
===================================
If you wish to run LAMMPS in parallel from Python, you need to extend
your Python with an interface to MPI. This also allows you to
make MPI calls directly from Python in your script, if you desire.
We have tested this with `MPI for Python <https://mpi4py.readthedocs.io/>`_
(aka mpi4py) and you will find installation instruction for it below.
.. note::
Older LAMMPS versions were also tested with `PyPar <https://github.com/daleroberts/pypar>`_
but we can no longer test it, since it does not work with the Python
(3.x) versions on our test servers. Since there have been no updates
to PyPar visible in its repository since November 2016 we have to assume
it is no longer maintained.
Installation of mpi4py (version 3.0.3 as of Sep 2020) can be done as
follows:
- Via ``pip`` into a local user folder with:
.. code-block:: bash
pip install --user mpi4py
- Via ``dnf`` into a system folder for RedHat/Fedora systems:
.. code-block:: bash
# for use with OpenMPI
sudo dnf install python3-mpi4py-openmpi
# for use with MPICH
sudo dnf install python3-mpi4py-openmpi
- Via ``pip`` into a virtual environment (see above):
.. code-block:: bash
$ source $HOME/myenv/activate
(myenv)$ pip install mpi4py
- Via ``pip`` into a system folder (not recommended):
.. code-block:: bash
sudo pip install mpi4py
.. _mpi4py_install: https://mpi4py.readthedocs.io/en/stable/install.html
For more detailed installation instructions and additional options,
please see the `mpi4py installation <mpi4py_install>`_ page.
To use ``mpi4py`` and LAMMPS in parallel from Python, you **must** make
certain that **both** are using the **same** implementation and version
of MPI library. If you only have one MPI library installed on your
system this is not an issue, but it can be if you have multiple MPI
installations (e.g. on an HPC cluster to be selected through environment
modules). Your LAMMPS build is explicit about which MPI it is using,
since it is either detected during CMake configuration or in the
traditional make build system you specify the details in your low-level
``src/MAKE/Makefile.foo`` file. The installation process of ``mpi4py``
uses the ``mpicc`` command to find information about the MPI it uses to
build against. And it tries to load "libmpi.so" from the
``LD_LIBRARY_PATH``. This may or may not find the MPI library that
LAMMPS is using. If you have problems running both mpi4py and LAMMPS
together, this is an issue you may need to address, e.g. by loading the
module for different MPI installation so that mpi4py finds the right
one.
If you have successfully installed mpi4py, you should be able to run
Python and type
.. code-block:: python
from mpi4py import MPI
without error. You should also be able to run Python in parallel
on a simple test script
.. code-block:: bash
$ mpirun -np 4 python3 test.py
where ``test.py`` contains the lines
.. code-block:: python
from mpi4py import MPI
comm = MPI.COMM_WORLD
print("Proc %d out of %d procs" % (comm.Get_rank(),comm.Get_size()))
and see one line of output for each processor you run on.
.. code-block:: bash
# NOTE: the line order is not deterministic
$ mpirun -np 4 python3 test.py
Proc 0 out of 4 procs
Proc 1 out of 4 procs
Proc 2 out of 4 procs
Proc 3 out of 4 procs
Note that if you want Python to be able to load different versions of
the LAMMPS shared library (see :doc:`this section <Python_shlib>`), you will
need to manually copy files like liblammps_g++.so into the appropriate
system directory. This is not needed if you set the LD_LIBRARY_PATH
environment variable as described above.

View File

@ -1,256 +0,0 @@
Python library interface
========================
As described previously, the Python interface to LAMMPS consists of a
Python "lammps" module, the source code for which is in
python/lammps.py, which creates a "lammps" object, with a set of
methods that can be invoked on that object. The sample Python code
below assumes you have first imported the "lammps" module in your
Python script, as follows:
.. code-block:: Python
from lammps import lammps
These are the methods defined by the lammps module. If you look at
the files src/library.cpp and src/library.h you will see they
correspond one-to-one with calls you can make to the LAMMPS library
from a C++ or C or Fortran program, and which are described on the
:doc:`Howto library <Howto_library>` doc page.
The python/examples directory has Python scripts which show how Python
can run LAMMPS, grab data, change it, and put it back into LAMMPS.
.. code-block:: Python
lmp = lammps() # create a LAMMPS object using the default liblammps.so library
# 4 optional args are allowed: name, cmdargs, ptr, comm
lmp = lammps(ptr=lmpptr) # use lmpptr as previously created LAMMPS object
lmp = lammps(comm=split) # create a LAMMPS object with a custom communicator, requires mpi4py 2.0.0 or later
lmp = lammps(name="g++") # create a LAMMPS object using the liblammps_g++.so library
lmp = lammps(name="g++",cmdargs=list) # add LAMMPS command-line args, e.g. list = ["-echo","screen"]
lmp.close() # destroy a LAMMPS object
version = lmp.version() # return the numerical version id, e.g. LAMMPS 2 Sep 2015 -> 20150902
lmp.file(file) # run an entire input script, file = "in.lj"
lmp.command(cmd) # invoke a single LAMMPS command, cmd = "run 100"
lmp.commands_list(cmdlist) # invoke commands in cmdlist = **"run 10", "run 20"**
lmp.commands_string(multicmd) # invoke commands in multicmd = "run 10\nrun 20"
size = lmp.extract_setting(name) # return data type info
xlo = lmp.extract_global(name,type) # extract a global quantity
# name = "boxxlo", "nlocal", etc
# type = 0 = int
# 1 = double
boxlo,boxhi,xy,yz,xz,periodicity,box_change = lmp.extract_box() # extract box info
coords = lmp.extract_atom(name,type) # extract a per-atom quantity
# name = "x", "type", etc
# type = 0 = vector of ints
# 1 = array of ints
# 2 = vector of doubles
# 3 = array of doubles
eng = lmp.extract_compute(id,style,type) # extract value(s) from a compute
v3 = lmp.extract_fix(id,style,type,i,j) # extract value(s) from a fix
# id = ID of compute or fix
# style = 0 = global data
# 1 = per-atom data
# 2 = local data
# type = 0 = scalar
# 1 = vector
# 2 = array
# i,j = indices of value in global vector or array
var = lmp.extract_variable(name,group,flag) # extract value(s) from a variable
# name = name of variable
# group = group ID (ignored for equal-style variables)
# flag = 0 = equal-style variable
# 1 = atom-style variable
value = lmp.get_thermo(name) # return current value of a thermo keyword
natoms = lmp.get_natoms() # total # of atoms as int
flag = lmp.set_variable(name,value) # set existing named string-style variable to value, flag = 0 if successful
lmp.reset_box(boxlo,boxhi,xy,yz,xz) # reset the simulation box size
data = lmp.gather_atoms(name,type,count) # return per-atom property of all atoms gathered into data, ordered by atom ID
# name = "x", "charge", "type", etc
data = lmp.gather_atoms_concat(name,type,count) # ditto, but concatenated atom values from each proc (unordered)
data = lmp.gather_atoms_subset(name,type,count,ndata,ids) # ditto, but for subset of Ndata atoms with IDs
lmp.scatter_atoms(name,type,count,data) # scatter per-atom property to all atoms from data, ordered by atom ID
# name = "x", "charge", "type", etc
# count = # of per-atom values, 1 or 3, etc
lmp.scatter_atoms_subset(name,type,count,ndata,ids,data) # ditto, but for subset of Ndata atoms with IDs
lmp.create_atoms(n,ids,types,x,v,image,shrinkexceed) # create N atoms with IDs, types, x, v, and image flags
----------
The lines
.. code-block:: Python
from lammps import lammps
lmp = lammps()
create an instance of LAMMPS, wrapped in a Python class by the lammps
Python module, and return an instance of the Python class as lmp. It
is used to make all subsequent calls to the LAMMPS library.
Additional arguments to lammps() can be used to tell Python the name
of the shared library to load or to pass arguments to the LAMMPS
instance, the same as if LAMMPS were launched from a command-line
prompt.
If the ptr argument is set like this:
.. code-block:: Python
lmp = lammps(ptr=lmpptr)
then lmpptr must be an argument passed to Python via the LAMMPS
:doc:`python <python>` command, when it is used to define a Python
function that is invoked by the LAMMPS input script. This mode of
calling Python from LAMMPS is described in the :doc:`Python call <Python_call>` doc page. The variable lmpptr refers to the
instance of LAMMPS that called the embedded Python interpreter. Using
it as an argument to lammps() allows the returned Python class
instance "lmp" to make calls to that instance of LAMMPS. See the
:doc:`python <python>` command doc page for examples using this syntax.
Note that you can create multiple LAMMPS objects in your Python
script, and coordinate and run multiple simulations, e.g.
.. code-block:: Python
from lammps import lammps
lmp1 = lammps()
lmp2 = lammps()
lmp1.file("in.file1")
lmp2.file("in.file2")
The file(), command(), commands_list(), commands_string() methods
allow an input script, a single command, or multiple commands to be
invoked.
The extract_setting(), extract_global(), extract_box(),
extract_atom(), extract_compute(), extract_fix(), and
extract_variable() methods return values or pointers to data
structures internal to LAMMPS.
For extract_global() see the src/library.cpp file for the list of
valid names. New names could easily be added. A double or integer is
returned. You need to specify the appropriate data type via the type
argument.
For extract_atom(), a pointer to internal LAMMPS atom-based data is
returned, which you can use via normal Python subscripting. See the
extract() method in the src/atom.cpp file for a list of valid names.
Again, new names could easily be added if the property you want is not
listed. A pointer to a vector of doubles or integers, or a pointer to
an array of doubles (double \*\*) or integers (int \*\*) is returned. You
need to specify the appropriate data type via the type argument.
For extract_compute() and extract_fix(), the global, per-atom, or
local data calculated by the compute or fix can be accessed. What is
returned depends on whether the compute or fix calculates a scalar or
vector or array. For a scalar, a single double value is returned. If
the compute or fix calculates a vector or array, a pointer to the
internal LAMMPS data is returned, which you can use via normal Python
subscripting. The one exception is that for a fix that calculates a
global vector or array, a single double value from the vector or array
is returned, indexed by I (vector) or I and J (array). I,J are
zero-based indices. The I,J arguments can be left out if not needed.
See the :doc:`Howto output <Howto_output>` doc page for a discussion of
global, per-atom, and local data, and of scalar, vector, and array
data types. See the doc pages for individual :doc:`computes <compute>`
and :doc:`fixes <fix>` for a description of what they calculate and
store.
For extract_variable(), an :doc:`equal-style or atom-style variable <variable>` is evaluated and its result returned.
For equal-style variables a single double value is returned and the
group argument is ignored. For atom-style variables, a vector of
doubles is returned, one value per atom, which you can use via normal
Python subscripting. The values will be zero for atoms not in the
specified group.
The get_thermo() method returns the current value of a thermo
keyword as a float.
The get_natoms() method returns the total number of atoms in the
simulation, as an int.
The set_variable() method sets an existing string-style variable to a
new string value, so that subsequent LAMMPS commands can access the
variable.
The reset_box() method resets the size and shape of the simulation
box, e.g. as part of restoring a previously extracted and saved state
of a simulation.
The gather methods collect peratom info of the requested type (atom
coords, atom types, forces, etc) from all processors, and returns the
same vector of values to each calling processor. The scatter
functions do the inverse. They distribute a vector of peratom values,
passed by all calling processors, to individual atoms, which may be
owned by different processors.
Note that the data returned by the gather methods,
e.g. gather_atoms("x"), is different from the data structure returned
by extract_atom("x") in four ways. (1) Gather_atoms() returns a
vector which you index as x[i]; extract_atom() returns an array
which you index as x[i][j]. (2) Gather_atoms() orders the atoms
by atom ID while extract_atom() does not. (3) Gather_atoms() returns
a list of all atoms in the simulation; extract_atoms() returns just
the atoms local to each processor. (4) Finally, the gather_atoms()
data structure is a copy of the atom coords stored internally in
LAMMPS, whereas extract_atom() returns an array that effectively
points directly to the internal data. This means you can change
values inside LAMMPS from Python by assigning a new values to the
extract_atom() array. To do this with the gather_atoms() vector, you
need to change values in the vector, then invoke the scatter_atoms()
method.
For the scatter methods, the array of coordinates passed to must be a
ctypes vector of ints or doubles, allocated and initialized something
like this:
.. code-block:: Python
from ctypes import \*
natoms = lmp.get_natoms()
n3 = 3\*natoms
x = (n3\*c_double)()
x[0] = x coord of atom with ID 1
x[1] = y coord of atom with ID 1
x[2] = z coord of atom with ID 1
x[3] = x coord of atom with ID 2
...
x[n3-1] = z coord of atom with ID natoms
lmp.scatter_atoms("x",1,3,x)
Alternatively, you can just change values in the vector returned by
the gather methods, since they are also ctypes vectors.
----------
As noted above, these Python class methods correspond one-to-one with
the functions in the LAMMPS library interface in src/library.cpp and
library.h. This means you can extend the Python wrapper via the
following steps:
* Add a new interface function to src/library.cpp and
src/library.h.
* Rebuild LAMMPS as a shared library.
* Add a wrapper method to python/lammps.py for this interface
function.
* You should now be able to invoke the new interface function from a
Python script.

View File

@ -28,278 +28,8 @@ There are multiple Python interface classes in the :py:mod:`lammps` module:
----------
Setting up a Python virtual environment
***************************************
LAMMPS and its Python module can be installed together into a Python virtual
environment. This lets you isolate your customized Python environment from
your user or system installation. The following is a minimal working example:
.. code-block:: bash
# create and change into build directory
mkdir build
cd build
# create virtual environment
virtualenv myenv
# Add venv lib folder to LD_LIBRARY_PATH when activating it
echo 'export LD_LIBRARY_PATH=$VIRTUAL_ENV/lib:$LD_LIBRARY_PATH' >> myenv/bin/activate
# Add LAMMPS_POTENTIALS path when activating venv
echo 'export LAMMPS_POTENTIALS=$VIRTUAL_ENV/share/lammps/potentials' >> myenv/bin/activate
# activate environment
source myenv/bin/activate
# configure LAMMPS compilation
# compiles as shared library with PYTHON package and C++ exceptions
# and installs into myvenv
(myenv)$ cmake -C ../cmake/presets/minimal.cmake \
-D BUILD_SHARED_LIBS=on \
-D PKG_PYTHON=on \
-D LAMMPS_EXCEPTIONS=on \
-D CMAKE_INSTALL_PREFIX=$VIRTUAL_ENV \
../cmake
# compile LAMMPS
(myenv)$ cmake --build . --parallel
# install LAMMPS into myvenv
(myenv)$ cmake --install .
Creating or deleting a LAMMPS object
************************************
With the Python interface the creation of a :cpp:class:`LAMMPS
<LAMMPS_NS::LAMMPS>` instance is included in the constructors for the
:py:meth:`lammps <lammps.lammps.__init__()>`, :py:meth:`PyLammps <lammps.PyLammps.__init__()>`,
and :py:meth:`PyLammps <lammps.IPyLammps.__init__()>` classes.
Internally it will call either :cpp:func:`lammps_open` or :cpp:func:`lammps_open_no_mpi` from the C
library API to create the class instance.
All arguments are optional. The *name* argument allows loading a
LAMMPS shared library that is named ``liblammps_machine.so`` instead of
the default name of ``liblammps.so``. In most cases the latter will be
installed or used. The *ptr* argument is for use of the
:py:mod:`lammps` module from inside a LAMMPS instance, e.g. with the
:doc:`python <python>` command, where a pointer to the already existing
:cpp:class:`LAMMPS <LAMMPS_NS::LAMMPS>` class instance can be passed
to the Python class and used instead of creating a new instance. The
*comm* argument may be used in combination with the `mpi4py <mpi4py_url_>`_
module to pass an MPI communicator to LAMMPS and thus it is possible
to run the Python module like the library interface on a subset of the
MPI ranks after splitting the communicator.
Here are simple examples using all three Python interfaces:
.. tabs::
.. tab:: lammps API
.. code-block:: python
from lammps import lammps
# NOTE: argv[0] is set by the lammps class constructor
args = ["-log", "none"]
# create LAMMPS instance
lmp = lammps(cmdargs=args)
# get and print numerical version code
print("LAMMPS Version: ", lmp.version())
# explicitly close and delete LAMMPS instance (optional)
lmp.close()
.. tab:: PyLammps API
The :py:class:`PyLammps` class is a wrapper around the
:py:class:`lammps` class and all of its lower level functions.
By default, it will create a new instance of :py:class:`lammps` passing
along all arguments to the constructor of :py:class:`lammps`.
.. code-block:: python
from lammps import PyLammps
# NOTE: argv[0] is set by the lammps class constructor
args = ["-log", "none"]
# create LAMMPS instance
L = PyLammps(cmdargs=args)
# get and print numerical version code
print("LAMMPS Version: ", L.version())
# explicitly close and delete LAMMPS instance (optional)
L.close()
:py:class:`PyLammps` objects can also be created on top of an existing :py:class:`lammps` object:
.. code-block:: Python
from lammps import lammps, PyLammps
...
# create LAMMPS instance
lmp = lammps(cmdargs=args)
# create PyLammps instance using previously created LAMMPS instance
L = PyLammps(ptr=lmp)
This is useful if you have to create the :py:class:`lammps <lammps.lammps>`
instance is a specific way, but want to take advantage of the
:py:class:`PyLammps <lammps.PyLammps>` interface.
.. tab:: IPyLammps API
The :py:class:`IPyLammps` class is an extension of the
:py:class:`PyLammps` class. It has the same construction behavior. By
default, it will create a new instance of :py:class:`lammps` passing
along all arguments to the constructor of :py:class:`lammps`.
.. code-block:: python
from lammps import IPyLammps
# NOTE: argv[0] is set by the lammps class constructor
args = ["-log", "none"]
# create LAMMPS instance
L = IPyLammps(cmdargs=args)
# get and print numerical version code
print("LAMMPS Version: ", L.version())
# explicitly close and delete LAMMPS instance (optional)
L.close()
You can also initialize IPyLammps on top of an existing :py:class:`lammps` or :py:class:`PyLammps` object:
.. code-block:: Python
from lammps import lammps, IPyLammps
...
# create LAMMPS instance
lmp = lammps(cmdargs=args)
# create PyLammps instance using previously created LAMMPS instance
L = PyLammps(ptr=lmp)
This is useful if you have to create the :py:class:`lammps <lammps.lammps>`
instance is a specific way, but want to take advantage of the
:py:class:`IPyLammps <lammps.IPyLammps>` interface.
In all of the above cases, same as with the :ref:`C library API <lammps_c_api>`, this will use the
``MPI_COMM_WORLD`` communicator for the MPI library that LAMMPS was
compiled with. The :py:func:`lmp.close() <lammps.lammps.close>` call is
optional since the LAMMPS class instance will also be deleted
automatically during the :py:class:`lammps <lammps.lammps>` class
destructor.
Executing LAMMPS commands
*************************
Once an instance of the :py:class:`lammps`, :py:class:`PyLammps`, or
:py:class:`IPyLammps` class is created, there are multiple ways to "feed" it
commands. In a way that is not very different from running a LAMMPS input
script, except that Python has many more facilities for structured
programming than the LAMMPS input script syntax. Furthermore it is possible
to "compute" what the next LAMMPS command should be.
.. tabs::
.. tab:: lammps API
Same as in the equivalent
:doc:`C library functions <Library_execute>`, commands can be read from a file, a
single string, a list of strings and a block of commands in a single
multi-line string. They are processed under the same boundary conditions
as the C library counterparts. The example below demonstrates the use
of :py:func:`lammps.file`, :py:func:`lammps.command`,
:py:func:`lammps.commands_list`, and :py:func:`lammps.commands_string`:
.. code-block:: python
from lammps import lammps
lmp = lammps()
# read commands from file 'in.melt'
lmp.file('in.melt')
# issue a single command
lmp.command('variable zpos index 1.0')
# create 10 groups with 10 atoms each
cmds = ["group g{} id {}:{}".format(i,10*i+1,10*(i+1)) for i in range(10)]
lmp.commands_list(cmds)
# run commands from a multi-line string
block = """
clear
region box block 0 2 0 2 0 2
create_box 1 box
create_atoms 1 single 1.0 1.0 ${zpos}
"""
lmp.commands_string(block)
.. tab:: PyLammps/IPyLammps API
Unlike the lammps API, the PyLammps/IPyLammps APIs allow running LAMMPS
commands by calling equivalent member functions.
For instance, the following LAMMPS command
.. code-block:: LAMMPS
region box block 0 10 0 5 -0.5 0.5
can be executed using the following Python code if *L* is a :py:class:`lammps` instance:
.. code-block:: Python
L.command("region box block 0 10 0 5 -0.5 0.5")
With the PyLammps interface, any LAMMPS command can be split up into arbitrary parts.
These parts are then passed to a member function with the name of the command.
For the ``region`` command that means the :code:`region` method can be called.
The arguments of the command can be passed as one string, or
individually.
.. code-block:: Python
L.region("box block", 0, 10, 0, 5, -0.5, 0.5)
In this example all parameters except the first are Python floating-point literals. The
PyLammps interface takes the entire parameter list and transparently
merges it to a single command string.
The benefit of this approach is avoiding redundant command calls and easier
parameterization. In the original interface parameterization this needed to be done
manually by creating formatted strings.
.. code-block:: Python
L.command("region box block %f %f %f %f %f %f" % (xlo, xhi, ylo, yhi, zlo, zhi))
In contrast, methods of PyLammps accept parameters directly and will convert
them automatically to a final command string.
.. code-block:: Python
L.region("box block", xlo, xhi, ylo, yhi, zlo, zhi)
Using these facilities, the example shown for the lammps API can be rewritten as follows:
.. code-block:: python
from lammps import PyLammps
L = PyLammps()
# read commands from file 'in.melt'
L.file('in.melt')
# issue a single command
L.variable('zpos', 'index', 1.0)
# create 10 groups with 10 atoms each
for i in range(10):
L.group(f"g{i}", "id", f"{10*i+1}:{10*(i+1)}")
L.clear()
L.region("box block", 0, 2, 0, 2, 0, 2)
L.create_box(1, "box")
L.create_atoms(1, "single", 1.0, 1.0, "${zpos}")
----------
The ``lammps`` class API
************************
========================
The :py:class:`lammps <lammps.lammps>` class is the core of the LAMMPS
Python interfaces. It is a wrapper around the :ref:`LAMMPS C library
@ -314,10 +44,13 @@ functions. Below is a detailed documentation of the API.
.. autoclass:: lammps.lammps
:members:
.. autoclass:: lammps.numpy_wrapper
:members:
----------
The ``PyLammps`` class API
**************************
==========================
The :py:class:`PyLammps <lammps.PyLammps>` class is a wrapper that creates a
simpler, more "Pythonic" interface to common LAMMPS functionality. LAMMPS
@ -340,7 +73,7 @@ scripts shorter and more concise. See the :doc:`PyLammps Tutorial
----------
The ``IPyLammps`` class API
***************************
===========================
The :py:class:`IPyLammps <lammps.PyLammps>` class is an extension of
:py:class:`PyLammps <lammps.PyLammps>`, adding additional functions to
@ -353,12 +86,12 @@ See the :doc:`PyLammps Tutorial <Howto_pylammps>` for examples.
----------
Additional components of the ``lammps`` module
**********************************************
==============================================
The :py:mod:`lammps` module additionally contains several constants
and the :py:class:`NeighList <lammps.NeighList>` class:
.. _py_data_constants:
.. _py_datatype_constants:
Data Types
----------
@ -383,7 +116,9 @@ Style Constants
Constants in the :py:mod:`lammps` module to select what style of data
to request from computes or fixes. See :cpp:enum:`_LMP_STYLE_CONST`
for the equivalent constants in the C library interface. Used in
:py:func:`lammps.extract_compute` and :py:func:`lammps.extract_fix`.
:py:func:`lammps.extract_compute`, :py:func:`lammps.extract_fix`, and their NumPy variants
:py:func:`lammps.numpy.extract_compute() <numpy_wrapper.extract_compute>` and
:py:func:`lammps.numpy.extract_fix() <numpy_wrapper.extract_fix>`.
.. _py_type_constants:
@ -396,18 +131,20 @@ Type Constants
Constants in the :py:mod:`lammps` module to select what type of data
to request from computes or fixes. See :cpp:enum:`_LMP_TYPE_CONST`
for the equivalent constants in the C library interface. Used in
:py:func:`lammps.extract_compute` and :py:func:`lammps.extract_fix`.
:py:func:`lammps.extract_compute`, :py:func:`lammps.extract_fix`, and their NumPy variants
:py:func:`lammps.numpy.extract_compute() <numpy_wrapper.extract_compute>` and
:py:func:`lammps.numpy.extract_fix() <numpy_wrapper.extract_fix>`.
.. _py_var_constants:
.. _py_vartype_constants:
Variable Style Constants
Variable Type Constants
------------------------
.. py:data:: LMP_VAR_EQUAL, LMP_VAR_ATOM
:type: int
Constants in the :py:mod:`lammps` module to select what style of
variable to query when calling :py:func:`lammps.extract_variable`.
Constants in the :py:mod:`lammps` module to select what type of
variable to query when calling :py:func:`lammps.extract_variable`. See also: :doc:`variable command <variable>`.
Classes representing internal objects
-------------------------------------
@ -416,19 +153,6 @@ Classes representing internal objects
:members:
:no-undoc-members:
LAMMPS error handling in Python
*******************************
Compiling the shared library with :ref:`C++ exception support <exceptions>` provides a better error
handling experience. Without exceptions the LAMMPS code will terminate the
current Python process with an error message. C++ exceptions allow capturing
them on the C++ side and rethrowing them on the Python side. This way
LAMMPS errors can be handled through the Python exception handling mechanism.
.. warning::
Capturing a LAMMPS exception in Python can still mean that the
current LAMMPS process is in an illegal state and must be terminated. It is
advised to save your data and terminate the Python instance as quickly as
possible.
.. autoclass:: lammps.NumPyNeighList
:members:
:no-undoc-members:

View File

@ -1,71 +0,0 @@
Extending Python to run in parallel
===================================
If you wish to run LAMMPS in parallel from Python, you need to extend
your Python with an interface to MPI. This also allows you to
make MPI calls directly from Python in your script, if you desire.
We have tested this with mpi4py and pypar:
* `MPI for Python <https://mpi4py.readthedocs.io/>`_
* `pypar <https://github.com/daleroberts/pypar>`_
We recommend the use of mpi4py as it is the more complete MPI interface,
and as of version 2.0.0 mpi4py allows passing a custom MPI communicator
to the LAMMPS constructor, which means one can easily run one or more
LAMMPS instances on subsets of the total MPI ranks.
To install mpi4py (version mpi4py-3.0.3 as of Nov 2019), unpack it
and from its main directory, type
.. code-block:: bash
python setup.py build
sudo python setup.py install
Again, the "sudo" is only needed if required to copy mpi4py files into
your Python distribution's site-packages directory. To install with
user privilege into the user local directory type
.. code-block:: bash
python setup.py install --user
If you have successfully installed mpi4py, you should be able to run
Python and type
.. code-block:: python
from mpi4py import MPI
without error. You should also be able to run python in parallel
on a simple test script
.. code-block:: bash
% mpirun -np 4 python test.py
where test.py contains the lines
.. code-block:: python
from mpi4py import MPI
comm = MPI.COMM_WORLD
print "Proc %d out of %d procs" % (comm.Get_rank(),comm.Get_size())
and see one line of output for each processor you run on.
.. note::
To use mpi4py and LAMMPS in parallel from Python, you must
insure both are using the same version of MPI. If you only have one
MPI installed on your system, this is not an issue, but it can be if
you have multiple MPIs. Your LAMMPS build is explicit about which MPI
it is using, since you specify the details in your low-level
src/MAKE/Makefile.foo file. Mpi4py uses the "mpicc" command to find
information about the MPI it uses to build against. And it tries to
load "libmpi.so" from the LD_LIBRARY_PATH. This may or may not find
the MPI library that LAMMPS is using. If you have problems running
both mpi4py and LAMMPS together, this is an issue you may need to
address, e.g. by moving other MPI installations so that mpi4py finds
the right one.

View File

@ -0,0 +1,18 @@
Accessing LAMMPS Neighbor lists
*******************************
**Methods:**
* :py:meth:`lammps.get_neighlist() <lammps.lammps.get_neighlist()>`: Get neighbor list for given index
* :py:meth:`lammps.get_neighlist_size()`: Get number of elements in neighbor list
* :py:meth:`lammps.get_neighlist_element_neighbors()`: Get element in neighbor list and its neighbors
* :py:meth:`lammps.find_pair_neighlist() <lammps.lammps.find_pair_neighlist()>`: Find neighbor list of pair style
* :py:meth:`lammps.find_fix_neighlist() <lammps.lammps.find_pair_neighlist()>`: Find neighbor list of pair style
* :py:meth:`lammps.find_compute_neighlist() <lammps.lammps.find_pair_neighlist()>`: Find neighbor list of pair style
**NumPy Methods:**
* :py:meth:`lammps.numpy.get_neighlist() <lammps.numpy_wrapper.get_neighlist()>`: Get neighbor list for given index, which uses NumPy arrays for its element neighbor arrays
* :py:meth:`lammps.numpy.get_neighlist_element_neighbors() <lammps.numpy_wrapper.get_neighlist_element_neighbors()>`: Get element in neighbor list and its neighbors (as numpy array)

View File

@ -1,25 +1,92 @@
Overview of Python and LAMMPS
=============================
Overview
========
The LAMMPS distribution includes a python directory with all you need to
run LAMMPS from Python. The ``python/lammps.py`` contains :doc:`the
"lammps" Python <Python_module>` that wraps the LAMMPS C-library
interface. This file makes it is possible to do the following either
from a Python script, or interactively from a Python prompt:
- create one or more instances of LAMMPS
- invoke LAMMPS commands or read them from an input script
- run LAMMPS incrementally
- extract LAMMPS results
- and modify internal LAMMPS data structures.
From a Python script you can do this in serial or parallel. Running
Python interactively in parallel does not generally work, unless you
have a version of Python that extends Python to enable multiple
instances of Python to read what you type.
To do all of this, you must build LAMMPS in :ref:`"shared" mode <exe>`
and make certain that your Python interpreter can find the ``lammps.py``
file and the LAMMPS shared library file.
.. _ctypes: https://docs.python.org/3/library/ctypes.html
The Python wrapper for LAMMPS uses the `ctypes <ctypes_>`_ package in
Python, which auto-generates the interface code needed between Python
and a set of C-style library functions. Ctypes has been part of the
standard Python distribution since version 2.5. You can check which
version of Python you have by simply typing "python" at a shell prompt.
Below is an example output for Python version 3.8.5.
.. code-block::
$ python
Python 3.8.5 (default, Aug 12 2020, 00:00:00)
[GCC 10.2.1 20200723 (Red Hat 10.2.1-1)] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>>
.. warning:: Python 2 support is deprecated
While the LAMMPS Python module was originally developed to support
both, Python 2 and 3, any new code is only tested with Python 3.
Please note that Python 2 is no longer maintained as of `January 1,
2020 <https://www.python.org/doc/sunset-python-2/>`_. Therefore, we
highly recommend using Python version 3.6 or later. Compatibility to
Python 2 will be removed eventually.
---------
LAMMPS can work together with Python in three ways. First, Python can
wrap LAMMPS through the its :doc:`library interface <Howto_library>`, so
wrap LAMMPS through the its :doc:`library interface <Library>`, so
that a Python script can create one or more instances of LAMMPS and
launch one or more simulations. In Python lingo, this is called
launch one or more simulations. In Python terms, this is referred to as
"extending" Python with a LAMMPS module.
Second, a lower-level Python interface can be used indirectly through
the provided PyLammps and IPyLammps wrapper classes, written in Python.
These wrappers try to simplify the usage of LAMMPS in Python by
providing an object-based interface to common LAMMPS functionality.
They also reduces the amount of code necessary to parameterize LAMMPS
scripts through Python and make variables and computes directly
accessible.
.. figure:: JPG/python-invoke-lammps.png
:figclass: align-center
Third, LAMMPS can use the Python interpreter, so that a LAMMPS
input script or styles can invoke Python code directly, and pass
information back-and-forth between the input script and Python
functions you write. This Python code can also callback to LAMMPS
to query or change its attributes through the LAMMPS Python module
mentioned above. In Python lingo, this is "embedding" Python in
LAMMPS. When used in this mode, Python can perform script operations
that the simple LAMMPS input script syntax can not.
Launching LAMMPS via Python
Second, the lower-level Python interface in the :py:class:`lammps Python
class <lammps.lammps>` can be used indirectly through the provided
:py:class:`PyLammps <lammps.PyLammps>` and :py:class:`IPyLammps
<lammps.IPyLammps>` wrapper classes, also written in Python. These
wrappers try to simplify the usage of LAMMPS in Python by providing a
more object-based interface to common LAMMPS functionality. They also
reduce the amount of code necessary to parameterize LAMMPS scripts
through Python and make variables and computes directly accessible.
.. figure:: JPG/pylammps-invoke-lammps.png
:figclass: align-center
Using the PyLammps / IPyLammps wrappers
Third, LAMMPS can use the Python interpreter, so that a LAMMPS input
script or styles can invoke Python code directly, and pass information
back-and-forth between the input script and Python functions you write.
This Python code can also call back to LAMMPS to query or change its
attributes through the LAMMPS Python module mentioned above. In Python
terms, this is called "embedding" Python into LAMMPS. When used in this
mode, Python can perform script operations that the simple LAMMPS input
script syntax can not.
.. figure:: JPG/lammps-invoke-python.png
:figclass: align-center
Calling Python code from LAMMPS

View File

@ -1,5 +0,0 @@
PyLammps interface
==================
PyLammps is a Python wrapper class which can be created on its own or
use an existing lammps Python object. It has its own :doc:`Howto pylammps <Howto_pylammps>` doc page.

View File

@ -1,32 +1,110 @@
Run LAMMPS from Python
======================
The LAMMPS distribution includes a python directory with all you need
to run LAMMPS from Python. The python/lammps.py file wraps the LAMMPS
library interface, with one wrapper function per LAMMPS library
function. This file makes it is possible to do the following either
from a Python script, or interactively from a Python prompt: create
one or more instances of LAMMPS, invoke LAMMPS commands or give it an
input script, run LAMMPS incrementally, extract LAMMPS results, an
modify internal LAMMPS variables. From a Python script you can do
this in serial or parallel. Running Python interactively in parallel
does not generally work, unless you have a version of Python that
extends Python to enable multiple instances of Python to read what you
type.
Running LAMMPS and Python in serial:
-------------------------------------
To do all of this, you must first build LAMMPS as a shared library,
then insure that your Python can find the python/lammps.py file and
the shared library.
To run a LAMMPS in serial, type these lines into Python
interactively from the ``bench`` directory:
Two advantages of using Python to run LAMMPS are how concise the
language is, and that it can be run interactively, enabling rapid
development and debugging. If you use it to mostly invoke costly
operations within LAMMPS, such as running a simulation for a
reasonable number of timesteps, then the overhead cost of invoking
LAMMPS through Python will be negligible.
.. code-block:: python
The Python wrapper for LAMMPS uses the "ctypes" package in Python,
which auto-generates the interface code needed between Python and a
set of C-style library functions. Ctypes is part of standard Python
for versions 2.5 and later. You can check which version of Python you
have by simply typing "python" at a shell prompt.
>>> from lammps import lammps
>>> lmp = lammps()
>>> lmp.file("in.lj")
Or put the same lines in the file ``test.py`` and run it as
.. code-block:: bash
$ python3 test.py
Either way, you should see the results of running the ``in.lj`` benchmark
on a single processor appear on the screen, the same as if you had
typed something like:
.. code-block:: bash
lmp_serial -in in.lj
Running LAMMPS and Python in parallel with MPI (mpi4py)
-------------------------------------------------------
To run LAMMPS in parallel, assuming you have installed the
`mpi4py <https://mpi4py.readthedocs.io>`_ package as discussed
:ref:`python_install_mpi4py`, create a ``test.py`` file containing these lines:
.. code-block:: python
from mpi4py import MPI
from lammps import lammps
lmp = lammps()
lmp.file("in.lj")
me = MPI.COMM_WORLD.Get_rank()
nprocs = MPI.COMM_WORLD.Get_size()
print("Proc %d out of %d procs has" % (me,nprocs),lmp)
MPI.Finalize()
You can run the script in parallel as:
.. code-block:: bash
$ mpirun -np 4 python3 test.py
and you should see the same output as if you had typed
.. code-block:: bash
$ mpirun -np 4 lmp_mpi -in in.lj
Note that without the mpi4py specific lines from ``test.py``
.. code-block::
from lammps import lammps
lmp = lammps()
lmp.file("in.lj")
running the script with ``mpirun`` on :math:`P` processors would lead to
:math:`P` independent simulations to run parallel, each with a single
processor. Therefore, if you use the mpi4py lines and you see multiple LAMMPS
single processor outputs, mpi4py is not working correctly.
Also note that once you import the mpi4py module, mpi4py initializes MPI
for you, and you can use MPI calls directly in your Python script, as
described in the mpi4py documentation. The last line of your Python
script should be ``MPI.finalize()``, to insure MPI is shut down
correctly.
Running Python scripts
----------------------
Note that any Python script (not just for LAMMPS) can be invoked in
one of several ways:
.. code-block:: bash
$ python script.py
$ python -i script.py
$ ./script.py
The last command requires that the first line of the script be
something like this:
.. code-block:: bash
#!/usr/bin/python
#!/usr/bin/python -i
where the path points to where you have Python installed, and that you
have made the script file executable:
.. code-block:: bash
$ chmod +x script.py
Without the ``-i`` flag, Python will exit when the script finishes.
With the ``-i`` flag, you will be left in the Python interpreter when
the script finishes, so you can type subsequent commands. As
mentioned above, you can only run Python interactively when running
Python on a single processor, not in parallel.

View File

@ -1,78 +0,0 @@
Build LAMMPS as a shared library
================================
.. TODO this is mostly redundant and should be addressed in the 'progguide' branch if it has not already
Build LAMMPS as a shared library using make
-------------------------------------------
Instructions on how to build LAMMPS as a shared library are given on
the :doc:`Build_basics <Build_basics>` doc page. A shared library is
one that is dynamically loadable, which is what Python requires to
wrap LAMMPS. On Linux this is a library file that ends in ".so", not
".a".
From the src directory, type
.. code-block:: bash
make foo mode=shared
where foo is the machine target name, such as mpi or serial.
This should create the file liblammps_foo.so in the src directory, as
well as a soft link liblammps.so, which is what the Python wrapper will
load by default. Note that if you are building multiple machine
versions of the shared library, the soft link is always set to the
most recently built version.
.. note::
If you are building LAMMPS with an MPI or FFT library or other
auxiliary libraries (used by various packages), then all of these
extra libraries must also be shared libraries. If the LAMMPS
shared-library build fails with an error complaining about this, see
the :doc:`Build_basics <Build_basics>` doc page.
Build LAMMPS as a shared library using CMake
--------------------------------------------
When using CMake the following two options are necessary to generate the LAMMPS
shared library:
.. code-block:: bash
-D BUILD_SHARED_LIBS=on # enable building of LAMMPS shared library (both options are needed!)
What this does is create a liblammps.so which contains the majority of LAMMPS
code. The generated lmp binary also dynamically links to this library. This
means that either this liblammps.so file has to be in the same directory, a system
library path (e.g. /usr/lib64/) or in the LD_LIBRARY_PATH.
If you want to use the shared library with Python the recommended way is to create a virtualenv and use it as
CMAKE_INSTALL_PREFIX.
.. code-block:: bash
# create virtualenv
virtualenv --python=$(which python3) myenv3
source myenv3/bin/activate
# build library
mkdir build
cd build
cmake -D PKG_PYTHON=on -D BUILD_SHARED_LIBS=on -D CMAKE_INSTALL_PREFIX=$VIRTUAL_ENV ../cmake
make -j 4
# install into prefix
make install
This will also install the Python module into your virtualenv. Since virtualenv
does not change your LD_LIBRARY_PATH, you still need to add its lib64 folder to
it, which contains the installed liblammps.so.
.. code-block:: bash
export LD_LIBRARY_PATH=$VIRTUAL_ENV/lib64:$LD_LIBRARY_PATH
Starting Python outside (!) of your build directory, but with the virtualenv
enabled and with the LD_LIBRARY_PATH set gives you access to LAMMPS via Python.

View File

@ -1,152 +0,0 @@
Test the Python/LAMMPS interface
================================
To test if LAMMPS is callable from Python, launch Python interactively
and type:
.. parsed-literal::
>>> from lammps import lammps
>>> lmp = lammps()
If you get no errors, you're ready to use LAMMPS from Python. If the
second command fails, the most common error to see is
.. parsed-literal::
OSError: Could not load LAMMPS dynamic library
which means Python was unable to load the LAMMPS shared library. This
typically occurs if the system can't find the LAMMPS shared library or
one of the auxiliary shared libraries it depends on, or if something
about the library is incompatible with your Python. The error message
should give you an indication of what went wrong.
You can also test the load directly in Python as follows, without
first importing from the lammps.py file:
.. parsed-literal::
>>> from ctypes import CDLL
>>> CDLL("liblammps.so")
If an error occurs, carefully go through the steps on the
:doc:`Build_basics <Build_basics>` doc page about building a shared
library and the :doc:`Python_install <Python_install>` doc page about
insuring Python can find the necessary two files it needs.
Test LAMMPS and Python in serial:
-------------------------------------
To run a LAMMPS test in serial, type these lines into Python
interactively from the bench directory:
.. parsed-literal::
>>> from lammps import lammps
>>> lmp = lammps()
>>> lmp.file("in.lj")
Or put the same lines in the file test.py and run it as
.. code-block:: bash
% python test.py
Either way, you should see the results of running the in.lj benchmark
on a single processor appear on the screen, the same as if you had
typed something like:
.. parsed-literal::
lmp_g++ -in in.lj
Test LAMMPS and Python in parallel:
---------------------------------------
To run LAMMPS in parallel, assuming you have installed the
`PyPar <https://github.com/daleroberts/pypar>`_ package as discussed
above, create a test.py file containing these lines:
.. code-block:: python
import pypar
from lammps import lammps
lmp = lammps()
lmp.file("in.lj")
print "Proc %d out of %d procs has" % (pypar.rank(),pypar.size()),lmp
pypar.finalize()
To run LAMMPS in parallel, assuming you have installed the
`mpi4py <https://mpi4py.readthedocs.io>`_ package as discussed
above, create a test.py file containing these lines:
.. code-block:: python
from mpi4py import MPI
from lammps import lammps
lmp = lammps()
lmp.file("in.lj")
me = MPI.COMM_WORLD.Get_rank()
nprocs = MPI.COMM_WORLD.Get_size()
print "Proc %d out of %d procs has" % (me,nprocs),lmp
MPI.Finalize()
You can either script in parallel as:
.. code-block:: bash
% mpirun -np 4 python test.py
and you should see the same output as if you had typed
.. code-block:: bash
% mpirun -np 4 lmp_g++ -in in.lj
Note that if you leave out the 3 lines from test.py that specify PyPar
commands you will instantiate and run LAMMPS independently on each of
the P processors specified in the mpirun command. In this case you
should get 4 sets of output, each showing that a LAMMPS run was made
on a single processor, instead of one set of output showing that
LAMMPS ran on 4 processors. If the 1-processor outputs occur, it
means that PyPar is not working correctly.
Also note that once you import the PyPar module, PyPar initializes MPI
for you, and you can use MPI calls directly in your Python script, as
described in the PyPar documentation. The last line of your Python
script should be pypar.finalize(), to insure MPI is shut down
correctly.
Running Python scripts:
---------------------------
Note that any Python script (not just for LAMMPS) can be invoked in
one of several ways:
.. code-block:: bash
% python foo.script
% python -i foo.script
% foo.script
The last command requires that the first line of the script be
something like this:
.. code-block:: bash
#!/usr/local/bin/python
#!/usr/local/bin/python -i
where the path points to where you have Python installed, and that you
have made the script file executable:
.. code-block:: bash
% chmod +x foo.script
Without the "-i" flag, Python will exit when the script finishes.
With the "-i" flag, you will be left in the Python interpreter when
the script finishes, so you can type subsequent commands. As
mentioned above, you can only run Python interactively when running
Python on a single processor, not in parallel.

View File

@ -0,0 +1,44 @@
Troubleshooting
***************
Testing if Python can launch LAMMPS
===================================
To test if LAMMPS is callable from Python, launch Python interactively
and type:
.. code-block:: python
>>> from lammps import lammps
>>> lmp = lammps()
If you get no errors, you're ready to use LAMMPS from Python. If the
second command fails, the most common error to see is
.. code-block:: bash
OSError: Could not load LAMMPS dynamic library
which means Python was unable to load the LAMMPS shared library. This
typically occurs if the system can't find the LAMMPS shared library or
one of the auxiliary shared libraries it depends on, or if something
about the library is incompatible with your Python. The error message
should give you an indication of what went wrong.
If your shared library uses a suffix, such as ``liblammps_mpi.so``, change
the constructor call as follows (see :ref:`python_create_lammps` for more details):
.. code-block:: python
>>> lmp = lammps(name='mpi')
You can also test the load directly in Python as follows, without
first importing from the lammps.py file:
.. code-block:: python
>>> from ctypes import CDLL
>>> CDLL("liblammps.so")
If an error occurs, carefully go through the steps in :ref:`python_install_guides` and on the
:doc:`Build_basics <Build_basics>` doc page about building a shared library.

569
doc/src/Python_usage.rst Normal file
View File

@ -0,0 +1,569 @@
.. _mpi4py_url: https://mpi4py.readthedocs.io/
.. _python_create_lammps:
Creating or deleting a LAMMPS object
************************************
With the Python interface the creation of a :cpp:class:`LAMMPS
<LAMMPS_NS::LAMMPS>` instance is included in the constructors for the
:py:class:`lammps <lammps.lammps>`, :py:class:`PyLammps <lammps.PyLammps>`,
and :py:class:`IPyLammps <lammps.IPyLammps>` classes.
Internally it will call either :cpp:func:`lammps_open` or :cpp:func:`lammps_open_no_mpi` from the C
library API to create the class instance.
All arguments are optional. The *name* argument allows loading a
LAMMPS shared library that is named ``liblammps_machine.so`` instead of
the default name of ``liblammps.so``. In most cases the latter will be
installed or used. The *ptr* argument is for use of the
:py:mod:`lammps` module from inside a LAMMPS instance, e.g. with the
:doc:`python <python>` command, where a pointer to the already existing
:cpp:class:`LAMMPS <LAMMPS_NS::LAMMPS>` class instance can be passed
to the Python class and used instead of creating a new instance. The
*comm* argument may be used in combination with the `mpi4py <mpi4py_url_>`_
module to pass an MPI communicator to LAMMPS and thus it is possible
to run the Python module like the library interface on a subset of the
MPI ranks after splitting the communicator.
Here are simple examples using all three Python interfaces:
.. tabs::
.. tab:: lammps API
.. code-block:: python
from lammps import lammps
# NOTE: argv[0] is set by the lammps class constructor
args = ["-log", "none"]
# create LAMMPS instance
lmp = lammps(cmdargs=args)
# get and print numerical version code
print("LAMMPS Version: ", lmp.version())
# explicitly close and delete LAMMPS instance (optional)
lmp.close()
.. tab:: PyLammps API
The :py:class:`PyLammps <lammps.PyLammps>` class is a wrapper around the
:py:class:`lammps <lammps.lammps>` class and all of its lower level functions.
By default, it will create a new instance of :py:class:`lammps <lammps.lammps>` passing
along all arguments to the constructor of :py:class:`lammps <lammps.lammps>`.
.. code-block:: python
from lammps import PyLammps
# NOTE: argv[0] is set by the lammps class constructor
args = ["-log", "none"]
# create LAMMPS instance
L = PyLammps(cmdargs=args)
# get and print numerical version code
print("LAMMPS Version: ", L.version())
# explicitly close and delete LAMMPS instance (optional)
L.close()
:py:class:`PyLammps <lammps.PyLammps>` objects can also be created on top of an existing
:py:class:`lammps <lammps.lammps>` object:
.. code-block:: Python
from lammps import lammps, PyLammps
...
# create LAMMPS instance
lmp = lammps(cmdargs=args)
# create PyLammps instance using previously created LAMMPS instance
L = PyLammps(ptr=lmp)
This is useful if you have to create the :py:class:`lammps <lammps.lammps>`
instance is a specific way, but want to take advantage of the
:py:class:`PyLammps <lammps.PyLammps>` interface.
.. tab:: IPyLammps API
The :py:class:`IPyLammps <lammps.IPyLammps>` class is an extension of the
:py:class:`PyLammps <lammps.PyLammps>` class. It has the same construction behavior. By
default, it will create a new instance of :py:class:`lammps` passing
along all arguments to the constructor of :py:class:`lammps`.
.. code-block:: python
from lammps import IPyLammps
# NOTE: argv[0] is set by the lammps class constructor
args = ["-log", "none"]
# create LAMMPS instance
L = IPyLammps(cmdargs=args)
# get and print numerical version code
print("LAMMPS Version: ", L.version())
# explicitly close and delete LAMMPS instance (optional)
L.close()
You can also initialize IPyLammps on top of an existing :py:class:`lammps` or :py:class:`PyLammps` object:
.. code-block:: Python
from lammps import lammps, IPyLammps
...
# create LAMMPS instance
lmp = lammps(cmdargs=args)
# create PyLammps instance using previously created LAMMPS instance
L = PyLammps(ptr=lmp)
This is useful if you have to create the :py:class:`lammps <lammps.lammps>`
instance is a specific way, but want to take advantage of the
:py:class:`IPyLammps <lammps.IPyLammps>` interface.
In all of the above cases, same as with the :ref:`C library API <lammps_c_api>`, this will use the
``MPI_COMM_WORLD`` communicator for the MPI library that LAMMPS was
compiled with.
The :py:func:`lmp.close() <lammps.lammps.close()>` call is
optional since the LAMMPS class instance will also be deleted
automatically during the :py:class:`lammps <lammps.lammps>` class
destructor.
Note that you can create multiple LAMMPS objects in your Python
script, and coordinate and run multiple simulations, e.g.
.. code-block:: Python
from lammps import lammps
lmp1 = lammps()
lmp2 = lammps()
lmp1.file("in.file1")
lmp2.file("in.file2")
Executing LAMMPS commands
*************************
Once an instance of the :py:class:`lammps <lammps.lammps>`,
:py:class:`PyLammps <lammps.PyLammps>`, or
:py:class:`IPyLammps <lammps.IPyLammps>` class is created, there are
multiple ways to "feed" it commands. In a way that is not very different from
running a LAMMPS input script, except that Python has many more facilities
for structured programming than the LAMMPS input script syntax. Furthermore
it is possible to "compute" what the next LAMMPS command should be.
.. tabs::
.. tab:: lammps API
Same as in the equivalent
:doc:`C library functions <Library_execute>`, commands can be read from a file, a
single string, a list of strings and a block of commands in a single
multi-line string. They are processed under the same boundary conditions
as the C library counterparts. The example below demonstrates the use
of :py:func:`lammps.file()`, :py:func:`lammps.command()`,
:py:func:`lammps.commands_list()`, and :py:func:`lammps.commands_string()`:
.. code-block:: python
from lammps import lammps
lmp = lammps()
# read commands from file 'in.melt'
lmp.file('in.melt')
# issue a single command
lmp.command('variable zpos index 1.0')
# create 10 groups with 10 atoms each
cmds = ["group g{} id {}:{}".format(i,10*i+1,10*(i+1)) for i in range(10)]
lmp.commands_list(cmds)
# run commands from a multi-line string
block = """
clear
region box block 0 2 0 2 0 2
create_box 1 box
create_atoms 1 single 1.0 1.0 ${zpos}
"""
lmp.commands_string(block)
.. tab:: PyLammps/IPyLammps API
Unlike the lammps API, the PyLammps/IPyLammps APIs allow running LAMMPS
commands by calling equivalent member functions of :py:class:`PyLammps <lammps.PyLammps>`
and :py:class:`IPyLammps <lammps.IPyLammps>` instances.
For instance, the following LAMMPS command
.. code-block:: LAMMPS
region box block 0 10 0 5 -0.5 0.5
can be executed using with the lammps AI with the following Python code if *L* is an
instance of :py:class:`lammps <lammps.lammps>`:
.. code-block:: Python
L.command("region box block 0 10 0 5 -0.5 0.5")
With the PyLammps interface, any LAMMPS command can be split up into arbitrary parts.
These parts are then passed to a member function with the name of the command.
For the ``region`` command that means the :code:`region()` method can be called.
The arguments of the command can be passed as one string, or
individually.
.. code-block:: Python
L.region("box block", 0, 10, 0, 5, -0.5, 0.5)
In this example all parameters except the first are Python floating-point literals. The
PyLammps interface takes the entire parameter list and transparently
merges it to a single command string.
The benefit of this approach is avoiding redundant command calls and easier
parameterization. In the original interface parameterization this needed to be done
manually by creating formatted strings.
.. code-block:: Python
L.command("region box block %f %f %f %f %f %f" % (xlo, xhi, ylo, yhi, zlo, zhi))
In contrast, methods of PyLammps accept parameters directly and will convert
them automatically to a final command string.
.. code-block:: Python
L.region("box block", xlo, xhi, ylo, yhi, zlo, zhi)
Using these facilities, the example shown for the lammps API can be rewritten as follows:
.. code-block:: python
from lammps import PyLammps
L = PyLammps()
# read commands from file 'in.melt'
L.file('in.melt')
# issue a single command
L.variable('zpos', 'index', 1.0)
# create 10 groups with 10 atoms each
for i in range(10):
L.group(f"g{i}", "id", f"{10*i+1}:{10*(i+1)}")
L.clear()
L.region("box block", 0, 2, 0, 2, 0, 2)
L.create_box(1, "box")
L.create_atoms(1, "single", 1.0, 1.0, "${zpos}")
Retrieving or setting LAMMPS system properties
**********************************************
Similar to what is described in :doc:`Library_properties`, the instances of
:py:class:`lammps <lammps.lammps>`, :py:class:`PyLammps <lammps.PyLammps>`, or
:py:class:`IPyLammps <lammps.IPyLammps>` can be used to extract different kinds
of information about the active LAMMPS instance and also to modify some of it. The
main difference between the interfaces is how the information is exposed.
While the :py:class:`lammps <lammps.lammps>` is just a thin layer that wraps C API calls,
:py:class:`PyLammps <lammps.PyLammps>` and :py:class:`IPyLammps <lammps.IPyLammps>` expose
information as objects and properties.
In some cases the data returned is a direct reference to the original data
inside LAMMPS cast to ``ctypes`` pointers. Where possible, the wrappers will
determine the ``ctypes`` data type and cast pointers accordingly. If
``numpy`` is installed arrays can also be extracted as numpy arrays, which
will access the C arrays directly and have the correct dimensions to protect
against invalid accesses.
.. warning::
When accessing per-atom data,
please note that this data is the per-processor local data and indexed
accordingly. These arrays can change sizes and order at every neighbor list
rebuild and atom sort event as atoms are migrating between sub-domains.
.. tabs::
.. tab:: lammps API
.. code-block:: python
from lammps import lammps
lmp = lammps()
lmp.file("in.sysinit")
natoms = lmp.get_natoms()
print(f"running simulation with {natoms} atoms")
lmp.command("run 1000 post no");
for i in range(10):
lmp.command("run 100 pre no post no")
pe = lmp.get_thermo("pe")
ke = lmp.get_thermo("ke")
print(f"PE = {pe}\nKE = {ke}")
lmp.close()
**Methods**:
* :py:meth:`version() <lammps.lammps.version()>`: return the numerical version id, e.g. LAMMPS 2 Sep 2015 -> 20150902
* :py:meth:`get_thermo() <lammps.lammps.get_thermo()>`: return current value of a thermo keyword
* :py:meth:`get_natoms() <lammps.lammps.get_natoms()>`: total # of atoms as int
* :py:meth:`reset_box() <lammps.lammps.reset_box()>`: reset the simulation box size
* :py:meth:`extract_setting() <lammps.lammps.extract_setting()>`: return a global setting
* :py:meth:`extract_global() <lammps.lammps.extract_global()>`: extract a global quantity
* :py:meth:`extract_atom() <lammps.lammps.extract_atom()>`: extract a per-atom quantity
* :py:meth:`extract_box() <lammps.lammps.extract_box()>`: extract box info
* :py:meth:`create_atoms() <lammps.lammps.create_atoms()>`: create N atoms with IDs, types, x, v, and image flags
**Numpy Methods**:
* :py:meth:`numpy.extract_atom() <lammps.numpy_wrapper.extract_atom()>`: extract a per-atom quantity as numpy array
.. tab:: PyLammps/IPyLammps API
In addition to the functions provided by :py:class:`lammps <lammps.lammps>`, :py:class:`PyLammps <lammps.PyLammps>` objects
have several properties which allow you to query the system state:
L.system
Is a dictionary describing the system such as the bounding box or number of atoms
L.system.xlo, L.system.xhi
bounding box limits along x-axis
L.system.ylo, L.system.yhi
bounding box limits along y-axis
L.system.zlo, L.system.zhi
bounding box limits along z-axis
L.communication
configuration of communication subsystem, such as the number of threads or processors
L.communication.nthreads
number of threads used by each LAMMPS process
L.communication.nprocs
number of MPI processes used by LAMMPS
L.fixes
List of fixes in the current system
L.computes
List of active computes in the current system
L.dump
List of active dumps in the current system
L.groups
List of groups present in the current system
**Retrieving the value of an arbitrary LAMMPS expressions**
LAMMPS expressions can be immediately evaluated by using the ``eval`` method. The
passed string parameter can be any expression containing global :doc:`thermo` values,
variables, compute or fix data (see :doc:`Howto_output`):
.. code-block:: Python
result = L.eval("ke") # kinetic energy
result = L.eval("pe") # potential energy
result = L.eval("v_t/2.0")
**Example**
.. code-block:: python
from lammps import PyLammps
L = PyLammps()
L.file("in.sysinit")
print(f"running simulation with {L.system.natoms} atoms")
L.run(1000, "post no");
for i in range(10):
L.run(100, "pre no post no")
pe = L.eval("pe")
ke = L.eval("ke")
print(f"PE = {pe}\nKE = {ke}")
Retrieving or setting properties of LAMMPS objects
**************************************************
This section documents accessing or modifying data from objects like
computes, fixes, or variables in LAMMPS using the :py:mod:`lammps` module.
.. tabs::
.. tab:: lammps API
For :py:meth:`lammps.extract_compute() <lammps.lammps.extract_compute()>` and
:py:meth:`lammps.extract_fix() <lammps.lammps.extract_fix()>`, the global, per-atom,
or local data calculated by the compute or fix can be accessed. What is returned
depends on whether the compute or fix calculates a scalar or vector or array.
For a scalar, a single double value is returned. If the compute or fix calculates
a vector or array, a pointer to the internal LAMMPS data is returned, which you can
use via normal Python subscripting.
The one exception is that for a fix that calculates a
global vector or array, a single double value from the vector or array
is returned, indexed by I (vector) or I and J (array). I,J are
zero-based indices.
See the :doc:`Howto output <Howto_output>` doc page for a discussion of
global, per-atom, and local data, and of scalar, vector, and array
data types. See the doc pages for individual :doc:`computes <compute>`
and :doc:`fixes <fix>` for a description of what they calculate and
store.
For :py:meth:`lammps.extract_variable() <lammps.lammps.extract_variable()>`,
an :doc:`equal-style or atom-style variable <variable>` is evaluated and
its result returned.
For equal-style variables a single ``c_double`` value is returned and the
group argument is ignored. For atom-style variables, a vector of
``c_double`` is returned, one value per atom, which you can use via normal
Python subscripting. The values will be zero for atoms not in the
specified group.
:py:meth:`lammps.numpy.extract_compute() <lammps.numpy_wrapper.extract_compute()>`,
:py:meth:`lammps.numpy.extract_fix() <lammps.numpy_wrapper.extract_fix()>`, and
:py:meth:`lammps.numpy.extract_variable() <lammps.numpy_wrapper.extract_variable()>` are
equivalent NumPy implementations that return NumPy arrays instead of ``ctypes`` pointers.
The :py:meth:`lammps.set_variable() <lammps.lammps.set_variable()>` method sets an
existing string-style variable to a new string value, so that subsequent LAMMPS
commands can access the variable.
**Methods**:
* :py:meth:`lammps.extract_compute() <lammps.lammps.extract_compute()>`: extract value(s) from a compute
* :py:meth:`lammps.extract_fix() <lammps.lammps.extract_fix()>`: extract value(s) from a fix
* :py:meth:`lammps.extract_variable() <lammps.lammps.extract_variable()>`: extract value(s) from a variable
* :py:meth:`lammps.set_variable() <lammps.lammps.set_variable()>`: set existing named string-style variable to value
**NumPy Methods**:
* :py:meth:`lammps.numpy.extract_compute() <lammps.numpy_wrapper.extract_compute()>`: extract value(s) from a compute, return arrays as numpy arrays
* :py:meth:`lammps.numpy.extract_fix() <lammps.numpy_wrapper.extract_fix()>`: extract value(s) from a fix, return arrays as numpy arrays
* :py:meth:`lammps.numpy.extract_variable() <lammps.numpy_wrapper.extract_variable()>`: extract value(s) from a variable, return arrays as numpy arrays
.. tab:: PyLammps/IPyLammps API
PyLammps and IPyLammps classes currently do not add any additional ways of
retrieving information out of computes and fixes. This information can still be accessed by using the lammps API:
.. code-block:: python
L.lmp.extract_compute(...)
L.lmp.extract_fix(...)
# OR
L.lmp.numpy.extract_compute(...)
L.lmp.numpy.extract_fix(...)
LAMMPS variables can be both defined and accessed via the :py:class:`PyLammps <lammps.PyLammps>` interface.
To define a variable you can use the :doc:`variable <variable>` command:
.. code-block:: Python
L.variable("a index 2")
A dictionary of all variables is returned by the :py:attr:`PyLammps.variables <lammps.PyLammps.variables>` property:
you can access an individual variable by retrieving a variable object from the
``L.variables`` dictionary by name
.. code-block:: Python
a = L.variables['a']
The variable value can then be easily read and written by accessing the value
property of this object.
.. code-block:: Python
print(a.value)
a.value = 4
Gather and Scatter Data between MPI processors
**********************************************
.. code-block:: Python
data = lmp.gather_atoms(name,type,count) # return per-atom property of all atoms gathered into data, ordered by atom ID
# name = "x", "charge", "type", etc
data = lmp.gather_atoms_concat(name,type,count) # ditto, but concatenated atom values from each proc (unordered)
data = lmp.gather_atoms_subset(name,type,count,ndata,ids) # ditto, but for subset of Ndata atoms with IDs
lmp.scatter_atoms(name,type,count,data) # scatter per-atom property to all atoms from data, ordered by atom ID
# name = "x", "charge", "type", etc
# count = # of per-atom values, 1 or 3, etc
lmp.scatter_atoms_subset(name,type,count,ndata,ids,data) # ditto, but for subset of Ndata atoms with IDs
The gather methods collect peratom info of the requested type (atom
coords, atom types, forces, etc) from all processors, and returns the
same vector of values to each calling processor. The scatter
functions do the inverse. They distribute a vector of peratom values,
passed by all calling processors, to individual atoms, which may be
owned by different processors.
Note that the data returned by the gather methods,
e.g. gather_atoms("x"), is different from the data structure returned
by extract_atom("x") in four ways. (1) Gather_atoms() returns a
vector which you index as x[i]; extract_atom() returns an array
which you index as x[i][j]. (2) Gather_atoms() orders the atoms
by atom ID while extract_atom() does not. (3) Gather_atoms() returns
a list of all atoms in the simulation; extract_atoms() returns just
the atoms local to each processor. (4) Finally, the gather_atoms()
data structure is a copy of the atom coords stored internally in
LAMMPS, whereas extract_atom() returns an array that effectively
points directly to the internal data. This means you can change
values inside LAMMPS from Python by assigning a new values to the
extract_atom() array. To do this with the gather_atoms() vector, you
need to change values in the vector, then invoke the scatter_atoms()
method.
For the scatter methods, the array of coordinates passed to must be a
ctypes vector of ints or doubles, allocated and initialized something
like this:
.. code-block:: Python
from ctypes import c_double
natoms = lmp.get_natoms()
n3 = 3*natoms
x = (n3*c_double)()
x[0] = x coord of atom with ID 1
x[1] = y coord of atom with ID 1
x[2] = z coord of atom with ID 1
x[3] = x coord of atom with ID 2
...
x[n3-1] = z coord of atom with ID natoms
lmp.scatter_atoms("x",1,3,x)
Alternatively, you can just change values in the vector returned by
the gather methods, since they are also ctypes vectors.

View File

@ -107,8 +107,8 @@ The computes in this package are not compatible with dynamic groups.
Related commands
""""""""""""""""
*compute group/group*\ _compute_group_group.html, *compute
heat/flux*\ _compute_heat_flux.html
* :doc:`compute group/group <compute_group_group>`
* :doc:`compute heat/flux <compute_heat_flux>`
Default
"""""""

View File

@ -340,7 +340,7 @@ to the screen and log file. Note that since the LAMMPS print command
itself takes a string in quotes as its argument, the Python string
must be delimited with a different style of quotes.
The :doc:`Python library <Python_library>` doc page describes the syntax
The :doc:`Python_head` doc page describes the syntax
for how Python wraps the various functions included in the LAMMPS
library interface.
@ -350,7 +350,7 @@ which loads and runs the following function from examples/python/funcs.py:
.. code-block:: python
def loop(N,cut0,thresh,lmpptr):
print "LOOP ARGS",N,cut0,thresh,lmpptr
print("LOOP ARGS", N, cut0, thresh, lmpptr)
from lammps import lammps
lmp = lammps(ptr=lmpptr)
natoms = lmp.get_natoms()
@ -365,12 +365,12 @@ which loads and runs the following function from examples/python/funcs.py:
lmp.command("pair_coeff * * 1.0 1.0") # ditto
lmp.command("run 10") # ditto
pe = lmp.extract_compute("thermo_pe",0,0) # extract total PE from LAMMPS
print "PE",pe/natoms,thresh
print("PE", pe/natoms, thresh)
if pe/natoms < thresh: return
with these input script commands:
.. parsed-literal::
.. code-block:: LAMMPS
python loop input 4 10 1.0 -4.0 SELF format iffp file funcs.py
python loop invoke
@ -473,11 +473,11 @@ like this:
.. code-block:: python
import exceptions
print "Inside simple function"
print("Inside simple function")
try:
foo += 1 # one or more statements here
except Exception, e:
print "FOO error:",e
except Exception as e:
print("FOO error:", e)
then you will get this message printed to the screen:

View File

@ -3289,6 +3289,7 @@ vectorized
Vegt
vel
Velázquez
venv
Verlag
verlet
Verlet

View File

@ -32,8 +32,9 @@ def post_force_callback(lmp, v):
t = L.extract_global("ntimestep", 0)
print(pid_prefix, "### POST_FORCE ###", t)
#mylist = L.get_neighlist(0)
mylist = L.find_pair_neighlist("lj/cut", request=0)
#mylist = L.numpy.get_neighlist(0)
idx = L.find_pair_neighlist("lj/cut", request=0)
mylist = L.numpy.get_neighlist(idx)
print(pid_prefix, mylist)
nlocal = L.extract_global("nlocal")
nghost = L.extract_global("nghost")
@ -43,8 +44,8 @@ def post_force_callback(lmp, v):
v = L.numpy.extract_atom("v", nelem=nlocal+nghost, dim=3)
f = L.numpy.extract_atom("f", nelem=nlocal+nghost, dim=3)
for iatom, numneigh, neighs in mylist:
print(pid_prefix, "- {}".format(iatom), x[iatom], v[iatom], f[iatom], " : ", numneigh, "Neighbors")
for iatom, neighs in mylist:
print(pid_prefix, "- {}".format(iatom), x[iatom], v[iatom], f[iatom], " : ", len(neighs), "Neighbors")
for jatom in neighs:
if jatom < nlocal:
print(pid_prefix, " * ", jatom, x[jatom], v[jatom], f[jatom])

View File

@ -81,7 +81,12 @@ class MPIAbortException(Exception):
class NeighList:
"""This is a wrapper class that exposes the contents of a neighbor list.
It can be used like a regular Python list.
It can be used like a regular Python list. Each element is a tuple of:
* the atom local index
* its number of neighbors
* and a pointer to an c_int array containing local atom indices of its
neighbors
Internally it uses the lower-level LAMMPS C-library interface.
@ -109,8 +114,8 @@ class NeighList:
def get(self, element):
"""
:return: tuple with atom local index, number of neighbors and array of neighbor local atom indices
:rtype: (int, int, numpy.array)
:return: tuple with atom local index, numpy array of neighbor local atom indices
:rtype: (int, int, ctypes.POINTER(c_int))
"""
iatom, numneigh, neighbors = self.lmp.get_neighlist_element_neighbors(self.idx, element)
return iatom, numneigh, neighbors
@ -129,6 +134,35 @@ class NeighList:
for ii in range(inum):
yield self.get(ii)
# -------------------------------------------------------------------------
class NumPyNeighList(NeighList):
"""This is a wrapper class that exposes the contents of a neighbor list.
It can be used like a regular Python list. Each element is a tuple of:
* the atom local index
* a NumPy array containing the local atom indices of its neighbors
Internally it uses the lower-level LAMMPS C-library interface.
:param lmp: reference to instance of :py:class:`lammps`
:type lmp: lammps
:param idx: neighbor list index
:type idx: int
"""
def __init__(self, lmp, idx):
super(NumPyNeighList, self).__init__(lmp, idx)
def get(self, element):
"""
:return: tuple with atom local index, numpy array of neighbor local atom indices
:rtype: (int, numpy.array)
"""
iatom, neighbors = self.lmp.numpy.get_neighlist_element_neighbors(self.idx, element)
return iatom, neighbors
# -------------------------------------------------------------------------
# -------------------------------------------------------------------------
@ -471,181 +505,17 @@ class lammps(object):
@property
def numpy(self):
"Convert between ctypes arrays and numpy arrays"
""" Return object to access numpy versions of API
It provides alternative implementations of API functions that
return numpy arrays instead of ctypes pointers. If numpy is not installed,
accessing this property will lead to an ImportError.
:return: instance of numpy wrapper object
:rtype: numpy_wrapper
"""
if not self._numpy:
import numpy as np
class LammpsNumpyWrapper:
def __init__(self, lmp):
self.lmp = lmp
def _ctype_to_numpy_int(self, ctype_int):
if ctype_int == c_int32:
return np.int32
elif ctype_int == c_int64:
return np.int64
return np.intc
def extract_atom(self, name, dtype=LAMMPS_AUTODETECT, nelem=LAMMPS_AUTODETECT, dim=LAMMPS_AUTODETECT):
"""Retrieve per-atom properties from LAMMPS as NumPy arrays
This is a wrapper around the :cpp:func:`lammps_extract_atom`
function of the C-library interface. Its documentation includes a
list of the supported keywords and their data types.
Since Python needs to know the data type to be able to interpret
the result, by default, this function will try to auto-detect the data
type by asking the library. You can also force a specific data type.
For that purpose the :py:mod:`lammps` module contains the constants
``LAMMPS_INT``, ``LAMMPS_INT_2D``, ``LAMMPS_DOUBLE``,
``LAMMPS_DOUBLE_2D``, ``LAMMPS_INT64``, ``LAMMPS_INT64_2D``, and
``LAMMPS_STRING``.
This function returns ``None`` if either the keyword is not
recognized, or an invalid data type constant is used.
.. note::
While the returned arrays of per-atom data are dimensioned
for the range [0:nmax] - as is the underlying storage -
the data is usually only valid for the range of [0:nlocal],
unless the property of interest is also updated for ghost
atoms. In some cases, this depends on a LAMMPS setting, see
for example :doc:`comm_modify vel yes <comm_modify>`.
:param name: name of the property
:type name: string
:param dtype: type of the returned data (see :ref:`py_data_constants`)
:type dtype: int, optional
:param nelem: number of elements in array
:type nelem: int, optional
:param dim: dimension of each element
:type dim: int, optional
:return: requested data as NumPy array with direct access to C data
:rtype: numpy.array
"""
if dtype == LAMMPS_AUTODETECT:
dtype = self.lmp.extract_atom_datatype(name)
if nelem == LAMMPS_AUTODETECT:
if name == "mass":
nelem = self.lmp.extract_global("ntypes") + 1
else:
nelem = self.lmp.extract_global("nlocal")
if dim == LAMMPS_AUTODETECT:
if dtype in (LAMMPS_INT_2D, LAMMPS_DOUBLE_2D, LAMMPS_INT64_2D):
# TODO add other fields
if name in ("x", "v", "f", "angmom", "torque", "csforce", "vforce"):
dim = 3
else:
dim = 2
else:
dim = 1
raw_ptr = self.lmp.extract_atom(name, dtype)
if dtype in (LAMMPS_DOUBLE, LAMMPS_DOUBLE_2D):
return self.darray(raw_ptr, nelem, dim)
elif dtype in (LAMMPS_INT, LAMMPS_INT_2D):
return self.iarray(c_int32, raw_ptr, nelem, dim)
elif dtype in (LAMMPS_INT64, LAMMPS_INT64_2D):
return self.iarray(c_int64, raw_ptr, nelem, dim)
return raw_ptr
def extract_atom_iarray(self, name, nelem, dim=1):
warnings.warn("deprecated, use extract_atom instead", DeprecationWarning)
if name in ['id', 'molecule']:
c_int_type = self.lmp.c_tagint
elif name in ['image']:
c_int_type = self.lmp.c_imageint
else:
c_int_type = c_int
if dim == 1:
raw_ptr = self.lmp.extract_atom(name, LAMMPS_INT)
else:
raw_ptr = self.lmp.extract_atom(name, LAMMPS_INT_2D)
return self.iarray(c_int_type, raw_ptr, nelem, dim)
def extract_atom_darray(self, name, nelem, dim=1):
warnings.warn("deprecated, use extract_atom instead", DeprecationWarning)
if dim == 1:
raw_ptr = self.lmp.extract_atom(name, LAMMPS_DOUBLE)
else:
raw_ptr = self.lmp.extract_atom(name, LAMMPS_DOUBLE_2D)
return self.darray(raw_ptr, nelem, dim)
def extract_compute(self, cid, style, datatype):
value = self.lmp.extract_compute(cid, style, datatype)
if style in (LMP_STYLE_GLOBAL, LMP_STYLE_LOCAL):
if datatype == LMP_TYPE_VECTOR:
nrows = self.lmp.extract_compute(cid, style, LMP_SIZE_VECTOR)
return self.darray(value, nrows)
elif datatype == LMP_TYPE_ARRAY:
nrows = self.lmp.extract_compute(cid, style, LMP_SIZE_ROWS)
ncols = self.lmp.extract_compute(cid, style, LMP_SIZE_COLS)
return self.darray(value, nrows, ncols)
elif style == LMP_STYLE_ATOM:
if datatype == LMP_TYPE_VECTOR:
nlocal = self.lmp.extract_global("nlocal", LAMMPS_INT)
return self.darray(value, nlocal)
elif datatype == LMP_TYPE_ARRAY:
nlocal = self.lmp.extract_global("nlocal", LAMMPS_INT)
ncols = self.lmp.extract_compute(cid, style, LMP_SIZE_COLS)
return self.darray(value, nlocal, ncols)
return value
def extract_fix(self, fid, style, datatype, nrow=0, ncol=0):
value = self.lmp.extract_fix(fid, style, datatype, nrow, ncol)
if style == LMP_STYLE_ATOM:
if datatype == LMP_TYPE_VECTOR:
nlocal = self.lmp.extract_global("nlocal", LAMMPS_INT)
return self.darray(value, nlocal)
elif datatype == LMP_TYPE_ARRAY:
nlocal = self.lmp.extract_global("nlocal", LAMMPS_INT)
ncols = self.lmp.extract_fix(fid, style, LMP_SIZE_COLS, 0, 0)
return self.darray(value, nlocal, ncols)
elif style == LMP_STYLE_LOCAL:
if datatype == LMP_TYPE_VECTOR:
nrows = self.lmp.extract_fix(fid, style, LMP_SIZE_ROWS, 0, 0)
return self.darray(value, nrows)
elif datatype == LMP_TYPE_ARRAY:
nrows = self.lmp.extract_fix(fid, style, LMP_SIZE_ROWS, 0, 0)
ncols = self.lmp.extract_fix(fid, style, LMP_SIZE_COLS, 0, 0)
return self.darray(value, nrows, ncols)
return value
def extract_variable(self, name, group=None, datatype=LMP_VAR_EQUAL):
value = self.lmp.extract_variable(name, group, datatype)
if datatype == LMP_VAR_ATOM:
return np.ctypeslib.as_array(value)
return value
def iarray(self, c_int_type, raw_ptr, nelem, dim=1):
np_int_type = self._ctype_to_numpy_int(c_int_type)
if dim == 1:
ptr = cast(raw_ptr, POINTER(c_int_type * nelem))
else:
ptr = cast(raw_ptr[0], POINTER(c_int_type * nelem * dim))
a = np.frombuffer(ptr.contents, dtype=np_int_type)
a.shape = (nelem, dim)
return a
def darray(self, raw_ptr, nelem, dim=1):
if dim == 1:
ptr = cast(raw_ptr, POINTER(c_double * nelem))
else:
ptr = cast(raw_ptr[0], POINTER(c_double * nelem * dim))
a = np.frombuffer(ptr.contents)
a.shape = (nelem, dim)
return a
self._numpy = LammpsNumpyWrapper(self)
self._numpy = numpy_wrapper(self)
return self._numpy
# -------------------------------------------------------------------------
@ -705,6 +575,18 @@ class lammps(object):
# -------------------------------------------------------------------------
@property
def _lammps_exception(self):
sb = create_string_buffer(100)
error_type = self.lib.lammps_get_last_error_message(self.lmp, sb, 100)
error_msg = sb.value.decode().strip()
if error_type == 2:
return MPIAbortException(error_msg)
return Exception(error_msg)
# -------------------------------------------------------------------------
def file(self, path):
"""Read LAMMPS commands from a file.
@ -719,6 +601,9 @@ class lammps(object):
else: return
self.lib.lammps_file(self.lmp, path)
if self.has_exceptions and self.lib.lammps_has_error(self.lmp):
raise self._lammps_exception
# -------------------------------------------------------------------------
def command(self,cmd):
@ -735,13 +620,7 @@ class lammps(object):
self.lib.lammps_command(self.lmp,cmd)
if self.has_exceptions and self.lib.lammps_has_error(self.lmp):
sb = create_string_buffer(100)
error_type = self.lib.lammps_get_last_error_message(self.lmp, sb, 100)
error_msg = sb.value.decode().strip()
if error_type == 2:
raise MPIAbortException(error_msg)
raise Exception(error_msg)
raise self._lammps_exception
# -------------------------------------------------------------------------
@ -761,6 +640,9 @@ class lammps(object):
self.lib.lammps_commands_list.argtypes = [c_void_p, c_int, c_char_p * narg]
self.lib.lammps_commands_list(self.lmp,narg,args)
if self.has_exceptions and self.lib.lammps_has_error(self.lmp):
raise self._lammps_exception
# -------------------------------------------------------------------------
def commands_string(self,multicmd):
@ -776,6 +658,9 @@ class lammps(object):
if type(multicmd) is str: multicmd = multicmd.encode()
self.lib.lammps_commands_string(self.lmp,c_char_p(multicmd))
if self.has_exceptions and self.lib.lammps_has_error(self.lmp):
raise self._lammps_exception
# -------------------------------------------------------------------------
def get_natoms(self):
@ -892,14 +777,12 @@ class lammps(object):
list of the supported keywords.
This function returns ``None`` if the keyword is not
recognized. Otherwise it will return a positive integer value that
corresponds to one of the constants define in the :py:mod:`lammps` module:
``LAMMPS_INT``, ``LAMMPS_INT_2D``, ``LAMMPS_DOUBLE``, ``LAMMPS_DOUBLE_2D``,
``LAMMPS_INT64``, ``LAMMPS_INT64_2D``, and ``LAMMPS_STRING``. These values
are equivalent to the ones defined in :cpp:enum:`_LMP_DATATYPE_CONST`.
corresponds to one of the :ref:`data type <py_datatype_constants>`
constants define in the :py:mod:`lammps` module.
:param name: name of the property
:type name: string
:return: datatype of global property
:return: data type of global property, see :ref:`py_datatype_constants`
:rtype: int
"""
if name: name = name.encode()
@ -921,15 +804,13 @@ class lammps(object):
Since Python needs to know the data type to be able to interpret
the result, by default, this function will try to auto-detect the data type
by asking the library. You can also force a specific data type. For that
purpose the :py:mod:`lammps` module contains the constants ``LAMMPS_INT``,
``LAMMPS_DOUBLE``, ``LAMMPS_INT64``, and ``LAMMPS_STRING``. These values
are equivalent to the ones defined in :cpp:enum:`_LMP_DATATYPE_CONST`.
This function returns ``None`` if either the keyword is not recognized,
purpose the :py:mod:`lammps` module contains :ref:`data type <py_datatype_constants>`
constants. This function returns ``None`` if either the keyword is not recognized,
or an invalid data type constant is used.
:param name: name of the property
:type name: string
:param dtype: data type of the returned data (see :ref:`py_data_constants`)
:param dtype: data type of the returned data (see :ref:`py_datatype_constants`)
:type dtype: int, optional
:return: value of the property or None
:rtype: int, float, or NoneType
@ -970,14 +851,12 @@ class lammps(object):
list of the supported keywords.
This function returns ``None`` if the keyword is not
recognized. Otherwise it will return an integer value that
corresponds to one of the constants define in the :py:mod:`lammps` module:
``LAMMPS_INT``, ``LAMMPS_INT_2D``, ``LAMMPS_DOUBLE``, ``LAMMPS_DOUBLE_2D``,
``LAMMPS_INT64``, ``LAMMPS_INT64_2D``, and ``LAMMPS_STRING``. These values
are equivalent to the ones defined in :cpp:enum:`_LMP_DATATYPE_CONST`.
corresponds to one of the :ref:`data type <py_datatype_constants>` constants
defined in the :py:mod:`lammps` module.
:param name: name of the property
:type name: string
:return: data type of per-atom property (see :ref:`py_data_constants`)
:return: data type of per-atom property (see :ref:`py_datatype_constants`)
:rtype: int
"""
if name: name = name.encode()
@ -995,11 +874,9 @@ class lammps(object):
list of the supported keywords and their data types.
Since Python needs to know the data type to be able to interpret
the result, by default, this function will try to auto-detect the data type
by asking the library. You can also force a specific data type. For
that purpose the :py:mod:`lammps` module contains the constants
``LAMMPS_INT``, ``LAMMPS_INT_2D``, ``LAMMPS_DOUBLE``, ``LAMMPS_DOUBLE_2D``,
``LAMMPS_INT64``, ``LAMMPS_INT64_2D``, and ``LAMMPS_STRING``. These values
are equivalent to the ones defined in :cpp:enum:`_LMP_DATATYPE_CONST`.
by asking the library. You can also force a specific data type by setting ``dtype``
to one of the :ref:`data type <py_datatype_constants>` constants defined in the
:py:mod:`lammps` module.
This function returns ``None`` if either the keyword is not
recognized, or an invalid data type constant is used.
@ -1014,7 +891,7 @@ class lammps(object):
:param name: name of the property
:type name: string
:param dtype: data type of the returned data (see :ref:`py_data_constants`)
:param dtype: data type of the returned data (see :ref:`py_datatype_constants`)
:type dtype: int, optional
:return: requested data or ``None``
:rtype: ctypes.POINTER(ctypes.c_int32), ctypes.POINTER(ctypes.POINTER(ctypes.c_int32)),
@ -1062,12 +939,12 @@ class lammps(object):
:param id: compute ID
:type id: string
:param style: style of the data retrieve (global, atom, or local)
:param style: style of the data retrieve (global, atom, or local), see :ref:`py_style_constants`
:type style: int
:param type: type or size of the returned data (scalar, vector, or array)
:param type: type or size of the returned data (scalar, vector, or array), see :ref:`py_type_constants`
:type type: int
:return: requested data
:rtype: integer or double or pointer to 1d or 2d double array or None
:return: requested data as scalar, pointer to 1d or 2d double array, or None
:rtype: c_double, ctypes.POINTER(c_double), ctypes.POINTER(ctypes.POINTER(c_double)), or NoneType
"""
if id: id = id.encode()
else: return None
@ -1132,33 +1009,29 @@ class lammps(object):
:param id: fix ID
:type id: string
:param style: style of the data retrieve (global, atom, or local)
:param style: style of the data retrieve (global, atom, or local), see :ref:`py_style_constants`
:type style: int
:param type: type or size of the returned data (scalar, vector, or array)
:param type: type or size of the returned data (scalar, vector, or array), see :ref:`py_type_constants`
:type type: int
:param nrow: index of global vector element or row index of global array element
:type nrow: int
:param ncol: column index of global array element
:type ncol: int
:return: requested data
:rtype: integer or double value, pointer to 1d or 2d double array or None
:return: requested data or None
:rtype: c_double, ctypes.POINTER(c_double), ctypes.POINTER(ctypes.POINTER(c_double)), or NoneType
"""
if id: id = id.encode()
else: return None
if style == LMP_STYLE_GLOBAL:
if type == LMP_TYPE_SCALAR \
or type == LMP_TYPE_VECTOR \
or type == LMP_TYPE_ARRAY:
if type in (LMP_TYPE_SCALAR, LMP_TYPE_VECTOR, LMP_TYPE_ARRAY):
self.lib.lammps_extract_fix.restype = POINTER(c_double)
ptr = self.lib.lammps_extract_fix(self.lmp,id,style,type,nrow,ncol)
result = ptr[0]
self.lib.lammps_free(ptr)
return result
elif type == LMP_SIZE_VECTOR \
or type == LMP_SIZE_ROWS \
or type == LMP_SIZE_COLS:
elif type in (LMP_SIZE_VECTOR, LMP_SIZE_ROWS, LMP_SIZE_COLS):
self.lib.lammps_extract_fix.restype = POINTER(c_int)
ptr = self.lib.lammps_extract_fix(self.lmp,id,style,type,nrow,ncol)
return ptr[0]
@ -1185,15 +1058,12 @@ class lammps(object):
self.lib.lammps_extract_fix.restype = POINTER(c_double)
elif type == LMP_TYPE_ARRAY:
self.lib.lammps_extract_fix.restype = POINTER(POINTER(c_double))
elif type == LMP_TYPE_SCALAR \
or type == LMP_SIZE_VECTOR \
or type == LMP_SIZE_ROWS \
or type == LMP_SIZE_COLS:
elif type in (LMP_TYPE_SCALAR, LMP_SIZE_VECTOR, LMP_SIZE_ROWS, LMP_SIZE_COLS):
self.lib.lammps_extract_fix.restype = POINTER(c_int)
else:
return None
ptr = self.lib.lammps_extract_fix(self.lmp,id,style,type,nrow,ncol)
if type == LMP_TYPE_VECTOR or type == LMP_TYPE_ARRAY:
if type in (LMP_TYPE_VECTOR, LMP_TYPE_ARRAY):
return ptr
else:
return ptr[0]
@ -1206,17 +1076,17 @@ class lammps(object):
# for vector, must copy nlocal returned values to local c_double vector
# memory was allocated by library interface function
def extract_variable(self,name,group=None,type=LMP_VAR_EQUAL):
def extract_variable(self, name, group=None, vartype=LMP_VAR_EQUAL):
""" Evaluate a LAMMPS variable and return its data
This function is a wrapper around the function
:cpp:func:`lammps_extract_variable` of the C-library interface,
evaluates variable name and returns a copy of the computed data.
The memory temporarily allocated by the C-interface is deleted
after the data is copied to a python variable or list.
after the data is copied to a Python variable or list.
The variable must be either an equal-style (or equivalent)
variable or an atom-style variable. The variable type has to
provided as type parameter which may be two constants:
provided as ``vartype`` parameter which may be two constants:
``LMP_VAR_EQUAL`` or ``LMP_VAR_STRING``; it defaults to
equal-style variables.
The group parameter is only used for atom-style variables and
@ -1224,26 +1094,24 @@ class lammps(object):
:param name: name of the variable to execute
:type name: string
:param group: name of group for atom style variable
:type group: string
:param type: type of variable
:type type: int
:param group: name of group for atom-style variable
:type group: string, only for atom-style variables
:param vartype: type of variable, see :ref:`py_vartype_constants`
:type vartype: int
:return: the requested data
:rtype: double, array of doubles, or None
:rtype: c_double, (c_double), or NoneType
"""
if name: name = name.encode()
else: return None
if group: group = group.encode()
if type == LMP_VAR_EQUAL:
if vartype == LMP_VAR_EQUAL:
self.lib.lammps_extract_variable.restype = POINTER(c_double)
ptr = self.lib.lammps_extract_variable(self.lmp,name,group)
result = ptr[0]
self.lib.lammps_free(ptr)
return result
if type == LMP_VAR_ATOM:
self.lib.lammps_extract_global.restype = POINTER(c_int)
nlocalptr = self.lib.lammps_extract_global(self.lmp,"nlocal".encode())
nlocal = nlocalptr[0]
elif vartype == LMP_VAR_ATOM:
nlocal = self.extract_global("nlocal")
result = (c_double*nlocal)()
self.lib.lammps_extract_variable.restype = POINTER(c_double)
ptr = self.lib.lammps_extract_variable(self.lmp,name,group)
@ -1697,13 +1565,6 @@ class lammps(object):
def set_fix_external_callback(self, fix_name, callback, caller=None):
import numpy as np
def _ctype_to_numpy_int(ctype_int):
if ctype_int == c_int32:
return np.int32
elif ctype_int == c_int64:
return np.int64
return np.intc
def callback_wrapper(caller, ntimestep, nlocal, tag_ptr, x_ptr, fext_ptr):
tag = self.numpy.iarray(self.c_tagint, tag_ptr, nlocal, 1)
x = self.numpy.darray(x_ptr, nlocal, 3)
@ -1716,11 +1577,15 @@ class lammps(object):
self.callback[fix_name] = { 'function': cFunc, 'caller': caller }
self.lib.lammps_set_fix_external_callback(self.lmp, fix_name.encode(), cFunc, cCaller)
# -------------------------------------------------------------------------
def get_neighlist(self, idx):
"""Returns an instance of :class:`NeighList` which wraps access to the neighbor list with the given index
See :py:meth:`lammps.numpy.get_neighlist() <lammps.numpy_wrapper.get_neighlist()>` if you want to use
NumPy arrays instead of ``c_int`` pointers.
:param idx: index of neighbor list
:type idx: int
:return: an instance of :class:`NeighList` wrapping access to neighbor list data
@ -1732,6 +1597,36 @@ class lammps(object):
# -------------------------------------------------------------------------
def get_neighlist_size(self, idx):
"""Return the number of elements in neighbor list with the given index
:param idx: neighbor list index
:type idx: int
:return: number of elements in neighbor list with index idx
:rtype: int
"""
return self.lib.lammps_neighlist_num_elements(self.lmp, idx)
# -------------------------------------------------------------------------
def get_neighlist_element_neighbors(self, idx, element):
"""Return data of neighbor list entry
:param element: neighbor list index
:type element: int
:param element: neighbor list element index
:type element: int
:return: tuple with atom local index, number of neighbors and array of neighbor local atom indices
:rtype: (int, int, POINTER(c_int))
"""
c_iatom = c_int()
c_numneigh = c_int()
c_neighbors = POINTER(c_int)()
self.lib.lammps_neighlist_element_neighbors(self.lmp, idx, element, byref(c_iatom), byref(c_numneigh), byref(c_neighbors))
return c_iatom.value, c_numneigh.value, c_neighbors
# -------------------------------------------------------------------------
def find_pair_neighlist(self, style, exact=True, nsub=0, request=0):
"""Find neighbor list index of pair style neighbor list
@ -1758,7 +1653,7 @@ class lammps(object):
style = style.encode()
exact = int(exact)
idx = self.lib.lammps_find_pair_neighlist(self.lmp, style, exact, nsub, request)
return self.get_neighlist(idx)
return idx
# -------------------------------------------------------------------------
@ -1774,7 +1669,7 @@ class lammps(object):
"""
fixid = fixid.encode()
idx = self.lib.lammps_find_fix_neighlist(self.lmp, fixid, request)
return self.get_neighlist(idx)
return idx
# -------------------------------------------------------------------------
@ -1790,38 +1685,295 @@ class lammps(object):
"""
computeid = computeid.encode()
idx = self.lib.lammps_find_compute_neighlist(self.lmp, computeid, request)
return self.get_neighlist(idx)
return idx
# -------------------------------------------------------------------------
class numpy_wrapper:
"""lammps API NumPy Wrapper
This is a wrapper class that provides additional methods on top of an
existing :py:class:`lammps` instance. The methods transform raw ctypes
pointers into NumPy arrays, which give direct access to the
original data while protecting against out-of-bounds accesses.
There is no need to explicitly instantiate this class. Each instance
of :py:class:`lammps` has a :py:attr:`numpy <lammps.numpy>` property
that returns an instance.
:param lmp: instance of the :py:class:`lammps` class
:type lmp: lammps
"""
def __init__(self, lmp):
self.lmp = lmp
# -------------------------------------------------------------------------
def get_neighlist_size(self, idx):
"""Return the number of elements in neighbor list with the given index
def _ctype_to_numpy_int(self, ctype_int):
import numpy as np
if ctype_int == c_int32:
return np.int32
elif ctype_int == c_int64:
return np.int64
return np.intc
:param idx: neighbor list index
# -------------------------------------------------------------------------
def extract_atom(self, name, dtype=LAMMPS_AUTODETECT, nelem=LAMMPS_AUTODETECT, dim=LAMMPS_AUTODETECT):
"""Retrieve per-atom properties from LAMMPS as NumPy arrays
This is a wrapper around the :py:meth:`lammps.extract_atom()` method.
It behaves the same as the original method, but returns NumPy arrays
instead of ``ctypes`` pointers.
.. note::
While the returned arrays of per-atom data are dimensioned
for the range [0:nmax] - as is the underlying storage -
the data is usually only valid for the range of [0:nlocal],
unless the property of interest is also updated for ghost
atoms. In some cases, this depends on a LAMMPS setting, see
for example :doc:`comm_modify vel yes <comm_modify>`.
:param name: name of the property
:type name: string
:param dtype: type of the returned data (see :ref:`py_datatype_constants`)
:type dtype: int, optional
:param nelem: number of elements in array
:type nelem: int, optional
:param dim: dimension of each element
:type dim: int, optional
:return: requested data as NumPy array with direct access to C data or None
:rtype: numpy.array or NoneType
"""
if dtype == LAMMPS_AUTODETECT:
dtype = self.lmp.extract_atom_datatype(name)
if nelem == LAMMPS_AUTODETECT:
if name == "mass":
nelem = self.lmp.extract_global("ntypes") + 1
else:
nelem = self.lmp.extract_global("nlocal")
if dim == LAMMPS_AUTODETECT:
if dtype in (LAMMPS_INT_2D, LAMMPS_DOUBLE_2D, LAMMPS_INT64_2D):
# TODO add other fields
if name in ("x", "v", "f", "angmom", "torque", "csforce", "vforce"):
dim = 3
else:
dim = 2
else:
dim = 1
raw_ptr = self.lmp.extract_atom(name, dtype)
if dtype in (LAMMPS_DOUBLE, LAMMPS_DOUBLE_2D):
return self.darray(raw_ptr, nelem, dim)
elif dtype in (LAMMPS_INT, LAMMPS_INT_2D):
return self.iarray(c_int32, raw_ptr, nelem, dim)
elif dtype in (LAMMPS_INT64, LAMMPS_INT64_2D):
return self.iarray(c_int64, raw_ptr, nelem, dim)
return raw_ptr
# -------------------------------------------------------------------------
def extract_atom_iarray(self, name, nelem, dim=1):
warnings.warn("deprecated, use extract_atom instead", DeprecationWarning)
if name in ['id', 'molecule']:
c_int_type = self.lmp.c_tagint
elif name in ['image']:
c_int_type = self.lmp.c_imageint
else:
c_int_type = c_int
if dim == 1:
raw_ptr = self.lmp.extract_atom(name, LAMMPS_INT)
else:
raw_ptr = self.lmp.extract_atom(name, LAMMPS_INT_2D)
return self.iarray(c_int_type, raw_ptr, nelem, dim)
# -------------------------------------------------------------------------
def extract_atom_darray(self, name, nelem, dim=1):
warnings.warn("deprecated, use extract_atom instead", DeprecationWarning)
if dim == 1:
raw_ptr = self.lmp.extract_atom(name, LAMMPS_DOUBLE)
else:
raw_ptr = self.lmp.extract_atom(name, LAMMPS_DOUBLE_2D)
return self.darray(raw_ptr, nelem, dim)
# -------------------------------------------------------------------------
def extract_compute(self, cid, style, type):
"""Retrieve data from a LAMMPS compute
This is a wrapper around the
:py:meth:`lammps.extract_compute() <lammps.lammps.extract_compute()>` method.
It behaves the same as the original method, but returns NumPy arrays
instead of ``ctypes`` pointers.
:param id: compute ID
:type id: string
:param style: style of the data retrieve (global, atom, or local), see :ref:`py_style_constants`
:type style: int
:param type: type of the returned data (scalar, vector, or array), see :ref:`py_type_constants`
:type type: int
:return: requested data either as float, as NumPy array with direct access to C data, or None
:rtype: float, numpy.array, or NoneType
"""
value = self.lmp.extract_compute(cid, style, type)
if style in (LMP_STYLE_GLOBAL, LMP_STYLE_LOCAL):
if type == LMP_TYPE_VECTOR:
nrows = self.lmp.extract_compute(cid, style, LMP_SIZE_VECTOR)
return self.darray(value, nrows)
elif type == LMP_TYPE_ARRAY:
nrows = self.lmp.extract_compute(cid, style, LMP_SIZE_ROWS)
ncols = self.lmp.extract_compute(cid, style, LMP_SIZE_COLS)
return self.darray(value, nrows, ncols)
elif style == LMP_STYLE_ATOM:
if type == LMP_TYPE_VECTOR:
nlocal = self.lmp.extract_global("nlocal")
return self.darray(value, nlocal)
elif type == LMP_TYPE_ARRAY:
nlocal = self.lmp.extract_global("nlocal")
ncols = self.lmp.extract_compute(cid, style, LMP_SIZE_COLS)
return self.darray(value, nlocal, ncols)
return value
# -------------------------------------------------------------------------
def extract_fix(self, fid, style, type, nrow=0, ncol=0):
"""Retrieve data from a LAMMPS fix
This is a wrapper around the :py:meth:`lammps.extract_fix() <lammps.lammps.extract_fix()>` method.
It behaves the same as the original method, but returns NumPy arrays
instead of ``ctypes`` pointers.
:param id: fix ID
:type id: string
:param style: style of the data retrieve (global, atom, or local), see :ref:`py_style_constants`
:type style: int
:param type: type or size of the returned data (scalar, vector, or array), see :ref:`py_type_constants`
:type type: int
:param nrow: index of global vector element or row index of global array element
:type nrow: int
:param ncol: column index of global array element
:type ncol: int
:return: requested data
:rtype: integer or double value, pointer to 1d or 2d double array or None
"""
value = self.lmp.extract_fix(fid, style, type, nrow, ncol)
if style == LMP_STYLE_ATOM:
if type == LMP_TYPE_VECTOR:
nlocal = self.lmp.extract_global("nlocal")
return self.darray(value, nlocal)
elif type == LMP_TYPE_ARRAY:
nlocal = self.lmp.extract_global("nlocal")
ncols = self.lmp.extract_fix(fid, style, LMP_SIZE_COLS, 0, 0)
return self.darray(value, nlocal, ncols)
elif style == LMP_STYLE_LOCAL:
if type == LMP_TYPE_VECTOR:
nrows = self.lmp.extract_fix(fid, style, LMP_SIZE_ROWS, 0, 0)
return self.darray(value, nrows)
elif type == LMP_TYPE_ARRAY:
nrows = self.lmp.extract_fix(fid, style, LMP_SIZE_ROWS, 0, 0)
ncols = self.lmp.extract_fix(fid, style, LMP_SIZE_COLS, 0, 0)
return self.darray(value, nrows, ncols)
return value
# -------------------------------------------------------------------------
def extract_variable(self, name, group=None, vartype=LMP_VAR_EQUAL):
""" Evaluate a LAMMPS variable and return its data
This function is a wrapper around the function
:py:meth:`lammps.extract_variable() <lammps.lammps.extract_variable()>`
method. It behaves the same as the original method, but returns NumPy arrays
instead of ``ctypes`` pointers.
:param name: name of the variable to execute
:type name: string
:param group: name of group for atom-style variable (ignored for equal-style variables)
:type group: string
:param vartype: type of variable, see :ref:`py_vartype_constants`
:type vartype: int
:return: the requested data or None
:rtype: c_double, numpy.array, or NoneType
"""
import numpy as np
value = self.lmp.extract_variable(name, group, vartype)
if vartype == LMP_VAR_ATOM:
return np.ctypeslib.as_array(value)
return value
# -------------------------------------------------------------------------
def get_neighlist(self, idx):
"""Returns an instance of :class:`NumPyNeighList` which wraps access to the neighbor list with the given index
:param idx: index of neighbor list
:type idx: int
:return: number of elements in neighbor list with index idx
:rtype: int
"""
return self.lib.lammps_neighlist_num_elements(self.lmp, idx)
:return: an instance of :class:`NumPyNeighList` wrapping access to neighbor list data
:rtype: NumPyNeighList
"""
if idx < 0:
return None
return NumPyNeighList(self.lmp, idx)
# -------------------------------------------------------------------------
def get_neighlist_element_neighbors(self, idx, element):
"""Return data of neighbor list entry
This function is a wrapper around the function
:py:meth:`lammps.get_neighlist_element_neighbors() <lammps.lammps.get_neighlist_element_neighbors()>`
method. It behaves the same as the original method, but returns a NumPy array containing the neighbors
instead of a ``ctypes`` pointer.
:param element: neighbor list index
:type element: int
:param element: neighbor list element index
:type element: int
:return: tuple with atom local index, number of neighbors and array of neighbor local atom indices
:rtype: (int, int, numpy.array)
:return: tuple with atom local index and numpy array of neighbor local atom indices
:rtype: (int, numpy.array)
"""
c_iatom = c_int()
c_numneigh = c_int()
c_neighbors = POINTER(c_int)()
self.lib.lammps_neighlist_element_neighbors(self.lmp, idx, element, byref(c_iatom), byref(c_numneigh), byref(c_neighbors))
neighbors = self.numpy.iarray(c_int, c_neighbors, c_numneigh.value, 1)
return c_iatom.value, c_numneigh.value, neighbors
iatom, numneigh, c_neighbors = self.lmp.get_neighlist_element_neighbors(idx, element)
neighbors = self.iarray(c_int, c_neighbors, numneigh, 1)
return iatom, neighbors
# -------------------------------------------------------------------------
def iarray(self, c_int_type, raw_ptr, nelem, dim=1):
import numpy as np
np_int_type = self._ctype_to_numpy_int(c_int_type)
if dim == 1:
ptr = cast(raw_ptr, POINTER(c_int_type * nelem))
else:
ptr = cast(raw_ptr[0], POINTER(c_int_type * nelem * dim))
a = np.frombuffer(ptr.contents, dtype=np_int_type)
a.shape = (nelem, dim)
return a
# -------------------------------------------------------------------------
def darray(self, raw_ptr, nelem, dim=1):
import numpy as np
if dim == 1:
ptr = cast(raw_ptr, POINTER(c_double * nelem))
else:
ptr = cast(raw_ptr[0], POINTER(c_double * nelem * dim))
a = np.frombuffer(ptr.contents)
a.shape = (nelem, dim)
return a
# -------------------------------------------------------------------------
# -------------------------------------------------------------------------

View File

@ -4641,7 +4641,7 @@ the failing MPI ranks to send messages.
* \param handle pointer to a previously created LAMMPS instance cast to ``void *``.
* \param buffer string buffer to copy the error message to
* \param buf_size size of the provided string buffer
* \return 1 when all ranks had the error, 1 on a single rank error.
* \return 1 when all ranks had the error, 2 on a single rank error.
*/
int lammps_get_last_error_message(void *handle, char *buffer, int buf_size) {
#ifdef LAMMPS_EXCEPTIONS

View File

@ -85,6 +85,49 @@ create_atoms 1 single &
natoms = self.lmp.get_natoms()
self.assertEqual(natoms,2)
def testNeighborList(self):
self.lmp.command("units lj")
self.lmp.command("atom_style atomic")
self.lmp.command("atom_modify map array")
self.lmp.command("boundary f f f")
self.lmp.command("region box block 0 2 0 2 0 2")
self.lmp.command("create_box 1 box")
x = [
1.0, 1.0, 1.0,
1.0, 1.0, 1.5
]
types = [1, 1]
self.assertEqual(self.lmp.create_atoms(2, id=None, type=types, x=x), 2)
nlocal = self.lmp.extract_global("nlocal")
self.assertEqual(nlocal, 2)
self.lmp.command("mass 1 1.0")
self.lmp.command("velocity all create 3.0 87287")
self.lmp.command("pair_style lj/cut 2.5")
self.lmp.command("pair_coeff 1 1 1.0 1.0 2.5")
self.lmp.command("neighbor 0.1 bin")
self.lmp.command("neigh_modify every 20 delay 0 check no")
self.lmp.command("run 0")
self.assertEqual(self.lmp.find_pair_neighlist("lj/cut"), 0)
nlist = self.lmp.get_neighlist(0)
self.assertEqual(len(nlist), 2)
atom_i, numneigh_i, neighbors_i = nlist[0]
atom_j, numneigh_j, _ = nlist[1]
self.assertEqual(atom_i, 0)
self.assertEqual(atom_j, 1)
self.assertEqual(numneigh_i, 1)
self.assertEqual(numneigh_j, 0)
self.assertEqual(1, neighbors_i[0])
##############################
if __name__ == "__main__":
unittest.main()

View File

@ -135,5 +135,48 @@ class PythonNumpy(unittest.TestCase):
self.assertTrue((x[1] == (1.0, 1.0, 1.5)).all())
self.assertEqual(len(v), 2)
def testNeighborList(self):
self.lmp.command("units lj")
self.lmp.command("atom_style atomic")
self.lmp.command("atom_modify map array")
self.lmp.command("boundary f f f")
self.lmp.command("region box block 0 2 0 2 0 2")
self.lmp.command("create_box 1 box")
x = [
1.0, 1.0, 1.0,
1.0, 1.0, 1.5
]
types = [1, 1]
self.assertEqual(self.lmp.create_atoms(2, id=None, type=types, x=x), 2)
nlocal = self.lmp.extract_global("nlocal")
self.assertEqual(nlocal, 2)
self.lmp.command("mass 1 1.0")
self.lmp.command("velocity all create 3.0 87287")
self.lmp.command("pair_style lj/cut 2.5")
self.lmp.command("pair_coeff 1 1 1.0 1.0 2.5")
self.lmp.command("neighbor 0.1 bin")
self.lmp.command("neigh_modify every 20 delay 0 check no")
self.lmp.command("run 0")
self.assertEqual(self.lmp.find_pair_neighlist("lj/cut"), 0)
nlist = self.lmp.numpy.get_neighlist(0)
self.assertEqual(len(nlist), 2)
atom_i, neighbors_i = nlist[0]
atom_j, neighbors_j = nlist[1]
self.assertEqual(atom_i, 0)
self.assertEqual(atom_j, 1)
self.assertEqual(len(neighbors_i), 1)
self.assertEqual(len(neighbors_j), 0)
self.assertIn(1, neighbors_i)
self.assertNotIn(0, neighbors_j)
if __name__ == "__main__":
unittest.main()

View File

@ -18,6 +18,7 @@ try:
machine = ""
lmp = lammps(name=machine)
has_mpi = lmp.has_mpi_support
has_exceptions = lmp.has_exceptions
lmp.close()
except:
pass
@ -57,5 +58,32 @@ class PythonOpen(unittest.TestCase):
self.assertEqual(lmp.opened,1)
lmp.close()
@unittest.skipIf(not has_exceptions,"Skipping death test since LAMMPS isn't compiled with exception support")
def testUnknownCommand(self):
lmp = lammps(name=self.machine)
with self.assertRaisesRegex(Exception, "ERROR: Unknown command: write_paper"):
lmp.command("write_paper")
lmp.close()
@unittest.skipIf(not has_exceptions,"Skipping death test since LAMMPS isn't compiled with exception support")
def testUnknownCommandInList(self):
lmp = lammps(name=self.machine)
with self.assertRaisesRegex(Exception, "ERROR: Unknown command: write_paper"):
lmp.commands_list(["write_paper"])
lmp.close()
@unittest.skipIf(not has_exceptions,"Skipping death test since LAMMPS isn't compiled with exception support")
def testUnknownCommandInList(self):
lmp = lammps(name=self.machine)
with self.assertRaisesRegex(Exception, "ERROR: Unknown command: write_paper"):
lmp.commands_string("write_paper")
lmp.close()
if __name__ == "__main__":
unittest.main()