From bfe40a324ac4848238e25d94b479b4ecc5e6da55 Mon Sep 17 00:00:00 2001 From: Axel Kohlmeyer Date: Wed, 12 Apr 2023 03:35:37 -0400 Subject: [PATCH] correct LaTeX formatting issues reported at https://matsci.org/t/latex-math-in-pair-amoeba-rst/47987/1 --- doc/src/pair_amoeba.rst | 22 +++++++++++----------- 1 file changed, 11 insertions(+), 11 deletions(-) diff --git a/doc/src/pair_amoeba.rst b/doc/src/pair_amoeba.rst index a7f19ba91e..c369ee5e42 100644 --- a/doc/src/pair_amoeba.rst +++ b/doc/src/pair_amoeba.rst @@ -94,22 +94,22 @@ The formulas for the AMOEBA energy terms are: .. math:: - U_{hal} = \epsilon_{ij} \left( \frac{1.07}{\rho_{ij} + 0.07} \right)^7 \left( \frac{1.12}{\rho_{ij}^7 + 0.12} - 2 \right) - U_{multipole} = \vec{M_i}\bold{T_{ij}}\vec{M_j} - \vec{M} = \left( q, \vec{\mu_{perm}}, \bold{\Theta} \right) - U_{polar} = \frac{1}{2}\vec{\mu_i}^{ind} \vec{E_i}^{perm} + U_{hal} = & \epsilon_{ij} \left( \frac{1.07}{\rho_{ij} + 0.07} \right)^7 \left( \frac{1.12}{\rho_{ij}^7 + 0.12} - 2 \right) \\ + U_{multipole} = & \vec{M}_i\boldsymbol{T_{ij}}\vec{M}_j, \quad \mbox{with} \quad + \vec{M} = \left(q, \vec{\mu}_{perm}, \boldsymbol{\Theta} \right) \\ + U_{polar} = & \frac{1}{2}\vec{\mu}_i^{ind} \vec{E}_i^{perm} The formulas for the HIPPO energy terms are: .. math:: - U_{multipole} = Z_i \frac{1}{r_{ij}} Z_j + Z_i T_{ij}^{damp} \vec{M_j} + Z_j T_{ji}^{damp} \vec{M_i} + \vec{M_i} T_{ij}^{damp} \vec{M_j} - \vec{M} = \left( Q, \vec{\mu_{perm}}, \bold{\Theta} \right) - U_{polar} = \frac{1}{2}\vec{\mu_i}^{ind} \vec{E_i}^{perm} - U_{qxfer} = \epsilon_i e^{-\eta_j r_{ij}} + \epsilon_j e^{-\eta_i r_{ij}} - U_{repulsion} = \frac{K_i K_j}{r_{ij}} S^2 - S^2 = \left( \int{\phi_i \phi_j} dv \right)^2 = \vec{M_i}\bold{T_{ij}^{repulsion}}\vec{M_j} - U_{dispersion} = -\frac{C_6^iC_6^j}{r_{ij}^6} \left( f_{damp}^{dispersion} \right)_{ij}^2 + U_{multipole} = & Z_i \frac{1}{r_{ij}} Z_j + Z_i T_{ij}^{damp} \vec{M}_j + Z_j T_{ji}^{damp} \vec{M}_i + \vec{M}_i T_{ij}^{damp} \vec{M}_j, \quad \mbox{with} \quad + \vec{M} = \left(q, \vec{\mu}_{perm}, \boldsymbol{\Theta} \right) \\ + U_{polar} = & \frac{1}{2}\vec{\mu}_i^{ind} \vec{E}_i^{perm} \\ + U_{qxfer} = & \epsilon_i e^{-\eta_j r_{ij}} + \epsilon_j e^{-\eta_i r_{ij}} \\ + U_{repulsion} = & \frac{K_i K_j}{r_{ij}} S^2 + S^2 = \left( \int{\phi_i \phi_j} dv \right)^2 = \vec{M}_i\boldsymbol{T_{ij}^{repulsion}}\vec{M}_j \\ + U_{dispersion} = & -\frac{C_6^iC_6^j}{r_{ij}^6} \left( f_{damp}^{dispersion} \right)_{ij}^2 .. note::