ATC version 2.0, date: Nov20
git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@12757 f3b2605a-c512-4ea7-a41b-209d697bcdaa
This commit is contained in:
@ -7,6 +7,10 @@
|
||||
#include "PhysicsModel.h"
|
||||
#include "PrescribedDataManager.h"
|
||||
|
||||
|
||||
using std::set;
|
||||
using std::vector;
|
||||
|
||||
namespace ATC {
|
||||
|
||||
// --------------------------------------------------------------------
|
||||
@ -15,16 +19,77 @@ namespace ATC {
|
||||
// --------------------------------------------------------------------
|
||||
// --------------------------------------------------------------------
|
||||
ImplicitSolveOperator::
|
||||
ImplicitSolveOperator(ATC_Coupling * atc,
|
||||
/*const*/ FE_Engine * feEngine,
|
||||
const PhysicsModel * physicsModel)
|
||||
: atc_(atc),
|
||||
feEngine_(feEngine),
|
||||
physicsModel_(physicsModel)
|
||||
ImplicitSolveOperator(double alpha, double dt)
|
||||
: n_(0),
|
||||
dof_(0),
|
||||
dt_(dt),
|
||||
alpha_(alpha),
|
||||
epsilon0_(1.0e-8)
|
||||
{
|
||||
// Nothing else to do here
|
||||
}
|
||||
|
||||
// --------------------------------------------------------------------
|
||||
// operator *
|
||||
// --------------------------------------------------------------------
|
||||
DENS_VEC
|
||||
ImplicitSolveOperator::operator * (const DENS_VEC & x) const
|
||||
{
|
||||
// This method uses a matrix-free approach to approximate the
|
||||
// multiplication by matrix A in the matrix equation Ax=b, where the
|
||||
// matrix equation results from an implicit treatment of the
|
||||
// fast field. In brief, if the ODE for the fast field can be written:
|
||||
//
|
||||
// dx/dt = R(x)
|
||||
//
|
||||
// A generalized discretization can be written:
|
||||
//
|
||||
// 1/dt * (x^n+1 - x^n) = alpha * R(x^n+1) + (1-alpha) * R(x^n)
|
||||
//
|
||||
// Taylor expanding the R(x^n+1) term and rearranging gives the
|
||||
// equation to be solved for dx at each timestep:
|
||||
//
|
||||
// [1 - dt * alpha * dR/dx] * dx = dt * R(x^n)
|
||||
//
|
||||
// The operator defined in this method computes the left-hand side,
|
||||
// given a vector dx. It uses a finite difference, matrix-free
|
||||
// approximation of dR/dx * dx, giving:
|
||||
//
|
||||
// [1 - dt * alpha * dR/dx] * dx = dt * R(x^n)
|
||||
// ~= dx - dt*alpha/epsilon * ( R(x^n + epsilon*dx) - R(x^n) )
|
||||
//
|
||||
// Compute epsilon
|
||||
double epsilon = (x.norm()>0.0) ? epsilon0_*x0_.norm()/x.norm():epsilon0_;
|
||||
// Compute incremented vector x^n+1 = x^n + epsilon*dx
|
||||
x_ = x0_ + epsilon * x;
|
||||
// Evaluate R(x)
|
||||
this->R(x_,R_);
|
||||
// Compute full left hand side and return it
|
||||
DENS_VEC Ax = x - dt_ * alpha_ / epsilon * (R_ - R0_);
|
||||
return Ax;
|
||||
}
|
||||
|
||||
// --------------------------------------------------------------------
|
||||
// rhs of Ax = r
|
||||
// --------------------------------------------------------------------
|
||||
DENS_VEC
|
||||
ImplicitSolveOperator::r() const
|
||||
{
|
||||
return dt_ * R0_; // dt * R(T^n)
|
||||
}
|
||||
|
||||
// --------------------------------------------------------------------
|
||||
// preconditioner
|
||||
// --------------------------------------------------------------------
|
||||
DIAG_MAT
|
||||
ImplicitSolveOperator::preconditioner() const
|
||||
{
|
||||
DENS_VEC diag(n_);
|
||||
diag = 1.0;
|
||||
DIAG_MAT preconditioner(diag);
|
||||
return preconditioner;
|
||||
}
|
||||
|
||||
// --------------------------------------------------------------------
|
||||
// --------------------------------------------------------------------
|
||||
// FieldImplicitSolveOperator
|
||||
@ -32,7 +97,6 @@ ImplicitSolveOperator(ATC_Coupling * atc,
|
||||
// --------------------------------------------------------------------
|
||||
FieldImplicitSolveOperator::
|
||||
FieldImplicitSolveOperator(ATC_Coupling * atc,
|
||||
/*const*/ FE_Engine * feEngine,
|
||||
FIELDS & fields,
|
||||
const FieldName fieldName,
|
||||
const Array2D< bool > & rhsMask,
|
||||
@ -40,121 +104,97 @@ FieldImplicitSolveOperator(ATC_Coupling * atc,
|
||||
double simTime,
|
||||
double dt,
|
||||
double alpha)
|
||||
: ImplicitSolveOperator(atc, feEngine, physicsModel),
|
||||
: ImplicitSolveOperator(alpha, dt),
|
||||
fieldName_(fieldName),
|
||||
fields_(fields), // ref to fields
|
||||
time_(simTime),
|
||||
dt_(dt),
|
||||
alpha_(alpha),
|
||||
epsilon0_(1.0e-8)
|
||||
atc_(atc),
|
||||
physicsModel_(physicsModel),
|
||||
fields0_(fields), // ref to fields
|
||||
fields_ (fields), // copy of fields
|
||||
rhsMask_(rhsMask),
|
||||
time_(simTime)
|
||||
{
|
||||
// find field associated with ODE
|
||||
const DENS_MAT & f = fields0_[fieldName_].quantity();
|
||||
dof_ = f.nCols();
|
||||
if (dof_ > 1) throw ATC_Error("Implicit solver operator can only handle scalar fields");
|
||||
// create all to free map
|
||||
int nNodes = f.nRows();
|
||||
set<int> fixedNodes_ = atc_->prescribed_data_manager()->fixed_nodes(fieldName_);
|
||||
n_ = nNodes;
|
||||
vector<bool> tag(nNodes);
|
||||
set<int>::const_iterator it; int i = 0;
|
||||
for (i = 0; i < nNodes; ++i) { tag[i] = true; }
|
||||
for (it=fixedNodes_.begin();it!=fixedNodes_.end();++it) {tag[*it]=false;}
|
||||
int m = 0;
|
||||
for (i = 0; i < nNodes; ++i) { if (tag[i]) freeNodes_[i]= m++; }
|
||||
//std::cout << " nodes " << n_ << " " << nNodes << "\n";
|
||||
|
||||
// Save current field
|
||||
x0_.reset(n_);
|
||||
to_free(f,x0_);
|
||||
x_ = x0_; // initialize
|
||||
|
||||
// righthand side/forcing vector
|
||||
rhsMask_.reset(NUM_FIELDS,NUM_FLUX);
|
||||
rhsMask_ = false;
|
||||
for (int i = 0; i < rhsMask.nCols(); i++) {
|
||||
rhsMask_(fieldName_,i) = rhsMask(fieldName_,i);
|
||||
}
|
||||
//std::cout << print_mask(rhsMask_) << "\n";
|
||||
massMask_.reset(1);
|
||||
massMask_(0) = fieldName_;
|
||||
|
||||
// Save off current field
|
||||
TnVect_ = column(fields_[fieldName_].quantity(),0);
|
||||
|
||||
// Allocate vectors for fields and rhs
|
||||
int nNodes = atc_->num_nodes();
|
||||
// copy fields
|
||||
fieldsNp1_ = fields_;
|
||||
// size rhs
|
||||
int dof = fields_[fieldName_].nCols();
|
||||
RnMap_ [fieldName_].reset(nNodes,dof);
|
||||
RnpMap_[fieldName_].reset(nNodes,dof);
|
||||
|
||||
rhs_[fieldName_].reset(nNodes,dof_);
|
||||
// Compute the RHS vector R(T^n)
|
||||
// Set BCs on Rn, multiply by inverse mass and then extract its vector
|
||||
atc_->compute_rhs_vector(rhsMask_, fields_, RnMap_,
|
||||
FULL_DOMAIN, physicsModel_);
|
||||
DENS_MAT & Rn = RnMap_[fieldName_].set_quantity();
|
||||
atc_->prescribed_data_manager()
|
||||
->set_fixed_dfield(time_, fieldName_, Rn);
|
||||
atc_->apply_inverse_mass_matrix(Rn,fieldName_);
|
||||
RnVect_ = column(Rn,0);
|
||||
R0_.reset(n_);
|
||||
R_ .reset(n_);
|
||||
R(x0_, R0_);
|
||||
}
|
||||
|
||||
|
||||
// --------------------------------------------------------------------
|
||||
// operator *(Vector)
|
||||
// --------------------------------------------------------------------
|
||||
DENS_VEC
|
||||
FieldImplicitSolveOperator::operator * (DENS_VEC x) const
|
||||
void FieldImplicitSolveOperator::to_all(const VECTOR &x, MATRIX &f) const
|
||||
{
|
||||
f.reset(x.nRows(),1);
|
||||
for (int i = 0; i < x.nRows(); ++i) {
|
||||
f(i,0) = x(i);
|
||||
}
|
||||
}
|
||||
void FieldImplicitSolveOperator::to_free(const MATRIX &r, VECTOR &v) const
|
||||
{
|
||||
v.reset(r.nRows());
|
||||
for (int i = 0; i < r.nRows(); ++i) {
|
||||
v(i) = r(i,0);
|
||||
}
|
||||
}
|
||||
void
|
||||
FieldImplicitSolveOperator::R(const DENS_VEC &x, DENS_VEC &v ) const
|
||||
{
|
||||
DENS_MAT & f = fields_[fieldName_].set_quantity();
|
||||
atc_->prescribed_data_manager()->set_fixed_field(time_, fieldName_, f);
|
||||
to_all(x,f);
|
||||
atc_->compute_rhs_vector(rhsMask_,fields_,rhs_,FULL_DOMAIN,physicsModel_);
|
||||
DENS_MAT & r = rhs_[fieldName_].set_quantity();
|
||||
atc_->prescribed_data_manager()->set_fixed_dfield(time_, fieldName_, r);
|
||||
atc_->apply_inverse_mass_matrix(r,fieldName_);
|
||||
to_free(r,v);
|
||||
#if 0
|
||||
int n = 6;
|
||||
//std::cout << "# x "; for (int i = 0; i < n_; ++i) std::cout << x(i) << " "; std::cout << "\n";
|
||||
//std::cout << "# f "; for (int i = 0; i < n; ++i) std::cout << f(i,0) << " "; std::cout << "\n";
|
||||
std::cout << "# r "; for (int i = 0; i < n; ++i) std::cout << r(i,0) << " "; std::cout << "\n";
|
||||
//std::cout << "# v "; for (int i = 0; i < n; ++i) std::cout << v(i) << " "; std::cout << "\n";
|
||||
#endif
|
||||
}
|
||||
|
||||
void FieldImplicitSolveOperator::solution(const DENS_MAT & dx, DENS_MAT &f) const
|
||||
{
|
||||
DENS_MAT & df = fields_[fieldName_].set_quantity();
|
||||
to_all(column(dx,0),df);
|
||||
atc_->prescribed_data_manager()->set_fixed_dfield(time_, fieldName_, df);
|
||||
f += df;
|
||||
}
|
||||
void FieldImplicitSolveOperator::rhs(const DENS_MAT & r, DENS_MAT &rhs) const
|
||||
{
|
||||
// This method uses a matrix-free approach to approximate the
|
||||
// multiplication by matrix A in the matrix equation Ax=b, where the
|
||||
// matrix equation results from an implicit treatment of the
|
||||
// fast field solve for the Two Temperature Model. In
|
||||
// brief, if the ODE for the fast field can be written:
|
||||
//
|
||||
// dT/dt = R(T)
|
||||
//
|
||||
// A generalized discretization can be written:
|
||||
//
|
||||
// 1/dt * (T^n+1 - T^n) = alpha * R(T^n+1) + (1-alpha) * R(T^n)
|
||||
//
|
||||
// Taylor expanding the R(T^n+1) term and rearranging gives the
|
||||
// equation to be solved for dT at each timestep:
|
||||
//
|
||||
// [1 - dt * alpha * dR/dT] * dT = dt * R(T^n)
|
||||
//
|
||||
// The operator defined in this method computes the left-hand side,
|
||||
// given a vector dT. It uses a finite difference, matrix-free
|
||||
// approximation of dR/dT * dT, giving:
|
||||
//
|
||||
// [1 - dt * alpha * dR/dT] * dT = dt * R(T^n)
|
||||
// ~= dT - dt*alpha/epsilon * ( R(T^n + epsilon*dT) - R(T^n) )
|
||||
//
|
||||
|
||||
|
||||
// Compute epsilon
|
||||
double epsilon = (x.norm() > 0.0) ? epsilon0_ * TnVect_.norm()/x.norm() : epsilon0_;
|
||||
|
||||
// Compute incremented vector = T + epsilon*dT
|
||||
fieldsNp1_[fieldName_] = TnVect_ + epsilon * x;
|
||||
|
||||
// Evaluate R(b)
|
||||
atc_->compute_rhs_vector(rhsMask_, fieldsNp1_, RnpMap_,
|
||||
FULL_DOMAIN, physicsModel_);
|
||||
DENS_MAT & Rnp = RnpMap_[fieldName_].set_quantity();
|
||||
atc_->prescribed_data_manager()
|
||||
->set_fixed_dfield(time_, fieldName_, Rnp);
|
||||
atc_->apply_inverse_mass_matrix(Rnp,fieldName_);
|
||||
RnpVect_ = column(Rnp,0);
|
||||
|
||||
// Compute full left hand side and return it
|
||||
DENS_VEC Ax = x - dt_ * alpha_ / epsilon * (RnpVect_ - RnVect_);
|
||||
return Ax;
|
||||
to_all(column(r,0),rhs);
|
||||
}
|
||||
|
||||
// --------------------------------------------------------------------
|
||||
// rhs
|
||||
// --------------------------------------------------------------------
|
||||
DENS_VEC
|
||||
FieldImplicitSolveOperator::rhs()
|
||||
{
|
||||
// Return dt * R(T^n)
|
||||
return dt_ * RnVect_;
|
||||
}
|
||||
|
||||
// --------------------------------------------------------------------
|
||||
// preconditioner
|
||||
// --------------------------------------------------------------------
|
||||
DIAG_MAT
|
||||
FieldImplicitSolveOperator::preconditioner(FIELDS & fields)
|
||||
{
|
||||
// Just create and return identity matrix
|
||||
int nNodes = atc_->num_nodes();
|
||||
DENS_VEC ones(nNodes);
|
||||
ones = 1.0;
|
||||
DIAG_MAT identity(ones);
|
||||
return identity;
|
||||
}
|
||||
|
||||
} // namespace ATC
|
||||
|
||||
Reference in New Issue
Block a user