Merge pull request #3458 from Boogie3D/mliappy_unified

MLIAP Unified Interface
This commit is contained in:
Axel Kohlmeyer
2022-09-26 20:33:17 -04:00
committed by GitHub
31 changed files with 1760 additions and 138 deletions

View File

@ -5,6 +5,7 @@
import sysconfig
import ctypes
import platform
import warnings
py_ver = sysconfig.get_config_vars('VERSION')[0]
OS_name = platform.system()
@ -25,8 +26,10 @@ except Exception as e:
raise OSError("Unable to locate python shared library") from e
if not pylib.Py_IsInitialized():
raise RuntimeError("This interpreter is not compatible with python-based mliap for LAMMPS.")
warnings.warn("This interpreter is not compatible with python-based MLIAP for LAMMPS. "
"Attempting to activate the MLIAP-python coupling from python may result "
"in undefined behavior.")
else:
from .loader import load_model, load_unified, activate_mliappy
del sysconfig, ctypes, library, pylib
from .loader import load_model, activate_mliappy

View File

@ -17,27 +17,58 @@
import sys
import importlib
import importlib.util
import importlib.machinery
import importlib.abc
from ctypes import pythonapi, c_int, c_void_p, py_object
# This dynamic loader imports a python module embedded in a shared library.
# The default value of api_version is 1013 because it has been stable since 2006.
class DynamicLoader(importlib.abc.Loader):
def __init__(self,module_name,library,api_version=1013):
self.api_version = api_version
attr = "PyInit_"+module_name
initfunc = getattr(library,attr)
# c_void_p is standin for PyModuleDef *
initfunc.restype = c_void_p
initfunc.argtypes = ()
self.module_def = initfunc()
def create_module(self, spec):
createfunc = pythonapi.PyModule_FromDefAndSpec2
# c_void_p is standin for PyModuleDef *
createfunc.argtypes = c_void_p, py_object, c_int
createfunc.restype = py_object
module = createfunc(self.module_def, spec, self.api_version)
return module
def exec_module(self, module):
execfunc = pythonapi.PyModule_ExecDef
# c_void_p is standin for PyModuleDef *
execfunc.argtypes = py_object, c_void_p
execfunc.restype = c_int
result = execfunc(module, self.module_def)
if result<0:
raise ImportError()
def activate_mliappy(lmp):
try:
# Begin Importlib magic to find the embedded python module
# This is needed because the filename for liblammps does not
# match the spec for normal python modules, wherein
# file names match with PyInit function names.
# Also, python normally doesn't look for extensions besides '.so'
# We fix both of these problems by providing an explict
# path to the extension module 'mliap_model_python_couple' in
library = lmp.lib
module_names = ["mliap_model_python_couple", "mliap_unified_couple"]
api_version = library.lammps_python_api_version()
path = lmp.lib._name
loader = importlib.machinery.ExtensionFileLoader('mliap_model_python_couple', path)
spec = importlib.util.spec_from_loader('mliap_model_python_couple', loader)
module = importlib.util.module_from_spec(spec)
sys.modules['mliap_model_python_couple'] = module
spec.loader.exec_module(module)
# End Importlib magic to find the embedded python module
for module_name in module_names:
# Make Machinery
loader = DynamicLoader(module_name,library,api_version)
spec = importlib.util.spec_from_loader(module_name,loader)
# Do the import
module = importlib.util.module_from_spec(spec)
sys.modules[module_name] = module
spec.loader.exec_module(module)
except Exception as ee:
raise ImportError("Could not load ML-IAP python coupling module.") from ee
@ -50,3 +81,11 @@ def load_model(model):
) from ie
mliap_model_python_couple.load_from_python(model)
def load_unified(model):
try:
import mliap_unified_couple
except ImportError as ie:
raise ImportError("ML-IAP python module must be activated before loading\n"
"the pair style. Call lammps.mliap.activate_mliappy(lmp)."
) from ie
mliap_unified_couple.load_from_python(model)

View File

@ -0,0 +1,28 @@
from abc import ABC, abstractmethod
import pickle
class MLIAPUnified(ABC):
"""Abstract base class for MLIAPUnified."""
def __init__(self):
self.interface = None
self.element_types = None
self.ndescriptors = None
self.nparams = None
self.rcutfac = None
@abstractmethod
def compute_gradients(self, data):
"""Compute gradients."""
@abstractmethod
def compute_descriptors(self, data):
"""Compute descriptors."""
@abstractmethod
def compute_forces(self, data):
"""Compute forces."""
def pickle(self, fname):
with open(fname, 'wb') as fp:
pickle.dump(self, fp)

View File

@ -0,0 +1,44 @@
from .mliap_unified_abc import MLIAPUnified
import numpy as np
class MLIAPUnifiedLJ(MLIAPUnified):
"""Test implementation for MLIAPUnified."""
def __init__(self, element_types, epsilon=1.0, sigma=1.0, rcutfac=1.25):
super().__init__()
self.element_types = element_types
self.ndescriptors = 1
self.nparams = 3
# Mimicking the LJ pair-style:
# pair_style lj/cut 2.5
# pair_coeff * * 1 1
self.epsilon = epsilon
self.sigma = sigma
self.rcutfac = rcutfac
def compute_gradients(self, data):
"""Test compute_gradients."""
def compute_descriptors(self, data):
"""Test compute_descriptors."""
def compute_forces(self, data):
"""Test compute_forces."""
eij, fij = self.compute_pair_ef(data)
data.update_pair_energy(eij)
data.update_pair_forces(fij)
def compute_pair_ef(self, data):
rij = data.rij
r2inv = 1.0 / np.sum(rij ** 2, axis=1)
r6inv = r2inv * r2inv * r2inv
lj1 = 4.0 * self.epsilon * self.sigma**12
lj2 = 4.0 * self.epsilon * self.sigma**6
eij = r6inv * (lj1 * r6inv - lj2)
fij = r6inv * (3.0 * lj2 - 6.0 * lj2 * r6inv) * r2inv
fij = fij[:, np.newaxis] * rij
return eij, fij

View File

@ -80,10 +80,10 @@ class TorchWrapper(torch.nn.Module):
n_params : torch.nn.Module (None)
Number of NN model parameters
device : torch.nn.Module (None)
Accelerator device
dtype : torch.dtype (torch.float64)
Dtype to use on device
"""
@ -325,6 +325,6 @@ class ElemwiseModels(torch.nn.Module):
per_atom_attributes = torch.zeros(elems.size(dim=0), dtype=self.dtype)
given_elems, elem_indices = torch.unique(elems, return_inverse=True)
for i, elem in enumerate(given_elems):
self.subnets[elem].to(self.dtype)
self.subnets[elem].to(self.dtype)
per_atom_attributes[elem_indices == i] = self.subnets[elem](descriptors[elem_indices == i]).flatten()
return per_atom_attributes