Merge branch 'master' into USER-DPD_kokkos_testing

This commit is contained in:
Stan Moore
2017-07-25 12:12:30 -06:00
480 changed files with 20786 additions and 7755 deletions

112
.github/CONTRIBUTING.md vendored Normal file
View File

@ -0,0 +1,112 @@
# Contributing to LAMMPS via GitHub
Thank your for considering to contribute to the LAMMPS software project.
The following is a set of guidelines as well as explanations of policies and workflows for contributing to the LAMMPS molecular dynamics software project. These guidelines focus on submitting issues or pull requests on the LAMMPS GitHub project.
Thus please also have a look at:
* [The Section on submitting new features for inclusion in LAMMPS of the Manual](http://lammps.sandia.gov/doc/Section_modify.html#mod-15)
* [The LAMMPS GitHub Tutorial in the Manual](http://lammps.sandia.gov/doc/tutorial_github.html)
## Table of Contents
[I don't want to read this whole thing, I just have a question!](#i-dont-want-to-read-this-whole-thing-i-just-have-a-question)
[How Can I Contribute?](#how-can-i-contribute)
* [Discussing How To Use LAMMPS](#discussing-how-to-use-lammps)
* [Reporting Bugs](#reporting-bugs)
* [Suggesting Enhancements](#suggesting-enhancements)
* [Contributing Code](#contributing-code)
[GitHub Workflows](#github-workflows)
* [Issues](#issues)
* [Pull Requests](#pull-requests)
__
## I don't want to read this whole thing I just have a question!
> **Note:** Please do not file an issue to ask a general question about LAMMPS, its features, how to use specific commands, or how perform simulations or analysis in LAMMPS. Instead post your question to the ['lammps-users' mailing list](http://lammps.sandia.gov/mail.html). You do not need to be subscribed to post to the list (but a mailing list subscription avoids having your post delayed until it is approved by a mailing list moderator). Most posts to the mailing list receive a response within less than 24 hours. Before posting to the mailing list, please read the [mailing list guidelines](http://lammps.sandia.gov/guidelines.html). Following those guidelines will help greatly to get a helpful response. Always mention which LAMMPS version you are using.
## How Can I Contribute?
There are several ways how you can actively contribute to the LAMMPS project: you can discuss compiling and using LAMMPS, and solving LAMMPS related problems with other LAMMPS users on the lammps-users mailing list, you can report bugs or suggest enhancements by creating issues on GitHub (or posting them to the lammps-users mailing list), and you can contribute by submitting pull requests on GitHub or e-mail your code
to one of the [LAMMPS core developers](http://lammps.sandia.gov/authors.html). As you may see from the aforementioned developer page, the LAMMPS software package includes the efforts of a very large number of contributors beyond the principal authors and maintainers.
### Discussing How To Use LAMMPS
The LAMMPS mailing list is hosted at SourceForge. The mailing list began in 2005, and now includes tens of thousands of messages in thousands of threads. LAMMPS developers try to respond to posted questions in a timely manner, but there are no guarantees. Please consider that people live in different timezone and may not have time to answer e-mails outside of their work hours.
You can post to list by sending your email to lammps-users at lists.sourceforge.net (no subscription required), but before posting, please read the [mailing list guidelines](http://lammps.sandia.gov/guidelines.html) to maximize your chances to receive a helpful response.
Anyone can browse/search previous questions/answers in the archives. You do not have to subscribe to the list to post questions, receive answers (to your questions), or browse/search the archives. You **do** need to subscribe to the list if you want emails for **all** the posts (as individual messages or in digest form), or to answer questions yourself. Feel free to sign up and help us out! Answering questions from fellow LAMMPS users is a great way to pay back the community for providing you a useful tool for free, and to pass on the advice you have received yourself to others. It improves your karma and helps you understand your own research better.
If you post a message and you are a subscriber, your message will appear immediately. If you are not a subscriber, your message will be moderated, which typically takes one business day. Either way, when someone replies the reply will usually be sent to both, your personal email address and the mailing list. When replying to people, that responded to your post to the list, please always included the mailing list in your replies (i.e. use "Reply All" and **not** "Reply"). Responses will appear on the list in a few minutes, but it can take a few hours for postings and replies to show up in the SourceForge archive. Sending replies also to the mailing list is important, so that responses are archived and people with a similar issue can search for possible solutions in the mailing list archive.
### Reporting Bugs
While developers writing code for LAMMPS are careful to test their code, LAMMPS is such a large and complex software, that it is impossible to test for all combinations of features under all normal and not so normal circumstances. Thus bugs do happen, and if you suspect, that you have encountered one, please try to document it and report it as an [Issue](https://github.com/lammps/lammps/issues) on the LAMMPS GitHub project web page. However, before reporting a bug, you need to check whether this is something that may have already been corrected. The [Latest Features and Bug Fixes in LAMMPS](http://lammps.sandia.gov/bug.html) web page lists all significant changes to LAMMPS over the years. It also tells you what the current latest development version of LAMMPS is, and you should test whether your issue still applies to that version.
When you click on the green "New Issue" button, you will be provided with a text field, where you can enter your message. That text field with contain a template with several headlines and some descriptions. Keep the headlines that are relevant to your reported potential bug and replace the descriptions with the information as suggested by the descriptions.
You can also attach small text files (please add the file name extension `.txt` or it will be rejected), images, or small compressed text files (using gzip, do not use RAR or 7-ZIP or similar tools that are uncommon outside of Windows machines). In many cases, bugs are best illustrated by providing a small input deck (do **not** attach your entire production input, but remove everything that is not required to reproduce the issue, and scale down your system size, that the resulting calculation runs fast and can be run on small desktop quickly).
To be able to submit an issue on GitHub, you have to register for an account (for GitHub in general). If you do not want to do that, or have other reservations against submitting an issue there, you can - as an alternative and in decreasing preference - either send an e-mail to the lammps-users mailing list, the original authors of the feature that you suspect to be affected, or one or more of the core LAMMPS developers.
### Suggesting Enhancements
The LAMMPS developers welcome suggestions for enhancements or new features. These should be submitted using the [GitHub Issue Tracker](https://github.com/lammps/lammps/issues) of the LAMMPS project. This is particularly recommended, when you plan to implement the feature or enhancement yourself, as this allows to coordinate in case there are other similar or conflicting ongoing developments.
The LAMMPS developers will review your submission and consider implementing it. Whether this will actually happen depends on many factors: how difficult it would be, how much effort it would take, how many users would benefit from it, how well the individual developer would understand the underlying physics of the feature, and whether this is a feature that would fit into a software like LAMMPS, or would be better implemented as a separate tool. Because of these factors, it matters how well the suggested enhancement is formulated and the overall benefit is argued convincingly.
To be able to submit an issue on GitHub, you have to register for an account (for GitHub in general). If you do not want to do that, or have other reservations against submitting an issue there, you can - as an alternative - send an e-mail to the lammps-users mailing list.
### Contributing Code
We encourage users to submit new features or modifications for LAMMPS to the core developers so they can be added to the LAMMPS distribution. The preferred way to manage and coordinate this is by submitting a pull request at the LAMMPS project on GitHub. For any larger modifications or programming project, you are encouraged to contact the LAMMPS developers ahead of time, in order to discuss implementation strategies and coding guidelines, that will make it easier to integrate your contribution and result in less work for everybody involved. You are also encouraged to search through the list of open issues on GitHub and submit a new issue for a planned feature, so you would not duplicate the work of others (and possibly get scooped by them) or have your work duplicated by others.
How quickly your contribution will be integrated depends largely on how much effort it will cause to integrate and test it, how much it requires changes to the core code base, and of how much interest it is to the larger LAMMPS community. Please see below for a checklist of typical requirements. Once you have prepared everything, see [this tutorial](http://lammps.sandia.gov/doc/tutorial_github.html)
for instructions on how to submit your changes or new files through a GitHub pull request
Here is a checklist of steps you need to follow to submit a single file or user package for our consideration. Following these steps will save both you and us time. See existing files in packages in the source directory for examples. If you are uncertain, please ask on the lammps-users mailing list.
* All source files you provide must compile with the most current version of LAMMPS with multiple configurations. In particular you need to test compiling LAMMPS from scratch with `-DLAMMPS_BIGBIG` set in addition to the default `-DLAMMPS_SMALLBIG` setting. Your code will need to work correctly in serial and in parallel using MPI.
* For consistency with the rest of LAMMPS and especially, if you want your contribution(s) to be added to main LAMMPS code or one of its standard packages, it needs to be written in a style compatible with other LAMMPS source files. This means: 2-character indentation per level, no tabs, no lines over 80 characters. I/O is done via the C-style stdio library, class header files should not import any system headers outside <stdio.h>, STL containers should be avoided in headers, and forward declarations used where possible or needed. All added code should be placed into the LAMMPS_NS namespace or a sub-namespace; global or static variables should be avoided, as they conflict with the modular nature of LAMMPS and the C++ class structure. Header files must not import namespaces with using. This all is so the developers can more easily understand, integrate, and maintain your contribution and reduce conflicts with other parts of LAMMPS. This basically means that the code accesses data structures, performs its operations, and is formatted similar to other LAMMPS source files, including the use of the error class for error and warning messages.
* If you want your contribution to be added as a user-contributed feature, and it is a single file (actually a `<name>.cpp` and `<name>.h` file) it can be rapidly added to the USER-MISC directory. Include the one-line entry to add to the USER-MISC/README file in that directory, along with the 2 source files. You can do this multiple times if you wish to contribute several individual features.
* If you want your contribution to be added as a user-contribution and it is several related features, it is probably best to make it a user package directory with a name like USER-FOO. In addition to your new files, the directory should contain a README text file. The README should contain your name and contact information and a brief description of what your new package does. If your files depend on other LAMMPS style files also being installed (e.g. because your file is a derived class from the other LAMMPS class), then an Install.sh file is also needed to check for those dependencies. See other README and Install.sh files in other USER directories as examples. Send us a tarball of this USER-FOO directory.
* Your new source files need to have the LAMMPS copyright, GPL notice, and your name and email address at the top, like other user-contributed LAMMPS source files. They need to create a class that is inside the LAMMPS namespace. If the file is for one of the USER packages, including USER-MISC, then we are not as picky about the coding style (see above). I.e. the files do not need to be in the same stylistic format and syntax as other LAMMPS files, though that would be nice for developers as well as users who try to read your code.
* You **must** also create or extend a documentation file for each new command or style you are adding to LAMMPS. For simplicity and convenience, the documentation of groups of closely related commands or styles may be combined into a single file. This will be one file for a single-file feature. For a package, it might be several files. These are simple text files with a specific markup language, that are then auto-converted to HTML and PDF. The tools for this conversion are included in the source distribution, and the translation can be as simple as doing "make html pdf" in the doc folder. Thus the documentation source files must be in the same format and style as other `<name>.txt` files in the lammps/doc/src directory for similar commands and styles; use one or more of them as a starting point. A description of the markup can also be found in `lammps/doc/utils/txt2html/README.html` As appropriate, the text files can include links to equations (see doc/Eqs/*.tex for examples, we auto-create the associated JPG files), or figures (see doc/JPG for examples), or even additional PDF files with further details (see doc/PDF for examples). The doc page should also include literature citations as appropriate; see the bottom of doc/fix_nh.txt for examples and the earlier part of the same file for how to format the cite itself. The "Restrictions" section of the doc page should indicate that your command is only available if LAMMPS is built with the appropriate USER-MISC or USER-FOO package. See other user package doc files for examples of how to do this. The prerequisite for building the HTML format files are Python 3.x and virtualenv, the requirement for generating the PDF format manual is the htmldoc software. Please run at least "make html" and carefully inspect and proofread the resulting HTML format doc page before submitting your code.
* For a new package (or even a single command) you should include one or more example scripts demonstrating its use. These should run in no more than a couple minutes, even on a single processor, and not require large data files as input. See directories under examples/USER for examples of input scripts other users provided for their packages. These example inputs are also required for validating memory accesses and testing for memory leaks with valgrind
* If there is a paper of yours describing your feature (either the algorithm/science behind the feature itself, or its initial usage, or its implementation in LAMMPS), you can add the citation to the *.cpp source file. See src/USER-EFF/atom_vec_electron.cpp for an example. A LaTeX citation is stored in a variable at the top of the file and a single line of code that references the variable is added to the constructor of the class. Whenever a user invokes your feature from their input script, this will cause LAMMPS to output the citation to a log.cite file and prompt the user to examine the file. Note that you should only use this for a paper you or your group authored. E.g. adding a cite in the code for a paper by Nose and Hoover if you write a fix that implements their integrator is not the intended usage. That kind of citation should just be in the doc page you provide.
Finally, as a general rule-of-thumb, the more clear and self-explanatory you make your documentation and README files, and the easier you make it for people to get started, e.g. by providing example scripts, the more likely it is that users will try out your new feature.
If the new features/files are broadly useful we may add them as core files to LAMMPS or as part of a standard package. Else we will add them as a user-contributed file or package. Examples of user packages are in src sub-directories that start with USER. The USER-MISC package is simply a collection of (mostly) unrelated single files, which is the simplest way to have your contribution quickly added to the LAMMPS distribution. You can see a list of the both standard and user packages by typing "make package" in the LAMMPS src directory.
Note that by providing us files to release, you are agreeing to make them open-source, i.e. we can release them under the terms of the GPL, used as a license for the rest of LAMMPS. See Section 1.4 for details.
With user packages and files, all we are really providing (aside from the fame and fortune that accompanies having your name in the source code and on the Authors page of the LAMMPS WWW site), is a means for you to distribute your work to the LAMMPS user community, and a mechanism for others to easily try out your new feature. This may help you find bugs or make contact with new collaborators. Note that you are also implicitly agreeing to support your code which means answer questions, fix bugs, and maintain it if LAMMPS changes in some way that breaks it (an unusual event).
To be able to submit an issue on GitHub, you have to register for an account (for GitHub in general). If you do not want to do that, or have other reservations or difficulties to submit a pull request, you can - as an alternative - contact one or more of the core LAMMPS developers and ask if one of them would be interested in manually merging your code into LAMMPS and send them your source code. Since the effort to merge a pull request is a small fraction of the effort of integrating source code manually (which would usually be done by converting the contribution into a pull request), your chances to have your new code included quickly are the best with a pull request.
If you prefer to submit patches or full files, you should first make certain, that your code works correctly with the latest patch-level version of LAMMPS and contains all bug fixes from it. Then create a gzipped tar file of all changed or added files or a corresponding patch file using 'diff -u' or 'diff -c' and compress it with gzip. Please only use gzip compression, as this works well on all platforms.
## GitHub Workflows
This section briefly summarizes the steps that will happen **after** you have submitted either an issue or a pull request on the LAMMPS GitHub project page.
### Issues
After submitting an issue, one or more of the LAMMPS developers will review it and categorize it by assigning labels. Confirmed bug reports will be labeled `bug`; if the bug report also contains a suggestion for how to fix it, it will be labeled `bugfix`; if the issue is a feature request, it will be labeled `enhancement`. Other labels may be attached as well, depending on which parts of the LAMMPS code are affected. If the assessment is, that the issue does not warrant any changes, the `wontfix` label will be applied and if the submission is incorrect or something that should not be submitted as an issue, the `invalid` label will be applied. In both of the last two cases, the issue will then be closed without further action.
For feature requests, what happens next is that developers may comment on the viability or relevance of the request, discuss and make suggestions for how to implement it. If a LAMMPS developer or user is planning to implement the feature, the issue will be assigned to that developer. For developers, that are not yet listed as LAMMPS project collaborators, they will receive an invitation to be added to the LAMMPS project as a collaborator so they can get assigned. If the requested feature or enhancement is implemented, it will usually be submitted as a pull request, which will contain a reference to the issue number. And once the pull request is reviewed and accepted for inclusion into LAMMPS, the issue will be closed. For details on how pull requests are processed, please see below.
For bug reports, the next step is that one of the core LAMMPS developers will self-assign to the issue and try to confirm the bug. If confirmed, the `bug` label and potentially other labels are added to classify the issue and its impact to LAMMPS. Before confirming, further questions may be asked or requests for providing additional input files or details about the steps required to reproduce the issue. Any bugfix is likely to be submitted as a pull request (more about that below) and since most bugs require only local changes, the bugfix may be included in a pull request specifically set up to collect such local bugfixes or small enhancements. Once the bugfix is included in the master branch, the issue will be closed.
### Pull Requests
For submitting pull requests, there is a [detailed tutorial](http://lammps.sandia.gov/doc/tutorial_github.html) in the LAMMPS manual. Thus only a brief breakdown of the steps is presented here.
Immediately after the submission, the LAMMPS continuing integration server at ci.lammps.org will download your submitted branch and perform a simple compilation test, i.e. will test whether your submitted code can be compiled under various conditions. It will also do a check on whether your included documentation translates cleanly. Whether these tests are successful or fail will be recorded. If a test fails, please inspect the corresponding output on the CI server and take the necessary steps, if needed, so that the code can compile cleanly again. The test will be re-run each the pull request is updated with a push to the remote branch on GitHub.
Next a LAMMPS core developer will self-assign and do an overall technical assessment of the submission. If you are not yet registered as a LAMMPS collaborator, you will receive an invitation for that.
You may also receive comments and suggestions on the overall submission or specific details. If permitted, additional changes may be pushed into your pull request branch or a pull request may be filed in your LAMMPS fork on GitHub to include those changes.
The LAMMPS developer may then decide to assign the pull request to another developer (e.g. when that developer is more knowledgeable about the submitted feature or enhancement or has written the modified code). It may also happen, that additional developers are requested to provide a review and approve the changes. For submissions, that may change the general behavior of LAMMPS, or where a possibility of unwanted side effects exists, additional tests may be requested by the assigned developer.
If the assigned developer is satisfied and considers the submission ready for inclusion into LAMMPS, the pull request will be assigned to the LAMMPS lead developer, Steve Plimpton (@sjplimp), who will then have the final decision on whether the submission will be included, additional changes are required or it will be ultimately rejected. After the pull request is merged, you may delete the pull request branch in your personal LAMMPS fork.
Since the learning curve for git is quite steep for efficiently managing remote repositories, local and remote branches, pull requests and more, do not hesitate to ask questions, if you are not sure about how to do certain steps that are asked of you. Even if the changes asked of you do not make sense to you, they may be important for the LAMMPS developers. Please also note, that these all are guidelines and not set in stone.

31
.github/ISSUE_TEMPLATE.md vendored Normal file
View File

@ -0,0 +1,31 @@
## Summary
_Please provide a brief description of the issue_
## Type of Issue
_Is this a 'Bug Report' or a 'Suggestion for an Enhancement'?_
## Detailed Description (Enhancement Suggestion)
_Explain how you would like to see LAMMPS enhanced, what feature(s) you are looking for, provide references to relevant background information, and whether you are willing to implement the enhancement yourself or would like to participate in the implementation_
## LAMMPS Version (Bug Report)
_Please specify which LAMMPS version this issue was detected with. If this is not the latest development version, please stop and test that version, too, and report it here if the bug persists_
## Expected Behavior (Bug Report)
_Describe the expected behavior. Quote from the LAMMPS manual where needed or explain why the expected behavior is meaningful, especially when it differs from the manual_
## Actual Behavior (Bug Report)
_Describe the actual behavior, how it differs from the expected behavior, and how this can be observed. Try to be specific and do **not* use vague terms like "doesn't work" or "wrong result". Do not assume that the person reading this has any experience with or knowledge of your specific research._
## Steps to Reproduce (Bug Report)
_Describe the steps required to quickly reproduce the issue. You can attach (small) files to the section below or add URLs where to download an archive with all necessary files. Please try to create input that are as small as possible and run as fast as possible. NOTE: the less effort and time it takes to reproduce your issue, the more likely, that somebody will look into it._
## Further Information, Files, and Links
_Put any additional information here, attach relevant text or image files and URLs to external sites, e.g. relevant publications_

29
.github/PULL_REQUEST_TEMPLATE.md vendored Normal file
View File

@ -0,0 +1,29 @@
## Purpose
_Briefly describe the new feature(s), enhancement(s), or bugfix(es) included in this pull request. If this addresses an open GitHub Issue, mention the issue number, e.g. with `fixes #221` or `closes #135`, so that issue will be automatically closed when the pull request is merged_
## Author(s)
_Please state name and affiliation of the author or authors that should be credited with the changes in this pull request_
## Backward Compatibility
_Please state whether any changes in the pull request break backward compatibility for inputs, and - if yes - explain what has been changed and why_
## Implementation Notes
_Provide any relevant details about how the changes are implemented, how correctness was verified, how other features - if any - in LAMMPS are affected_
## Post Submission Checklist
_Please check the fields below as they are completed_
- [ ] The feature or features in this pull request is complete
- [ ] Suitable new documentation files and/or updates to the existing docs are included
- [ ] One or more example input decks are included
- [ ] The source code follows the LAMMPS formatting guidelines
## Further Information, Files, and Links
_Put any additional information here, attach relevant text or image files, and URLs to external sites (e.g. DOIs or webpages)_

View File

@ -3,7 +3,7 @@ GNU GENERAL PUBLIC LICENSE
Version 2, June 1991
Copyright (C) 1989, 1991 Free Software Foundation, Inc.
59 Temple Place - Suite 330, Boston, MA 02111-1307, USA
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA
Everyone is permitted to copy and distribute verbatim copies of this
license document, but changing it is not allowed.

View File

@ -1,55 +1,21 @@
These are input scripts used to run versions of several of the
benchmarks in the top-level bench directory using the GPU and
USER-CUDA accelerator packages. The results of running these scripts
on two different machines (a desktop with 2 Tesla GPUs and the ORNL
Titan supercomputer) are shown on the "GPU (Fermi)" section of the
Benchmark page of the LAMMPS WWW site: lammps.sandia.gov/bench.
benchmarks in the top-level bench directory using the GPU accelerator
package. The results of running these scripts on two different machines
(a desktop with 2 Tesla GPUs and the ORNL Titan supercomputer) are shown
on the "GPU (Fermi)" section of the Benchmark page of the LAMMPS WWW
site: lammps.sandia.gov/bench.
Examples are shown below of how to run these scripts. This assumes
you have built 3 executables with both the GPU and USER-CUDA packages
you have built 3 executables with the GPU package
installed, e.g.
lmp_linux_single
lmp_linux_mixed
lmp_linux_double
The precision (single, mixed, double) refers to the GPU and USER-CUDA
package precision. See the README files in the lib/gpu and lib/cuda
directories for instructions on how to build the packages with
different precisions. The GPU and USER-CUDA sub-sections of the
doc/Section_accelerate.html file also describes this process.
Make.py -d ~/lammps -j 16 -p #all orig -m linux -o cpu -a exe
Make.py -d ~/lammps -j 16 -p #all opt orig -m linux -o opt -a exe
Make.py -d ~/lammps -j 16 -p #all omp orig -m linux -o omp -a exe
Make.py -d ~/lammps -j 16 -p #all gpu orig -m linux \
-gpu mode=double arch=20 -o gpu_double -a libs exe
Make.py -d ~/lammps -j 16 -p #all gpu orig -m linux \
-gpu mode=mixed arch=20 -o gpu_mixed -a libs exe
Make.py -d ~/lammps -j 16 -p #all gpu orig -m linux \
-gpu mode=single arch=20 -o gpu_single -a libs exe
Make.py -d ~/lammps -j 16 -p #all cuda orig -m linux \
-cuda mode=double arch=20 -o cuda_double -a libs exe
Make.py -d ~/lammps -j 16 -p #all cuda orig -m linux \
-cuda mode=mixed arch=20 -o cuda_mixed -a libs exe
Make.py -d ~/lammps -j 16 -p #all cuda orig -m linux \
-cuda mode=single arch=20 -o cuda_single -a libs exe
Make.py -d ~/lammps -j 16 -p #all intel orig -m linux -o intel_cpu -a exe
Make.py -d ~/lammps -j 16 -p #all kokkos orig -m linux -o kokkos_omp -a exe
Make.py -d ~/lammps -j 16 -p #all kokkos orig -kokkos cuda arch=20 \
-m cuda -o kokkos_cuda -a exe
Make.py -d ~/lammps -j 16 -p #all opt omp gpu cuda intel kokkos orig \
-gpu mode=double arch=20 -cuda mode=double arch=20 -m linux \
-o all -a libs exe
Make.py -d ~/lammps -j 16 -p #all opt omp gpu cuda intel kokkos orig \
-kokkos cuda arch=20 -gpu mode=double arch=20 \
-cuda mode=double arch=20 -m cuda -o all_cuda -a libs exe
------------------------------------------------------------------------
To run on just CPUs (without using the GPU or USER-CUDA styles),
To run on just CPUs (without using the GPU styles),
do something like the following:
mpirun -np 1 lmp_linux_double -v x 8 -v y 8 -v z 8 -v t 100 < in.lj
@ -81,23 +47,5 @@ node via a "-ppn" setting.
------------------------------------------------------------------------
To run with the USER-CUDA package, do something like the following:
mpirun -np 1 lmp_linux_single -c on -sf cuda -v x 16 -v y 16 -v z 16 -v t 100 < in.lj
mpirun -np 2 lmp_linux_double -c on -sf cuda -pk cuda 2 -v x 32 -v y 64 -v z 64 -v t 100 < in.eam
The "xyz" settings determine the problem size. The "t" setting
determines the number of timesteps. The "np" setting determines how
many MPI tasks (per node) the problem will run on. The numeric
argument to the "-pk" setting is the number of GPUs (per node); 1 GPU
is the default. Note that the number of MPI tasks must equal the
number of GPUs (both per node) with the USER-CUDA package.
These mpirun commands run on a single node. To run on multiple nodes,
scale up the "-np" setting, and control the number of MPI tasks per
node via a "-ppn" setting.
------------------------------------------------------------------------
If the script has "titan" in its name, it was run on the Titan
supercomputer at ORNL.

View File

@ -71,49 +71,33 @@ integration
----------------------------------------------------------------------
Here is a src/Make.py command which will perform a parallel build of a
LAMMPS executable "lmp_mpi" with all the packages needed by all the
examples. This assumes you have an MPI installed on your machine so
that "mpicxx" can be used as the wrapper compiler. It also assumes
you have an Intel compiler to use as the base compiler. You can leave
off the "-cc mpi wrap=icc" switch if that is not the case. You can
also leave off the "-fft fftw3" switch if you do not have the FFTW
(v3) installed as an FFT package, in which case the default KISS FFT
library will be used.
cd src
Make.py -j 16 -p none molecule manybody kspace granular rigid orig \
-cc mpi wrap=icc -fft fftw3 -a file mpi
----------------------------------------------------------------------
Here is how to run each problem, assuming the LAMMPS executable is
named lmp_mpi, and you are using the mpirun command to launch parallel
runs:
Serial (one processor runs):
lmp_mpi < in.lj
lmp_mpi < in.chain
lmp_mpi < in.eam
lmp_mpi < in.chute
lmp_mpi < in.rhodo
lmp_mpi -in in.lj
lmp_mpi -in in.chain
lmp_mpi -in in.eam
lmp_mpi -in in.chute
lmp_mpi -in in.rhodo
Parallel fixed-size runs (on 8 procs in this case):
mpirun -np 8 lmp_mpi < in.lj
mpirun -np 8 lmp_mpi < in.chain
mpirun -np 8 lmp_mpi < in.eam
mpirun -np 8 lmp_mpi < in.chute
mpirun -np 8 lmp_mpi < in.rhodo
mpirun -np 8 lmp_mpi -in in.lj
mpirun -np 8 lmp_mpi -in in.chain
mpirun -np 8 lmp_mpi -in in.eam
mpirun -np 8 lmp_mpi -in in.chute
mpirun -np 8 lmp_mpi -in in.rhodo
Parallel scaled-size runs (on 16 procs in this case):
mpirun -np 16 lmp_mpi -var x 2 -var y 2 -var z 4 < in.lj
mpirun -np 16 lmp_mpi -var x 2 -var y 2 -var z 4 < in.chain.scaled
mpirun -np 16 lmp_mpi -var x 2 -var y 2 -var z 4 < in.eam
mpirun -np 16 lmp_mpi -var x 4 -var y 4 < in.chute.scaled
mpirun -np 16 lmp_mpi -var x 2 -var y 2 -var z 4 < in.rhodo.scaled
mpirun -np 16 lmp_mpi -var x 2 -var y 2 -var z 4 -in in.lj
mpirun -np 16 lmp_mpi -var x 2 -var y 2 -var z 4 -in in.chain.scaled
mpirun -np 16 lmp_mpi -var x 2 -var y 2 -var z 4 -in in.eam
mpirun -np 16 lmp_mpi -var x 4 -var y 4 -in in.chute.scaled
mpirun -np 16 lmp_mpi -var x 2 -var y 2 -var z 4 -in in.rhodo.scaled
For each of the scaled-size runs you must set 3 variables as -var
command line switches. The variables x,y,z are used in the input

Binary file not shown.

After

Width:  |  Height:  |  Size: 104 KiB

View File

@ -0,0 +1,10 @@
\documentclass[12pt]{article}
\begin{document}
$$
E = \epsilon \left[ \frac{2 \sigma_{LJ}^{12} \left(7 r^5+14 r^3 \sigma_{n}^2+3 r \sigma_{n}^4\right) }{945 \left(r^2-\sigma_{n}^2\right)^7} -\frac{ \sigma_{LJ}^6 \left(2 r \sigma_{n}^3+\sigma_{n}^2 \left(r^2-\sigma_{n}^2\right)\log{ \left[\frac{r-\sigma_{n}}{r+\sigma_{n}}\right]}\right) }{12 \sigma_{n}^5 \left(r^2-\sigma_{n}^2\right)} \right]\qquad \sigma_n < r < r_c
$$
\end{document}

Binary file not shown.

After

Width:  |  Height:  |  Size: 5.9 KiB

View File

@ -1,7 +1,7 @@
<!-- HTML_ONLY -->
<HEAD>
<TITLE>LAMMPS Users Manual</TITLE>
<META NAME="docnumber" CONTENT="23 Jun 2017 version">
<META NAME="docnumber" CONTENT="24 Jul 2017 version">
<META NAME="author" CONTENT="http://lammps.sandia.gov - Sandia National Laboratories">
<META NAME="copyright" CONTENT="Copyright (2003) Sandia Corporation. This software and manual is distributed under the GNU General Public License.">
</HEAD>
@ -21,7 +21,7 @@
<H1></H1>
LAMMPS Documentation :c,h3
23 Jun 2017 version :c,h4
24 Jul 2017 version :c,h4
Version info: :h4
@ -261,7 +261,6 @@ END_RST -->
:link(start_6,Section_start.html#start_6)
:link(start_7,Section_start.html#start_7)
:link(start_8,Section_start.html#start_8)
:link(start_9,Section_start.html#start_9)
:link(cmd_1,Section_commands.html#cmd_1)
:link(cmd_2,Section_commands.html#cmd_2)

View File

@ -56,7 +56,7 @@ timings; you can simply extrapolate from short runs.
For the set of runs, look at the timing data printed to the screen and
log file at the end of each LAMMPS run. "This
section"_Section_start.html#start_8 of the manual has an overview.
section"_Section_start.html#start_7 of the manual has an overview.
Running on one (or a few processors) should give a good estimate of
the serial performance and what portions of the timestep are taking
@ -226,16 +226,16 @@ re-build LAMMPS |
make machine |
prepare and test a regular LAMMPS simulation |
lmp_machine -in in.script; mpirun -np 32 lmp_machine -in in.script |
enable specific accelerator support via '-k on' "command-line switch"_Section_start.html#start_7, |
enable specific accelerator support via '-k on' "command-line switch"_Section_start.html#start_6, |
only needed for KOKKOS package |
set any needed options for the package via "-pk" "command-line switch"_Section_start.html#start_7 or "package"_package.html command, |
set any needed options for the package via "-pk" "command-line switch"_Section_start.html#start_6 or "package"_package.html command, |
only if defaults need to be changed |
use accelerated styles in your input via "-sf" "command-line switch"_Section_start.html#start_7 or "suffix"_suffix.html command | lmp_machine -in in.script -sf gpu
use accelerated styles in your input via "-sf" "command-line switch"_Section_start.html#start_6 or "suffix"_suffix.html command | lmp_machine -in in.script -sf gpu
:tb(c=2,s=|)
Note that the first 4 steps can be done as a single command, using the
src/Make.py tool. This tool is discussed in "Section
2.4"_Section_start.html#start_4 of the manual, and its use is
4"_Section_packages.html of the manual, and its use is
illustrated in the individual accelerator sections. Typically these
steps only need to be done once, to create an executable that uses one
or more accelerator packages.

View File

@ -734,7 +734,9 @@ package"_Section_start.html#start_3.
"smd/wall/surface"_fix_smd_wall_surface.html,
"temp/rescale/eff"_fix_temp_rescale_eff.html,
"ti/spring"_fix_ti_spring.html,
"ttm/mod"_fix_ttm.html :tb(c=6,ea=c)
"ttm/mod"_fix_ttm.html
"wall/ees"_fix_wall_ees.html
"wall/region/ees"_fix_wall_ees.html :tb(c=6,ea=c)
:line
@ -1039,6 +1041,7 @@ package"_Section_start.html#start_3.
"lj/sdk (gko)"_pair_sdk.html,
"lj/sdk/coul/long (go)"_pair_sdk.html,
"lj/sdk/coul/msm (o)"_pair_sdk.html,
"meam/c"_pair_meam.html,
"meam/spline (o)"_pair_meam_spline.html,
"meam/sw/spline"_pair_meam_sw_spline.html,
"mgpt"_pair_mgpt.html,

View File

@ -71,7 +71,7 @@ style", with ... being fix, compute, pair, etc, it means that you
mistyped the style name or that the command is part of an optional
package which was not compiled into your executable. The list of
available styles in your executable can be listed by using "the -h
command-line argument"_Section_start.html#start_7. The installation
command-line argument"_Section_start.html#start_6. The installation
and compilation of optional packages is explained in the "installation
instructions"_Section_start.html#start_3.
@ -4696,9 +4696,9 @@ Self-explanatory. :dd
{Fix bond/create induced too many angles/dihedrals/impropers per atom} :dt
See the read_data command for info on setting the "extra angle per
atom", etc header values to allow for additional angles, etc to be
formed. :dd
See the read_data command for info on using the "extra/angle/per/atom",
(or dihedral, improper) keywords to allow for additional
angles, dihedrals, and impropers to be formed. :dd
{Fix bond/create needs ghost atoms from further away} :dt
@ -7876,18 +7876,20 @@ See the setting for tagint in the src/lmptype.h file. :dd
{New bond exceeded bonds per atom in create_bonds} :dt
See the read_data command for info on setting the "extra bond per
atom" header value to allow for additional bonds to be formed. :dd
See the read_data command for info on using the "extra/bond/per/atom"
keyword to allow for additional bonds to be formed
{New bond exceeded bonds per atom in fix bond/create} :dt
See the read_data command for info on setting the "extra bond per
atom" header value to allow for additional bonds to be formed. :dd
See the read_data command for info on using the "extra/bond/per/atom"
keyword to allow for additional bonds to be formed :dd
{New bond exceeded special list size in fix bond/create} :dt
See the special_bonds extra command for info on how to leave space in
the special bonds list to allow for additional bonds to be formed. :dd
See the "special_bonds extra" command
(or the "read_data extra/special/per/atom" command)
for info on how to leave space in the special bonds
list to allow for additional bonds to be formed. :dd
{Newton bond change after simulation box is defined} :dt
@ -9664,9 +9666,10 @@ you are running. :dd
{Special list size exceeded in fix bond/create} :dt
See the read_data command for info on setting the "extra special per
atom" header value to allow for additional special values to be
stored. :dd
See the special_bonds extra command
(or the read_data extra/special/per/atom command)
for info on how to leave space in the special bonds
list to allow for additional bonds to be formed. :dd
{Specified processors != physical processors} :dt
@ -9683,23 +9686,23 @@ Self-explanatory. :dd
{Subsequent read data induced too many angles per atom} :dt
See the create_box extra/angle/per/atom or read_data "extra angle per
atom" header value to set this limit larger. :dd
See the extra/angle/per/atom keyword for the create_box
or the read_data command to set this limit larger :dd
{Subsequent read data induced too many bonds per atom} :dt
See the create_box extra/bond/per/atom or read_data "extra bond per
atom" header value to set this limit larger. :dd
See the extra/bond/per/atom keyword for the create_box
or the read_data command to set this limit larger :dd
{Subsequent read data induced too many dihedrals per atom} :dt
See the create_box extra/dihedral/per/atom or read_data "extra
dihedral per atom" header value to set this limit larger. :dd
See the extra/dihedral/per/atom keyword for the create_box
or the read_data command to set this limit larger :dd
{Subsequent read data induced too many impropers per atom} :dt
See the create_box extra/improper/per/atom or read_data "extra
improper per atom" header value to set this limit larger. :dd
See the extra/improper/per/atom keyword for the create_box
or the read_data command to set this limit larger :dd
{Substitution for illegal variable} :dt

View File

@ -54,7 +54,7 @@ restart files can be saved to disk using the "restart"_restart.html
command. At a later time, these binary files can be read via a
"read_restart"_read_restart.html command in a new script. Or they can
be converted to text data files using the "-r command-line
switch"_Section_start.html#start_7 and read by a
switch"_Section_start.html#start_6 and read by a
"read_data"_read_data.html command in a new script.
Here we give examples of 2 scripts that read either a binary restart
@ -337,7 +337,7 @@ All of the above examples work whether you are running on 1 or
multiple processors, but assumed you are running LAMMPS on a single
partition of processors. LAMMPS can be run on multiple partitions via
the "-partition" command-line switch as described in "this
section"_Section_start.html#start_7 of the manual.
section"_Section_start.html#start_6 of the manual.
In the last 2 examples, if LAMMPS were run on 3 partitions, the same
scripts could be used if the "index" and "loop" variables were
@ -387,7 +387,7 @@ for more info on packages.
In all these cases, you must run with one or more processors per
replica. The processors assigned to each replica are determined at
run-time by using the "-partition command-line
switch"_Section_start.html#start_7 to launch LAMMPS on multiple
switch"_Section_start.html#start_6 to launch LAMMPS on multiple
partitions, which in this context are the same as replicas. E.g.
these commands:
@ -395,7 +395,7 @@ mpirun -np 16 lmp_linux -partition 8x2 -in in.temper
mpirun -np 8 lmp_linux -partition 8x1 -in in.neb :pre
would each run 8 replicas, on either 16 or 8 processors. Note the use
of the "-in command-line switch"_Section_start.html#start_7 to specify
of the "-in command-line switch"_Section_start.html#start_6 to specify
the input script which is required when running in multi-replica mode.
Also note that with MPI installed on a machine (e.g. your desktop),
@ -1872,7 +1872,7 @@ void lammps_free(void *) :pre
The lammps_open() function is used to initialize LAMMPS, passing in a
list of strings as if they were "command-line
arguments"_Section_start.html#start_7 when LAMMPS is run in
arguments"_Section_start.html#start_6 when LAMMPS is run in
stand-alone mode from the command line, and a MPI communicator for
LAMMPS to run under. It returns a ptr to the LAMMPS object that is
created, and which is used in subsequent library calls. The

View File

@ -121,6 +121,7 @@ Package, Description, Doc page, Example, Library
"USER-INTEL"_#USER-INTEL, optimized Intel CPU and KNL styles,"Section 5.3.2"_accelerate_intel.html, WWW bench, -
"USER-LB"_#USER-LB, Lattice Boltzmann fluid,"fix lb/fluid"_fix_lb_fluid.html, USER/lb, -
"USER-MANIFOLD"_#USER-MANIFOLD, motion on 2d surfaces,"fix manifoldforce"_fix_manifoldforce.html, USER/manifold, -
"USER-MEAMC"_#USER-MEAMC, modified EAM potential (C++), "pair_style meam/c"_pair_meam.html, meam, -
"USER-MGPT"_#USER-MGPT, fast MGPT multi-ion potentials, "pair_style mgpt"_pair_mgpt.html, USER/mgpt, -
"USER-MISC"_#USER-MISC, single-file contributions, USER-MISC/README, USER/misc, -
"USER-MOLFILE"_#USER-MOLFILE, "VMD"_vmd_home molfile plug-ins,"dump molfile"_dump_molfile.html, -, ext
@ -368,7 +369,7 @@ suffix in their style name. "Section 5.3.1"_accelerate_gpu.html gives
details of what hardware and Cuda software is required on your system,
and details on how to build and use this package. Its styles can be
invoked at run time via the "-sf gpu" or "-suffix gpu" "command-line
switches"_Section_start.html#start_7. See also the "KOKKOS"_#KOKKOS
switches"_Section_start.html#start_6. See also the "KOKKOS"_#KOKKOS
package, which has GPU-enabled styles.
[Authors:] Mike Brown (Intel) while at Sandia and ORNL and Trung Nguyen
@ -426,8 +427,8 @@ src/GPU/README
lib/gpu/README
"Section 5.3"_Section_accelerate.html#acc_3
"Section 5.3.1"_accelerate_gpu.html
"Section 2.7 -sf gpu"_Section_start.html#start_7
"Section 2.7 -pk gpu"_Section_start.html#start_7
"Section 2.6 -sf gpu"_Section_start.html#start_6
"Section 2.6 -pk gpu"_Section_start.html#start_6
"package gpu"_package.html
Pair Styles section of "Section 3.5"_Section_commands.html#cmd_5 for pair styles followed by (g)
"Benchmarks page"_http://lammps.sandia.gov/bench.html of web site :ul
@ -528,7 +529,7 @@ style name. "Section 5.3.3"_accelerate_kokkos.html gives details of
what hardware and software is required on your system, and how to
build and use this package. Its styles can be invoked at run time via
the "-sf kk" or "-suffix kk" "command-line
switches"_Section_start.html#start_7. Also see the "GPU"_#GPU,
switches"_Section_start.html#start_6. Also see the "GPU"_#GPU,
"OPT"_#OPT, "USER-INTEL"_#USER-INTEL, and "USER-OMP"_#USER-OMP
packages, which have styles optimized for CPUs, KNLs, and GPUs.
@ -596,9 +597,9 @@ src/KOKKOS/README
lib/kokkos/README
"Section 5.3"_Section_accelerate.html#acc_3
"Section 5.3.3"_accelerate_kokkos.html
"Section 2.7 -k on ..."_Section_start.html#start_7
"Section 2.7 -sf kk"_Section_start.html#start_7
"Section 2.7 -pk kokkos"_Section_start.html#start_7
"Section 2.6 -k on ..."_Section_start.html#start_6
"Section 2.6 -sf kk"_Section_start.html#start_6
"Section 2.6 -pk kokkos"_Section_start.html#start_6
"package kokkos"_package.html
Styles sections of "Section 3.5"_Section_commands.html#cmd_5 for styles followed by (k)
"Benchmarks page"_http://lammps.sandia.gov/bench.html of web site :ul
@ -925,7 +926,7 @@ CHARMM, and Morse potentials. The styles have an "opt" suffix in
their style name. "Section 5.3.5"_accelerate_opt.html gives details
of how to build and use this package. Its styles can be invoked at
run time via the "-sf opt" or "-suffix opt" "command-line
switches"_Section_start.html#start_7. See also the "KOKKOS"_#KOKKOS,
switches"_Section_start.html#start_6. See also the "KOKKOS"_#KOKKOS,
"USER-INTEL"_#USER-INTEL, and "USER-OMP"_#USER-OMP packages, which
have styles optimized for CPU performance.
@ -952,7 +953,7 @@ CCFLAGS: add -restrict :ul
src/OPT: filenames -> commands
"Section 5.3"_Section_accelerate.html#acc_3
"Section 5.3.5"_accelerate_opt.html
"Section 2.7 -sf opt"_Section_start.html#start_7
"Section 2.6 -sf opt"_Section_start.html#start_6
Pair Styles section of "Section 3.5"_Section_commands.html#cmd_5 for pair styles followed by (t)
"Benchmarks page"_http://lammps.sandia.gov/bench.html of web site :ul
@ -1862,7 +1863,7 @@ All of them have an "intel" in their style name. "Section
5.3.2"_accelerate_intel.html gives details of what hardware and
compilers are required on your system, and how to build and use this
package. Its styles can be invoked at run time via the "-sf intel" or
"-suffix intel" "command-line switches"_Section_start.html#start_7.
"-suffix intel" "command-line switches"_Section_start.html#start_6.
Also see the "KOKKOS"_#KOKKOS, "OPT"_#OPT, and "USER-OMP"_#USER-OMP
packages, which have styles optimized for CPUs and KNLs.
@ -1918,8 +1919,8 @@ src/USER-INTEL: filenames -> commands
src/USER-INTEL/README
"Section 5.3"_Section_accelerate.html#acc_3
"Section 5.3.2"_accelerate_gpu.html
"Section 2.7 -sf intel"_Section_start.html#start_7
"Section 2.7 -pk intel"_Section_start.html#start_7
"Section 2.6 -sf intel"_Section_start.html#start_6
"Section 2.6 -pk intel"_Section_start.html#start_6
"package intel"_package.html
Styles sections of "Section 3.5"_Section_commands.html#cmd_5 for styles followed by (i)
src/USER-INTEL/TEST
@ -2051,6 +2052,37 @@ http://lammps.sandia.gov/movies.html#manifold :ul
:line
USER-MEAMC package :link(USER-MEAMC),h4
[Contents:]
A pair style for the modified embedded atom (MEAM) potential
translated from the Fortran version in the "MEAM"_MEAM package
to plain C++. In contrast to the MEAM package, no library
needs to be compiled and the pair style can be instantiated
multiple times.
[Author:] Sebastian Huetter, (Otto-von-Guericke University Magdeburg)
based on the Fortran version of Greg Wagner (Northwestern U) while at
Sandia.
[Install or un-install:]
make yes-user-meamc
make machine :pre
make no-user-meamc
make machine :pre
[Supporting info:]
src/USER-MEAMC: filenames -> commands
src/USER-MEAMC/README
"pair meam/c"_pair_meam.html
examples/meam :ul
:line
USER-MOLFILE package :link(USER-MOLFILE),h4
[Contents:]
@ -2161,7 +2193,7 @@ via OpenMP directives. All of them have an "omp" in their style name.
"Section 5.3.4"_accelerate_omp.html gives details of what hardware and
compilers are required on your system, and how to build and use this
package. Its styles can be invoked at run time via the "-sf omp" or
"-suffix omp" "command-line switches"_Section_start.html#start_7.
"-suffix omp" "command-line switches"_Section_start.html#start_6.
Also see the "KOKKOS"_#KOKKOS, "OPT"_#OPT, and
"USER-INTEL"_#USER-INTEL packages, which have styles optimized for
CPUs.
@ -2194,8 +2226,8 @@ src/USER-OMP: filenames -> commands
src/USER-OMP/README
"Section 5.3"_Section_accelerate.html#acc_3
"Section 5.3.4"_accelerate_omp.html
"Section 2.7 -sf omp"_Section_start.html#start_7
"Section 2.7 -pk omp"_Section_start.html#start_7
"Section 2.6 -sf omp"_Section_start.html#start_6
"Section 2.6 -pk omp"_Section_start.html#start_6
"package omp"_package.html
Styles sections of "Section 3.5"_Section_commands.html#cmd_5 for styles followed by (o)
"Benchmarks page"_http://lammps.sandia.gov/bench.html of web site :ul

View File

@ -198,7 +198,7 @@ file and the shared library.
11.3 Building LAMMPS as a shared library :link(py_3),h4
Instructions on how to build LAMMPS as a shared library are given in
"Section 2.5"_Section_start.html#start_5. A shared library is one
"Section 2.4"_Section_start.html#start_4. A shared library is one
that is dynamically loadable, which is what Python requires to wrap
LAMMPS. On Linux this is a library file that ends in ".so", not ".a".
@ -217,7 +217,7 @@ NOTE: If you are building LAMMPS with an MPI or FFT library or other
auxiliary libraries (used by various packages), then all of these
extra libraries must also be shared libraries. If the LAMMPS
shared-library build fails with an error complaining about this, see
"Section 2.5"_Section_start.html#start_5 for more details.
"Section 2.4"_Section_start.html#start_4 for more details.
:line
@ -439,7 +439,7 @@ first importing from the lammps.py file:
>>> CDLL("liblammps.so") :pre
If an error occurs, carefully go thru the steps in "Section
2.5"_Section_start.html#start_5 and above about building a shared
2.4"_Section_start.html#start_4 and above about building a shared
library and about insuring Python can find the necessary two files
it needs.

View File

@ -14,11 +14,11 @@ experienced users.
2.1 "What's in the LAMMPS distribution"_#start_1
2.2 "Making LAMMPS"_#start_2
2.3 "Making LAMMPS with optional packages"_#start_3
2.5 "Building LAMMPS as a library"_#start_4
2.6 "Running LAMMPS"_#start_5
2.7 "Command-line options"_#start_6
2.8 "Screen output"_#start_7
2.9 "Tips for users of previous versions"_#start_8 :all(b)
2.4 "Building LAMMPS as a library"_#start_4
2.5 "Running LAMMPS"_#start_5
2.6 "Command-line options"_#start_6
2.7 "Screen output"_#start_7
2.8 "Tips for users of previous versions"_#start_8 :all(b)
:line
@ -434,20 +434,39 @@ files. Note that on some large parallel machines which use "modules"
for their compile/link environements, you may simply need to include
the correct module in your build environment. Or the parallel machine
may have a vendor-provided FFT library which the compiler has no
trouble finding.
trouble finding. See the src/MAKE/OPTIONS/Makefile.fftw file for an
example of how to specify these variables to use the FFTW3 library.
FFTW is a fast, portable library that should also work on any
platform. You can download it from
FFTW is fast, portable library that should also work on any platform
and typically be faster than KISS FFT. You can download it from
"www.fftw.org"_http://www.fftw.org. Both the legacy version 2.1.X and
the newer 3.X versions are supported as -DFFT_FFTW2 or -DFFT_FFTW3.
Building FFTW for your box should be as simple as ./configure; make.
Note that on some platforms FFTW2 has been pre-installed, and uses
renamed files indicating the precision it was compiled with,
e.g. sfftw.h, or dfftw.h instead of fftw.h. In this case, you can
specify an additional define variable for FFT_INC called -DFFTW_SIZE,
which will select the correct include file. In this case, for FFT_LIB
you must also manually specify the correct library, namely -lsfftw or
-ldfftw.
Building FFTW for your box should be as simple as ./configure; make;
make install. The install command typically requires root privileges
(e.g. invoke it via sudo), unless you specify a local directory with
the "--prefix" option of configure. Type "./configure --help" to see
various options.
If you wish to have FFTW support for single-precision FFTs (see below
about -DFFT_SINGLE) in addition to the default double-precision FFTs,
you will need to build FFTW a second time for single-precision. For
FFTW3, do this via:
make clean
./configure --enable-single; make; make install :pre
which should produce the additional library libfftw3f.a.
For FFTW2, do this:
make clean
./configure --enable-float --enable-type-prefix; make; make install :pre
which should produce the additional library libsfftw.a and additional
include file sfttw.a. Note that on some platforms FFTW2 has been
pre-installed for both single- and double-precision, and may already
have these files as well as libdfftw.a and dfftw.h for double
precision.
The FFT_INC variable also allows for a -DFFT_SINGLE setting that will
use single-precision FFTs with PPPM, which can speed-up long-range
@ -459,6 +478,16 @@ accuracy for reduced memory use and parallel communication costs for
transposing 3d FFT data. Note that single precision FFTs have only
been tested with the FFTW3, FFTW2, MKL, and KISS FFT options.
When using -DFFT_SINGLE with FFTW3 or FFTW2, you need to build FFTW
with support for single-precision, as explained above. For FFTW3 you
also need to include -lfftw3f with the FFT_LIB setting, in addition to
-lfftw3. For FFTW2, you also need to specify -DFFT_SIZE with the
FFT_INC setting and -lsfftw with the FFT_LIB setting (in place of
-lfftw). Similarly, if FFTW2 has been preinstalled with an explicit
double-precision library (libdfftw.a and not the default libfftw.a),
then you can specify -DFFT_SIZE (and not -DFFT_SINGLE), and specify
-ldfftw to use double-precision FFTs.
Step 7 :h6
The 3 JPG variables allow you to specify a JPEG and/or PNG library
@ -685,7 +714,7 @@ type
lmp_machine -h :pre
to run your executable with the optional "-h command-line
switch"_#start_7 for "help", which will list the styles and commands
switch"_#start_6 for "help", which will list the styles and commands
known to your executable, and immediately exit.
:line

View File

@ -54,7 +54,7 @@ specify the # of GPUs per node
use GPU styles in your input script :ul
The latter two steps can be done using the "-pk gpu" and "-sf gpu"
"command-line switches"_Section_start.html#start_7 respectively. Or
"command-line switches"_Section_start.html#start_6 respectively. Or
the effect of the "-pk" or "-sf" switches can be duplicated by adding
the "package gpu"_package.html or "suffix gpu"_suffix.html commands
respectively to your input script.
@ -75,7 +75,7 @@ This requires two steps (a,b): build the GPU library, then build
LAMMPS with the GPU package.
You can do both these steps in one line, using the src/Make.py script,
described in "Section 2.4"_Section_start.html#start_4 of the manual.
described in "Section 4"_Section_packages.html of the manual.
Type "Make.py -h" for help. If run from the src directory, this
command will create src/lmp_gpu using src/MAKE/Makefile.mpi as the
starting Makefile.machine:
@ -151,9 +151,9 @@ automatically if you create more MPI tasks/node than there are
GPUs/mode. E.g. with 8 MPI tasks/node and 2 GPUs, each GPU will be
shared by 4 MPI tasks.
Use the "-sf gpu" "command-line switch"_Section_start.html#start_7,
Use the "-sf gpu" "command-line switch"_Section_start.html#start_6,
which will automatically append "gpu" to styles that support it. Use
the "-pk gpu Ng" "command-line switch"_Section_start.html#start_7 to
the "-pk gpu Ng" "command-line switch"_Section_start.html#start_6 to
set Ng = # of GPUs/node to use.
lmp_machine -sf gpu -pk gpu 1 -in in.script # 1 MPI task uses 1 GPU
@ -188,7 +188,7 @@ pair_style lj/cut/gpu 2.5 :pre
You must also use the "package gpu"_package.html command to enable the
GPU package, unless the "-sf gpu" or "-pk gpu" "command-line
switches"_Section_start.html#start_7 were used. It specifies the
switches"_Section_start.html#start_6 were used. It specifies the
number of GPUs/node to use, as well as other options.
[Speed-ups to expect:]

View File

@ -106,6 +106,8 @@ $t should be 2 for Intel Xeon CPUs and 2 or 4 for Intel Xeon Phi :l
For some of the simple 2-body potentials without long-range
electrostatics, performance and scalability can be better with
the "newton off" setting added to the input script :l
For simulations on higher node counts, add "processors * * * grid
numa" to the beginning of the input script for better scalability :l
If using {kspace_style pppm} in the input script, add
"kspace_modify diff ad" for better performance :l
:ule
@ -224,7 +226,7 @@ source /opt/intel/parallel_studio_xe_2016.3.067/psxevars.sh
make intel_cpu_intelmpi :pre
Alternatively, the build can be accomplished with the src/Make.py
script, described in "Section 2.4"_Section_start.html#start_4 of the
script, described in "Section 4"_Section_packages.html of the
manual. Type "Make.py -h" for help. For an example:
Make.py -v -p intel omp -intel cpu -a file intel_cpu_intelmpi :pre
@ -299,7 +301,7 @@ Hyper-Threading technology disabled.
To enable USER-INTEL optimizations for all available styles used in
the input script, the "-sf intel"
"command-line switch"_Section_start.html#start_7 can be used without
"command-line switch"_Section_start.html#start_6 can be used without
any requirement for editing the input script. This switch will
automatically append "intel" to styles that support it. It also
invokes a default command: "package intel 1"_package.html. This
@ -312,7 +314,7 @@ support, that 1 coprocessor per node will be used with automatic
balancing of work between the CPU and the coprocessor.
You can specify different options for the USER-INTEL package by using
the "-pk intel Nphi" "command-line switch"_Section_start.html#start_7
the "-pk intel Nphi" "command-line switch"_Section_start.html#start_6
with keyword/value pairs as specified in the documentation. Here,
Nphi = # of Xeon Phi coprocessors/node (ignored without offload
support). Common options to the USER-INTEL package include {omp} to
@ -385,13 +387,17 @@ can performed automatically by using "-sf hybrid intel opt" or
and "omp" suffixes can be appended manually in the input script. For
the latter, the "package omp"_package.html command must be in the
input script or the "-pk omp Nt" "command-line
switch"_Section_start.html#start_7 must be used where Nt is the
switch"_Section_start.html#start_6 must be used where Nt is the
number of OpenMP threads. The number of OpenMP threads should not be
set differently for the different packages. Note that the "suffix
hybrid intel omp"_suffix.html command can also be used within the
input script to automatically append the "omp" suffix to styles when
USER-INTEL styles are not available.
NOTE: For simulations on higher node counts, add "processors * * *
grid numa"_processors.html" to the beginning of the input script for
better scalability.
When running on many nodes, performance might be better when using
fewer OpenMP threads and more MPI tasks. This will depend on the
simulation and the machine. Using the "verlet/split"_run_style.html
@ -480,7 +486,7 @@ sorting"_atom_modify.html is changed to 1 so that the per-atom data is
effectively sorted at every rebuild of the neighbor lists. All the
available coprocessor threads on each Phi will be divided among MPI
tasks, unless the {tptask} option of the "-pk intel" "command-line
switch"_Section_start.html#start_7 is used to limit the coprocessor
switch"_Section_start.html#start_6 is used to limit the coprocessor
threads per MPI task.
[Restrictions:]

View File

@ -136,7 +136,7 @@ You must choose at build time whether to build for CPUs (OpenMP),
GPUs, or Phi.
You can do any of these in one line, using the src/Make.py script,
described in "Section 2.4"_Section_start.html#start_4 of the manual.
described in "Section 4"_Section_packages.html of the manual.
Type "Make.py -h" for help. If run from the src directory, these
commands will create src/lmp_kokkos_omp, lmp_kokkos_cuda, and
lmp_kokkos_phi. Note that the OMP and PHI options use
@ -144,7 +144,7 @@ src/MAKE/Makefile.mpi as the starting Makefile.machine. The CUDA
option uses src/MAKE/OPTIONS/Makefile.kokkos_cuda.
The latter two steps can be done using the "-k on", "-pk kokkos" and
"-sf kk" "command-line switches"_Section_start.html#start_7
"-sf kk" "command-line switches"_Section_start.html#start_6
respectively. Or the effect of the "-pk" or "-sf" switches can be
duplicated by adding the "package kokkos"_package.html or "suffix
kk"_suffix.html commands respectively to your input script.
@ -280,10 +280,10 @@ specify how many Phi coprocessors there are per node; each
coprocessors is simply treated as running some number of MPI tasks.
You must use the "-k on" "command-line
switch"_Section_start.html#start_7 to enable the KOKKOS package. It
switch"_Section_start.html#start_6 to enable the KOKKOS package. It
takes additional arguments for hardware settings appropriate to your
system. Those arguments are "documented
here"_Section_start.html#start_7. The two most commonly used
here"_Section_start.html#start_6. The two most commonly used
options are:
-k on t Nt g Ng :pre
@ -304,12 +304,12 @@ The "-k on" switch also issues a "package kokkos" command (with no
additional arguments) which sets various KOKKOS options to default
values, as discussed on the "package"_package.html command doc page.
Use the "-sf kk" "command-line switch"_Section_start.html#start_7,
Use the "-sf kk" "command-line switch"_Section_start.html#start_6,
which will automatically append "kk" to styles that support it. Use
the "-pk kokkos" "command-line switch"_Section_start.html#start_7 if
the "-pk kokkos" "command-line switch"_Section_start.html#start_6 if
you wish to change any of the default "package kokkos"_package.html
optionns set by the "-k on" "command-line
switch"_Section_start.html#start_7.
switch"_Section_start.html#start_6.
@ -323,7 +323,7 @@ However, when running in MPI-only mode with 1 thread per MPI task, it
will typically be faster to use "half" neighbor lists and set the
Newton flag to "on", just as is the case for non-accelerated pair
styles. You can do this with the "-pk" "command-line
switch"_Section_start.html#start_7.
switch"_Section_start.html#start_6.
[Or run with the KOKKOS package by editing an input script:]
@ -332,7 +332,7 @@ appropriate thread and GPU values for host=OMP or host=MIC or
device=CUDA are the same.
You must still use the "-k on" "command-line
switch"_Section_start.html#start_7 to enable the KOKKOS package, and
switch"_Section_start.html#start_6 to enable the KOKKOS package, and
specify its additional arguments for hardware options appropriate to
your system, as documented above.
@ -343,7 +343,7 @@ pair_style lj/cut/kk 2.5 :pre
You only need to use the "package kokkos"_package.html command if you
wish to change any of its option defaults, as set by the "-k on"
"command-line switch"_Section_start.html#start_7.
"command-line switch"_Section_start.html#start_6.
[Speed-ups to expect:]
@ -389,7 +389,7 @@ If N is the number of physical cores/node, then the number of MPI
tasks/node * number of threads/task should not exceed N, and should
typically equal N. Note that the default threads/task is 1, as set by
the "t" keyword of the "-k" "command-line
switch"_Section_start.html#start_7. If you do not change this, no
switch"_Section_start.html#start_6. If you do not change this, no
additional parallelism (beyond MPI) will be invoked on the host
CPU(s).
@ -429,7 +429,7 @@ details).
The -np setting of the mpirun command should set the number of MPI
tasks/node to be equal to the # of physical GPUs on the node.
Use the "-k" "command-line switch"_Section_commands.html#start_7 to
Use the "-k" "command-line switch"_Section_commands.html#start_6 to
specify the number of GPUs per node, and the number of threads per MPI
task. As above for multi-core CPUs (and no GPU), if N is the number
of physical cores/node, then the number of MPI tasks/node * number of

View File

@ -41,7 +41,7 @@ each MPI task running on a CPU.
The lines above illustrate how to include/build with the USER-OMP
package in two steps, using the "make" command. Or how to do it with
one command via the src/Make.py script, described in "Section
2.4"_Section_start.html#start_4 of the manual. Type "Make.py -h" for
4"_Section_packages.html of the manual. Type "Make.py -h" for
help.
Note that the CCFLAGS and LINKFLAGS settings in Makefile.machine must
@ -62,14 +62,14 @@ threads/task should not exceed the physical number of cores (on a
node), otherwise performance will suffer.
As in the lines above, use the "-sf omp" "command-line
switch"_Section_start.html#start_7, which will automatically append
switch"_Section_start.html#start_6, which will automatically append
"omp" to styles that support it. The "-sf omp" switch also issues a
default "package omp 0"_package.html command, which will set the
number of threads per MPI task via the OMP_NUM_THREADS environment
variable.
You can also use the "-pk omp Nt" "command-line
switch"_Section_start.html#start_7, to explicitly set Nt = # of OpenMP
switch"_Section_start.html#start_6, to explicitly set Nt = # of OpenMP
threads per MPI task to use, as well as additional options. Its
syntax is the same as the "package omp"_package.html command whose doc
page gives details, including the default values used if it is not

View File

@ -36,7 +36,7 @@ None.
The lines above illustrate how to build LAMMPS with the OPT package in
two steps, using the "make" command. Or how to do it with one command
via the src/Make.py script, described in "Section
2.4"_Section_start.html#start_4 of the manual. Type "Make.py -h" for
4"_Section_packages.html of the manual. Type "Make.py -h" for
help.
Note that if you use an Intel compiler to build with the OPT package,
@ -46,7 +46,7 @@ The Make.py command will add this automatically.
[Run with the OPT package from the command line:]
As in the lines above, use the "-sf opt" "command-line
switch"_Section_start.html#start_7, which will automatically append
switch"_Section_start.html#start_6, which will automatically append
"opt" to styles that support it.
[Or run with the OPT package by editing an input script:]

View File

@ -63,7 +63,7 @@ LAMMPS"_Section_start.html#start_3 section for more info.
You can specify the accelerated styles explicitly in your input script
by including their suffix, or you can use the "-suffix command-line
switch"_Section_start.html#start_7 when you invoke LAMMPS, or you can
switch"_Section_start.html#start_6 when you invoke LAMMPS, or you can
use the "suffix"_suffix.html command in your input script.
See "Section 5"_Section_accelerate.html of the manual for

View File

@ -94,7 +94,7 @@ LAMMPS"_Section_start.html#start_3 section for more info.
You can specify the accelerated styles explicitly in your input script
by including their suffix, or you can use the "-suffix command-line
switch"_Section_start.html#start_7 when you invoke LAMMPS, or you can
switch"_Section_start.html#start_6 when you invoke LAMMPS, or you can
use the "suffix"_suffix.html command in your input script.
See "Section 5"_Section_accelerate.html of the manual for

View File

@ -50,7 +50,7 @@ LAMMPS"_Section_start.html#start_3 section for more info.
You can specify the accelerated styles explicitly in your input script
by including their suffix, or you can use the "-suffix command-line
switch"_Section_start.html#start_7 when you invoke LAMMPS, or you can
switch"_Section_start.html#start_6 when you invoke LAMMPS, or you can
use the "suffix"_suffix.html command in your input script.
See "Section 5"_Section_accelerate.html of the manual for

View File

@ -55,7 +55,7 @@ LAMMPS"_Section_start.html#start_3 section for more info.
You can specify the accelerated styles explicitly in your input script
by including their suffix, or you can use the "-suffix command-line
switch"_Section_start.html#start_7 when you invoke LAMMPS, or you can
switch"_Section_start.html#start_6 when you invoke LAMMPS, or you can
use the "suffix"_suffix.html command in your input script.
See "Section 5"_Section_accelerate.html of the manual for

View File

@ -63,7 +63,7 @@ LAMMPS"_Section_start.html#start_3 section for more info.
You can specify the accelerated styles explicitly in your input script
by including their suffix, or you can use the "-suffix command-line
switch"_Section_start.html#start_7 when you invoke LAMMPS, or you can
switch"_Section_start.html#start_6 when you invoke LAMMPS, or you can
use the "suffix"_suffix.html command in your input script.
See "Section 5"_Section_accelerate.html of the manual for

View File

@ -53,7 +53,7 @@ LAMMPS"_Section_start.html#start_3 section for more info.
You can specify the accelerated styles explicitly in your input script
by including their suffix, or you can use the "-suffix command-line
switch"_Section_start.html#start_7 when you invoke LAMMPS, or you can
switch"_Section_start.html#start_6 when you invoke LAMMPS, or you can
use the "suffix"_suffix.html command in your input script.
See "Section 5"_Section_accelerate.html of the manual for

View File

@ -65,7 +65,7 @@ LAMMPS"_Section_start.html#start_3 section for more info.
You can specify the accelerated styles explicitly in your input script
by including their suffix, or you can use the "-suffix command-line
switch"_Section_start.html#start_7 when you invoke LAMMPS, or you can
switch"_Section_start.html#start_6 when you invoke LAMMPS, or you can
use the "suffix"_suffix.html command in your input script.
See "Section 5"_Section_accelerate.html of the manual for

View File

@ -55,7 +55,7 @@ LAMMPS"_Section_start.html#start_3 section for more info.
You can specify the accelerated styles explicitly in your input script
by including their suffix, or you can use the "-suffix command-line
switch"_Section_start.html#start_7 when you invoke LAMMPS, or you can
switch"_Section_start.html#start_6 when you invoke LAMMPS, or you can
use the "suffix"_suffix.html command in your input script.
See "Section 5"_Section_accelerate.html of the manual for

View File

@ -51,7 +51,7 @@ LAMMPS"_Section_start.html#start_3 section for more info.
You can specify the accelerated styles explicitly in your input script
by including their suffix, or you can use the "-suffix command-line
switch"_Section_start.html#start_7 when you invoke LAMMPS, or you can
switch"_Section_start.html#start_6 when you invoke LAMMPS, or you can
use the "suffix"_suffix.html command in your input script.
See "Section 5"_Section_accelerate.html of the manual for

View File

@ -50,7 +50,7 @@ LAMMPS"_Section_start.html#start_3 section for more info.
You can specify the accelerated styles explicitly in your input script
by including their suffix, or you can use the "-suffix command-line
switch"_Section_start.html#start_7 when you invoke LAMMPS, or you can
switch"_Section_start.html#start_6 when you invoke LAMMPS, or you can
use the "suffix"_suffix.html command in your input script.
See "Section 5"_Section_accelerate.html of the manual for

View File

@ -57,7 +57,7 @@ LAMMPS"_Section_start.html#start_3 section for more info.
You can specify the accelerated styles explicitly in your input script
by including their suffix, or you can use the "-suffix command-line
switch"_Section_start.html#start_7 when you invoke LAMMPS, or you can
switch"_Section_start.html#start_6 when you invoke LAMMPS, or you can
use the "suffix"_suffix.html command in your input script.
See "Section 5"_Section_accelerate.html of the manual for

View File

@ -57,7 +57,7 @@ LAMMPS"_Section_start.html#start_3 section for more info.
You can specify the accelerated styles explicitly in your input script
by including their suffix, or you can use the "-suffix command-line
switch"_Section_start.html#start_7 when you invoke LAMMPS, or you can
switch"_Section_start.html#start_6 when you invoke LAMMPS, or you can
use the "suffix"_suffix.html command in your input script.
See "Section 5"_Section_accelerate.html of the manual for

View File

@ -136,7 +136,7 @@ LAMMPS"_Section_start.html#start_3 section for more info.
You can specify the accelerated styles explicitly in your input script
by including their suffix, or you can use the "-suffix command-line
switch"_Section_start.html#start_7 when you invoke LAMMPS, or you can
switch"_Section_start.html#start_6 when you invoke LAMMPS, or you can
use the "suffix"_suffix.html command in your input script.
See "Section 5"_Section_accelerate.html of the manual for

View File

@ -394,7 +394,7 @@ weights. It assigns the same weight to each particle owned by a
processor based on the total computational time spent by that
processor. See details below on what time window is used. It uses
the same timing information as is used for the "MPI task timing
breakdown"_Section_start.html#start_8, namely, for sections {Pair},
breakdown"_Section_start.html#start_7, namely, for sections {Pair},
{Bond}, {Kspace}, and {Neigh}. The time spent in those portions of
the timestep are measured for each MPI rank, summed, then divided by
the number of particles owned by that processor. I.e. the weight is

View File

@ -56,7 +56,7 @@ LAMMPS"_Section_start.html#start_3 section for more info.
You can specify the accelerated styles explicitly in your input script
by including their suffix, or you can use the "-suffix command-line
switch"_Section_start.html#start_7 when you invoke LAMMPS, or you can
switch"_Section_start.html#start_6 when you invoke LAMMPS, or you can
use the "suffix"_suffix.html command in your input script.
See "Section 5"_Section_accelerate.html of the manual for

View File

@ -59,7 +59,7 @@ LAMMPS"_Section_start.html#start_3 section for more info.
You can specify the accelerated styles explicitly in your input script
by including their suffix, or you can use the "-suffix command-line
switch"_Section_start.html#start_7 when you invoke LAMMPS, or you can
switch"_Section_start.html#start_6 when you invoke LAMMPS, or you can
use the "suffix"_suffix.html command in your input script.
See "Section 5"_Section_accelerate.html of the manual for

View File

@ -62,7 +62,7 @@ LAMMPS"_Section_start.html#start_3 section for more info.
You can specify the accelerated styles explicitly in your input script
by including their suffix, or you can use the "-suffix command-line
switch"_Section_start.html#start_7 when you invoke LAMMPS, or you can
switch"_Section_start.html#start_6 when you invoke LAMMPS, or you can
use the "suffix"_suffix.html command in your input script.
See "Section 5"_Section_accelerate.html of the manual for

View File

@ -54,7 +54,7 @@ LAMMPS"_Section_start.html#start_3 section for more info.
You can specify the accelerated styles explicitly in your input script
by including their suffix, or you can use the "-suffix command-line
switch"_Section_start.html#start_7 when you invoke LAMMPS, or you can
switch"_Section_start.html#start_6 when you invoke LAMMPS, or you can
use the "suffix"_suffix.html command in your input script.
See "Section 5"_Section_accelerate.html of the manual for

View File

@ -55,7 +55,7 @@ LAMMPS"_Section_start.html#start_3 section for more info.
You can specify the accelerated styles explicitly in your input script
by including their suffix, or you can use the "-suffix command-line
switch"_Section_start.html#start_7 when you invoke LAMMPS, or you can
switch"_Section_start.html#start_6 when you invoke LAMMPS, or you can
use the "suffix"_suffix.html command in your input script.
See "Section 5"_Section_accelerate.html of the manual for

View File

@ -55,7 +55,7 @@ LAMMPS"_Section_start.html#start_3 section for more info.
You can specify the accelerated styles explicitly in your input script
by including their suffix, or you can use the "-suffix command-line
switch"_Section_start.html#start_7 when you invoke LAMMPS, or you can
switch"_Section_start.html#start_6 when you invoke LAMMPS, or you can
use the "suffix"_suffix.html command in your input script.
See "Section 5"_Section_accelerate.html of the manual for

View File

@ -53,7 +53,7 @@ LAMMPS"_Section_start.html#start_3 section for more info.
You can specify the accelerated styles explicitly in your input script
by including their suffix, or you can use the "-suffix command-line
switch"_Section_start.html#start_7 when you invoke LAMMPS, or you can
switch"_Section_start.html#start_6 when you invoke LAMMPS, or you can
use the "suffix"_suffix.html command in your input script.
See "Section 5"_Section_accelerate.html of the manual for

View File

@ -53,7 +53,7 @@ LAMMPS"_Section_start.html#start_3 section for more info.
You can specify the accelerated styles explicitly in your input script
by including their suffix, or you can use the "-suffix command-line
switch"_Section_start.html#start_7 when you invoke LAMMPS, or you can
switch"_Section_start.html#start_6 when you invoke LAMMPS, or you can
use the "suffix"_suffix.html command in your input script.
See "Section 5"_Section_accelerate.html of the manual for

View File

@ -88,7 +88,7 @@ LAMMPS"_Section_start.html#start_3 section for more info.
You can specify the accelerated styles explicitly in your input script
by including their suffix, or you can use the "-suffix command-line
switch"_Section_start.html#start_7 when you invoke LAMMPS, or you can
switch"_Section_start.html#start_6 when you invoke LAMMPS, or you can
use the "suffix"_suffix.html command in your input script.
See "Section 5"_Section_accelerate.html of the manual for

View File

@ -133,7 +133,7 @@ LAMMPS"_Section_start.html#start_3 section for more info.
You can specify the accelerated styles explicitly in your input script
by including their suffix, or you can use the "-suffix command-line
switch"_Section_start.html#start_7 when you invoke LAMMPS, or you can
switch"_Section_start.html#start_6 when you invoke LAMMPS, or you can
use the "suffix"_suffix.html command in your input script.
See "Section 5"_Section_accelerate.html of the manual for

View File

@ -117,7 +117,7 @@ LAMMPS"_Section_start.html#start_3 section for more info.
You can specify the accelerated styles explicitly in your input script
by including their suffix, or you can use the "-suffix command-line
switch"_Section_start.html#start_7 when you invoke LAMMPS, or you can
switch"_Section_start.html#start_6 when you invoke LAMMPS, or you can
use the "suffix"_suffix.html command in your input script.
See "Section 5"_Section_accelerate.html of the manual for

View File

@ -180,9 +180,18 @@ will register an arbitrarily large spike at whatever distance they
happen to be at, and zero everywhere else. Coord(r) will show a step
change from zero to one at the location of the spike in g(r).
NOTE: compute rdf can handle dynamic groups and systems where atoms
are added or removed, but this causes that certain normalization
parameters need to be recomputed in every step and include collective
communication operations. This will reduce performance and limit
parallel efficiency and scaling. For systems, where only the type
of atoms changes (e.g. when using "fix atom/swap"_fix_atom_swap.html),
you need to explicitly request the dynamic normalization updates
via "compute_modify dynamic yes"_compute_modify.html
[Related commands:]
"fix ave/time"_fix_ave_time.html
"fix ave/time"_fix_ave_time.html, "compute_modify"_compute_modify.html
[Default:]

View File

@ -79,7 +79,7 @@ LAMMPS"_Section_start.html#start_3 section for more info.
You can specify the accelerated styles explicitly in your input script
by including their suffix, or you can use the "-suffix command-line
switch"_Section_start.html#start_7 when you invoke LAMMPS, or you can
switch"_Section_start.html#start_6 when you invoke LAMMPS, or you can
use the "suffix"_suffix.html command in your input script.
See "Section 5"_Section_accelerate.html of the manual for

View File

@ -86,7 +86,7 @@ LAMMPS"_Section_start.html#start_3 section for more info.
You can specify the accelerated styles explicitly in your input script
by including their suffix, or you can use the "-suffix command-line
switch"_Section_start.html#start_7 when you invoke LAMMPS, or you can
switch"_Section_start.html#start_6 when you invoke LAMMPS, or you can
use the "suffix"_suffix.html command in your input script.
See "Section 5"_Section_accelerate.html of the manual for

View File

@ -10,53 +10,93 @@ create_bonds command :h3
[Syntax:]
create_bonds group-ID group2-ID btype rmin rmax :pre
create_bonds style args ... keyword value ... :pre
group-ID = ID of first group
group2-ID = ID of second group, bonds will be between atoms in the 2 groups
btype = bond type of created bonds
rmin = minimum distance between pair of atoms to bond together
rmax = minimum distance between pair of atoms to bond together :ul
style = {many} or {single/bond} or {single/angle} or {single/dihedral} :ule,l
{many} args = group-ID group2-ID btype rmin rmax
group-ID = ID of first group
group2-ID = ID of second group, bonds will be between atoms in the 2 groups
btype = bond type of created bonds
rmin = minimum distance between pair of atoms to bond together
rmax = minimum distance between pair of atoms to bond together
{single/bond} args = btype batom1 batom2
btype = bond type of new bond
batom1,batom2 = atom IDs for two atoms in bond
{single/angle} args = atype aatom1 aatom2 aatom3
atype = bond type of new angle
aatom1,aatom2,aatom3 = atom IDs for three atoms in angle
{single/dihedral} args = dtype datom1 datom2 datom3 datom4
dtype = bond type of new dihedral
datom1,datom2,datom3,datom4 = atom IDs for four atoms in dihedral :pre
zero or more keyword/value pairs may be appended :l
keyword = {special} :l
{special} value = {yes} or {no} :pre
:ule
[Examples:]
create_bonds all all 1 1.0 1.2
create_bonds surf solvent 3 2.0 2.4 :pre
create_bonds many all all 1 1.0 1.2
create_bonds many surf solvent 3 2.0 2.4
create_bond single/bond 1 1 2
create_bond single/angle 5 52 98 107 special no :pre
[Description:]
Create bonds between pairs of atoms that meet specified distance
criteria. The bond interactions can then be computed during a
simulation by the bond potential defined by the
"bond_style"_bond_style.html and "bond_coeff"_bond_coeff.html
commands. This command is useful for adding bonds to a system,
e.g. between nearest neighbors in a lattice of atoms, without having
to enumerate all the bonds in the data file read by the
"read_data"_read_data.html command.
Create bonds between pairs of atoms that meet a specified distance
criteria. Or create a single bond, angle, or dihedral between 2, 3,
or 4 specified atoms.
Note that the flexibility of this command is limited. It can be used
several times to create different types of bond at different
distances. But it cannot typically create all the bonds that would
normally be defined in a complex system of molecules. Also note that
this command does not add any 3-body or 4-body interactions which,
depending on your model, may be induced by added bonds,
e.g. "angle"_angle_style.html, "dihedral"_dihedral_style.html, or
"improper"_improper_style.html interactions.
The new bond (angle, dihedral) interactions will then be computed
during a simulation by the bond (angle, dihedral) potential defined by
the "bond_style"_bond_style.html, "bond_coeff"_bond_coeff.html,
"angle_style"_angle_style.html, "angle_coeff"_angle_coeff.html,
"dihedral_style"_dihedral_style.html,
"dihedral_coeff"_dihedral_coeff.html commands.
All created bonds will be between pairs of atoms I,J where I is in one
of the two specified groups, and J is in the other. The two groups
can be the same, e.g. group "all". The created bonds will be of bond
type {btype}, where {btype} must be a value between 1 and the number
of bond types defined. This maximum value is set by the "bond types"
field in the header of the data file read by the
"read_data"_read_data.html command, or via the optional "bond/types"
argument of the "create_box"_create_box.html command.
The {many} style is useful for adding bonds to a system, e.g. between
nearest neighbors in a lattice of atoms, without having to enumerate
all the bonds in the data file read by the "read_data"_read_data.html
command.
The {single} styles are useful for adding bonds, angles, dihedrals
to a system incrementally, then continuing a simulation.
Note that this command does not auto-create any angle or dihedral
interactions when a bond is added. Nor does it auto-create any bonds
when an angle or dihedral is added. Or auto-create any angles when a
dihedral is added. Thus the flexibility of this command is limited.
It can be used several times to create different types of bond at
different distances. But it cannot typically auto-create all the
bonds or angles or dihedral that would normally be defined in a data
file for a complex system of molecules.
NOTE: If the system has no bonds (angles, dihedrals) to begin with, or
if more bonds per atom are being added than currently exist, then you
must insure that the number of bond types and the maximum number of
bonds per atom are set to large enough values. And similarly for
angles and dihedrals. Otherwise an error may occur when too many
bonds (angles, dihedrals) are added to an atom. If the
"read_data"_read_data.html command is used to define the system, these
parameters can be set via the "bond types" and "extra bond per atom"
fields in the header section of the data file. If the
"create_box"_create_box.html command is used to define the system,
these 2 parameters can be set via its optional "bond/types" and
"extra/bond/per/atom" arguments. And similarly for angles and
dihedrals. See the doc pages for these 2 commands for details.
:line
The {many} style will create bonds between pairs of atoms I,J where I
is in one of the two specified groups, and J is in the other. The two
groups can be the same, e.g. group "all". The created bonds will be
of bond type {btype}, where {btype} must be a value between 1 and the
number of bond types defined.
For a bond to be created, an I,J pair of atoms must be a distance D
apart such that {rmin} <= D <= {rmax}.
The following settings must have been made in an input
script before this command is used:
The following settings must have been made in an input script before
this style is used:
special_bonds weight for 1-2 interactions must be 0.0
a "pair_style"_pair_style.html must be defined
@ -69,8 +109,8 @@ cannot appear in the neighbor list, to avoid creation of duplicate
bonds. The neighbor list for all atom type pairs must also extend to
a distance that encompasses the {rmax} for new bonds to create.
An additional requirement is that your system must be ready to perform
a simulation. This means, for example, that all
An additional requirement for this style is that your system must be
ready to perform a simulation. This means, for example, that all
"pair_style"_pair_style.html coefficients be set via the
"pair_coeff"_pair_coeff.html command. A "bond_style"_bond_style.html
command and all bond coefficients must also be set, even if no bonds
@ -83,17 +123,58 @@ executes, e.g. if you wish to use long-range Coulombic interactions
via the "kspace_style"_kspace_style.html command for your subsequent
simulation.
NOTE: If the system has no bonds to begin with, or if more bonds per
atom are being added than currently exist, then you must insure that
the number of bond types and the maximum number of bonds per atom are
set to large enough values. Otherwise an error may occur when too
many bonds are added to an atom. If the "read_data"_read_data.html
command is used to define the system, these 2 parameters can be set
via the "bond types" and "extra bond per atom" fields in the header
section of the data file. If the "create_box"_create_box.html command
is used to define the system, these 2 parameters can be set via its
optional "bond/types" and "extra/bond/per/atom" arguments. See the
doc pages for the 2 commands for details.
:line
The {single/bond} style creates a single bond of type {btype} between
two atoms with IDs {batom1} and {batom2}. {Btype} must be a value
between 1 and the number of bond types defined.
The {single/angle} style creates a single angle of type {atype}
between three atoms with IDs {aatom1}, {aatom2}, and {aatom3}. The
ordering of the atoms is the same as in the {Angles} section of a data
file read by the "read_data"_read_data command. I.e. the 3 atoms are
ordered linearly within the angle; the central atom is {aatom2}.
{Atype} must be a value between 1 and the number of angle types
defined.
The {single/dihedral} style creates a single dihedral of type {btype}
between two atoms with IDs {batom1} and {batom2}. The ordering of the
atoms is the same as in the {Dihedrals} section of a data file read by
the "read_data"_read_data command. I.e. the 4 atoms are ordered
linearly within the dihedral. {Dtype} must be a value between 1 and
the number of dihedral types defined.
:line
The keyword {special} controls whether an internal list of special
bonds is created after one or more bonds, or a single angle or
dihedral is added to the system.
The default value is {yes}. A value of {no} cannot be used
with the {many} style.
This is an expensive operation since the bond topology for the system
must be walked to find all 1-2, 1-3, 1-4 interactions to store in an
internal list, which is used when pairwise interactions are weighted;
see the "special_bonds"_special_bonds.html command for details.
Thus if you are adding a few bonds or a large list of angles all at
the same time, by using this command repeatedly, it is more efficient
to only trigger the internal list to be created once, after the last
bond (or angle, or dihedral) is added:
create_bonds single/bond 5 52 98 special no
create_bonds single/bond 5 73 74 special no
...
create_bonds single/bond 5 17 386 special no
create_bonds single/bond 4 112 183 special yes :pre
Note that you MUST insure the internal list is re-built after the last
bond (angle, dihedral) is added, before performing a simulation.
Otherwise pairwise interactions will not be properly excluded or
weighted. LAMMPS does NOT check that you have done this correctly.
:line
[Restrictions:]
@ -105,4 +186,6 @@ molecule template files via the "molecule"_molecule.html and
"create_atoms"_create_atoms.html, "delete_bonds"_delete_bonds.html
[Default:] none
[Default:]
The keyword default is special = yes.

View File

@ -128,7 +128,7 @@ LAMMPS"_Section_start.html#start_3 section for more info.
You can specify the accelerated styles explicitly in your input script
by including their suffix, or you can use the "-suffix command-line
switch"_Section_start.html#start_7 when you invoke LAMMPS, or you can
switch"_Section_start.html#start_6 when you invoke LAMMPS, or you can
use the "suffix"_suffix.html command in your input script.
See "Section 5"_Section_accelerate.html of the manual for

View File

@ -153,7 +153,7 @@ LAMMPS"_Section_start.html#start_3 section for more info.
You can specify the accelerated styles explicitly in your input script
by including their suffix, or you can use the "-suffix command-line
switch"_Section_start.html#start_7 when you invoke LAMMPS, or you can
switch"_Section_start.html#start_6 when you invoke LAMMPS, or you can
use the "suffix"_suffix.html command in your input script.
See "Section 5"_Section_accelerate.html of the manual for

View File

@ -64,7 +64,7 @@ LAMMPS"_Section_start.html#start_3 section for more info.
You can specify the accelerated styles explicitly in your input script
by including their suffix, or you can use the "-suffix command-line
switch"_Section_start.html#start_7 when you invoke LAMMPS, or you can
switch"_Section_start.html#start_6 when you invoke LAMMPS, or you can
use the "suffix"_suffix.html command in your input script.
See "Section 5"_Section_accelerate.html of the manual for

View File

@ -55,7 +55,7 @@ LAMMPS"_Section_start.html#start_3 section for more info.
You can specify the accelerated styles explicitly in your input script
by including their suffix, or you can use the "-suffix command-line
switch"_Section_start.html#start_7 when you invoke LAMMPS, or you can
switch"_Section_start.html#start_6 when you invoke LAMMPS, or you can
use the "suffix"_suffix.html command in your input script.
See "Section 5"_Section_accelerate.html of the manual for

View File

@ -65,7 +65,7 @@ LAMMPS"_Section_start.html#start_3 section for more info.
You can specify the accelerated styles explicitly in your input script
by including their suffix, or you can use the "-suffix command-line
switch"_Section_start.html#start_7 when you invoke LAMMPS, or you can
switch"_Section_start.html#start_6 when you invoke LAMMPS, or you can
use the "suffix"_suffix.html command in your input script.
See "Section 5"_Section_accelerate.html of the manual for

View File

@ -58,7 +58,7 @@ LAMMPS"_Section_start.html#start_3 section for more info.
You can specify the accelerated styles explicitly in your input script
by including their suffix, or you can use the "-suffix command-line
switch"_Section_start.html#start_7 when you invoke LAMMPS, or you can
switch"_Section_start.html#start_6 when you invoke LAMMPS, or you can
use the "suffix"_suffix.html command in your input script.
See "Section 5"_Section_accelerate.html of the manual for

View File

@ -52,7 +52,7 @@ LAMMPS"_Section_start.html#start_3 section for more info.
You can specify the accelerated styles explicitly in your input script
by including their suffix, or you can use the "-suffix command-line
switch"_Section_start.html#start_7 when you invoke LAMMPS, or you can
switch"_Section_start.html#start_6 when you invoke LAMMPS, or you can
use the "suffix"_suffix.html command in your input script.
See "Section 5"_Section_accelerate.html of the manual for

View File

@ -52,7 +52,7 @@ LAMMPS"_Section_start.html#start_3 section for more info.
You can specify the accelerated styles explicitly in your input script
by including their suffix, or you can use the "-suffix command-line
switch"_Section_start.html#start_7 when you invoke LAMMPS, or you can
switch"_Section_start.html#start_6 when you invoke LAMMPS, or you can
use the "suffix"_suffix.html command in your input script.
See "Section 5"_Section_accelerate.html of the manual for

View File

@ -60,7 +60,7 @@ LAMMPS"_Section_start.html#start_3 section for more info.
You can specify the accelerated styles explicitly in your input script
by including their suffix, or you can use the "-suffix command-line
switch"_Section_start.html#start_7 when you invoke LAMMPS, or you can
switch"_Section_start.html#start_6 when you invoke LAMMPS, or you can
use the "suffix"_suffix.html command in your input script.
See "Section 5"_Section_accelerate.html of the manual for

View File

@ -53,7 +53,7 @@ LAMMPS"_Section_start.html#start_3 section for more info.
You can specify the accelerated styles explicitly in your input script
by including their suffix, or you can use the "-suffix command-line
switch"_Section_start.html#start_7 when you invoke LAMMPS, or you can
switch"_Section_start.html#start_6 when you invoke LAMMPS, or you can
use the "suffix"_suffix.html command in your input script.
See "Section 5"_Section_accelerate.html of the manual for

View File

@ -26,7 +26,7 @@ command to the screen and/or log file as it is read and processed. If
an input script has errors, it can be useful to look at echoed output
to see the last command processed.
The "command-line switch"_Section_start.html#start_5 -echo can be used
The "command-line switch"_Section_start.html#start_6 -echo can be used
in place of this command.
[Restrictions:] none

View File

@ -117,7 +117,7 @@ LAMMPS"_Section_start.html#start_3 section for more info.
You can specify the accelerated styles explicitly in your input script
by including their suffix, or you can use the "-suffix command-line
switch"_Section_start.html#start_7 when you invoke LAMMPS, or you can
switch"_Section_start.html#start_6 when you invoke LAMMPS, or you can
use the "suffix"_suffix.html command in your input script.
See "Section 5"_Section_accelerate.html of the manual for

View File

@ -77,7 +77,7 @@ LAMMPS"_Section_start.html#start_3 section for more info.
You can specify the accelerated styles explicitly in your input script
by including their suffix, or you can use the "-suffix command-line
switch"_Section_start.html#start_7 when you invoke LAMMPS, or you can
switch"_Section_start.html#start_6 when you invoke LAMMPS, or you can
use the "suffix"_suffix.html command in your input script.
See "Section 5"_Section_accelerate.html of the manual for

View File

@ -557,7 +557,7 @@ LAMMPS"_Section_start.html#start_3 section for more info.
You can specify the accelerated styles explicitly in your input script
by including their suffix, or you can use the "-suffix command-line
switch"_Section_start.html#start_7 when you invoke LAMMPS, or you can
switch"_Section_start.html#start_6 when you invoke LAMMPS, or you can
use the "suffix"_suffix.html command in your input script.
See "Section 5"_Section_accelerate.html of the manual for

View File

@ -41,7 +41,7 @@ LAMMPS"_Section_start.html#start_3 section for more info.
You can specify the accelerated styles explicitly in your input script
by including their suffix, or you can use the "-suffix command-line
switch"_Section_start.html#start_7 when you invoke LAMMPS, or you can
switch"_Section_start.html#start_6 when you invoke LAMMPS, or you can
use the "suffix"_suffix.html command in your input script.
See "Section 5"_Section_accelerate.html of the manual for

View File

@ -45,7 +45,7 @@ LAMMPS"_Section_start.html#start_3 section for more info.
You can specify the accelerated styles explicitly in your input script
by including their suffix, or you can use the "-suffix command-line
switch"_Section_start.html#start_7 when you invoke LAMMPS, or you can
switch"_Section_start.html#start_6 when you invoke LAMMPS, or you can
use the "suffix"_suffix.html command in your input script.
See "Section 5"_Section_accelerate.html of the manual for

View File

@ -383,6 +383,9 @@ called. Reneighboring is required.
Can be run in parallel, but aspects of the GCMC part will not scale
well in parallel. Only usable for 3D simulations.
When using fix gcmc in combination with fix shake or fix rigid,
only gcmc exchange moves are supported.
Note that very lengthy simulations involving insertions/deletions of
billions of gas molecules may run out of atom or molecule IDs and
trigger an error, so it is better to run multiple shorter-duration

View File

@ -102,7 +102,7 @@ LAMMPS"_Section_start.html#start_3 section for more info.
You can specify the accelerated styles explicitly in your input script
by including their suffix, or you can use the "-suffix command-line
switch"_Section_start.html#start_7 when you invoke LAMMPS, or you can
switch"_Section_start.html#start_6 when you invoke LAMMPS, or you can
use the "suffix"_suffix.html command in your input script.
See "Section 5"_Section_accelerate.html of the manual for

View File

@ -276,7 +276,7 @@ LAMMPS"_Section_start.html#start_3 section for more info.
You can specify the accelerated styles explicitly in your input script
by including their suffix, or you can use the "-suffix command-line
switch"_Section_start.html#start_7 when you invoke LAMMPS, or you can
switch"_Section_start.html#start_6 when you invoke LAMMPS, or you can
use the "suffix"_suffix.html command in your input script.
See "Section 5"_Section_accelerate.html of the manual for

View File

@ -73,7 +73,7 @@ LAMMPS"_Section_start.html#start_3 section for more info.
You can specify the accelerated styles explicitly in your input script
by including their suffix, or you can use the "-suffix command-line
switch"_Section_start.html#start_7 when you invoke LAMMPS, or you can
switch"_Section_start.html#start_6 when you invoke LAMMPS, or you can
use the "suffix"_suffix.html command in your input script.
See "Section 5"_Section_accelerate.html of the manual for

View File

@ -17,19 +17,22 @@ msst = style name of this fix :l
dir = {x} or {y} or {z} :l
shockvel = shock velocity (strictly positive, distance/time units) :l
zero or more keyword value pairs may be appended :l
keyword = {q} or {mu} or {p0} or {v0} or {e0} or {tscale} :l
keyword = {q} or {mu} or {p0} or {v0} or {e0} or {tscale} or {beta} or {dftb} :l
{q} value = cell mass-like parameter (mass^2/distance^4 units)
{mu} value = artificial viscosity (mass/length/time units)
{p0} value = initial pressure in the shock equations (pressure units)
{v0} value = initial simulation cell volume in the shock equations (distance^3 units)
{e0} value = initial total energy (energy units)
{tscale} value = reduction in initial temperature (unitless fraction between 0.0 and 1.0) :pre
{tscale} value = reduction in initial temperature (unitless fraction between 0.0 and 1.0)
{dftb} value = {yes} or {no} for whether using MSST in conjunction with DFTB+
{beta} value = scale factor for improved energy conservation :pre
:ule
[Examples:]
fix 1 all msst y 100.0 q 1.0e5 mu 1.0e5
fix 2 all msst z 50.0 q 1.0e4 mu 1.0e4 v0 4.3419e+03 p0 3.7797e+03 e0 -9.72360e+02 tscale 0.01 :pre
fix 2 all msst z 50.0 q 1.0e4 mu 1.0e4 v0 4.3419e+03 p0 3.7797e+03 e0 -9.72360e+02 tscale 0.01
fix 1 all msst y 100.0 q 1.0e5 mu 1.0e5 dftb yes beta 0.5 :pre
[Description:]
@ -58,17 +61,25 @@ oscillations have physical significance in some cases. The optional
symmetry to equilibrate to the shock Hugoniot and Rayleigh line more
rapidly in such cases.
{tscale} is a factor between 0 and 1 that determines what fraction of
thermal kinetic energy is converted to compressive strain kinetic
energy at the start of the simulation. Setting this parameter to a
non-zero value may assist in compression at the start of simulations
where it is slow to occur.
The keyword {tscale} is a factor between 0 and 1 that determines what
fraction of thermal kinetic energy is converted to compressive strain
kinetic energy at the start of the simulation. Setting this parameter
to a non-zero value may assist in compression at the start of
simulations where it is slow to occur.
If keywords {e0}, {p0},or {v0} are not supplied, these quantities will
be calculated on the first step, after the energy specified by
{tscale} is removed. The value of {e0} is not used in the dynamical
equations, but is used in calculating the deviation from the Hugoniot.
The keyword {beta} is a scaling term that can be added to the MSST
ionic equations of motion to account for drift in the conserved
quantity during long timescale simulations, similar to a Berendson
thermostat. See "(Reed)"_#Reed and "(Goldman)"_#Goldman for more
details. The value of {beta} must be between 0.0 and 1.0 inclusive.
A value of 0.0 means no contribution, a value of 1.0 means a full
contribution.
Values of shockvel less than a critical value determined by the
material response will not have compressive solutions. This will be
reflected in lack of significant change of the volume in the MSST.
@ -77,17 +88,32 @@ For all pressure styles, the simulation box stays orthogonal in shape.
Parrinello-Rahman boundary conditions (tilted box) are supported by
LAMMPS, but are not implemented for MSST.
This fix computes a temperature and pressure each timestep. To do
this, the fix creates its own computes of style "temp" and "pressure",
as if these commands had been issued:
This fix computes a temperature and pressure and potential energy each
timestep. To do this, the fix creates its own computes of style "temp"
"pressure", and "pe", as if these commands had been issued:
compute fix-ID_temp group-ID temp
compute fix-ID_press group-ID pressure fix-ID_temp :pre
compute fix-ID_MSST_temp all temp
compute fix-ID_MSST_press all pressure fix-ID_MSST_temp :pre
compute fix-ID_MSST_pe all pe :pre
See the "compute temp"_compute_temp.html and "compute
pressure"_compute_pressure.html commands for details. Note that the
IDs of the new computes are the fix-ID + underscore + "temp" or fix_ID
+ underscore + "press". The group for the new computes is "all".
IDs of the new computes are the fix-ID + "_MSST_temp" or "_MSST_press"
or "_MSST_pe". The group for the new computes is "all".
:line
The {dftb} keyword is to allow this fix to be used when LAMMPS is
being driven by DFTB+, a density-functional tight-binding code. If the
keyword {dftb} is used with a value of {yes}, then the MSST equations
are altered to account for the electron entropy contribution to the
Hugonio relations and total energy. See "(Reed2)"_#Reed2 and
"(Goldman)"_#Goldman for details on this contribution. In this case,
you must define a "fix external"_fix_external.html command in your
input script, which is used to callback to DFTB+ during the LAMMPS
timestepping. DFTB+ will communicate its info to LAMMPS via that fix.
:line
[Restart, fix_modify, output, run start/stop, minimize info:]
@ -149,10 +175,19 @@ all.
[Default:]
The keyword defaults are q = 10, mu = 0, tscale = 0.01. p0, v0, and e0
are calculated on the first step.
The keyword defaults are q = 10, mu = 0, tscale = 0.01, dftb = no,
beta = 0.0. Note that p0, v0, and e0 are calculated on the first
timestep.
:line
:link(Reed)
[(Reed)] Reed, Fried, and Joannopoulos, Phys. Rev. Lett., 90, 235503 (2003).
[(Reed)] Reed, Fried, and Joannopoulos, Phys. Rev. Lett., 90, 235503
(2003).
:link(Reed2)
[(Reed2)] Reed, J. Phys. Chem. C, 116, 2205 (2012).
:link(Goldman)
[(Goldman)] Goldman, Srinivasan, Hamel, Fried, Gaus, and Elstner,
J. Phys. Chem. C, 117, 7885 (2013).

View File

@ -492,7 +492,7 @@ LAMMPS"_Section_start.html#start_3 section for more info.
You can specify the accelerated styles explicitly in your input script
by including their suffix, or you can use the "-suffix command-line
switch"_Section_start.html#start_7 when you invoke LAMMPS, or you can
switch"_Section_start.html#start_6 when you invoke LAMMPS, or you can
use the "suffix"_suffix.html command in your input script.
See "Section 5"_Section_accelerate.html of the manual for

View File

@ -93,7 +93,7 @@ LAMMPS"_Section_start.html#start_3 section for more info.
You can specify the accelerated styles explicitly in your input script
by including their suffix, or you can use the "-suffix command-line
switch"_Section_start.html#start_7 when you invoke LAMMPS, or you can
switch"_Section_start.html#start_6 when you invoke LAMMPS, or you can
use the "suffix"_suffix.html command in your input script.
See "Section 5"_Section_accelerate.html of the manual for

View File

@ -92,7 +92,7 @@ LAMMPS"_Section_start.html#start_3 section for more info.
You can specify the accelerated styles explicitly in your input script
by including their suffix, or you can use the "-suffix command-line
switch"_Section_start.html#start_7 when you invoke LAMMPS, or you can
switch"_Section_start.html#start_6 when you invoke LAMMPS, or you can
use the "suffix"_suffix.html command in your input script.
See "Section 5"_Section_accelerate.html of the manual for

View File

@ -102,7 +102,7 @@ LAMMPS"_Section_start.html#start_3 section for more info.
You can specify the accelerated styles explicitly in your input script
by including their suffix, or you can use the "-suffix command-line
switch"_Section_start.html#start_7 when you invoke LAMMPS, or you can
switch"_Section_start.html#start_6 when you invoke LAMMPS, or you can
use the "suffix"_suffix.html command in your input script.
See "Section 5"_Section_accelerate.html of the manual for

View File

@ -152,7 +152,7 @@ LAMMPS"_Section_start.html#start_3 section for more info.
You can specify the accelerated styles explicitly in your input script
by including their suffix, or you can use the "-suffix command-line
switch"_Section_start.html#start_7 when you invoke LAMMPS, or you can
switch"_Section_start.html#start_6 when you invoke LAMMPS, or you can
use the "suffix"_suffix.html command in your input script.
See "Section 5"_Section_accelerate.html of the manual for

View File

@ -117,7 +117,7 @@ LAMMPS"_Section_start.html#start_3 section for more info.
You can specify the accelerated styles explicitly in your input script
by including their suffix, or you can use the "-suffix command-line
switch"_Section_start.html#start_7 when you invoke LAMMPS, or you can
switch"_Section_start.html#start_6 when you invoke LAMMPS, or you can
use the "suffix"_suffix.html command in your input script.
See "Section 5"_Section_accelerate.html of the manual for

View File

@ -116,7 +116,7 @@ LAMMPS"_Section_start.html#start_3 section for more info.
You can specify the accelerated styles explicitly in your input script
by including their suffix, or you can use the "-suffix command-line
switch"_Section_start.html#start_7 when you invoke LAMMPS, or you can
switch"_Section_start.html#start_6 when you invoke LAMMPS, or you can
use the "suffix"_suffix.html command in your input script.
See "Section 5"_Section_accelerate.html of the manual for

View File

@ -127,7 +127,7 @@ LAMMPS"_Section_start.html#start_3 section for more info.
You can specify the accelerated styles explicitly in your input script
by including their suffix, or you can use the "-suffix command-line
switch"_Section_start.html#start_7 when you invoke LAMMPS, or you can
switch"_Section_start.html#start_6 when you invoke LAMMPS, or you can
use the "suffix"_suffix.html command in your input script.
See "Section 5"_Section_accelerate.html of the manual for

View File

@ -46,7 +46,7 @@ LAMMPS"_Section_start.html#start_3 section for more info.
You can specify the accelerated styles explicitly in your input script
by including their suffix, or you can use the "-suffix command-line
switch"_Section_start.html#start_7 when you invoke LAMMPS, or you can
switch"_Section_start.html#start_6 when you invoke LAMMPS, or you can
use the "suffix"_suffix.html command in your input script.
See "Section 5"_Section_accelerate.html of the manual for

View File

@ -57,7 +57,7 @@ LAMMPS"_Section_start.html#start_3 section for more info.
You can specify the accelerated styles explicitly in your input script
by including their suffix, or you can use the "-suffix command-line
switch"_Section_start.html#start_7 when you invoke LAMMPS, or you can
switch"_Section_start.html#start_6 when you invoke LAMMPS, or you can
use the "suffix"_suffix.html command in your input script.
See "Section 5"_Section_accelerate.html of the manual for

View File

@ -77,7 +77,7 @@ LAMMPS"_Section_start.html#start_3 section for more info.
You can specify the accelerated styles explicitly in your input script
by including their suffix, or you can use the "-suffix command-line
switch"_Section_start.html#start_7 when you invoke LAMMPS, or you can
switch"_Section_start.html#start_6 when you invoke LAMMPS, or you can
use the "suffix"_suffix.html command in your input script.
See "Section 5"_Section_accelerate.html of the manual for

View File

@ -98,7 +98,7 @@ LAMMPS"_Section_start.html#start_3 section for more info.
You can specify the accelerated styles explicitly in your input script
by including their suffix, or you can use the "-suffix command-line
switch"_Section_start.html#start_7 when you invoke LAMMPS, or you can
switch"_Section_start.html#start_6 when you invoke LAMMPS, or you can
use the "suffix"_suffix.html command in your input script.
See "Section 5"_Section_accelerate.html of the manual for

View File

@ -97,7 +97,7 @@ LAMMPS"_Section_start.html#start_3 section for more info.
You can specify the accelerated styles explicitly in your input script
by including their suffix, or you can use the "-suffix command-line
switch"_Section_start.html#start_7 when you invoke LAMMPS, or you can
switch"_Section_start.html#start_6 when you invoke LAMMPS, or you can
use the "suffix"_suffix.html command in your input script.
See "Section 5"_Section_accelerate.html of the manual for

View File

@ -121,7 +121,7 @@ LAMMPS"_Section_start.html#start_3 section for more info.
You can specify the accelerated styles explicitly in your input script
by including their suffix, or you can use the "-suffix command-line
switch"_Section_start.html#start_7 when you invoke LAMMPS, or you can
switch"_Section_start.html#start_6 when you invoke LAMMPS, or you can
use the "suffix"_suffix.html command in your input script.
See "Section 5"_Section_accelerate.html of the manual for

View File

@ -108,7 +108,7 @@ LAMMPS"_Section_start.html#start_3 section for more info.
You can specify the accelerated styles explicitly in your input script
by including their suffix, or you can use the "-suffix command-line
switch"_Section_start.html#start_7 when you invoke LAMMPS, or you can
switch"_Section_start.html#start_6 when you invoke LAMMPS, or you can
use the "suffix"_suffix.html command in your input script.
See "Section 5"_Section_accelerate.html of the manual for

View File

@ -74,7 +74,7 @@ LAMMPS"_Section_start.html#start_3 section for more info.
You can specify the accelerated styles explicitly in your input script
by including their suffix, or you can use the "-suffix command-line
switch"_Section_start.html#start_7 when you invoke LAMMPS, or you can
switch"_Section_start.html#start_6 when you invoke LAMMPS, or you can
use the "suffix"_suffix.html command in your input script.
See "Section 5"_Section_accelerate.html of the manual for

View File

@ -92,7 +92,7 @@ LAMMPS"_Section_start.html#start_3 section for more info.
You can specify the accelerated styles explicitly in your input script
by including their suffix, or you can use the "-suffix command-line
switch"_Section_start.html#start_7 when you invoke LAMMPS, or you can
switch"_Section_start.html#start_6 when you invoke LAMMPS, or you can
use the "suffix"_suffix.html command in your input script.
See "Section 5"_Section_accelerate.html of the manual for

View File

@ -82,7 +82,7 @@ LAMMPS"_Section_start.html#start_3 section for more info.
You can specify the accelerated styles explicitly in your input script
by including their suffix, or you can use the "-suffix command-line
switch"_Section_start.html#start_7 when you invoke LAMMPS, or you can
switch"_Section_start.html#start_6 when you invoke LAMMPS, or you can
use the "suffix"_suffix.html command in your input script.
See "Section_accelerate"_Section_accelerate.html of the manual for

View File

@ -151,7 +151,7 @@ LAMMPS"_Section_start.html#start_3 section for more info.
You can specify the accelerated styles explicitly in your input script
by including their suffix, or you can use the "-suffix command-line
switch"_Section_start.html#start_7 when you invoke LAMMPS, or you can
switch"_Section_start.html#start_6 when you invoke LAMMPS, or you can
use the "suffix"_suffix.html command in your input script.
See "Section_accelerate"_Section_accelerate.html of the manual for

View File

@ -212,8 +212,9 @@ pour"_fix_pour.html.
For bodystyle {single} the entire fix group of atoms is treated as one
rigid body. This option is only allowed for the {rigid} styles.
For bodystyle {molecule}, each set of atoms in the fix group with a
different molecule ID is treated as a rigid body. This option is
For bodystyle {molecule}, atoms are grouped into rigid bodies by their
respective molecule IDs: each set of atoms in the fix group with the
same molecule ID is treated as a different rigid body. This option is
allowed for both the {rigid} and {rigid/small} styles. Note that
atoms with a molecule ID = 0 will be treated as a single rigid body.
For a system with atomic solvent (typically this is atoms with
@ -675,7 +676,7 @@ LAMMPS"_Section_start.html#start_3 section for more info.
You can specify the accelerated styles explicitly in your input script
by including their suffix, or you can use the "-suffix command-line
switch"_Section_start.html#start_7 when you invoke LAMMPS, or you can
switch"_Section_start.html#start_6 when you invoke LAMMPS, or you can
use the "suffix"_suffix.html command in your input script.
See "Section 5"_Section_accelerate.html of the manual for

View File

@ -82,7 +82,7 @@ LAMMPS"_Section_start.html#start_3 section for more info.
You can specify the accelerated styles explicitly in your input script
by including their suffix, or you can use the "-suffix command-line
switch"_Section_start.html#start_7 when you invoke LAMMPS, or you can
switch"_Section_start.html#start_6 when you invoke LAMMPS, or you can
use the "suffix"_suffix.html command in your input script.
See "Section 5"_Section_accelerate.html of the manual for

View File

@ -159,7 +159,7 @@ LAMMPS"_Section_start.html#start_3 section for more info.
You can specify the accelerated styles explicitly in your input script
by including their suffix, or you can use the "-suffix command-line
switch"_Section_start.html#start_7 when you invoke LAMMPS, or you can
switch"_Section_start.html#start_6 when you invoke LAMMPS, or you can
use the "suffix"_suffix.html command in your input script.
See "Section 5"_Section_accelerate.html of the manual for

117
doc/src/fix_wall_ees.txt Normal file
View File

@ -0,0 +1,117 @@
"LAMMPS WWW Site"_lws - "LAMMPS Documentation"_ld - "LAMMPS Commands"_lc :c
:link(lws,http://lammps.sandia.gov)
:link(ld,Manual.html)
:link(lc,Section_commands.html#comm)
:line
fix wall/ees command :h3
fix wall/region/ees command :h3
[Syntax:]
fix ID group-ID style args :pre
ID, group-ID are documented in "fix"_fix.html command :ulb,l
style = {wall/ees} or {wall/region/ees} :l
args for style {wall/ees}: one or more {face parameters} groups may be appended
face = {xlo} or {xhi} or {ylo} or {yhi} or {zlo} or {zhi}
parameters = coord epsilon sigma cutoff
coord = position of wall = EDGE or constant or variable
EDGE = current lo or hi edge of simulation box
constant = number like 0.0 or -30.0 (distance units)
variable = "equal-style variable"_variable.html like v_x or v_wiggle
epsilon = strength factor for wall-particle interaction (energy or energy/distance^2 units)
epsilon can be a variable (see below)
sigma = size factor for wall-particle interaction (distance units)
sigma can be a variable (see below)
cutoff = distance from wall at which wall-particle interaction is cut off (distance units) :pre
args for style {wall/region/ees}: {region-ID} {epsilon} {sigma} {cutoff}
region-ID = region whose boundary will act as wall
epsilon = strength factor for wall-particle interaction (energy or energy/distance^2 units)
sigma = size factor for wall-particle interaction (distance units)
cutoff = distance from wall at which wall-particle interaction is cut off (distance units) :pre
:ule
[Examples:]
fix wallhi all wall/ees xlo -1.0 1.0 1.0 2.5 units box
fix wallhi all wall/ees xhi EDGE 1.0 1.0 2.5
fix wallhi all wall/ees v_wiggle 23.2 1.0 1.0 2.5
fix zwalls all wall/ees zlo 0.0 1.0 1.0 0.858 zhi 40.0 1.0 1.0 0.858 :pre
fix ees_cube all wall/region/ees myCube 1.0 1.0 2.5 :pre
[Description:]
Fix {wall/ees} bounds the simulation domain on one or more of its
faces with a flat wall that interacts with the ellipsoidal atoms in the
group by generating a force on the atom in a direction perpendicular to
the wall and a torque parallel with the wall.  The energy of
wall-particle interactions E is given by:
:c,image(Eqs/fix_wall_ees.jpg)
Introduced by Babadi and Ejtehadi in "(Babadi)"_#BabadiEjtehadi. Here,
{r} is the distance from the particle to the wall at position {coord},
and Rc is the {cutoff} distance at which the  particle and wall no
longer interact. Also,  sigma_n is the distance between center of
ellipsoid and the nearest point of its surface to the wall  The energy
of the wall (see the image below).
:c,image(JPG/fix_wall_ees_image.jpg)
Details of using this command and specifications are the same as
fix/wall command. You can also find an example in USER/ees/ under
examples/ directory.
The prefactor {epsilon} can be thought of as an
effective Hamaker constant with energy units for the strength of the
ellipsoid-wall interaction.  More specifically, the {epsilon} pre-factor
= 8 * pi^2 * rho_wall * rho_ellipsoid * epsilon
* sigma_a * sigma_b * sigma_c, where epsilon is the LJ parameters for
the constituent LJ particles and sigma_a, sigma_b, and sigma_c are radii
of ellipsoidal particles. Rho_wall and rho_ellipsoid are the number
density of the constituent particles, in the wall and ellipsoid
respectively, in units of 1/volume.
NOTE: You must insure that r is always bigger than sigma_n for
all particles in the group, or LAMMPS will generate an error.  This
means you cannot start your simulation with particles touching the wall
position {coord} (r = sigma_n) or with particles penetrating the wall (0 =< r < sigma_n) or with particles on the wrong side of the
wall (r < 0).
Fix {wall/region/ees} treats the surface of the geometric region defined
by the {region-ID} as a bounding wall which interacts with nearby
ellipsoidal particles according to the EES potential introduced above.
Other details of this command are the same as for the "fix
wall/region"_fix_wall_region.html command. One may also find an example
of using this fix in the examples/USER/misc/ees/ directory.
[Restrictions:]
This fix is part of the USER-MISC package. It is only enabled if
LAMMPS was built with that package. See the "Making
LAMMPS"_Section_start.html#start_3 section for more info.
This fix requires that atoms be ellipsoids as defined by the
"atom_style ellipsoid"_atom_style.html command.
[Related commands:]
"fix wall"_fix_wall.html,
"pair resquared"_pair_resquared.html
[Default:]
none
:line
:link(BabadiEjtehadi)
[(Babadi)] Babadi and Ejtehadi, EPL, 77 (2007) 23002.

View File

@ -142,7 +142,7 @@ LAMMPS"_Section_start.html#start_3 section for more info.
You can specify the accelerated styles explicitly in your input script
by including their suffix, or you can use the "-suffix command-line
switch"_Section_start.html#start_7 when you invoke LAMMPS, or you can
switch"_Section_start.html#start_6 when you invoke LAMMPS, or you can
use the "suffix"_suffix.html command in your input script.
See "Section 5"_Section_accelerate.html of the manual for

View File

@ -156,6 +156,7 @@ Fixes :h1
fix_viscosity
fix_viscous
fix_wall
fix_wall_ees
fix_wall_gran
fix_wall_gran_region
fix_wall_piston

View File

@ -99,7 +99,7 @@ LAMMPS"_Section_start.html#start_3 section for more info.
You can specify the accelerated styles explicitly in your input script
by including their suffix, or you can use the "-suffix command-line
switch"_Section_start.html#start_7 when you invoke LAMMPS, or you can
switch"_Section_start.html#start_6 when you invoke LAMMPS, or you can
use the "suffix"_suffix.html command in your input script.
See "Section 5"_Section_accelerate.html of the manual for

View File

@ -65,7 +65,7 @@ LAMMPS"_Section_start.html#start_3 section for more info.
You can specify the accelerated styles explicitly in your input script
by including their suffix, or you can use the "-suffix command-line
switch"_Section_start.html#start_7 when you invoke LAMMPS, or you can
switch"_Section_start.html#start_6 when you invoke LAMMPS, or you can
use the "suffix"_suffix.html command in your input script.
See "Section 5"_Section_accelerate.html of the manual for

Some files were not shown because too many files have changed in this diff Show More